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On the existence of local frames of CR vector bundles
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Abstract. Given a CR manifold D, we shall show that existence of a CR local frame

of a certain CR vector bundle over D is equivalent to the local imbeddability of D.

This will imply that there exists a CR vector bundle which doesn’t have CR local

frames. Using this bundle, we shall construct CR line bundles over 3-dimensional

non-imbeddable CR manifolds which don’t have CR local frames.
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1. Introduction

In CR geometry, CR vector bundle is a basic notion. In contrast to
holomorphic vector bundles over complex manifolds, CR local frames do not
always exist, although it was shown by Webster [6] that CR vector bundles
always admit CR local frames if the manifold is strongly pseudoconvex (spc)
and of dimension ≥ 7. In this paper we shall say that a CR vector bundle is
CR framable (framable for short) if it has CR local frames around any point
and consider framability problem of a CR vector bundle over a 3-dim CR
manifold mainly. First we discuss a relation between local imbeddability of
a CR manifold and framability of a CR vector bundle. This relation was
studied in [2] and [6]. We refine the result of Webster [6].

Theorem 1 Let (D, T 0,1D) be a 2n−1 (n ≥ 2) dimensional CR manifold.
Then (D, T 0,1D) has a CR coframe locally if and only if it admits a local
imbedding to Cn.

A CR coframe is a CR frame of a certain CR vector bundle (see Section
2). So it will imply that there exists a non-framable CR vector bundle over
any non-imbeddable CR manifold. Particularly we obtain a non-framable
CR vector bundle of rank 2 over every non-imbeddable 3-dim CR manifold.
(There exist a lot of examples of non-imbeddable spc manifolds. See [3].)
Next we ask whether there exist non-framable CR line bundles over a non-
imbeddable 3-dim CR manifold. We introduce CR vector bundle structure
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space H′′(F ) over a C-vector bundle F and discuss this problem differential
geometrically. Using the non-framable CR vector bundle of rank 2 we can
construct non-framable CR line bundles under some condition.

Theorem 2 Let D be a 3-dim CR manifold, F ′ be a C-line bundle of
over D, F ′′ be a C-vector bundle of rank 2 over D and p ∈ D. Assume
the existence of a non-framable CR vector bundle structure ω0 ∈ H′′(F ′′).
If there are no CR local frames but there is a nowhere-vanishing CR local
section around p for ω0, then there exist line bundle structures in H′′(F ′)
which are non-framable around p.

Furthermore it is shown that if there exists a non-framable CR line
bundle structure, we can find a lot of non-framable structures.

Theorem 3 Let D be a 3-dim CR manifold, E′ = C × D, and F ′ be a
C-line bundle over D. If there is a non-framable CR line bundle structure
over E′, then there exist non-framable structures in H′′(F ′) arbitrarily close
to any framable structure in H′′(F ′).

2. Preliminaries

Let D be a 2n − 1 (n ≥ 2) dimensional C∞ manifold and T 0,1D be a
subbundle of CTD := C⊗TD of rank n− 1 such that T 0,1D∩T 0,1D = {0}
and [Γ(T 0,1D),Γ(T 0,1D)] ⊂ Γ(T 0,1D), where Γ(T 0,1D) denotes the set of
C∞ sections of T 0,1D on D. The pair (D, T 0,1D) is called a CR manifold.
We set T 1,0D = T 0,1D. It is possible that we define a CR manifold in
another way using differential forms. Namely, let G be a subbundle of CTD∗

of rank n and I(G) be the exterior ideal of complex differential forms on D

generated by G. If G+G = CTD∗ and dI(G) ⊂ I(G) are satisfied, the pair
(D, G) is called a CR manifold. In these two definitions T 0,1D

⊥ := {w ∈
CTD∗;w(v) = 0, for any v ∈ T 0,1D} coincides with G. Let Ap(0 ≤ p) be
the sheaf of C∞ C-valued p-forms, let Ap(F ) be the sheaf of C∞ F -valued
p-forms for a C∞ C-vector bundle F and let Γ(Ap) be sections of Ap over
D. We may define locally free subsheaves of A0 modules

Âp,q =
{
ω ∈ Ap+q|v0 ∧ v1 ∧ · · · ∧ vqyω = 0, for any v0, . . . , vq ∈ T 0,1D

}

for p ≥ 1 and q ≥ 0, and set Â0,q = Aq (q ≥ 0) and Âp,−1 = 0, where y
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denotes the interior product. We now define smooth (p, q)-forms Ap,q by

Ap,q := Âp,q/Âp+1,q−1 ∼= A0
( ∧p (T 0,1D⊥)⊗ ∧qT 0,1D∗).

