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Solutions of second order homogeneous
Dirichlet systems

Robert DALMASSO
(Received June 25, 1996)

Abstract. In this paper we establish some existence theorems for second order nonlinear
systems of the form y’=f(t,y,y’) , y(0)=y(1)=0 . We also give two uniqueness results.
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1. Introduction

In this paper we consider the following homogeneous system

y’=f(t, y, y’) , y(0)=y(1)=0 , (D_{h})

where f : [0, 1] \cross \mathbb{R}^{m}\cross \mathbb{R}^{m}arrow \mathbb{R}^{m} is continuous.
By a solution to the above problem we mean a function y\in C^{2}([0,1], \mathbb{R}^{m}) .
The existence of solutions to (D_{h}) has been studied extensively in recent

years (see [3] when m=1 , [9] when m\geq 1 and their references). In any case
growth conditions are imposed on f in order to obtain a priori estimates.
Then the transversahty theorem [5] is applied and the existence of a solution
is established. The more general nonlinearities treated in [3] include all the
nonlinearities previously studied in this setting.

The purpose of this paper is to improve and complement the results
of [3] and [9]. The proofs use in a decisive manner the theory of positive
operators in finite dimensions (see [4]).

We shall denote by |x| the euclidean norm of x\in \mathbb{R}^{m} and by ||A|| the
spectral norm of an m\cross m matrix A . Finally, we denote by ||y||_{p} the L^{p}

norm of y\in L^{p}((0, 1) , \mathbb{R}^{m})) .
In Section 2 we provide some preliminary results from the theory of

nonnegative matrices. The existence theorems are presented in Section 3.
Finally the uniqueness question is examined in Section 4.

1991 Mathematics Subject Classification : 34B15 .
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2. Preliminaries

The following results are needed in the sequel. We refer the reader to
[1] for proofs. We consider the proper cone

\mathbb{R}_{+}^{m}=\{x= (x_{1}, . , x_{m})\in \mathbb{R}^{m}; x_{j}\geq 0, j=1, . , m\} .

Definition 1 An m\cross m matrix A is called \mathbb{R}_{+}^{m}-monotone if

Ax\in \mathbb{R}_{+}^{m}\Rightarrow x\in \mathbb{R}_{+}^{m} .

An m\cross m matrix N=(n_{jk})_{1\leq j,k\leq m} is nonnegative if n_{jk}\geq 0 for
j , k=1 , . . ’ m .

Theorem 1 ([1] p. 113). An m\cross m matrix A is \mathbb{R}_{+}^{m} -monotone if and
only if it is nonsingular and A^{-1} is nonnegative.

Theorem 2 ([1] p. 113). Let A=\alpha I-N where \alpha\in \mathbb{R} and N is an
m\cross m nonnegative matrix. Then the following are equivalent:

(i) The matrix A is \mathbb{R}_{+}^{m} -monotone;
(ii) \rho(N)<\alpha where \rho(N) denotes the spectral radius of N .

3. Existence theorems

We first establish the following theorem.

Theorem 3 Let f\in C([0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m}, \mathbb{R}^{m}) . Assume that f has the
decomposition

f(t, y, p)=g(t, y, p)+h(t, y, p)

where g= (g_{1}, \ldots, g_{m}) and h=(h_{1}, \ldots, h_{m}) satisfy the following hypothe-
ses:

(i) y_{j}g_{j}(t, y, p)\geq 0 for j=1 , \ldots , m and (t, y, p)\in[0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m} ;
(H2) There are constants a_{jk} , b_{jk}\geq 0 and c_{j}\geq 0 , j , k=1 , \cdot . , m

such that

|h_{j}(t, y, p)| \leq\sum_{k=1}^{m}(a_{jk}|y_{k}|+b_{jk}|p_{k}|)+c_{j} (1)

for j=1 , \ldots , m and (t, y, p)\in[0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m} . with

\rho(M)<\pi^{2} (2)
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where M=(a_{jk}+\pi b_{jk})_{1\leq j,k\leq m} ;
(H3) |g(t, y, p)|\leq A(t, y)w(|p|^{2}) for (t, y, p)\in[0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m} . where

A(t, y) is bounded on bounded subsets of [0, 1]\cross \mathbb{R}^{m} and w\in C([0, \infty), (0, \infty))

is a nondecreasing function such that

\int_{0}^{\infty}\frac{ds}{w(s)}=\infty .

Then the Dirichlet system (D_{h}) has a solution y\in C^{2}([0,1], \mathbb{R}^{m}) .

Proof We introduce the problems

y’=\lambda f(t, y, y’) , y(0)=y(1)=0 , (3)_{\lambda}

where \lambda\in[0,1] is the Leray-Schauder homotopy parameter.
We first prove that there exists a constant C>0 such that for any

\lambda\in[0,1] and any solution y of (3)_{\lambda} we have

||y||_{\infty}\leq C , ||y’||_{\infty}\leq C , ||y’||_{\infty}\leq C . (4)

Multiplying the jth differential equation in (3)_{\lambda} by y_{j} , integrating from
0 to 1 and using (HI) and (1) we obtain

\int_{0}^{1}(y_{j}’)^{2}dt=-\lambda\int_{0}^{1}y_{j}f_{j}(t, y, y’)dt

=- \lambda\int_{0}^{1}y_{j}g_{j}(t, y, y’)dt-\lambda\int_{0}^{1}y_{j}h_{j}(t, y, y’)dt

