Generating alternating groups

Naoki Chigira

(Received March 11, 1996; Revised June 21, 1996)

Abstract. We will give an elementary proof of the following: For any nonidentity element x in the alternating group A_n on n symbols, there exists an element y such that x and y generate A_n .

Key words: the alternating group, block.

Let S_n be the symmetric group on the symbols $\Omega = \{1, 2, ..., n\}$ and A_n the alternating group on Ω . Isaacs and Zieschang [1] give an elementary proof of the following:

Theorem A Assume that $n \neq 4$ and let $x \in S_n$ be an arbitrary nonidentity element. Then there exists an element $y \in S_n$ such that $S_n = \langle x, y \rangle$.

They say "A result similar to Theorem A is known to be valid for the alternating group A_n for all values of n. Although it seems likely that a proof of this result along the lines of our proof of Theorem A might exist, there are technical difficulties in some cases, and we have not actually found such a proof."

In this note, we will give a proof for A_n along the lines of the proof of Theorem A by Isaacs and Zieschang [1].

Theorem Let $x \in A_n$ be an arbitrary nonidentity element. Then there exists an element $y \in A_n$ such that $A_n = \langle x, y \rangle$.

A nonempty subset $\Delta \subseteq \Omega$ is said to be a block for G if Δ^x is either disjoint from or equal to Δ for each element $x \in G$. A group G is said to be primitive if the only blocks for G are the singleton subset or the whole set Ω .

The following theorems and lemma play an important role in our proof.

Theorem (Jordan) Suppose that G is a primitive subgroup of S_n . If G contains a 3-cycle, then either $G = S_n$ or $G = A_n$.

¹⁹⁹¹ Mathematics Subject Classification: 20B15, 20B35.

Proof. See [1, Theorem (Jordan)].

Theorem B Let x = (1, 2, 3, ..., m) for odd number m and y = (1, 2, 3, ..., n) for odd number n, where 1 < m < n. Then $A_n = \langle x, y \rangle$.

Proof. See [1, Theorem B].

Lemma 1 Suppose that G is a transitive subgroup of S_n on Ω .

- (1) Let Δ be a block for G. Then $|\Delta|$ divides n. Especially, if $\Delta \neq \Omega$, then $|\Delta| \leq n/2$.
- (2) Let $\alpha \in \Omega$. Then G is primitive on Ω if the only blocks containing α are $\{\alpha\}$ and Ω .

Proof. See [1, Lemma] and the above paragraph.

It is easy to prove the following:

Lemma 2 Suppose that G is a transitive subgroup of S_n on Ω .

- (1) If n is prime, then G is primitive on Ω .
- (2) If G contains a (n-1)-cycle, then G is primitive on Ω .

Proof. (1) Let $\Delta \subseteq \Omega$ be a block for G containing 1. By Lemma 1 (1), $\Delta = \{1\}$ or Ω . Lemma 1 (2) yields the result.

(2) We may assume that G contains a (n-1)-cycle x = (2, 3, ..., n). Let $\Delta \subsetneq \Omega$ be a block for G containing 1. Since $\Delta^x \ni 1^x = 1$, we have $\Delta^x = \Delta$. If Δ contains α $(2 \le \alpha \le n)$, we have $\Delta = \Omega$ by the action of x. This is a contradiction. This yields that only blocks containing 1 are $\{1\}$ and Ω . By Lemma 1 (2), we have the result.

Lemma 3 Let y = (2, 3, ..., n) for even number n and x be one of the following elements:

(1)
$$x = (1, 2, 3, ..., m)$$
 if $n > m > 1$ and m is odd.
(2) $x = (1, 2)(3, 4)$ if $n \ge 4$.
(3) $x = (1, 2, 3)(4, 5, 6)$ if $n \ge 6$.
(4) $x = (1, 2, 3, 4)(5, 6)$ if $n \ge 6$.
(5) $x = (1, 2)(3, 4)(5, 6, 7)$ if $n \ge 8$.
(6) $x = (1, 2, 3, 4, 5)(6, 7, 8)$ if $n \ge 8$.
(7) $x = (1, 2, 3)(4, 5, 6)(7, 8, 9)$ if $n \ge 10$.

Then $A_n = \langle x, y \rangle$.

Proof. It is easily seen that $\langle x, y \rangle$ is a transitive subgroup of A_n on Ω in

each case. By Lemma 2 (2) and Jordan's theorem, it suffices to show that $\langle x, y \rangle$ contains a 3-cycle.

(1) If $n \neq m + 1$, then $((xyx^{-1}y^{-1})(x^{-1}y^{-1}xy))^2 = (1, m + 1, n)$. If n = m + 1, then $xy^{-1} = (1, m + 1, m)$. (2) If $n \ge 8$, then $(x(y^{-3}xy^3))^2 = (1, 5, 2)$. If n = 6, then $(y^{-2}xy^2)((y^{-3}xy^3)^{-1}x(y^{-3}xy^3)) = (1, 3, 4)$. If n = 4, then y = (2, 3, 4). (3) If $n \ge 8$, then $(x(y^{-1}xy)(y^{-2}xy^2)^{-1})^2 = (4, 7, 8)$. If n = 6, then $x^{-1}y = (1, 4, 2)$. (4) If $n \ge 8$, then $(x(y^{-2}xy^2)^{-1})^2 = (1, 3, 2)$. If n = 6, then $x^{-1}y = (1, 5, 2)$. (5) We see that $x^2 = (5, 7, 6)$.