From the integrability condition dI(T 0,1D⊥) ⊂ I(T 0,1D⊥), we have
d(Âp,q) ⊂ Âp,q+1. So we can define an operator ∂b : Ap,q → Ap,q+1 as
the exterior derivative d composed with the projection π : Âp,q → Ap,q as
follows.

∂b[v] = π · dv for [v] ∈ Ap,q.

For each fixed p, {Ap,q} forms a complex. We will often call {A0,q}
simply the ∂b complex. We refer the reader to [6] and [4] to follow up the
fundamental materials of CR manifolds. Let F be a C-vector bundle of
rank r over (D, T 0,1D). A CR vector bundle structure over F is defined
by a linear differential operator ∂F : A0(F ) → A0(T 0,1D∗⊗

F ) such that
∂F (af) = (∂ba)f + a∂F f for a ∈ A0, f ∈ A0(F ) and ∂F · ∂F = 0 hold,
where ∂F is extended to ∂F : A0(T 0,1D∗⊗

F ) → A0(
∧2

T 0,1D∗⊗
F ) so

that ∂F φ(X, Y ) = 1
2{(∂F φ(Y ))(X)−(∂F φ(X))(Y )−φ([X, Y ])} holds for any

φ ∈ A0(T 0,1D∗⊗
F ) and any X, Y ∈ A0(T 0,1D) and, ∂F · ∂F means their

composition. The pair (F, ∂F ) is called a CR vector bundle. Let e = 〈ei〉
(1 ≤ i ≤ r) be a local frame on an open set U ⊂ D and let ∂F e = ωe, where
ω is a A0,1-valued r × r matrix function. Then ω satisfies ∂bω − ω ∧ ω = 0
from the integrability condition ∂F · ∂F = 0. Let e′ be another local frame
on U . Then, there is a GL(r,C) valued function a such that e′ = ae. Then
∂F e′ = (∂ba)e + a∂F e = (∂ba + aω)e. If there exists a local section u of F

such that ∂F u = 0, we call it a CR local section and if a set of nowhere-
vanishing CR sections forms a local frame of F , we call it a CR local frame.
A CR vector bundle has a CR local frame around p ∈ D if and only if a non-
linear PDE a−1∂ba = −ω has a local solution such that det a 6= 0 around
p. We say that a CR vector bundle is CR framable, or framable for short if
there exist CR local frames everywhere. Examples of CR vector bundles are
given in [4]. CR vector bundles

∧p(T 0,1D)⊥ (1 ≤ p ≤ n) are particularly
important. Because they are determined by CR structure of the base space
D. A section φ of

∧p(T 0,1D)⊥ such that dφ ∈ ∧p+1(T 0,1D)⊥ is called a CR
p-form. A frame of T 0,1D⊥ composed of CR 1-forms is called a CR coframe.
A CR n-form is also important. If a Levi non-degenerate CR manifold has a
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nowhere-vanishing CR n-form, it admits a pseudo-Einstein structure. (See
[5]).

The following formula for a C-line bundle over a CR manifold is easily
proved.

Proposition 1 Let (D, T 0,1D) be a CR manifold and f, g be nowhere-
vanishing functions on an open set U ⊂ D. Then

(fg)−1∂b(fg) = f−1∂bf + g−1∂bg. (1)

3. Local imbeddability and framability of a CR vector bundle

Let (D, T 0,1D) be a 2n−1 (n ≥ 2) dimensional CR manifold and p ∈ D.
The CR imbeddimg problem can be described from the viewpoint related
to local 1-parameter group of CR diffeomorphism. We shall quote several
lemmas from [2]. For a real vector field X let LXω denote the Lie derivative
acting on forms and vector fields. If Y = X1 + iX2 is a complex vector field,
LY means the operator LX1 + iLX2 . Note that the identity

LY ω = d(iY ω) + iY (dω) (2)

is valid, where ω is any differential form.