\leq\int_{0}^{1}|y_{j}h_{j}(t, y, y’)|dt

\leq\sum_{k=1}^{m}(a_{jk}\int_{0}^{1}|y_{j}y_{k}|dt+b_{jk}\int_{0}^{1}|y_{j}y_{k}’|dt)+c_{j}\int_{0}^{1}|y_{j}|dt

for j=1 , . , m with f= (f_{1}, \ldots, f_{m}) . Using the Schwarz inequality we
get

||y_{j}’||_{2}^{2} \leq\sum_{k=1}^{m}(a_{jk}||y_{j}||_{2}||y_{k}||_{2}+b_{jk}||y_{j}||_{2}||y_{k}’||_{2})+c_{j}||y_{j}||_{2} . (5)

Since y_{j}(0)=y_{j}(1)=0 the Wirtinger’s inequality (see [6]) gives

\pi||y_{j}||_{2}\leq||y_{j}’||_{2} , j=1 , . , m . (6)
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From (5) and (6) we deduce that

||y_{j}’||_{2} \leq\sum_{k=1}^{m}(\frac{a_{jk}}{\pi^{2}}+\frac{b_{jk}}{\pi})||y_{k}’||_{2}+\frac{c_{j}}{\pi} , j=1 , \ldots , m . (7)

Let x and c denote the vectors

x=(||y_{j}’||_{2})_{1\leq j\leq m} and c=( \frac{c_{j}}{\pi})1\leq j\leq m

(7) can be written

c-(I-\pi^{-2}M)x\in \mathbb{R}_{+}^{m} .

(2) and theorem 2 imply that I-\pi^{-2}M is \mathbb{R}_{+}^{m} -monotone. Hence using
theorem 1 we obtain

(I-\pi^{-2}M)^{-1}c-x\in \mathbb{R}_{+}^{m} . (8)

From (6) and (8) we get

||y_{j}||_{2}\leq C_{1} , ||y_{j}’||_{2}\leq C_{1} , j=1 , \ldots , m (9)

for some positive constant C_{1} . Since y_{j}(0)=0 , we can write

|y_{j}(t)|=| \int_{0}^{t}y_{j}’(s)ds|\leq\int_{0}^{1}|y_{j}’(s)|ds

\leq||y_{j}’||_{2}\leq C_{1}

for j=1 , \ldots , m and t\in[0,1] , so that

||y||_{\infty}\leq\sqrt{m}C_{1} . (10)

We claim that for each solution y of (3)_{\lambda} there exists t_{0}\in[0,1] such
that

|y’(t_{0})|\leq\sqrt{m}C_{1} . (11)

Indeed, by (9) we have

\int_{0}^{1}|y’(t)|^{2}dt\leq mC_{1}^{2} , (12)

hence there exists t_{0}\in[0,1] such that (11) is satisfied.
Using (H2), (H3) and (10) we can find a constant A>0 such that

|y’(t)|\leq A(w(|y’(t)|^{2})+1+|y’(t)|) , 0\leq t\leq 1 ,
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and, since

|y’(t)| \leq\frac{1}{2}(1+|y’(t)|^{2})\leq 1+|y’(t)|^{2} , 0\leq t\leq 1 ,

we get

|y’(t)|\leq A(w(|y’(t)|^{2})+|y’(t)|^{2}+2) , 0\leq t\leq 1 . (13)

Define z(t)=|y’(t)|^{2} , t\in[0,1] . By (13) we have

|z’(t)|=2|y’(t).y’(t)|\leq 2|y’(t)||y’(t)|

\leq 2A|y’(t)|(w(z(t))+2+z(t)) , (14)

for t\in[0,1] . (14) implies that

\frac{z’(t)}{w(z(t))+z(t)+2}\leq 2A|y’(t)| , 0\leq t\leq 1 .

An integration from t_{0} to t\geq t_{0} yields

\int_{z(t_{0})}^{z(t)}\frac{ds}{w(s)+s+2}\leq 2A\int_{t_{0}}^{t}|y’(s)|ds

\leq 2A(\int_{0}^{1}|y’(s)|^{2}ds)^{1/2}\leq 2\sqrt{m}AC_{1} . (15)

Since w\in C([0, \infty), (0, \infty)) is nondecreasing and

\int_{0}^{\infty}\frac{ds}{w(s)}=\infty ,

we easily have (see [2]) that

\int_{0}^{\infty}\frac{ds}{w(s)+s+2}=\infty ,

and by (11) and (15) we obtain the existence of a constant C>0 indepen-
dent of t_{0} such that

z(t)=|y’(t)|^{2}\leq C , t_{0}\leq t\leq 1 .

(14) also implies that

\frac{-z’(t)}{w(z(t))+z(t)+2}\leq 2A|y’(t)| , 0\leq t\leq 1 .
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An integration from t\leq t_{0} to t_{0} yields

\int_{z(t_{0})}^{z(t)}\frac{ds}{w(s)+s+2}\leq 2A\int_{t}^{t_{0}}|y’(s)|ds

\leq 2A(\int_{0}^{1}|y’(s)|^{2}ds)^{1/2}\leq 2\sqrt{m}AC_{1} .

