Solutions of second order homogeneous Dirichlet systems

Robert Dalmasso

(Received June 25, 1996)

Abstract

In this paper we establish some existence theorems for second order nonlinear systems of the form $y^{\prime \prime}=f\left(t, y, y^{\prime}\right), y(0)=y(1)=0$. We also give two uniqueness results.

Key words: Nonlinear systems, a priori estimates.

1. Introduction

In this paper we consider the following homogeneous system

$$
\begin{equation*}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right), \quad y(0)=y(1)=0, \tag{h}
\end{equation*}
$$

where $f:[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is continuous.
By a solution to the above problem we mean a function $y \in C^{2}\left([0,1], \mathbb{R}^{m}\right)$.
The existence of solutions to $\left(\mathcal{D}_{h}\right)$ has been studied extensively in recent years (see [3] when $m=1,[9]$ when $m \geq 1$ and their references). In any case growth conditions are imposed on f in order to obtain a priori estimates. Then the transversality theorem [5] is applied and the existence of a solution is established. The more general nonlinearities treated in [3] include all the nonlinearities previously studied in this setting.

The purpose of this paper is to improve and complement the results of [3] and [9]. The proofs use in a decisive manner the theory of positive operators in finite dimensions (see [4]).

We shall denote by $|x|$ the euclidean norm of $x \in \mathbb{R}^{m}$ and by $\|A\|$ the spectral norm of an $m \times m$ matrix A. Finally, we denote by $\|y\|_{p}$ the L^{p} norm of $\left.y \in L^{p}\left((0,1), \mathbb{R}^{m}\right)\right)$.

In Section 2 we provide some preliminary results from the theory of nonnegative matrices. The existence theorems are presented in Section 3. Finally the uniqueness question is examined in Section 4.

2. Preliminaries

The following results are needed in the sequel. We refer the reader to [1] for proofs. We consider the proper cone

$$
\mathbb{R}_{+}^{m}=\left\{x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m} ; x_{j} \geq 0, j=1, \ldots, m\right\} .
$$

Definition 1 An $m \times m$ matrix A is called \mathbb{R}_{+}^{m}-monotone if

$$
A x \in \mathbb{R}_{+}^{m} \Rightarrow x \in \mathbb{R}_{+}^{m} .
$$

An $m \times m$ matrix $N=\left(n_{j k}\right)_{1 \leq j, k \leq m}$ is nonnegative if $n_{j k} \geq 0$ for $j, k=1, \ldots, m$.

Theorem 1 ([1] p. 113). An $m \times m$ matrix A is \mathbb{R}_{+}^{m}-monotone if and only if it is nonsingular and A^{-1} is nonnegative.

Theorem 2 ([1] p. 113). Let $A=\alpha I-N$ where $\alpha \in \mathbb{R}$ and N is an $m \times m$ nonnegative matrix. Then the following are equivalent:
(i) The matrix A is \mathbb{R}_{+}^{m}-monotone;
(ii) $\rho(N)<\alpha$ where $\rho(N)$ denotes the spectral radius of N.

3. Existence theorems

We first establish the following theorem.
Theorem 3 Let $f \in C\left([0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Assume that f has the decomposition

$$
f(t, y, p)=g(t, y, p)+h(t, y, p)
$$

where $g=\left(g_{1}, \ldots, g_{m}\right)$ and $h=\left(h_{1}, \ldots, h_{m}\right)$ satisfy the following hypotheses:
(H1) $y_{j} g_{j}(t, y, p) \geq 0$ for $j=1, \ldots, m$ and $(t, y, p) \in[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}$;
(H2) There are constants $a_{j k}, b_{j k} \geq 0$ and $c_{j} \geq 0, j, k=1, \cdots, m$ such that

$$
\begin{equation*}
\left|h_{j}(t, y, p)\right| \leq \sum_{k=1}^{m}\left(a_{j k}\left|y_{k}\right|+b_{j k}\left|p_{k}\right|\right)+c_{j} \tag{1}
\end{equation*}
$$

for $j=1, \ldots, m$ and $(t, y, p) \in[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}$, with

$$
\begin{equation*}
\rho(M)<\pi^{2} \tag{2}
\end{equation*}
$$

where $M=\left(a_{j k}+\pi b_{j k}\right)_{1 \leq j, k \leq m}$;
(H3) $|g(t, y, p)| \leq A(t, y) w\left(|p|^{2}\right)$ for $(t, y, p) \in[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}$, where $A(t, y)$ is bounded on bounded subsets of $[0,1] \times \mathbb{R}^{m}$ and $w \in C([0, \infty),(0, \infty))$ is a nondecreasing function such that

$$
\int_{0}^{\infty} \frac{d s}{w(s)}=\infty
$$

Then the Dirichlet system $\left(\mathcal{D}_{h}\right)$ has a solution $y \in C^{2}\left([0,1], \mathbb{R}^{m}\right)$.
Proof. We introduce the problems

$$
\begin{equation*}
y^{\prime \prime}=\lambda f\left(t, y, y^{\prime}\right), \quad y(0)=y(1)=0, \tag{3}
\end{equation*}
$$

where $\lambda \in[0,1]$ is the Leray-Schauder homotopy parameter.
We first prove that there exists a constant $C>0$ such that for any $\lambda \in[0,1]$ and any solution y of $(3)_{\lambda}$ we have

$$
\begin{equation*}
\|y\|_{\infty} \leq C, \quad\left\|y^{\prime}\right\|_{\infty} \leq C, \quad\left\|y^{\prime \prime}\right\|_{\infty} \leq C . \tag{4}
\end{equation*}
$$

Multiplying the jth differential equation in (3) ${ }_{\lambda}$ by y_{j}, integrating from 0 to 1 and using (H1) and (1) we obtain

$$
\begin{aligned}
\int_{0}^{1}\left(y_{j}^{\prime}\right)^{2} d t & =-\lambda \int_{0}^{1} y_{j} f_{j}\left(t, y, y^{\prime}\right) d t \\
& =-\lambda \int_{0}^{1} y_{j} g_{j}\left(t, y, y^{\prime}\right) d t-\lambda \int_{0}^{1} y_{j} h_{j}\left(t, y, y^{\prime}\right) d t \\
& \leq \int_{0}^{1}\left|y_{j} h_{j}\left(t, y, y^{\prime}\right)\right| d t \\
& \leq \sum_{k=1}^{m}\left(a_{j k} \int_{0}^{1}\left|y_{j} y_{k}\right| d t+b_{j k} \int_{0}^{1}\left|y_{j} y_{k}^{\prime}\right| d t\right)+c_{j} \int_{0}^{1}\left|y_{j}\right| d t
\end{aligned}
$$

for $j=1, \ldots, m$ with $f=\left(f_{1}, \ldots, f_{m}\right)$. Using the Schwarz inequality we get

$$
\begin{equation*}
\left\|y_{j}^{\prime}\right\|_{2}^{2} \leq \sum_{k=1}^{m}\left(a_{j k}\left\|y_{j}\right\|\left\|_{2}\right\| y_{k}\left\|_{2}+b_{j k}\right\| y_{j}\left\|_{2}\right\| y_{k}^{\prime} \|_{2}\right)+c_{j}\left\|y_{j}\right\|_{2} \tag{5}
\end{equation*}
$$

