Generating alternating groups

Naoki Chigira
(Received March 11, 1996; Revised June 21, 1996)

Abstract

We will give an elementary proof of the following: For any nonidentity element x in the alternating group A_{n} on n symbols, there exists an element y such that x and y generate A_{n}.

Key words: the alternating group, block.

Let S_{n} be the symmetric group on the symbols $\Omega=\{1,2, \ldots, n\}$ and A_{n} the alternating group on Ω. Isaacs and Zieschang [1] give an elementary proof of the following:

Theorem A Assume that $n \neq 4$ and let $x \in S_{n}$ be an arbitrary nonidentity element. Then there exists an element $y \in S_{n}$ such that $S_{n}=\langle x, y\rangle$.

They say " A result similar to Theorem A is known to be valid for the alternating group A_{n} for all values of n. Although it seems likely that a proof of this result along the lines of our proof of Theorem A might exist, there are technical difficulties in some cases, and we have not actually found such a proof."

In this note, we will give a proof for A_{n} along the lines of the proof of Theorem A by Isaacs and Zieschang [1].

Theorem Let $x \in A_{n}$ be an arbitrary nonidentity element. Then there exists an element $y \in A_{n}$ such that $A_{n}=\langle x, y\rangle$.

A nonempty subset $\Delta \subseteq \Omega$ is said to be a block for G if Δ^{x} is either disjoint from or equal to Δ for each element $x \in G$. A group G is said to be primitive if the only blocks for G are the singleton subset or the whole set Ω.

The following theorems and lemma play an important role in our proof.
Theorem (Jordan) Suppose that G is a primitive subgroup of S_{n}. If G contains a 3-cycle, then either $G=S_{n}$ or $G=A_{n}$.

Proof. See [1, Theorem (Jordan)].
Theorem B Let $x=(1,2,3, \ldots, m)$ for odd number m and $y=$ $(1,2,3, \ldots, n)$ for odd number n, where $1<m<n$. Then $A_{n}=\langle x, y\rangle$.

Proof. See [1, Theorem B].
Lemma 1 Suppose that G is a transitive subgroup of S_{n} on Ω.
(1) Let Δ be a block for G. Then $|\Delta|$ divides n. Especially, if $\Delta \neq \Omega$, then $|\Delta| \leq n / 2$.
(2) Let $\alpha \in \Omega$. Then G is primitive on Ω if the only blocks containing α are $\{\alpha\}$ and Ω.

Proof. See [1, Lemma] and the above paragraph.
It is easy to prove the following:
Lemma 2 Suppose that G is a transitive subgroup of S_{n} on Ω.
(1) If n is prime, then G is primitive on Ω.
(2) If G contains a $n-1$)-cycle, then G is primitive on Ω.

Proof. (1) Let $\Delta \subseteq \Omega$ be a block for G containing 1. By Lemma 1 (1), $\Delta=\{1\}$ or Ω. Lemma 1 (2) yields the result.
(2) We may assume that G contains a ($n-1$)-cycle $x=(2,3, \ldots, n)$. Let $\Delta \subsetneq \Omega$ be a block for G containing 1. Since $\Delta^{x} \ni 1^{x}=1$, we have $\Delta^{x}=\Delta$. If Δ contains $\alpha(2 \leq \alpha \leq n)$, we have $\Delta=\Omega$ by the action of x. This is a contradiction. This yields that only blocks containing 1 are $\{1\}$ and Ω. By Lemma 1 (2), we have the result.

Lemma 3 Let $y=(2,3, \ldots, n)$ for even number n and x be one of the following elements:
(1) $x=(1,2,3, \ldots, m)$ if $n>m>1$ and m is odd.
(2) $x=(1,2)(3,4)$ if $n \geq 4$.
(3) $x=(1,2,3)(4,5,6)$ if $n \geq 6$.
(4) $x=(1,2,3,4)(5,6)$ if $n \geq 6$.
(5) $x=(1,2)(3,4)(5,6,7)$ if $n \geq 8$.
(6) $x=(1,2,3,4,5)(6,7,8)$ if $n \geq 8$.
(7) $x=(1,2,3)(4,5,6)(7,8,9)$ if $n \geq 10$.