As before we conclude that

z(t)=|y’(t)|^{2}\leq C , 0\leq t\leq t_{0} ,

for some constant C independent of t_{0} . Therefore there exists a constant
C_{2}>0 such that

||y’||_{\infty}\leq C_{2} . (16)

From (3)
\lambda

, (10) and (16) we deduce that

|y’(t)|\leq C_{3} , 0\leq t\leq 1 ,

where

C_{3}= \sup\{|f(t, y, p)|;t\in[0,1], |y|\leq\sqrt{m}C_{1}, |p|\leq C_{2}\} ,

and (4) is proved.
Now let C_{0}^{2}=\{y\in C^{2}([0,1], \mathbb{R}^{m});y(0)=y(1)=0\} . Define the linear

operator

L : C_{0}^{2}arrow C([0,1], \mathbb{R}^{m}) , Ly= \frac{d^{2}y}{dt^{2}} ,

and the family of maps (0\leq\lambda\leq 1)

T_{\lambda} : C^{1}([0,1], \mathbb{R}^{m}) – C([0,1], \mathbb{R}^{m}) ,
T_{\lambda}v(t)=\lambda f(t, v(t), v’(t)) , 0\leq t\leq 1 .

j : C_{0}^{2}arrow C^{1}([0,1], \mathbb{R}^{m}) denotes the completely continuous embedding. L is
invertible and

L^{-1}v(t)=- \int_{0}^{1}G(t, s)v(s)ds , 0\leq t\leq 1 ,

where G is the Green’s function

G(t, s)=\{
s(1-t) if 0\leq s\leq t\leq 1

t(1-s) if 0\leq t\leq s\leq 1 .
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Let

K= \{y\in C_{0}^{2}; ||y||_{\max}=\max\{||y||_{\infty}, ||y’||_{\infty}, ||y’||_{\infty}\}\leq C+1\}

where C is the constant in (4). We can define a compact homotopy

H_{\lambda} : Karrow C_{0}^{2} , H_{\lambda}=L^{-1}T_{\lambda}j , 0\leq\lambda\leq 1 .

Since the fixed points of H_{\lambda} are the solutions of (3)_{\lambda} . the choice of C implies
that the homotopy H_{\lambda} is fixed point free on the boundary of K . We have
H_{0}\equiv 0 . Thus we can apply the topological transversality theorem [5] to
obtain that H_{1} has a fixed point. This shows that there is a solution to
(D_{h}) . \square

Example 1. Let a , b\in \mathbb{R} be such that

\pi|b|<a+\pi^{2} when a<0 ,

and

|b|<\pi when a\geq 0 .

Then the homogeneous Dirichlet problem

y’=y^{3}y^{\prime 2} ln (1+y^{\prime 2})+ay+by’+ sin (tyy’) ,

y(0)=y(1)=0 , (17)

has a solution by theorem 3.
We shall show that the results of [3] do not apply to problem (17).
(i) Suppose that

g(t, y, p)+h(t, y, p)=y^{3}p^{2} ln (1+p^{2})+ay+bp+\sin(typ) ,
(t, y,p)\in[0,1]\cross \mathbb{R}^{2} ,

with g , h satisfying the assumptions of theorem 1 in [3]. There exist con-
stants 0\leq\alpha , \beta<1 and M_{0}>0 such that the following condition holds:

|h(t, y, p)|\leq M_{0}(|y|^{\alpha}+|p|^{\beta}) , (t, y, p)\in[0,1]\cross \mathbb{R}^{2} . (C)

Let k be the function defined by

k(t, y, p)=g(t, y, p)-y^{3}p^{2} ln (1+p^{2})

=ay+bp+\sin(typ)-h(t, y, p)



618 R. Dalmasso

for (t, y) p)\in[0,1]\cross \mathbb{R}^{2} .
Assume first that b\neq 0 . Since g(t, y, p)\geq 0 for (t, y) p)\in[0,1]\cross \mathbb{R}^{2} , we

deduce that g(t, 0, p)=k(t, 0, p)=0 for (t, p)\in[0,1]\cross \mathbb{R} . Thus h(t, 0, p)=
bp for (t, p)\in[0,1]\cross \mathbb{R} and (C) cannot be satisfied: take y=0 and parrow\infty .

Now suppose that a<0 . Since g(t, y, p)\geq 0 for (t, y) p)\in[0,1]\cross \mathbb{R}^{2} ,
we deduce that

yk(t, y, 0)=(a- \frac{h(t,y,0)}{y})y^{2}\geq 0

for (t, y)\in[0,1]\cross(\mathbb{R}\backslash \{0\}) . With the help of condition (C) we obtain

|| arrow\infty\lim_{y}(a-\frac{h(t,y,0)}{y})=a<0 , t\in[0,1] ,

and we reach a contradiction.
We conclude that we cannot apply theorem 1 of [3] to problem (17)

when a<0 or b\neq 0 .
Finally assume that there exists a constant m \in(0, \pi^{2}-\frac{1}{2}) such that

yg(t, y, p)\geq-my^{2} . (t, y, p)\in[0,1]\cross \mathbb{R}^{2} .

We easily deduce that g(t, 0, p)=k(t, 0, p)=0 and h(t, 0, p)=bp for
(t, p)\in[0,1]\cross \mathbb{R} . Again condition (C) cannot be satisfied if b\neq 0 . Therefore
remark 1 of [3] does not apply when b\neq 0 .

(ii) If a<0 , we have yf(t, y, 0)=ay^{2}<0 for y\in \mathbb{R}\backslash \{0\} and we
cannot use theorem 2 of [3].

The next example shows that theorem 3 complements some results ob-
tained in [9] (theorem 6.1, corollaries 6.2 and 6.3).