Lemma 1 The following are equivalent :

(1) (D, T 0,1D) is locally imbeddable around p.
(2) There exists a vector field Y around p with LY T 0,1D ⊂ T 0,1D and

Yp /∈ T 0,1
p D + T 1,0

p D.

Proof. See [2]. ¤

Lemma 2 For any vector field Y the following are equivalent.

(1) LY T 0,1D ⊂ T 0,1D

(2) LY

∧n(T 0,1D)⊥ ⊂ ∧n(T 0,1D)⊥.
(3) For every nowhere-vanishing section Ω of

∧n(T 0,1D)⊥ there is some
function λ such that LY Ω = λΩ.

(4) There is some nowhere-vanishing section Ω of
∧n(T 0,1D)⊥ and some

function λ such that LY Ω = λΩ.

Proof. See [2]. ¤
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Proof of Theorem 1. Let U be an open set in D such that the local triv-
iality (in the sense of C∞) TD|U ∼= U × R2n−1 holds. Then, there is a
nowhere-vanishing real vector field T on U and we have a decomposition

CTU = T 0,1U + T 1,0U + CT. (3)

From the canonical isomorphisms T 0,1U∗ ∼= (T 1,0U+CT )⊥, CT ∗ ∼= (T 0,1U+
T 1,0U)⊥,

CTU∗ = T 0,1U∗ + T 1,0U∗ + CT ∗ (4)

also holds.
Let Γ(T 1,0U) = 〈vi〉1≤i≤n−1. Then Γ(CTU) = 〈vi, vi, T 〉1≤i≤n−1.

Taking dual basis, Γ(CTU∗) = 〈ui, ui, η〉1≤i≤n−1, where ui(vi) = 1 and
η(T ) = 1.

Assume the existence of a CR coframe 〈θi〉1≤i≤n on U . Set Ω = θ1∧· · ·∧
θn. We want to find Y /∈ Γ(T 0,1U + T 1,0U) such that LY Ω = λΩ for some
function λ. LY Ω = d(iY Ω) + iY (dΩ) = d(

∑i=n
i=1 (−1)i+1θi(Y )θ1 ∧ · · · θ̂i ∧

· · ·∧ θn). Set Y =
∑i=n−1

i=1 fivi + fnT for some functions fi (1 ≤ i ≤ n). We
determine fi so that Y satisfies the condition above. 〈θi〉 can be written as
follows.

(
θ1, . . . , θn

)
=

(
u1, . . . , un−1, η

)
A (5)

for some A such that det A 6= 0. From (5),

(
θ1(Y ), . . . , θn(Y )

)
=

(
f1, . . . , fn

)
A. (6)

For i = 1, . . . , n, set

(
f1, . . . , fn

)
=

(
0, . . . , 0,

i

1̌, 0, . . . , 0
)
A−1. (7)

Then, from rankCA = n we can obtain (f1, . . . , fn) such that fn 6= 0 for
some i (1 ≤ i ≤ n). Then LY Ω = λΩ holds for Y =

∑i=n−1
i=1 fivi + fnT

and CR imbeddability is shown. The converse is trivial. Let ι be a CR
imbedding map from U to Cn and (z1, · · · , zn) be a coordinate in Cn. Then
〈ι∗dzi〉 (1 ≤ i ≤ n) is a CR coframe on U . ¤
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Remark 1 As examples of non-imbeddable CR manifolds besides 3-dim
spc manifolds, a class of CR twister manifolds is also famous. It was given
by LeBrun [4].