Since $y_{j}(0)=y_{j}(1)=0$ the Wirtinger's inequality (see [6]) gives

$$
\begin{equation*}
\pi\left\|y_{j}\right\|_{2} \leq\left\|y_{j}^{\prime}\right\|_{2}, \quad j=1, \ldots, m . \tag{6}
\end{equation*}
$$

From (5) and (6) we deduce that

$$
\begin{equation*}
\left\|y_{j}^{\prime}\right\|_{2} \leq \sum_{k=1}^{m}\left(\frac{a_{j k}}{\pi^{2}}+\frac{b_{j k}}{\pi}\right)\left\|y_{k}^{\prime}\right\|_{2}+\frac{c_{j}}{\pi}, \quad j=1, \ldots, m \tag{7}
\end{equation*}
$$

Let x and c denote the vectors

$$
x=\left(\left\|y_{j}^{\prime}\right\|_{2}\right)_{1 \leq j \leq m} \quad \text { and } \quad c=\left(\frac{c_{j}}{\pi}\right)_{1 \leq j \leq m}
$$

(7) can be written

$$
c-\left(I-\pi^{-2} M\right) x \in \mathbb{R}_{+}^{m}
$$

(2) and theorem 2 imply that $I-\pi^{-2} M$ is \mathbb{R}_{+}^{m}-monotone. Hence using theorem 1 we obtain

$$
\begin{equation*}
\left(I-\pi^{-2} M\right)^{-1} c-x \in \mathbb{R}_{+}^{m} \tag{8}
\end{equation*}
$$

From (6) and (8) we get

$$
\begin{equation*}
\left\|y_{j}\right\|_{2} \leq C_{1}, \quad\left\|y_{j}^{\prime}\right\|_{2} \leq C_{1}, \quad j=1, \ldots, m \tag{9}
\end{equation*}
$$

for some positive constant C_{1}. Since $y_{j}(0)=0$, we can write

$$
\begin{aligned}
\left|y_{j}(t)\right| & =\left|\int_{0}^{t} y_{j}^{\prime}(s) d s\right| \leq \int_{0}^{1}\left|y_{j}^{\prime}(s)\right| d s \\
& \leq\left\|y_{j}^{\prime}\right\|_{2} \leq C_{1}
\end{aligned}
$$

for $j=1, \ldots, m$ and $t \in[0,1]$, so that

$$
\begin{equation*}
\|y\|_{\infty} \leq \sqrt{m} C_{1} \tag{10}
\end{equation*}
$$

We claim that for each solution y of $(3)_{\lambda}$ there exists $t_{0} \in[0,1]$ such that

$$
\begin{equation*}
\left|y^{\prime}\left(t_{0}\right)\right| \leq \sqrt{m} C_{1} \tag{11}
\end{equation*}
$$

Indeed, by (9) we have

$$
\begin{equation*}
\int_{0}^{1}\left|y^{\prime}(t)\right|^{2} d t \leq m C_{1}^{2} \tag{12}
\end{equation*}
$$

hence there exists $t_{0} \in[0,1]$ such that (11) is satisfied.
Using (H2), (H3) and (10) we can find a constant $A>0$ such that

$$
\left|y^{\prime \prime}(t)\right| \leq A\left(w\left(\left|y^{\prime}(t)\right|^{2}\right)+1+\left|y^{\prime}(t)\right|\right), \quad 0 \leq t \leq 1
$$

and, since

$$
\left|y^{\prime}(t)\right| \leq \frac{1}{2}\left(1+\left|y^{\prime}(t)\right|^{2}\right) \leq 1+\left|y^{\prime}(t)\right|^{2}, \quad 0 \leq t \leq 1
$$

we get

$$
\begin{equation*}
\left|y^{\prime \prime}(t)\right| \leq A\left(w\left(\left|y^{\prime}(t)\right|^{2}\right)+\left|y^{\prime}(t)\right|^{2}+2\right), \quad 0 \leq t \leq 1 \tag{13}
\end{equation*}
$$

Define $z(t)=\left|y^{\prime}(t)\right|^{2}, t \in[0,1]$. By (13) we have

$$
\begin{align*}
\left|z^{\prime}(t)\right| & =2\left|y^{\prime}(t) \cdot y^{\prime \prime}(t)\right| \leq 2\left|y^{\prime}(t)\right|\left|y^{\prime \prime}(t)\right| \\
& \leq 2 A\left|y^{\prime}(t)\right|(w(z(t))+2+z(t)) \tag{14}
\end{align*}
$$

for $t \in[0,1]$. (14) implies that

$$
\frac{z^{\prime}(t)}{w(z(t))+z(t)+2} \leq 2 A\left|y^{\prime}(t)\right|, \quad 0 \leq t \leq 1
$$

An integration from t_{0} to $t \geq t_{0}$ yields

$$
\begin{align*}
\int_{z\left(t_{0}\right)}^{z(t)} \frac{d s}{w(s)+s+2} & \leq 2 A \int_{t_{0}}^{t}\left|y^{\prime}(s)\right| d s \\
& \leq 2 A\left(\int_{0}^{1}\left|y^{\prime}(s)\right|^{2} d s\right)^{1 / 2} \leq 2 \sqrt{m} A C_{1} \tag{15}
\end{align*}
$$

Since $w \in C([0, \infty),(0, \infty))$ is nondecreasing and

$$
\int_{0}^{\infty} \frac{d s}{w(s)}=\infty
$$

we easily have (see [2]) that

$$
\int_{0}^{\infty} \frac{d s}{w(s)+s+2}=\infty
$$

and by (11) and (15) we obtain the existence of a constant $C>0$ independent of t_{0} such that

$$
z(t)=\left|y^{\prime}(t)\right|^{2} \leq C, \quad t_{0} \leq t \leq 1
$$

(14) also implies that

$$
\frac{-z^{\prime}(t)}{w(z(t))+z(t)+2} \leq 2 A\left|y^{\prime}(t)\right|, \quad 0 \leq t \leq 1
$$

An integration from $t \leq t_{0}$ to t_{0} yields

$$
\begin{aligned}
\int_{z\left(t_{0}\right)}^{z(t)} \frac{d s}{w(s)+s+2} & \leq 2 A \int_{t}^{t_{0}}\left|y^{\prime}(s)\right| d s \\
& \leq 2 A\left(\int_{0}^{1}\left|y^{\prime}(s)\right|^{2} d s\right)^{1 / 2} \leq 2 \sqrt{m} A C_{1} .
\end{aligned}
$$

As before we conclude that

$$
z(t)=\left|y^{\prime}(t)\right|^{2} \leq C, \quad 0 \leq t \leq t_{0}
$$

for some constant C independent of t_{0}. Therefore there exists a constant $C_{2}>0$ such that

$$
\begin{equation*}
\left\|y^{\prime}\right\|_{\infty} \leq C_{2} . \tag{16}
\end{equation*}
$$