Example 2. The homogeneous Dirichlet system

y_{1}’=y_{1}^{5}+y_{1}^{3}((y_{1}’)^{2}+(y_{2}’)^{2})\ln(1+(y_{1}’)^{2}+(y_{2}’)^{2})+y_{1}y_{2}^{2}

- \frac{\pi^{2}}{6}(y_{1}+y_{2}+\frac{1}{\pi}y_{1}’+\frac{1}{\pi}y_{2}’)+\cos(ty_{1}’y_{2}’) ,

y_{2}’=y_{2}^{7}+y_{2}^{5}((y_{1}’)^{2}+(y_{2}’)^{2})\ln(1+(y_{1}’)^{2}+(y_{2}’)^{2})+y_{1}^{4}y_{2}

- \frac{\pi^{2}}{6}(y_{1}+y_{2}+\frac{1}{\pi}y_{1}’+\frac{1}{\pi}y_{2}’)+ cos t(y_{1}’+y_{2}’) ,

y(0)=y(1)=0
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has a solution by theorem 3.

Theorem 4 Let f\in C([0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m}, \mathbb{R}^{m}) . Assume that f=g+h
with g satisfying (HI). Assume moreover that the following conditions hold:

(H2)’ h satisfies (H2) with b_{jk}=0 for k\geq j+1 , j=1 , . , m-1 (if
m\geq 2) ;

(H4) There are functions A_{j}(t, y, p_{1}, , p_{j-1})\geq 0 (for j=1 , A_{1} is
independent of the p variables) which are bounded on bounded subsets of
[0, 1] \cross \mathbb{R}^{m}\cross \mathbb{R}^{j-1} and satisfy

|g_{j}(t, y, p)|\leq A_{j}(t, y, p_{1} , . ._{ p_{j-1})w_{j}(p_{j}^{2})},,

forj=1, . , m and (t, y, p)\in[0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m} , where w_{j}\in C([0, \infty), (0, \infty))

are nondecreasing functions such that

\int_{0}^{\infty}\frac{ds}{w_{j}(s)}=\infty , j=1 , \ldots , m .

Then the Dirichlet system (D_{h}) has a solution y\in C^{2}([0,1], \mathbb{R}^{m}) .

Proof As in the proof of theorem 3 we consider the family of problems
(3)_{\lambda} with 0\leq\lambda\leq 1 . Again we shall prove that there exists a constant

C>0 such that for any \lambda\in[0,1] and any solution y of (3)_{\lambda} the estimates
(4) hold. The same arguments lead to (9) and (10). By (1) with (H2)’ , (H4)
with j=1 and (10) there exists a constant A>0 such that

|y_{1}’(t)|\leq A(w_{1}(y_{1}’(t)^{2})+|y_{1}’(t)|+1) , 0\leq t\leq 1 ,

and, since

|y_{1}’(t)| \leq\frac{1}{2}(1+y_{1}’(t)^{2})\leq 1+y_{1}’(t)^{2} . 0\leq t\leq 1 ,

we get

|y_{1}’(t)|\leq A(w_{1}(y_{1}’(t)^{2})+y_{1}’(t)^{2}+2) , 0\leq t\leq 1 . (18)

Since y_{1}’ vanishes at least once in (0, 1) , each connected component of \{t\in

[0, 1] ; y_{1}’(t)\neq 0\} is included in some interval [a, b]\subset[0,1] such that |y_{1}’(t)|>

0 in (a, b) and y_{1}’(a)=0 or y_{1}’(b)=0 . Assume that y_{1}’(t)>0 in (a, b) and
y_{1}’(a)=0 . Define z(t)=y_{1}’(t) , t\in[a, b] . By (18) we have

z’(t)\leq A(w_{1}(z(t)^{2})+z(t)^{2}+2) , a\leq t\leq b ,
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thus

\frac{(z(t)^{2})’}{w_{1}(z(t)^{2})+z(t)^{2}+2}\leq 2Az(t) , a\leq t\leq b . (19)

Integrating (19) from a to t\in[a, b] and using (9) we obtain

\int_{0}^{z(t)^{2}}\frac{ds}{w_{1}(s)+s+2}ds\leq 2A\int_{a}^{t}y_{1}’(s)ds

\leq 2A\int_{0}^{1}|y_{1}’(s)|ds\leq 2AC_{1} .

As in the proof of theorem 3 we obtain the existence of a constant C>0
independent of a and b such that

0\leq z(t)=y_{1}’(t)\leq C , a\leq t\leq b .

Since each case can be handled in the same way, we get

|y_{1}’(t)|\leq C , 0\leq t\leq 1

for some constant C . Using (1) with (H2)’, (H4), (10) and an induction
argument we deduce that each component y_{j}’ is bounded and we obtain a
constant C such that

||y’||_{\infty}\leq C .

Then we conclude as in the proof of theorem 3. \square

Example 3. The homogeneous Dirichlet system

y_{1}’=y_{1}^{5}+y_{1}^{3}(y_{1}’)^{2} ln (1+(y_{1}’)^{2})+y_{1}(y_{2}^{2}+ \frac{(y_{2}’)^{2}}{1+(y_{2}’)^{2}})

- \frac{\pi^{2}}{6}(y_{1}+2y_{2}+\frac{1}{\pi}y_{1}’)+ cos (ty_{1}’y_{2}’) ,

y_{2}’=y_{2}^{7}+y_{2}^{5}((y_{1}’)^{4}+(y_{2}’)^{2})\ln(1+(y_{1}’)^{4}+(y_{2}’)^{2})+y_{1}^{4}y_{2}

- \frac{\pi^{2}}{6}(y_{1}+y_{2}+\frac{1}{\pi}y_{1}’+\frac{1}{\pi}y_{2}’)+ cos t(y_{1}’+y_{2}’) ,

y(0)=y(1)=0 ,

has a solution by theorem 4. It is easily seen that the results of [9] do not
apply.
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Now we give a result which complements theorem 3.