4. Non-framable CR vector bundle structures

Let D be a 3-dim CR manifold, E = D × Cr and p ∈ D. E has
a trivial CR vector bundle structure ∂b, so we can write any CR vector
bundle structure over E as ∂E = ∂b + ω, where ω ∈ Γ(A0,1(EndE)). We
regard A0,1(EndE) as the A0,1-valued r×r matrix space M(r,A0,1). As the
integrability condition of ∂E , ω satisfies ∂bω + ω ∧ ω = 0. Since A0,2 = 0,
we have H′′(E) = {∂b + ω;ω ∈ Γ(M(r,A0,1)), ∂bω + ω ∧ ω = 0} = {∂b +
ω;ω ∈ Γ(M(r,A0,1))}, where H′′(E) denotes the set of all CR vector bundle
structures over E. We choose the natural frame e = 〈ei〉1≤i≤r of the trivial
bundle E. Then for ∂E = ∂b + ω, ∂Ee = ωe holds. In this section, we shall
ask whether there exist non-framable CR line bundles over a 3-dim non-
imbeddable CR manifold D. In [1], Hörmander gives a necessary condition
for a linear PDE Pu = f to have a local solution for every C-valued function
f ∈ C∞. (See Theorem 6.1.1, Theorem 6.1.2 in [1].) Since the PDE for
framability of a CR line bundle is a−1∂ba = −ω and it is reduced to a ∂b-
equation ∂b(log a) = −ω. However it is hard to check whether Hörmander’s
condition holds or not. So we will try another approach using a non-framable
CR vector bundle structure ∂T 0,1D⊥ obtained in the previous section. As
a result we give an answer partially. In the end we shall ask how many
non-framable CR line bundle structures exist in a CR line bundle structure
space and how they exist there. Through this section, note the following
two facts. For any C-vector bundle F over a 3-dim CR manifold D, there
exist CR vector bundle structures (i.e. H′′(F ) 6= ∅). This is verified in
the same way as construction of connections in vector bundles. (Take a
covering {Uα} of D and the associate partition of unity {ρα}. Then set
ωα =

∑
β ρβ ·(∂bA

−1
αβ ·Aαβ), where {Aαβ} is a family of transition functions.)

CR vector bundle can be defined through a connection satisfying a certain
integrability condition (see [6]), so checking that on a 3-dim CR manifold D

any connection satisfies this integrability condition is another way. The key
is that rank T 0,1D∗ = 1 (A0,2 = 0). The second fact is that E is framable
around p for any CR vector bundle structure over E if and only if a C-vector
bundle F over D of rank r is framable around p for any CR vector bundle



On the existence of local frames of CR vector bundles 127

structure over F . This is also easily verified from H′′(F ) 6= ∅ and A0,2 = 0.
By these facts we may prove Theorem 2 and Theorem 3 in the following
simpler forms.

Theorem 2′ Let D be a 3-dim CR manifold, E′ = D × C, and E′′ =
D×C2. Assume the existence of a non-framable CR vector bundle structure
ω0 ∈ H′′(E′′). If there are no CR local frames but there is a nowhere-
vanishing CR local section around p for ω0, then there exist line bundle
structures in H′′(E′) which are non-framable around p.

Theorem 3′ Let D be a 3-dim CR manifold and E′ = D × C. If there
is a non-framable CR line bundle structure over E′, then there exist non-
framable structures arbitrarily close to any framable structure in H′′(E′).

Proposition 2 Let E′ = D×C be a C-line bundle over a 2n− 1 (n ≥ 2)
dimensional CR manifold (D, T 0,1D). Then all CR line bundle structures
over E′ are framable if and only if lim−→p∈UH0,1(U) = 0 for every p ∈ D,
where U runs through the neighborhoods of p.

Proof. In the C-line bundle case, the set of all CR line bundle structures
over E′ is {∂b + ω;ω ∈ Γ(A0,1), ∂bω = 0}. And the PDE for framability
can be written a−1∂ba = ∂b(log a) = −ω. Suppose a PDE ∂bf = ω can’t
be solved for some ω ∈ Γ(A0,1) such that ∂bω = 0, where f is an unknown
function. Then this ω gives a non-framable CR line bundle structure. If
a PDE ∂bf = −ω can be solved locally around every point in D for any
ω ∈ Γ(A0,1) such that ∂bω = 0, ∂b(log a) = −ω has a nowhere-vanishing
local solution a = ef . Therefore ω is framable. ¤

Proposition 3 Let D be a 3-dim CR manifold, E′ = D × Cr and ω ∈
H′′(E′). Put ω′ = ∂bS

−1S + S−1ωS for a GL(r,C) valued function S ∈
Γ(D ×GL(r,C)). Then ω is framable if and only if ω′ is framable.