From $(3)_{\lambda},(10)$ and (16) we deduce that

$$
\left|y^{\prime \prime}(t)\right| \leq C_{3}, \quad 0 \leq t \leq 1,
$$

where

$$
C_{3}=\sup \left\{|f(t, y, p)| ; t \in[0,1],|y| \leq \sqrt{m} C_{1},|p| \leq C_{2}\right\},
$$

and (4) is proved.
Now let $C_{0}^{2}=\left\{y \in C^{2}\left([0,1], \mathbb{R}^{m}\right) ; y(0)=y(1)=0\right\}$. Define the linear operator

$$
L: C_{0}^{2} \rightarrow C\left([0,1], \mathbb{R}^{m}\right), \quad L y=\frac{d^{2} y}{d t^{2}}
$$

and the family of maps $(0 \leq \lambda \leq 1)$

$$
\begin{aligned}
& T_{\lambda}: C^{1}\left([0,1], \mathbb{R}^{m}\right) \rightarrow C\left([0,1], \mathbb{R}^{m}\right), \\
& T_{\lambda} v(t)=\lambda f\left(t, v(t), v^{\prime}(t)\right), \quad 0 \leq t \leq 1 .
\end{aligned}
$$

$j: C_{0}^{2} \rightarrow C^{1}\left([0,1], \mathbb{R}^{m}\right)$ denotes the completely continuous embedding. L is invertible and

$$
L^{-1} v(t)=-\int_{0}^{1} G(t, s) v(s) d s, \quad 0 \leq t \leq 1,
$$

where G is the Green's function

$$
G(t, s)=\left\{\begin{array}{lll}
s(1-t) & \text { if } & 0 \leq s \leq t \leq 1 \\
t(1-s) & \text { if } & 0 \leq t \leq s \leq 1
\end{array}\right.
$$

Let

$$
K=\left\{y \in C_{0}^{2} ;\|y\|_{\max }=\max \left\{\|y\|_{\infty},\left\|y^{\prime}\right\|_{\infty},\left\|y^{\prime \prime}\right\|_{\infty}\right\} \leq C+1\right\}
$$

where C is the constant in (4). We can define a compact homotopy

$$
H_{\lambda}: K \rightarrow C_{0}^{2}, \quad H_{\lambda}=L^{-1} T_{\lambda} j, \quad 0 \leq \lambda \leq 1
$$

Since the fixed points of H_{λ} are the solutions of $(3)_{\lambda}$, the choice of C implies that the homotopy H_{λ} is fixed point free on the boundary of K. We have $H_{0} \equiv 0$. Thus we can apply the topological transversality theorem [5] to obtain that H_{1} has a fixed point. This shows that there is a solution to $\left(\mathcal{D}_{h}\right)$.

Example 1. Let $a, b \in \mathbb{R}$ be such that

$$
\pi|b|<a+\pi^{2} \quad \text { when } \quad a<0
$$

and

$$
|b|<\pi \quad \text { when } \quad a \geq 0
$$

Then the homogeneous Dirichlet problem

$$
\begin{gather*}
y^{\prime \prime}=y^{3} y^{2} \ln \left(1+y^{\prime 2}\right)+a y+b y^{\prime}+\sin \left(t y y^{\prime}\right) \\
y(0)=y(1)=0 \tag{17}
\end{gather*}
$$

has a solution by theorem 3 .
We shall show that the results of [3] do not apply to problem (17).
(i) Suppose that

$$
\begin{gathered}
g(t, y, p)+h(t, y, p)=y^{3} p^{2} \ln \left(1+p^{2}\right)+a y+b p+\sin (t y p) \\
(t, y, p) \in[0,1] \times \mathbb{R}^{2}
\end{gathered}
$$

with g, h satisfying the assumptions of theorem 1 in [3]. There exist constants $0 \leq \alpha, \beta<1$ and $M_{0}>0$ such that the following condition holds:

$$
\begin{equation*}
|h(t, y, p)| \leq M_{0}\left(|y|^{\alpha}+|p|^{\beta}\right), \quad(t, y, p) \in[0,1] \times \mathbb{R}^{2} \tag{C}
\end{equation*}
$$

Let k be the function defined by

$$
\begin{aligned}
k(t, y, p) & =g(t, y, p)-y^{3} p^{2} \ln \left(1+p^{2}\right) \\
& =a y+b p+\sin (t y p)-h(t, y, p)
\end{aligned}
$$

for $(t, y, p) \in[0,1] \times \mathbb{R}^{2}$.
Assume first that $b \neq 0$. Since $y g(t, y, p) \geq 0$ for $(t, y, p) \in[0,1] \times \mathbb{R}^{2}$, we deduce that $g(t, 0, p)=k(t, 0, p)=0$ for $(t, p) \in[0,1] \times \mathbb{R}$. Thus $h(t, 0, p)=$ $b p$ for $(t, p) \in[0,1] \times \mathbb{R}$ and (C) cannot be satisfied: take $y=0$ and $p \rightarrow \infty$.

Now suppose that $a<0$. Since $y g(t, y, p) \geq 0$ for $(t, y, p) \in[0,1] \times \mathbb{R}^{2}$, we deduce that

$$
y k(t, y, 0)=\left(a-\frac{h(t, y, 0)}{y}\right) y^{2} \geq 0
$$

for $(t, y) \in[0,1] \times(\mathbb{R} \backslash\{0\})$. With the help of condition (C) we obtain

$$
\lim _{|y| \rightarrow \infty}\left(a-\frac{h(t, y, 0)}{y}\right)=a<0, \quad t \in[0,1]
$$

and we reach a contradiction.
We conclude that we cannot apply theorem 1 of [3] to problem (17) when $a<0$ or $b \neq 0$.

Finally assume that there exists a constant $m \in\left(0, \pi^{2}-\frac{1}{2}\right)$ such that

$$
y g(t, y, p) \geq-m y^{2}, \quad(t, y, p) \in[0,1] \times \mathbb{R}^{2}
$$

We easily deduce that $g(t, 0, p)=k(t, 0, p)=0$ and $h(t, 0, p)=b p$ for $(t, p) \in[0,1] \times \mathbb{R}$. Again condition (C) cannot be satisfied if $b \neq 0$. Therefore remark 1 of [3] does not apply when $b \neq 0$.
(ii) If $a<0$, we have $y f(t, y, 0)=a y^{2}<0$ for $y \in \mathbb{R} \backslash\{0\}$ and we cannot use theorem 2 of [3].

The next example shows that theorem 3 complements some results obtained in [9] (theorem 6.1, corollaries 6.2 and 6.3).

Example 2. The homogeneous Dirichlet system

$$
\begin{aligned}
& \begin{aligned}
\begin{aligned}
\prime \prime
\end{aligned}= & y_{1}^{5}+y_{1}^{3}\left(\left(y_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}\right)^{2}\right) \ln \left(1+\left(y_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}\right)^{2}\right)+y_{1} y_{2}^{2} \\
& \quad-\frac{\pi^{2}}{6}\left(y_{1}+y_{2}+\frac{1}{\pi} y_{1}^{\prime}+\frac{1}{\pi} y_{2}^{\prime}\right)+\cos \left(t y_{1}^{\prime} y_{2}^{\prime}\right)
\end{aligned} \\
& \begin{aligned}
y_{2}^{\prime \prime}= & y_{2}^{7}+y_{2}^{5}\left(\left(y_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}\right)^{2}\right) \ln \left(1+\left(y_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}\right)^{2}\right)+y_{1}^{4} y_{2} \\
& \quad-\frac{\pi^{2}}{6}\left(y_{1}+y_{2}+\frac{1}{\pi} y_{1}^{\prime}+\frac{1}{\pi} y_{2}^{\prime}\right)+\cos t\left(y_{1}^{\prime}+y_{2}^{\prime}\right)
\end{aligned} \\
& y(0)=y(1)=0
\end{aligned}
$$