Theorem 5 Let f\in C([0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m}, \mathbb{R}^{m}) . Assume that f=g+h
satisfies (HI) and (H2). Assume moreover that the following condition
holds:

(H5) |g(t, y, p)|\leq A(t, y)|p|^{2+\alpha}+B(t, y) for (t, y,p)\in[0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m} ,
where \alpha\in (0, 1) and A(t, y) , B(t, y) are bounded on bounded subsets of
[0, 1] \cross \mathbb{R}^{m} .
Then the Dirichlet system (D_{h}) has a solution y\in C^{2}([0,1], \mathbb{R}^{m}) .

Proof Again we consider the family of problems (3)_{\lambda} with 0\leq\lambda\leq 1 . We
shall prove that there exists a constant C>0 such that for any \lambda\in[0,1]

and any solution y of (3)_{\lambda} the estimates (4) hold. Arguing as in the proof
of theorem 3 we are led to (10)-(12). Now using (1), (H5), (10) and (11)
we can write

|y’(t)|=|y’(t_{0})+ \int_{t_{0}}^{t}y’(s)ds|=|y’(t_{0})+\lambda\int_{t_{0}}^{t}f(s, y(s), y’(s))ds| ,

\leq|y’(t_{0})|+|\int_{t_{0}}^{t}f(s, y(s), y’(s))ds|

\leq C(1+\int_{0}^{1}|y’(s)|^{2+\alpha}ds+\int_{0}^{1}|y’(s)|ds)

\leq C\{1+(\int_{0}^{1}|y’(s)|^{2}ds)||y’||_{\infty}^{\alpha}+(\int_{0}^{1}|y’(s)|^{2}ds)^{1/2}\}

for 0\leq t\leq 1 , where C>0 is a constant independent of t_{0} . With the help
of (12) we obtain

|y’(t)|\leq C(1+||y’||_{\infty}^{\alpha}) , 0\leq t\leq 1 ,

for another constant C . Therefore

||y’||_{\infty}\leq C(1+||y’||_{\infty}^{\alpha}) . (20)

Since \alpha<1 , (20) implies that there exists a constant C>0 such that

||y’||_{\infty}\leq C .

Then we conclude as in the proof of theorem 3. \square

Example 4. Let a , b be as in example 1 and let \beta\in(0,1/2) . Then the
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homogeneous Dirichlet problem

y’=y^{3}+yy^{\prime 2}(1+y^{\prime 2})^{\beta}+ay+by’+ sin ty’ . y(0)=y(1)=0 ,

has a solution by theorem 5. Clearly, we cannot apply the results of [3].

The next theorem complements theorem 4.

Theorem 6 Let f\in C([0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m}, \mathbb{R}^{m}) . Assume that f=g+h
satisfies (HI) and (H2)’ Assume moreover that the following condition
holds:

(H6) There are functions A_{j}(t, y, p_{1}, . , p_{j-1}) , B_{j}(t, y, p_{1}, \ldots, p_{j-1})\geq

0 (for j=1 , A_{1} , B_{1} are independent of the p variables) which are bounded
on bounded subsets of [0, 1] \cross \mathbb{R}^{m}\cross \mathbb{R}^{j-1} and satisfy

|g_{j}(t, y, p)|\leq A_{j}(t, y, p_{1}, \ldots, p_{j-1})|p_{j}|^{2+\alpha}+B_{j}(t, y, p_{1}, \ldots, p_{j-1}) ,

for j=1 , \ldots , m and (t, y,p)\in[0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m} , where \alpha\in(0,1) .
Then the Dirichlet system (D_{h}) has a solution y\in C^{2}([0,1], \mathbb{R}^{m}) .

Proof. Consider the family of problems (3)_{\lambda} with 0\leq\lambda\leq 1 . Let us
prove that there exists a constant C>0 such that for any \lambda\in[0,1] and
any solution y of (3)_{\lambda} the estimates (4) hold. Arguing as in the proof of
theorem 3 we are led to (9) and (10). Let t_{1}\in(0,1) be such that y_{1}’(t_{1})=0 .
Using (1) with (H2)’. (H6) with j=1 and (10) we can write

|y_{1}’(t)|=| \int_{t_{1}}^{t}y_{1}’(s)ds|=|\lambda\int_{t_{1}}^{t}f_{1}(s, y(s), y’(s))ds|

\leq\int_{0}^{1}|g_{1} (s, y(s) , y’(s))|ds+ \int_{0}^{1}|h_{1}(s, y(s), y’(s))|ds

\leq C(1+\int_{0}^{1}|y_{1}’(s)|^{2+\alpha}ds+\int_{0}^{1}|y_{1}’(s)|ds)

\leq C\{1+(\int_{0}^{1}|y_{1}’(s)|^{2}ds)||y_{1}’||_{\infty}^{\alpha}+(\int_{0}^{1}|y_{1}’(s)|^{2}ds)^{1/2}\}

for 0\leq t\leq 1 , where C>0 is a constant. With the help of (9) we obtain

|y_{1}’(t)|\leq C(1+||y_{1}’||_{\infty}^{\alpha}) , 0\leq t\leq 1 ,

for another constant C . Therefore

||y_{1}’||_{\infty}\leq C(1+||y_{1}’||_{\infty}^{\alpha}) . (21)
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Since \alpha<1 , (21) implies that there exists a constant C>0 such that

||y_{1}’||_{\infty}\leq C .

Using (1) with (H2)’, (H6), (10) and an induction argument we deduce that
each component y_{j}’ is bounded and we obtain a constant C such that

||y’||_{\infty}\leq C .