Proof. The PDE for framability of ω is

a−1∂ba = −ω. (8)

We consider the PDE

a′−1∂ba
′ = −ω′ = −(

∂bS
−1S + S−1ωS

)
. (9)
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Noting that

∂b(S−1S) = ∂bS
−1S + S−1∂bS = 0, (10)

(9) can be written as

a′−1∂ba
′ − S−1∂bS = −S−1ωS. (11)

Here, we consider a PDE

−ω = (a′S−1)−1∂b(a′S−1) = S
(
a′−1∂ba

′ − S−1∂bS
)
S−1. (12)

(12) is solvable if and only if (11) is solvable. This shows that ω is framable
if and only if ω′ is framable. ¤

Proof of Theorem 2 ′. Let ω0 =
(

ω1
1 ω2

1

ω1
2 ω2

2

)
be some non-framable CR vector

bundle structure in H′′(E′′) and S′ =
(

s′1 0

0 s′2

)
be a GL(2,C) valued matrix

function. Let

ω′0 = ∂bS
′−1S′ + S′−1ω0S

′ =

(−s′−1
1 ∂bs

′
1 + ω1

1 s′−1
1 s′2ω

2
1

s′−1
2 s′1ω

1
2 −s′−1

2 ∂bs
′
2 + ω2

2

)
. (13)

Then the PDE −s′−1
1 ∂bs

′
1 + ω1

1 = 0 or −s′−1
2 ∂bs

′
2 + ω2

2 = 0 can be solved
if all CR line bundle structures are framable, where s′1 and s′2 are unknown
functions. By picking up these solutions, we may assume

ω′0 =

(
0 s′−1

1 s′2ω
2
1

s′−1
2 s′1ω

1
2 0

)
(14)

around p ∈ D.
If we assume that the second component of the local frame is a nowhere

vanishing CR local section, we can set ω0 =
(

ω1
1 ω2

1
0 0

)
. In addition, using

the above argument we can reset ω′0 =
(

0 ω′1
0 0

)
. If we set S =

(
1 s
0 1

)
(s 6= 0),

then ∂bS
−1S + S−1ω′0S



On the existence of local frames of CR vector bundles 129

=

(
0 −∂bs + ω′1
0 0

)
. (15)

If all CR line bundle structures are framable, we can pick up s(6= 0)
such that −∂bs + ω′1 = 0, and it is contradictory because ω = 0 is framable
around p. ¤

Theorem 2 implies that, on a 3-dim non-imbeddable CR manifold D,
if there is a nowhere-vanishing CR 1-form locally around every point in D,
there exist non-framable CR line bundle structures over any C-line bundle
F ′.

Corollary 1 Let D be a 3-dim non-imbeddable CR manifold and F ′ be a
C-line bundle. If there is a local CR function f such that dfp 6= 0 at every
p ∈ D, there exist non-framable CR line bundle structures in H′′(F ′).
Proof. df is a nowhere-vanishing CR 1-form. ¤

Remark 2 Corollary 1 also follows from Theorem 2 in [2].

Hereafter, framability of CR vector bundle structures around a framable
structure ω1 ∈ H′′(E) is discussed. We consider framability of a CR vector
bundle structure ω1+ωδ, which is a perturbation of ω1. Since ω1 is framable,
there exists a GL(r,C) valued a1 such that

a−1
1 ∂ba1 = −ω1. (16)

The PDE for framability of ω1 + ωδ is

a−1∂ba = −(ω1 + ωδ) = −(
∂ba

−1
1 a1 + ωδ

)
. (17)

Set ωδ = a−1
1 ω′δa1. Then from Proposition 3, ω1 + ωδ is framable if and

only if ω′δ is framable. This implies that if we can construct arbitrar-
ily small perturbations which are non-framable, we can find non-framable
structures around every framable structure in H′′(E). From here we con-
sider the case of CR line bundles. We set ω′δ = δω0, 0 < δ ≤ 1. Let
c = inf{δ;ω′δ is non-framable}. If c = 0, we can obtain the small perturba-
tions as above. We consider the case c > 0. In this case, ω′δ (0 < δ < c) are
framable. For δ1 (0 < δ1 < c), there exists Lδ1 such that



130 T. Kajisa

Lδ1∂bL
−1
δ1

= −δ1ω0 (18)

Let δ2 ≥ c and ωδ2 = δ2ω0 be non-framable. Then,

∂bL
−1
δ1

Lδ1 + L−1
δ1

(δ2ω0)Lδ1 = (δ2 − δ1)ω0. (19)

Therefore, from Proposition 3 (δ2 − δ1)ω0 are non-framable and δ2 − δ1 > 0
can be arbitrarily small. It’s contradictory to c > 0. The argument above
proves Theorem 3′.
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