has a solution by theorem 3 .
Theorem 4 Let $f \in C\left([0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Assume that $f=g+h$ with g satisfying (H1). Assume moreover that the following conditions hold:
$(\mathrm{H} 2)^{\prime} \quad h$ satisfies $(\mathrm{H} 2)$ with $b_{j k}=0$ for $k \geq j+1, j=1, \ldots, m-1$ (if $m \geq 2$);
(H4) There are functions $A_{j}\left(t, y, p_{1}, \ldots, p_{j-1}\right) \geq 0$ (for $j=1, A_{1}$ is independent of the p variables) which are bounded on bounded subsets of $[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{j-1}$ and satisfy

$$
\left|g_{j}(t, y, p)\right| \leq A_{j}\left(t, y, p_{1}, \ldots, p_{j-1}\right) w_{j}\left(p_{j}^{2}\right)
$$

for $j=1, \ldots, m$ and $(t, y, p) \in[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}$, where $w_{j} \in C([0, \infty),(0, \infty))$ are nondecreasing functions such that

$$
\int_{0}^{\infty} \frac{d s}{w_{j}(s)}=\infty, \quad j=1, \ldots, m
$$

Then the Dirichlet system $\left(\mathcal{D}_{h}\right)$ has a solution $y \in C^{2}\left([0,1], \mathbb{R}^{m}\right)$.
Proof. As in the proof of theorem 3 we consider the family of problems $(3)_{\lambda}$ with $0 \leq \lambda \leq 1$. Again we shall prove that there exists a constant $C>0$ such that for any $\lambda \in[0,1]$ and any solution y of $(3)_{\lambda}$ the estimates (4) hold. The same arguments lead to (9) and (10). By (1) with (H2), (H4) with $j=1$ and (10) there exists a constant $A>0$ such that

$$
\left|y_{1}^{\prime \prime}(t)\right| \leq A\left(w_{1}\left(y_{1}^{\prime}(t)^{2}\right)+\left|y_{1}^{\prime}(t)\right|+1\right), \quad 0 \leq t \leq 1
$$

and, since

$$
\left|y_{1}^{\prime}(t)\right| \leq \frac{1}{2}\left(1+y_{1}^{\prime}(t)^{2}\right) \leq 1+y_{1}^{\prime}(t)^{2}, \quad 0 \leq t \leq 1
$$

we get

$$
\begin{equation*}
\left|y_{1}^{\prime \prime}(t)\right| \leq A\left(w_{1}\left(y_{1}^{\prime}(t)^{2}\right)+y_{1}^{\prime}(t)^{2}+2\right), \quad 0 \leq t \leq 1 \tag{18}
\end{equation*}
$$

Since y_{1}^{\prime} vanishes at least once in $(0,1)$, each connected component of $\{t \in$ $\left.[0,1] ; y_{1}^{\prime}(t) \neq 0\right\}$ is included in some interval $[a, b] \subset[0,1]$ such that $\left|y_{1}^{\prime}(t)\right|>$ 0 in (a, b) and $y_{1}^{\prime}(a)=0$ or $y_{1}^{\prime}(b)=0$. Assume that $y_{1}^{\prime}(t)>0$ in (a, b) and $y_{1}^{\prime}(a)=0$. Define $z(t)=y_{1}^{\prime}(t), t \in[a, b]$. By (18) we have

$$
z^{\prime}(t) \leq A\left(w_{1}\left(z(t)^{2}\right)+z(t)^{2}+2\right), \quad a \leq t \leq b
$$

thus

$$
\begin{equation*}
\frac{\left(z(t)^{2}\right)^{\prime}}{w_{1}\left(z(t)^{2}\right)+z(t)^{2}+2} \leq 2 A z(t), \quad a \leq t \leq b \tag{19}
\end{equation*}
$$

Integrating (19) from a to $t \in[a, b]$ and using (9) we obtain

$$
\begin{aligned}
\int_{0}^{z(t)^{2}} \frac{d s}{w_{1}(s)+s+2} d s & \leq 2 A \int_{a}^{t} y_{1}^{\prime}(s) d s \\
& \leq 2 A \int_{0}^{1}\left|y_{1}^{\prime}(s)\right| d s \leq 2 A C_{1}
\end{aligned}
$$

As in the proof of theorem 3 we obtain the existence of a constant $C>0$ independent of a and b such that

$$
0 \leq z(t)=y_{1}^{\prime}(t) \leq C, \quad a \leq t \leq b
$$

Since each case can be handled in the same way, we get

$$
\left|y_{1}^{\prime}(t)\right| \leq C, \quad 0 \leq t \leq 1
$$

for some constant C. Using (1) with (H2 $)^{\prime}$, (H4), (10) and an induction argument we deduce that each component y_{j}^{\prime} is bounded and we obtain a constant C such that

$$
\left\|y^{\prime}\right\|_{\infty} \leq C .
$$

Then we conclude as in the proof of theorem 3.
Example 3. The homogeneous Dirichlet system

$$
\begin{aligned}
& \begin{aligned}
& y_{1}^{\prime \prime}=y_{1}^{5}+y_{1}^{3}\left(y_{1}^{\prime}\right)^{2} \ln \left(1+\left(y_{1}^{\prime}\right)^{2}\right)+y_{1}\left(y_{2}^{2}+\frac{\left(y_{2}^{\prime}\right)^{2}}{1+\left(y_{2}^{\prime}\right)^{2}}\right) \\
& \quad-\frac{\pi^{2}}{6}\left(y_{1}+2 y_{2}+\frac{1}{\pi} y_{1}^{\prime}\right)+\cos \left(t y_{1}^{\prime} y_{2}^{\prime}\right)
\end{aligned} \\
& \begin{aligned}
& y_{2}^{\prime \prime}=y_{2}^{7}+y_{2}^{5}\left(\left(y_{1}^{\prime}\right)^{4}+\left(y_{2}^{\prime}\right)^{2}\right) \ln \left(1+\left(y_{1}^{\prime}\right)^{4}+\left(y_{2}^{\prime}\right)^{2}\right)+y_{1}^{4} y_{2} \\
&-\frac{\pi^{2}}{6}\left(y_{1}+y_{2}+\frac{1}{\pi} y_{1}^{\prime}+\frac{1}{\pi} y_{2}^{\prime}\right)+\cos t\left(y_{1}^{\prime}+y_{2}^{\prime}\right)
\end{aligned} \\
& y(0)=y(1)=0
\end{aligned}
$$

has a solution by theorem 4. It is easily seen that the results of [9] do not apply.