Again we conclude as in the proof of theorem 3. \square

Our next theorem extends some results obtained in [9] (theorem 6.1
and corollaries 6.2 and 6.3).

Theorem 7 Let f\in C([0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m}, \mathbb{R}^{m}) . Assume that f=g+h
with g satisfying (H3). Assume also that the following conditions hold:

(H7) y.g(t, y, p)\geq 0 for (t, y, p)\in[0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m} ;
(H8) There are constants A , B , C\geq 0 such that

|h(t, y, p)|\leq A|y|+B|p|+C (22)

for (t, y, p)\in[0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m} , with

A+\pi B<\pi^{2} . (23)

Then the Dirichlet system (D_{h}) has a solution y\in C^{2}([0,1], \mathbb{R}^{m}) .

Proof As before we shall prove that the estimates (4) hold for any \lambda\in

[0, 1] and any solution y of (3)_{\lambda} . Taking the dot product of both sides of
the differential equation in (3)_{\lambda} with y , integrating from 0 to 1 and using
(H7) and (22) we obtain

\int_{0}^{1}|y’|^{2}dt=-\lambda\int_{0}^{1}y.g(t, y, y’)dt-\lambda\int_{0}^{1}y.h(t, y, y’)dt

\leq\int_{0}^{1}|y||h(t, y, y’)|dt

\leq A\int_{0}^{1}|y|^{2}dt+B\int_{0}^{1}|y||y’|dt+C\int_{0}^{1}|y|dt .

Now by virtue of the Schwarz inequality and the Wirtinger’s inequality we
obtain

||y’||_{2} \leq(\frac{A}{\pi^{2}}+\frac{B}{\pi})||y’||_{2}+\frac{C}{\pi} .
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Using (23) we deduce that

||y’||_{2} \leq C(\pi-\frac{A}{\pi}-B)^{-1}

Then we use the same arguments as in the proof of theorem 3. \square

Remark 1. Let f\in C([0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m}, \mathbb{R}^{m}) . Assume that f=g+h
satisfies (H7) and (H8). Clearly, if we assume also that g verifies (H5) we
can establish the existence of solutions to (D_{h}) .

Example 5. Let \omega=\frac{1}{2}\sqrt{2(3+\sqrt{5})} . Let \mu\in \mathbb{R}\backslash \{0\} and \theta\in(-\frac{1}{2\omega}, \frac{1}{1+\omega}) .
Then the homogeneous Dirichlet system

y_{1}’=y_{1}^{5}+y_{1}^{3}((y_{1}’)^{2}+(y_{2}’)^{2})\ln(1+(y_{1}’)^{2}+(y_{2}’)^{2})+\mu y_{1}y_{2}^{2}

+ \theta\pi^{2}(y_{1}+y_{2}+\frac{1}{\pi}y_{1}’+\frac{1}{\pi}y_{2}’)+ sin (ty_{1}’y_{2}’) ,

y_{2}’=y_{2}^{7}+y_{2}^{5}((y_{1}’)^{2}+(y_{2}’)^{2}) ln (1+(y_{1}’)^{2}+(y_{2}’)^{2})-\mu y_{1}^{2}y_{2}

+ \theta\pi^{2}(y_{2}+\frac{1}{\pi}y_{2}’)+ sin t(y_{1}’+y_{2}’) ,

y(0)=y(1)=0,

has a solution by theorem 7. Indeed, define the matrices L , N and the
vector r

L=(\begin{array}{ll}1 10 1\end{array}) , N= (\begin{array}{ll}0 10 0\end{array}) and r=(\begin{array}{l}sin(tp_{1}p_{2})sint(p_{1}+p_{2})\end{array})

Suppose first that \theta<0 . Then we take h(t, y, p)=\theta_{\pi}^{2}Ly+\theta\pi Lp+r and
we have

|h(t, y, p)|\leq|\theta|\pi||L||(\pi|y|+|p|)+\sqrt{2} ,

with

||L||=\sqrt{\rho(LL^{*})}=\sqrt{\frac{3+\sqrt{5}}{2}}=\omega .

Now, if \theta\geq 0 we take h(t, y, p)=\theta_{\pi}^{2}Ny+\theta\pi Lp+r and we have

|h(t, y, p)|\leq\theta\pi(\pi||N|||y|+||L|||p|)+\sqrt{2} ,
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with

||N||=\sqrt{\rho(NN^{*})}=1 .

The result follows.
Since \mu\neq 0 , theorem 3 does not apply.
If \mu=0 and \theta\in(-\frac{1}{2},1) , then the above problem has a solution by

theorem 3.

4. Uniqueness results

When m=1 and f(t, y, p) is strictly increasing in y for each fixed
(t, p)\in[0,1]\cross \mathbb{R} , then uniqueness holds for the solution of (D_{h}) (see [7]).

When m\geq 1 some results are given in [8]. In the particular case where

f is independent of p\in \mathbb{R}^{m} , uniqueness for the solution of (D_{h}) holds under
a simple monotonicity condition (see [8]).

We give below two uniqueness results.