Then $A_{n}=\langle x, y\rangle$.
Proof. It is easily seen that $\langle x, y\rangle$ is a transitive subgroup of A_{n} on Ω in
each case. By Lemma 2 (2) and Jordan's theorem, it suffices to show that $\langle x, y\rangle$ contains a 3 -cycle.
(1) If $n \neq m+1$, then $\left(\left(x y x^{-1} y^{-1}\right)\left(x^{-1} y^{-1} x y\right)\right)^{2}=(1, m+1, n)$. If $n=m+1$, then $x y^{-1}=(1, m+1, m)$.
(2) If $n \geq 8$, then $\left(x\left(y^{-3} x y^{3}\right)\right)^{2}=(1,5,2)$. If $n=6$, then $\left(y^{-2} x y^{2}\right)\left(\left(y^{-3} x y^{3}\right)^{-1} x\left(y^{-3} x y^{3}\right)\right)=(1,3,4)$. If $n=4$, then $y=(2,3,4)$.
(3) If $n \geq 8$, then $\left(x\left(y^{-1} x y\right)\left(y^{-2} x y^{2}\right)^{-1}\right)^{2}=(4,7,8)$. If $n=6$, then $x^{-1} y=(1,4,2)$.
(4) If $n \geq 8$, then $\left(x\left(y^{-2} x y^{2}\right)^{-1}\right)^{2}=(1,3,2)$. If $n=6$, then $x^{-1} y=$ $(1,5,2)$.
(5) We see that $x^{2}=(5,7,6)$.
(6) We see that $x^{5}=(6,8,7)$.
(7) We see that $\left(x\left(y^{-1} x y\right)\right)^{4}=(5,7,9)$.

Proof of Theorem. We consider first the case where n is odd. It is trivial when $n=3$. We may assume that $n \geq 5$. If x is a 3 -cycle, then we can suppose $x=(1,2,3)$ and we have $\langle x, y\rangle=A_{n}$ for $y=(1,2,3 \ldots, n)$ by Theorem B. Therefore we can assume that x moves at least four points.

Suppose that $n \not \equiv 1(\bmod 3)$. We can suppose that $1^{x}=2$ and $4^{x}=5$. We take $y=(2,3,4)(5,6, \ldots, n)$ and let $G=\langle x, y\rangle$. Then G is a transitive subgroup of A_{n} on Ω and G contains a 3 -cycle y^{n-4}. It suffices to show that G is primitive. Let $\Delta \subsetneq \Omega$ be a block for G containing 1 . If $n=5$, then G is primitive on Ω by Lemma 2 (1). We may assume that $n \geq 9$. If Δ contains $\alpha \in\{5,6, \ldots, n\}$ then $|\Delta| \geq n-3>n / 2$ because $\Delta^{y}=\Delta$ and $n \geq 9$. This is a contradiction by Lemma 1 (1). This yields $\Delta \subseteq\{1,2,3,4\}$. Since $|\Delta|$ divides $n,|\Delta|$ is odd. If $|\Delta|=3$, it is easily seen that $\Delta \neq \Delta^{y}$. This yields that G is primitive on Ω by Lemma 1 (2). By Jordan's theorem, we have $G=A_{n}$.