Now we give a result which complements theorem 3.
Theorem 5 Let $f \in C\left([0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Assume that $f=g+h$ satisfies (H1) and (H2). Assume moreover that the following condition holds:
(H5) $\quad|g(t, y, p)| \leq A(t, y)|p|^{2+\alpha}+B(t, y)$ for $(t, y, p) \in[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}$, where $\alpha \in(0,1)$ and $A(t, y), B(t, y)$ are bounded on bounded subsets of $[0,1] \times \mathbb{R}^{m}$.
Then the Dirichlet system $\left(\mathcal{D}_{h}\right)$ has a solution $y \in C^{2}\left([0,1], \mathbb{R}^{m}\right)$.
Proof. Again we consider the family of problems (3) ${ }_{\lambda}$ with $0 \leq \lambda \leq 1$. We shall prove that there exists a constant $C>0$ such that for any $\lambda \in[0,1]$ and any solution y of (3) λ_{λ} the estimates (4) hold. Arguing as in the proof of theorem 3 we are led to (10)-(12). Now using (1), (H5), (10) and (11) we can write

$$
\begin{aligned}
\left|y^{\prime}(t)\right| & =\left|y^{\prime}\left(t_{0}\right)+\int_{t_{0}}^{t} y^{\prime \prime}(s) d s\right|=\left|y^{\prime}\left(t_{0}\right)+\lambda \int_{t_{0}}^{t} f\left(s, y(s), y^{\prime}(s)\right) d s\right|, \\
& \leq\left|y^{\prime}\left(t_{0}\right)\right|+\left|\int_{t_{0}}^{t} f\left(s, y(s), y^{\prime}(s)\right) d s\right| \\
& \leq C\left(1+\int_{0}^{1}\left|y^{\prime}(s)\right|^{2+\alpha} d s+\int_{0}^{1}\left|y^{\prime}(s)\right| d s\right) \\
& \leq C\left\{1+\left(\int_{0}^{1}\left|y^{\prime}(s)\right|^{2} d s\right) \| y^{\prime}| |_{\infty}^{\alpha}+\left(\int_{0}^{1}\left|y^{\prime}(s)\right|^{2} d s\right)^{1 / 2}\right\}
\end{aligned}
$$

for $0 \leq t \leq 1$, where $C>0$ is a constant independent of t_{0}. With the help of (12) we obtain

$$
\left|y^{\prime}(t)\right| \leq C\left(1+\left\|y^{\prime}\right\|_{\infty}^{\alpha}\right), \quad 0 \leq t \leq 1,
$$

for another constant C. Therefore

$$
\begin{equation*}
\left\|y^{\prime}\right\|_{\infty} \leq C\left(1+\left\|y^{\prime}\right\|_{\infty}^{\alpha}\right) . \tag{20}
\end{equation*}
$$

Since $\alpha<1$, (20) implies that there exists a constant $C>0$ such that

$$
\left\|y^{\prime}\right\|_{\infty} \leq C .
$$

Then we conclude as in the proof of theorem 3.
Example 4. Let a, b be as in example 1 and let $\beta \in(0,1 / 2)$. Then the
homogeneous Dirichlet problem

$$
y^{\prime \prime}=y^{3}+y y^{\prime 2}\left(1+y^{\prime 2}\right)^{\beta}+a y+b y^{\prime}+\sin t y^{\prime}, \quad y(0)=y(1)=0,
$$

has a solution by theorem 5. Clearly, we cannot apply the results of [3].
The next theorem complements theorem 4.
Theorem 6 Let $f \in C\left([0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Assume that $f=g+h$ satisfies (H1) and (H2)'. Assume moreover that the following condition holds:
(H6) There are functions $A_{j}\left(t, y, p_{1}, \ldots, p_{j-1}\right), B_{j}\left(t, y, p_{1}, \ldots, p_{j-1}\right) \geq$ 0 (for $j=1, A_{1}, B_{1}$ are independent of the p variables) which are bounded on bounded subsets of $[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{j-1}$ and satisfy

$$
\left|g_{j}(t, y, p)\right| \leq A_{j}\left(t, y, p_{1}, \ldots, p_{j-1}\right)\left|p_{j}\right|^{2+\alpha}+B_{j}\left(t, y, p_{1}, \ldots, p_{j-1}\right),
$$

for $j=1, \ldots, m$ and $(t, y, p) \in[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}$, where $\alpha \in(0,1)$. Then the Dirichlet system $\left(\mathcal{D}_{h}\right)$ has a solution $y \in C^{2}\left([0,1], \mathbb{R}^{m}\right)$.

Proof. Consider the family of problems (3) ${ }_{\lambda}$ with $0 \leq \lambda \leq 1$. Let us prove that there exists a constant $C>0$ such that for any $\lambda \in[0,1]$ and any solution y of $(3)_{\lambda}$ the estimates (4) hold. Arguing as in the proof of theorem 3 we are led to (9) and (10). Let $t_{1} \in(0,1)$ be such that $y_{1}^{\prime}\left(t_{1}\right)=0$. Using (1) with (H2)', (H6) with $j=1$ and (10) we can write

$$
\begin{aligned}
\left|y_{1}^{\prime}(t)\right| & =\left|\int_{t_{1}}^{t} y_{1}^{\prime \prime}(s) d s\right|=\left|\lambda \int_{t_{1}}^{t} f_{1}\left(s, y(s), y^{\prime}(s)\right) d s\right| \\
& \leq \int_{0}^{1}\left|g_{1}\left(s, y(s), y^{\prime}(s)\right)\right| d s+\int_{0}^{1}\left|h_{1}\left(s, y(s), y^{\prime}(s)\right)\right| d s \\
& \leq C\left(1+\int_{0}^{1}\left|y_{1}^{\prime}(s)\right|^{2+\alpha} d s+\int_{0}^{1}\left|y_{1}^{\prime}(s)\right| d s\right) \\
& \leq C\left\{1+\left.\left(\int_{0}^{1}\left|y_{1}^{\prime}(s)\right|^{2} d s\right)| | y_{1}^{\prime}\right|_{\infty} ^{\alpha}+\left(\int_{0}^{1}\left|y_{1}^{\prime}(s)\right|^{2} d s\right)^{1 / 2}\right\}
\end{aligned}
$$

for $0 \leq t \leq 1$, where $C>0$ is a constant. With the help of (9) we obtain

$$
\left|y_{1}^{\prime}(t)\right| \leq C\left(1+\left\|y_{1}^{\prime}\right\|_{\infty}^{\alpha}\right), \quad 0 \leq t \leq 1,
$$

for another constant C. Therefore

$$
\begin{equation*}
\left\|y_{1}^{\prime}\right\|_{\infty} \leq C\left(1+\left\|y_{1}^{\prime}\right\|_{\infty}^{\alpha}\right) \tag{21}
\end{equation*}
$$

Since $\alpha<1$, (21) implies that there exists a constant $C>0$ such that

$$
\left\|y_{1}^{\prime}\right\|_{\infty} \leq C .
$$

Using (1) with (H2)', (H6), (10) and an induction argument we deduce that each component y_{j}^{\prime} is bounded and we obtain a constant C such that

$$
\left\|y^{\prime}\right\|_{\infty} \leq C .
$$

Again we conclude as in the proof of theorem 3.
Our next theorem extends some results obtained in [9] (theorem 6.1 and corollaries 6.2 and 6.3).