Theorem 8 Let f\in C([0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m}, \mathbb{R}^{m}) . Assume that f has the
decomposition

f_{j} (t, y, p)=g_{j}(t, y_{j})+h_{j}(t, y, p) , j=1 , \ldots , m ,

where g and h satisfy the following conditions:
(H9) For j=1 , , m and t\in[0,1] , sarrow g_{j}(t, s) is nondecreasing;
(H1O) There are constants a_{jk} , b_{jk}\geq 0 , j , k=1 , \ldots , m such that

|h_{j}(t, y, p)-h_{j}(t, z, q)|

\leq\sum_{k=1}^{m}ajk|y_{k}-zk|+bjk|pk-q_{k}| , j=1 , . , m , (24)

for (t, y, p) , (t, z, q)\in[0, 1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m} , with M=(a_{jk}+\pi b_{jk})_{1\leq j,k\leq m}

satisfying (2).
Then the Dirichlet system (D_{h}) has at most one solution y\in C^{2}([0,1], \mathbb{R}^{m}) .

Proof Let y and z\in C^{2}([0,1], \mathbb{R}^{m}) be two solutions of (D_{h}) . For j=
1 , \ldots , m we have

y_{j}’-z_{j}’=g_{j}(t, y_{j})-g_{j}(t, z_{j})+h_{j}(t, y, y’)-h_{j}(t, z, z’) . (25)

Multiplying (25) by y_{j}-z_{j} , integrating from 0 to 1 and using (H9) and (24)
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we obtain

\int_{0}^{1}(y_{j}’-z_{j}’)^{2}dt=-\int_{0}^{1}(y_{j}-z_{j})(g_{j}(t, y_{j})-g_{j}(t, z_{j}))dt

- \int_{0}^{1}(y_{j}-z_{j})(h_{j}(t, y, y’)-h_{j}(t, z, z’))dt

\leq\int_{0}^{1}|y_{j}-z_{j}||h_{j}(t, y, y’)-h_{j}(t, z, z’)|dt

\leq\sum_{k=1}^{m}(a_{jk}\int_{0}^{1}|y_{j}-z_{j}||y_{k}-z_{k}|dt

+b_{jk} \int_{0}^{1}|y_{j}-z_{j}||y_{k}’-z_{k}’|dt)

for j=1 , \ldots , m . Now, arguing as in the first part of the proof of theorem
3 we get

||y_{j}’-z_{j}’||_{2} \leq\sum_{k=1}^{m}(\frac{a_{jk}}{\pi^{2}}+\frac{b_{jk}}{\pi})||y_{k}’-z_{k}’||_{2} , j=1 , \ldots , m .

By (2) we can use successively theorem 2 and theorem 1 and we deduce
that

||y_{j}’-z_{j}’||_{2}=0 , j=1 , . , m

which easily implies that y_{j}=z_{j} for j=1 , . . , m . \square

Example 6. (i) Let a , b be as in example 1. Then y\equiv 0 is the unique
solution in C^{2}[0, 1] of the homogeneous Dirichlet problem

y’=t(1+y)^{3}+ay+by-\prime t , y(0)=y(1)=0 .

If a<0 , we cannot apply the uniqueness results of [7].
(ii) Let \theta\in(-\frac{1}{2},1) . The homogeneous Dirichlet system

y_{1}’=y_{1}^{3}+ \theta\pi^{2}(y_{1}+y_{2}+\frac{1}{\pi}y_{1}’+\frac{1}{\pi}y_{2}’)+ sin t

y_{2}’=y_{2}^{5}+ \theta\pi^{2}(y_{2}+\frac{1}{\pi}y_{2}’)+ cos t

y(0)=y(1)=0,

has a unique solution y\in C^{2}([0,1], \mathbb{R}^{2}) by theorems 3 and 8. When \theta\in

(- \frac{1}{2},0] the uniqueness results given in [8] do not apply.



Solutions of second order homogeneous Dirichlet systems 627

Theorem 9 Let f\in C([0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m}, \mathbb{R}^{m}) . Assume that f has the
decomposition

f(t, y, p)=g(t, y, p)+h(t, y, p)

with g satisfying (H7). Assume also that the following conditions hold:
(Hll) (y-z).(g(t, y, p)-g(t, z, p))\geq 0 for (t, y, p) , (t, z, p)\in[0,1]\cross

\mathbb{R}^{m}\cross \mathbb{R}^{m} ;
(H12) There are constants A , B\geq 0 such that

|h(t, y, p)-h(t, z, q)|\leq A|y-z|+B|p-q|

for (t, y, p) , (t, z, q)\in[0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m} , with A+\pi B<\pi^{2} ;
(H13) parrow g(t, y, p) is continuously differentiable and

|| \frac{\partial g}{\partial p} (t, y, p)||\leq R(t, y) , (t, y, p)\in[0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m} ,

with

D= \sup\{R(t, y) : t\in[0,1] , |y|

\leq C(\pi-\frac{A}{\pi}-B)^{-1}\}<\pi-\frac{A}{\pi}-B ,

where C= \sup_{t\in[0,1]}|h(t, 0, 0)| .
Then the homogeneous Dirichlet system (D_{h}) has at most one solution y\in

C^{2}([0,1], \mathbb{R}^{m}) .