Suppose that $n \equiv 1(\bmod 3)$. We may assume that $n \geq 7$. We can suppose that $3^{x}=4$ and $5^{x}=6$. We take $y=(1,2,3)(4,5)(6,7, \ldots, n)$ and let $G=\langle x, y\rangle$. Then G is a transitive subgroup of A_{n} on Ω and G contains a 3 -cycle y^{n-5}. Let $\Delta \subsetneq \Omega$ be a block for G containing 1 . If $n=7$, then G is primitive on Ω by Lemma 2 (1). We may assume that $n \geq 13$. If Δ contains a symbol $\alpha \in\{6,7, \ldots, n\}$, then $|\Delta| \geq n-4>n / 2$ since $\Delta^{y^{3}}=\Delta$ and $n \geq 13$, a contradiction by Lemma 2 (1). We have $\Delta \subseteq\{1,2,3,4,5\}$. Since $|\Delta|$ divides $n,|\Delta|$ is odd and $|\Delta| \neq 3$. If $\Delta=\{1,2,3,4,5\}$, then $\Delta^{x}=\left\{1^{x}, 2^{x}, 4,4^{x}, 6\right\}$, a contradiction. This yields that G is primitive on
Ω. By Jordan's theorem, we have $G=A_{n}$.
Now, assume that n is even. Suppose that $n \not \equiv 0(\bmod 3)$. It is trivial when $n=4$. We may assume that $n \geq 8$. We can suppose that $3^{x}=4$. We take $y=(1,2,3)(4,5, \ldots, n)$ and let $G=\langle x, y\rangle$. Then G is a transitive subgroup of A_{n} on Ω and G contains a 3 -cycle y^{n-3}. Let $\Delta \subsetneq \Omega$ be a block for G containing 1 . If Δ contains a symbol $\alpha \in\{4,5, \ldots, n\}$, then $|\Delta| \geq n-2>n / 2$ since $\Delta^{y^{3}}=\Delta$ and $n \geq 8$. This is a contradiction by Lemma 1 (1). We have $\Delta \subseteq\{1,2,3\}$. Since $|\Delta|$ divides $n, \Delta \neq\{1,2,3\}$. If $|\Delta|=2$, it is easily seen that $\Delta \neq \Delta^{y}$. This yields that G is primitive on Ω by Lemma 1 (2). By Jordan's theorem, we have $G=A_{n}$.

We may suppose that $n \equiv 0(\bmod 3)$. By Lemma 3 (1)-(4), the theorem holds where $n=6$. We may assume that $n \geq 12$. If x moves at most seven points, then there exists a $(n-1)$-cycle y such that $\langle x, y\rangle=A_{n}$ by Lemma $3(1)-(5)$. Hence we may assume $1^{x}=2,3^{x}=4,5^{x}=6$ and $7^{x}=8$. We take $y=(1,2,3)(4,5)(6,7)(8,9, \ldots, n)$ and let $G=\langle x, y\rangle$. Then G is a transitive subgroup of A_{n} on Ω and G contains a 3 -cycle $y^{2(n-7)}$. Let $\Delta \subsetneq \Omega$ be a block for G containing 1 . If Δ contains a symbol $\alpha \in\{8,9, \ldots, n\}$ and if $n>12$, then $|\Delta| \geq n-6>n / 2$ since $\Delta^{y^{3}}=\Delta$. This is a contradiction by Lemma 1 (1). If $n=12$ and Δ contains a symbol $\alpha \in\{8,9,10,11,12\}$, then $\Delta \supseteq\{1,8,9,10,11,12\}$. In this case we have $\Delta=\Omega$ since $\Delta^{y}=\Delta$, a contradiction. We have $\Delta \subseteq\{1,2,3,4,5,6,7\}$. If $|\Delta| \geq 2$, we can get a contradiction in any cases by the action of x, y or y^{3} on Δ. This yields that G is primitive on Ω by Lemma 1 (2). By Jordan's theorem, we have $G=A_{n}$.

References

[1] Isaacs I.M. and Zieschang Thilo, Generating symmetric groups. Amer. Math. Monthly 102 (1995), 734-739.

[^0]
[^0]: Department of Mathematics
 Kumamoto University
 Kumamoto 860, Japan
 E-mail: chigira@sci.kumamoto-u.ac.jp