Theorem 7 Let $f \in C\left([0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Assume that $f=g+h$ with g satisfying (H3). Assume also that the following conditions hold:
(H7) $\quad y . g(t, y, p) \geq 0$ for $(t, y, p) \in[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}$;
(H8) There are constants $A, B, C \geq 0$ such that

$$
\begin{equation*}
|h(t, y, p)| \leq A|y|+B|p|+C \tag{22}
\end{equation*}
$$

for $(t, y, p) \in[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}$, with

$$
\begin{equation*}
A+\pi B<\pi^{2} . \tag{23}
\end{equation*}
$$

Then the Dirichlet system $\left(\mathcal{D}_{h}\right)$ has a solution $y \in C^{2}\left([0,1], \mathbb{R}^{m}\right)$.
Proof. As before we shall prove that the estimates (4) hold for any $\lambda \in$ $[0,1]$ and any solution y of $(3)_{\lambda}$. Taking the dot product of both sides of the differential equation in $(3)_{\lambda}$ with y, integrating from 0 to 1 and using (H7) and (22) we obtain

$$
\begin{aligned}
\int_{0}^{1}\left|y^{\prime}\right|^{2} d t & =-\lambda \int_{0}^{1} y \cdot g\left(t, y, y^{\prime}\right) d t-\lambda \int_{0}^{1} y \cdot h\left(t, y, y^{\prime}\right) d t \\
& \leq \int_{0}^{1}|y|\left|h\left(t, y, y^{\prime}\right)\right| d t \\
& \leq A \int_{0}^{1}|y|^{2} d t+B \int_{0}^{1}|y|\left|y^{\prime}\right| d t+C \int_{0}^{1}|y| d t
\end{aligned}
$$

Now by virtue of the Schwarz inequality and the Wirtinger's inequality we obtain

$$
\left\|y^{\prime}\right\|_{2} \leq\left(\frac{A}{\pi^{2}}+\frac{B}{\pi}\right)\left\|y^{\prime}\right\|_{2}+\frac{C}{\pi} .
$$

Using (23) we deduce that

$$
\left\|y^{\prime}\right\|_{2} \leq C\left(\pi-\frac{A}{\pi}-B\right)^{-1}
$$

Then we use the same arguments as in the proof of theorem 3.
Remark 1. Let $f \in C\left([0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Assume that $f=g+h$ satisfies (H7) and (H8). Clearly, if we assume also that g verifies (H5) we can establish the existence of solutions to $\left(\mathcal{D}_{h}\right)$.
Example 5. Let $\omega=\frac{1}{2} \sqrt{2(3+\sqrt{5})}$. Let $\mu \in \mathbb{R} \backslash\{0\}$ and $\theta \in\left(-\frac{1}{2 \omega}, \frac{1}{1+\omega}\right)$. Then the homogeneous Dirichlet system

$$
\begin{aligned}
& \begin{array}{l}
\begin{aligned}
y_{1}^{\prime \prime}= & y_{1}^{5}+y_{1}^{3}\left(\left(y_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}\right)^{2}\right) \ln \left(1+\left(y_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}\right)^{2}\right)+\mu y_{1} y_{2}^{2} \\
& +\theta \pi^{2}\left(y_{1}+y_{2}+\frac{1}{\pi} y_{1}^{\prime}+\frac{1}{\pi} y_{2}^{\prime}\right)+\sin \left(t y_{1}^{\prime} y_{2}^{\prime}\right)
\end{aligned} \\
\begin{aligned}
& y_{2}^{\prime \prime}=y_{2}^{7}+y_{2}^{5}\left(\left(y_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}\right)^{2}\right) \ln \left(1+\left(y_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}\right)^{2}\right)-\mu y_{1}^{2} y_{2} \\
&+\theta \pi^{2}\left(y_{2}+\frac{1}{\pi} y_{2}^{\prime}\right)+\sin t\left(y_{1}^{\prime}+y_{2}^{\prime}\right)
\end{aligned} \\
y(0)=y(1)=0
\end{array}
\end{aligned}
$$

has a solution by theorem 7. Indeed, define the matrices L, N and the vector r

$$
L=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right), \quad N=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { and } \quad r=\binom{\sin \left(t p_{1} p_{2}\right)}{\sin t\left(p_{1}+p_{2}\right)}
$$

Suppose first that $\theta<0$. Then we take $h(t, y, p)=\theta \pi^{2} L y+\theta \pi L p+r$ and we have

$$
|h(t, y, p)| \leq|\theta| \pi| | L| |(\pi|y|+|p|)+\sqrt{2}
$$

with

$$
\|L\|=\sqrt{\rho\left(L L^{*}\right)}=\sqrt{\frac{3+\sqrt{5}}{2}}=\omega
$$

Now, if $\theta \geq 0$ we take $h(t, y, p)=\theta \pi^{2} N y+\theta \pi L p+r$ and we have

$$
|h(t, y, p)| \leq \theta \pi(\pi\|N\||y|+\|L\||p|)+\sqrt{2}
$$

with

$$
\|N\|=\sqrt{\rho\left(N N^{*}\right)}=1
$$

The result follows.
Since $\mu \neq 0$, theorem 3 does not apply.
If $\mu=0$ and $\theta \in\left(-\frac{1}{2}, 1\right)$, then the above problem has a solution by theorem 3.

4. Uniqueness results

When $m=1$ and $f(t, y, p)$ is strictly increasing in y for each fixed $(t, p) \in[0,1] \times \mathbb{R}$, then uniqueness holds for the solution of $\left(\mathcal{D}_{h}\right)$ (see [7]).

When $m \geq 1$ some results are given in [8]. In the particular case where f is independent of $p \in \mathbb{R}^{m}$, uniqueness for the solution of $\left(\mathcal{D}_{h}\right)$ holds under a simple monotonicity condition (see [8]).

We give below two uniqueness results.
Theorem 8 Let $f \in C\left([0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Assume that f has the decomposition

$$
f_{j}(t, y, p)=g_{j}\left(t, y_{j}\right)+h_{j}(t, y, p), \quad j=1, \ldots, m
$$

where g and h satisfy the following conditions:
(H9) For $j=1, \ldots, m$ and $t \in[0,1], s \rightarrow g_{j}(t, s)$ is nondecreasing;
(H10) There are constants $a_{j k}, b_{j k} \geq 0, j, k=1, \ldots, m$ such that

$$
\begin{align*}
& \left|h_{j}(t, y, p)-h_{j}(t, z, q)\right| \\
& \quad \leq \sum_{k=1}^{m} a_{j k}\left|y_{k}-z_{k}\right|+b_{j k}\left|p_{k}-q_{k}\right|, \quad j=1, \ldots, m, \tag{24}
\end{align*}
$$

for $(t, y, p),(t, z, q) \in[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}$, with $M=\left(a_{j k}+\pi b_{j k}\right)_{1 \leq j, k \leq m}$ satisfying (2).
Then the Dirichlet system $\left(\mathcal{D}_{h}\right)$ has at most one solution $y \in C^{2}\left([0,1], \mathbb{R}^{m}\right)$.
Proof. Let y and $z \in C^{2}\left([0,1], \mathbb{R}^{m}\right)$ be two solutions of $\left(\mathcal{D}_{h}\right)$. For $j=$ $1, \ldots, m$ we have

$$
\begin{equation*}
y_{j}^{\prime \prime}-z_{j}^{\prime \prime}=g_{j}\left(t, y_{j}\right)-g_{j}\left(t, z_{j}\right)+h_{j}\left(t, y, y^{\prime}\right)-h_{j}\left(t, z, z^{\prime}\right) . \tag{25}
\end{equation*}
$$