Proof We first note that (H12) implies that

|h(t, y, p)|\leq|h(t, y, p)-h(t, 0, 0)|+|h(t, 0, 0)|

\leq A|y|+B|p|+C (26)

for (t, y, p)\in[0,1]\cross \mathbb{R}^{m}\cross \mathbb{R}^{m} . Since A+\pi B<\pi^{2} , using (H7) and (26) we
can argue as in the proof of theorem 7 to get

||y’||_{2} \leq C(\pi-\frac{A}{\pi}-B)^{-1}

for any solution y\in C^{2}([0,1], \mathbb{R}^{m}) of (D_{h}) . Since y(0)=0 , we can write

|y(t)|=| \int_{0}^{t}y’(s)ds|\leq||y’||_{2} .
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Therefore

||y||_{\infty} \leq C(\pi-\frac{A}{\pi}-B)^{-1} (27)

for any solution y\in C^{2}([0,1], \mathbb{R}^{m}) of (D_{h}) .
Now let y , z\in C^{2}([0,1], \mathbb{R}^{m}) be two solutions of (D_{h}) . We have

y’-z’=g(t, y, y’)-g(t, z, z’)+h(t, y, y’)-h(t, z, z’) . (28)

Taking the dot product of both sides of (28) with y-z , integrating from 0 to
1 and using (Hll), (H12), (26), the Schwarz inequality and the Wirtinger’s
inequality we obtain

||y’-z’||_{2}^{2}=- \int_{0}^{1}(y-z).(g(t, y, y’)-g(t, z, y’))dt

- \int_{0}^{1}(y-z).(g(t, z, y’)-g(t, z, z’))dt

- \int_{0}^{1}(y-z).(h(t, y, y’)-h(t, z, z’))dt

\leq-\int_{0}^{1}(y-z).(g(t, z, y’)-g(t, z, z’))dt

+A \int_{0}^{1}|y-z|^{2}dt+B\int_{0}^{1}|y-z||y’-z’|dt

\leq(\frac{A}{\pi^{2}}+\frac{B}{\pi})||y’-z’||_{2}^{2}-\int_{0}^{1}(y-z).(g(t, z, y’)

-g(t, z, z’))dt ,

which implies

(1- \frac{A}{\pi^{2}}-\frac{B}{\pi})||y’-z’||_{2}^{2}\leq\int_{0}^{1}|y-z||g(t, z, y’)-g(t, z, z’)|dt .

(29)

Now, by (H13) and (27) we can write

|g(t, z, y’)-g(t, z, z’)|=| \int_{0}^{1}\frac{\partial g}{\partial p}(t, z, sy’+(1-s)z’)(y’-z’)ds|

\leq|y’-z’|\int_{0}^{1}||\frac{\partial g}{\partial p}(t, z, sy’+(1-s)z’)||ds

\leq|y’-z^{/}|R(t, z)\leq D|y’-z’| . (30)
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From (29) and (30), using always the same arguments we obtain

(1- \frac{A}{\pi^{2}}-\frac{B}{\pi})||y’-z’||_{2}^{2}\leq D\int_{0}^{1}|y-z||y’-z’|dt

\leq D||y-z||_{2}||y’-z’||_{2}

\leq\frac{D}{\pi}||y’-z’||_{2}^{2} .

Using (H13) we deduce that ||y’-z’||_{2}=0 , which easily implies that y=z .
\square

Example 7. (i) Let a , b be as in example 1 and let \mu be such that

0< \mu<(\pi-\frac{|a|}{\pi}-|b|)^{4} when a<0 ,

and

0<\mu<(\pi-|b|)^{4} , when a\geq 0 .

Then the homogeneous Dirichlet problem

y’=y^{5}+t\mu y^{3}(1+y^{\prime 2})^{1/2}+ay+by’+ sin t , y(0)=y(1)=0 ,

has a unique solution y\in C^{2}[0,1] by theorems 3 (or 7) and 9. If a<0 , we
cannot apply the uniqueness results of [7].

(ii) Let P=(a_{jk})_{1\leq j,k\leq 2} , Q=(b_{jk})_{1\leq j,k\leq 2} and \mu_{j} , j=1,2 be such
that

||P||+\pi||Q||<\pi^{2} .

0< \mu_{1}<\sqrt{\sigma}(\pi-\frac{||P||}{\pi}-||Q||)^{4} and

0< \mu_{2}<\sqrt{1-\sigma}(\pi-\frac{||P||}{\pi}-||Q||)^{6} ,

where \sigma\in(0,1) . Then the homogeneous Dirichlet system

y_{1}’=y_{1}^{5}+\mu_{1}ty_{1}^{3}(1+(y_{1}’)^{2}+(y_{2}’)^{2})^{1/2}

+a_{11}y_{1}+a_{12}y_{2}+b_{11y_{1}}’+b_{12y_{2}}’+\sin t ,

y_{2}’=y_{2}^{7}+\mu_{2}ty_{2}^{5}(1+(y_{1}’)^{2}+(y_{2}’)^{2})^{1/2}

+a_{21}y_{1}+a_{22}y_{2}+b_{21y_{1}}’+b_{22y_{2}+}’ cos t ,

y(0)=y(1)=0 ,



630 R. Dalmasso

has a unique solution y\in C^{2}([0,1], \mathbb{R}^{2}) by theorems 7 and 9. Indeed, taking

g(t, y,p)=(\begin{array}{l}y_{1}^{5}+\mu_{1}ty_{1}^{3}(1+|p|^{2})^{1/2}y_{2}^{7}+\mu_{2}ty_{2}^{5}(1+|p|^{2})^{1/2}\end{array}) ,

it is easily seen that

|| \frac{\partial g}{\partial p} (t, y, p)||=\sqrt{\rho((\frac{\partial g}{\partial p})(\frac{\partial g}{\partial p})^{*})}

= \frac{t|p|}{(1+|p|^{2})^{1/2}}(\mu_{1}^{2}y_{1}^{6}+\mu_{2}^{2}y_{2}^{10})^{1/2}

\leq(\mu_{1}^{2}|y|^{6}+\mu_{2}^{2}|y|^{10})^{1/2} ,

thus condition (H13) is satisfied. If we choose a_{11}\leq 0 or a_{22}\leq 0 , the
uniqueness results given in [8] do not apply.
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