Multiplying (25) by $y_{j}-z_{j}$, integrating from 0 to 1 and using (H9) and (24)
we obtain

$$
\begin{aligned}
\int_{0}^{1}\left(y_{j}^{\prime}-z_{j}^{\prime}\right)^{2} d t= & -\int_{0}^{1}\left(y_{j}-z_{j}\right)\left(g_{j}\left(t, y_{j}\right)-g_{j}\left(t, z_{j}\right)\right) d t \\
& \quad-\int_{0}^{1}\left(y_{j}-z_{j}\right)\left(h_{j}\left(t, y, y^{\prime}\right)-h_{j}\left(t, z, z^{\prime}\right)\right) d t \\
\leq & \int_{0}^{1}\left|y_{j}-z_{j}\right|\left|h_{j}\left(t, y, y^{\prime}\right)-h_{j}\left(t, z, z^{\prime}\right)\right| d t \\
\leq & \sum_{k=1}^{m}\left(a_{j k} \int_{0}^{1}\left|y_{j}-z_{j}\right|\left|y_{k}-z_{k}\right| d t\right. \\
& \left.\quad+b_{j k} \int_{0}^{1}\left|y_{j}-z_{j}\right|\left|y_{k}^{\prime}-z_{k}^{\prime}\right| d t\right)
\end{aligned}
$$

for $j=1, \ldots, m$. Now, arguing as in the first part of the proof of theorem 3 we get

$$
\left\|y_{j}^{\prime}-z_{j}^{\prime}\right\|_{2} \leq \sum_{k=1}^{m}\left(\frac{a_{j k}}{\pi^{2}}+\frac{b_{j k}}{\pi}\right)\left\|y_{k}^{\prime}-z_{k}^{\prime}\right\|_{2}, \quad j=1, \ldots, m
$$

By (2) we can use successively theorem 2 and theorem 1 and we deduce that

$$
\left\|y_{j}^{\prime}-z_{j}^{\prime}\right\|_{2}=0, \quad j=1, \ldots, m
$$

which easily implies that $y_{j}=z_{j}$ for $j=1, \ldots, m$.
Example 6. (i) Let a, b be as in example 1. Then $y \equiv 0$ is the unique solution in $C^{2}[0,1]$ of the homogeneous Dirichlet problem

$$
y^{\prime \prime}=t(1+y)^{3}+a y+b y^{\prime}-t, \quad y(0)=y(1)=0
$$

If $a<0$, we cannot apply the uniqueness results of [7].
(ii) Let $\theta \in\left(-\frac{1}{2}, 1\right)$. The homogeneous Dirichlet system

$$
\begin{aligned}
& y_{1}^{\prime \prime}=y_{1}^{3}+\theta \pi^{2}\left(y_{1}+y_{2}+\frac{1}{\pi} y_{1}^{\prime}+\frac{1}{\pi} y_{2}^{\prime}\right)+\sin t \\
& y_{2}^{\prime \prime}=y_{2}^{5}+\theta \pi^{2}\left(y_{2}+\frac{1}{\pi} y_{2}^{\prime}\right)+\cos t \\
& y(0)=y(1)=0,
\end{aligned}
$$

has a unique solution $y \in C^{2}\left([0,1], \mathbb{R}^{2}\right)$ by theorems 3 and 8 . When $\theta \in$ $\left(-\frac{1}{2}, 0\right]$ the uniqueness results given in [8] do not apply.

Theorem 9 Let $f \in C\left([0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Assume that f has the decomposition

$$
f(t, y, p)=g(t, y, p)+h(t, y, p)
$$

with g satisfying (H7). Assume also that the following conditions hold:
(H11) $(y-z) \cdot(g(t, y, p)-g(t, z, p)) \geq 0$ for $(t, y, p),(t, z, p) \in[0,1] \times$ $\mathbb{R}^{m} \times \mathbb{R}^{m} ;$
(H12) There are constants $A, B \geq 0$ such that

$$
|h(t, y, p)-h(t, z, q)| \leq A|y-z|+B|p-q|
$$

for $(t, y, p),(t, z, q) \in[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}$, with $A+\pi B<\pi^{2}$;
(H13) $\quad p \rightarrow g(t, y, p)$ is continuously differentiable and

$$
\left\|\frac{\partial g}{\partial p}(t, y, p)\right\| \leq R(t, y), \quad(t, y, p) \in[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}
$$

with

$$
\begin{aligned}
& D=\sup \{R(t, y): t \in[0,1],|y| \\
& \left.\leq C\left(\pi-\frac{A}{\pi}-B\right)^{-1}\right\}<\pi-\frac{A}{\pi}-B
\end{aligned}
$$

where $C=\sup _{t \in[0,1]}|h(t, 0,0)|$.
Then the homogeneous Dirichlet system $\left(\mathcal{D}_{h}\right)$ has at most one solution $y \in$ $C^{2}\left([0,1], \mathbb{R}^{m}\right)$.

Proof. We first note that (H12) implies that

$$
\begin{align*}
|h(t, y, p)| & \leq|h(t, y, p)-h(t, 0,0)|+|h(t, 0,0)| \\
& \leq A|y|+B|p|+C \tag{26}
\end{align*}
$$

for $(t, y, p) \in[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m}$. Since $A+\pi B<\pi^{2}$, using (H7) and (26) we can argue as in the proof of theorem 7 to get

$$
\left\|y^{\prime}\right\|_{2} \leq C\left(\pi-\frac{A}{\pi}-B\right)^{-1}
$$

for any solution $y \in C^{2}\left([0,1], \mathbb{R}^{m}\right)$ of $\left(\mathcal{D}_{h}\right)$. Since $y(0)=0$, we can write

$$
|y(t)|=\left|\int_{0}^{t} y^{\prime}(s) d s\right| \leq\left\|y^{\prime}\right\|_{2}
$$

Therefore

$$
\begin{equation*}
\|y\|_{\infty} \leq C\left(\pi-\frac{A}{\pi}-B\right)^{-1} \tag{27}
\end{equation*}
$$

for any solution $y \in C^{2}\left([0,1], \mathbb{R}^{m}\right)$ of $\left(\mathcal{D}_{h}\right)$.
Now let $y, z \in C^{2}\left([0,1], \mathbb{R}^{m}\right)$ be two solutions of $\left(\mathcal{D}_{h}\right)$. We have

$$
\begin{equation*}
y^{\prime \prime}-z^{\prime \prime}=g\left(t, y, y^{\prime}\right)-g\left(t, z, z^{\prime}\right)+h\left(t, y, y^{\prime}\right)-h\left(t, z, z^{\prime}\right) \tag{28}
\end{equation*}
$$

Taking the dot product of both sides of (28) with $y-z$, integrating from 0 to 1 and using (H11), (H12), (26), the Schwarz inequality and the Wirtinger's inequality we obtain

$$
\begin{aligned}
\left\|y^{\prime}-z^{\prime}\right\|_{2}^{2}= & -\int_{0}^{1}(y-z) \cdot\left(g\left(t, y, y^{\prime}\right)-g\left(t, z, y^{\prime}\right)\right) d t \\
& -\int_{0}^{1}(y-z) \cdot\left(g\left(t, z, y^{\prime}\right)-g\left(t, z, z^{\prime}\right)\right) d t \\
& -\int_{0}^{1}(y-z) \cdot\left(h\left(t, y, y^{\prime}\right)-h\left(t, z, z^{\prime}\right)\right) d t \\
\leq- & \int_{0}^{1}(y-z) \cdot\left(g\left(t, z, y^{\prime}\right)-g\left(t, z, z^{\prime}\right)\right) d t \\
& +A \int_{0}^{1}|y-z|^{2} d t+B \int_{0}^{1}\left|y-z \| y^{\prime}-z^{\prime}\right| d t \\
\leq & \left(\frac{A}{\pi^{2}}+\frac{B}{\pi}\right)\left\|y^{\prime}-z^{\prime}\right\|_{2}^{2}-\int_{0}^{1}(y-z) \cdot\left(g\left(t, z, y^{\prime}\right)\right. \\
& \left.\quad-g\left(t, z, z^{\prime}\right)\right) d t
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left(1-\frac{A}{\pi^{2}}-\frac{B}{\pi}\right)\left\|y^{\prime}-z^{\prime}\right\|_{2}^{2} \leq \int_{0}^{1}\left|y-z \| g\left(t, z, y^{\prime}\right)-g\left(t, z, z^{\prime}\right)\right| d t \tag{29}
\end{equation*}
$$

Now, by (H13) and (27) we can write

$$
\begin{align*}
\left|g\left(t, z, y^{\prime}\right)-g\left(t, z, z^{\prime}\right)\right| & =\left|\int_{0}^{1} \frac{\partial g}{\partial p}\left(t, z, s y^{\prime}+(1-s) z^{\prime}\right)\left(y^{\prime}-z^{\prime}\right) d s\right| \\
& \leq\left|y^{\prime}-z^{\prime}\right| \int_{0}^{1}\left\|\frac{\partial g}{\partial p}\left(t, z, s y^{\prime}+(1-s) z^{\prime}\right)\right\| d s \\
& \leq\left|y^{\prime}-z^{\prime}\right| R(t, z) \leq D\left|y^{\prime}-z^{\prime}\right| \tag{30}
\end{align*}
$$

From (29) and (30), using always the same arguments we obtain

$$
\begin{aligned}
\left(1-\frac{A}{\pi^{2}}-\frac{B}{\pi}\right)\left\|y^{\prime}-z^{\prime}\right\|_{2}^{2} & \leq D \int_{0}^{1}\left|y-z \| y^{\prime}-z^{\prime}\right| d t \\
& \leq D\|y-z\|_{2}\left\|y^{\prime}-z^{\prime}\right\|_{2} \\
& \leq \frac{D}{\pi}\left\|y^{\prime}-z^{\prime}\right\|_{2}^{2}
\end{aligned}
$$

Using (H13) we deduce that $\left\|y^{\prime}-z^{\prime}\right\|_{2}=0$, which easily implies that $y=z$.

Example 7. (i) Let a, b be as in example 1 and let μ be such that

$$
0<\mu<\left(\pi-\frac{|a|}{\pi}-|b|\right)^{4}, \quad \text { when } \quad a<0
$$

and

$$
0<\mu<(\pi-|b|)^{4}, \quad \text { when } \quad a \geq 0
$$

Then the homogeneous Dirichlet problem

$$
y^{\prime \prime}=y^{5}+t \mu y^{3}\left(1+y^{2}\right)^{1 / 2}+a y+b y^{\prime}+\sin t, \quad y(0)=y(1)=0
$$

has a unique solution $y \in C^{2}[0,1]$ by theorems 3 (or 7) and 9 . If $a<0$, we cannot apply the uniqueness results of [7].
(ii) Let $P=\left(a_{j k}\right)_{1 \leq j, k \leq 2}, Q=\left(b_{j k}\right)_{1 \leq j, k \leq 2}$ and $\mu_{j}, j=1,2$ be such that

$$
\begin{aligned}
& \|P\|+\pi\|Q\|<\pi^{2} \\
& 0<\mu_{1}<\sqrt{\sigma}\left(\pi-\frac{\|P\|}{\pi}-\|Q\|\right)^{4} \text { and } \\
& \quad 0<\mu_{2}<\sqrt{1-\sigma}\left(\pi-\frac{\|P\|}{\pi}-\|Q\|\right)^{6}
\end{aligned}
$$

where $\sigma \in(0,1)$. Then the homogeneous Dirichlet system

$$
\begin{aligned}
y_{1}^{\prime \prime}=y_{1}^{5} & +\mu_{1} t y_{1}^{3}\left(1+\left(y_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}\right)^{2}\right)^{1 / 2} \\
& \quad+a_{11} y_{1}+a_{12} y_{2}+b_{11} y_{1}^{\prime}+b_{12} y_{2}^{\prime}+\sin t \\
y_{2}^{\prime \prime}=y_{2}^{7} & +\mu_{2} t y_{2}^{5}\left(1+\left(y_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}\right)^{2}\right)^{1 / 2} \\
& +a_{21} y_{1}+a_{22} y_{2}+b_{21} y_{1}^{\prime}+b_{22} y_{2}^{\prime}+\cos t \\
y(0)=y & (1)=0
\end{aligned}
$$

has a unique solution $y \in C^{2}\left([0,1], \mathbb{R}^{2}\right)$ by theorems 7 and 9 . Indeed, taking

$$
g(t, y, p)=\binom{y_{1}^{5}+\mu_{1} t y_{1}^{3}\left(1+|p|^{2}\right)^{1 / 2}}{y_{2}^{7}+\mu_{2} t y_{2}^{5}\left(1+|p|^{2}\right)^{1 / 2}}
$$

it is easily seen that

$$
\begin{aligned}
\left\|\frac{\partial g}{\partial p}(t, y, p)\right\| & =\sqrt{\rho\left(\left(\frac{\partial g}{\partial p}\right)\left(\frac{\partial g}{\partial p}\right)^{*}\right)} \\
& =\frac{t|p|}{\left(1+|p|^{2}\right)^{1 / 2}}\left(\mu_{1}^{2} y_{1}^{6}+\mu_{2}^{2} y_{2}^{10}\right)^{1 / 2} \\
& \leq\left(\mu_{1}^{2}|y|^{6}+\mu_{2}^{2}|y|^{10}\right)^{1 / 2}
\end{aligned}
$$

thus condition (H13) is satisfied. If we choose $a_{11} \leq 0$ or $a_{22} \leq 0$, the uniqueness results given in [8] do not apply.

References

[1] Berman A. and Plemmons J., Nonnegative matrices in the mathematical sciences. Academic Press, New York, 1979.
[2] Constantin A., Global existence of solutions for perturbed differential equations. Ann. Mat. Pura Appl. 168 (1995), 237-299.
[3] Constantin A., On a two point boundary value problem. J. Math. Anal. Appl. 193 (1995), 318-328.
[4] Dalmasso R., Existence theorems for some elliptic systems. Portugaliae Math. 52 (1995), 139-151.
[5] Dugundji J. and Granas A., Fixed point theory. Warsaw, 1982.
[6] Dym H. and McKean H.P., Fourier series and integrals. Academic Press, New York, 1972.
[7] Granas A., Guenther R.B. and Lee J.W., On a theorem of S. Bernstein. Pacific J. Math. 74 (1978), 67-82.
[8] Granas A., Guenther R.B. and Lee J.W., Nonlinear boundary value problems for ordinary differential equations. Dissertationes Math. 244 (1985), 1-128.
[9] Granas A., Guenther R.B. and Lee J.W., Some general existence principles in the Carathéodory theory of nonlinear systems. J. Math. Pures Appl. 70 (1991), 153-196.

Laboratoire LMC-IMAG - Equipe EDP
Tour IRMA - BP 53
F-38041 Grenoble Cedex 9, France
E-mail: Robert.Dalmasso@imag.fr