- (6) We see that $x^5 = (6, 8, 7)$.
- (7) We see that $(x(y^{-1}xy))^4 = (5,7,9).$

Proof of Theorem. We consider first the case where n is odd. It is trivial when n = 3. We may assume that $n \ge 5$. If x is a 3-cycle, then we can suppose x = (1, 2, 3) and we have $\langle x, y \rangle = A_n$ for y = (1, 2, 3, ..., n) by Theorem B. Therefore we can assume that x moves at least four points.

Suppose that $n \not\equiv 1 \pmod{3}$. We can suppose that $1^x = 2$ and $4^x = 5$. We take $y = (2,3,4)(5,6,\ldots,n)$ and let $G = \langle x, y \rangle$. Then G is a transitive subgroup of A_n on Ω and G contains a 3-cycle y^{n-4} . It suffices to show that G is primitive. Let $\Delta \subsetneq \Omega$ be a block for G containing 1. If n = 5, then G is primitive on Ω by Lemma 2 (1). We may assume that $n \ge 9$. If Δ contains $\alpha \in \{5, 6, \ldots, n\}$ then $|\Delta| \ge n - 3 > n/2$ because $\Delta^y = \Delta$ and $n \ge 9$. This is a contradiction by Lemma 1 (1). This yields $\Delta \subseteq \{1, 2, 3, 4\}$. Since $|\Delta|$ divides n, $|\Delta|$ is odd. If $|\Delta| = 3$, it is easily seen that $\Delta \ne \Delta^y$. This yields that G is primitive on Ω by Lemma 1 (2). By Jordan's theorem, we have $G = A_n$.

Suppose that $n \equiv 1 \pmod{3}$. We may assume that $n \geq 7$. We can suppose that $3^x = 4$ and $5^x = 6$. We take $y = (1, 2, 3)(4, 5)(6, 7, \ldots, n)$ and let $G = \langle x, y \rangle$. Then G is a transitive subgroup of A_n on Ω and G contains a 3-cycle y^{n-5} . Let $\Delta \subseteq \Omega$ be a block for G containing 1. If n = 7, then G is primitive on Ω by Lemma 2 (1). We may assume that $n \geq 13$. If Δ contains a symbol $\alpha \in \{6, 7, \ldots, n\}$, then $|\Delta| \geq n - 4 > n/2$ since $\Delta^{y^3} = \Delta$ and $n \geq 13$, a contradiction by Lemma 2 (1). We have $\Delta \subseteq \{1, 2, 3, 4, 5\}$. Since $|\Delta|$ divides n, $|\Delta|$ is odd and $|\Delta| \neq 3$. If $\Delta = \{1, 2, 3, 4, 5\}$, then $\Delta^x = \{1^x, 2^x, 4, 4^x, 6\}$, a contradiction. This yields that G is primitive on

 Ω . By Jordan's theorem, we have $G = A_n$.

Now, assume that n is even. Suppose that $n \not\equiv 0 \pmod{3}$. It is trivial when n = 4. We may assume that $n \geq 8$. We can suppose that $3^x = 4$. We take $y = (1, 2, 3)(4, 5, \ldots, n)$ and let $G = \langle x, y \rangle$. Then G is a transitive subgroup of A_n on Ω and G contains a 3-cycle y^{n-3} . Let $\Delta \subseteq \Omega$ be a block for G containing 1. If Δ contains a symbol $\alpha \in \{4, 5, \ldots, n\}$, then $|\Delta| \geq n - 2 > n/2$ since $\Delta^{y^3} = \Delta$ and $n \geq 8$. This is a contradiction by Lemma 1 (1). We have $\Delta \subseteq \{1, 2, 3\}$. Since $|\Delta|$ divides $n, \Delta \neq \{1, 2, 3\}$. If $|\Delta| = 2$, it is easily seen that $\Delta \neq \Delta^y$. This yields that G is primitive on Ω by Lemma 1 (2). By Jordan's theorem, we have $G = A_n$.

We may suppose that $n \equiv 0 \pmod{3}$. By Lemma 3 (1)-(4), the theorem holds where n = 6. We may assume that $n \geq 12$. If x moves at most seven points, then there exists a (n-1)-cycle y such that $\langle x, y \rangle = A_n$ by Lemma 3 (1)-(5). Hence we may assume $1^x = 2$, $3^x = 4$, $5^x = 6$ and $7^x = 8$. We take y = (1, 2, 3)(4, 5)(6, 7)(8, 9, ..., n) and let $G = \langle x, y \rangle$. Then G is a transitive subgroup of A_n on Ω and G contains a 3-cycle $y^{2(n-7)}$. Let $\Delta \subsetneq \Omega$ be a block for G containing 1. If Δ contains a symbol $\alpha \in \{8, 9, ..., n\}$ and if n > 12, then $|\Delta| \ge n - 6 > n/2$ since $\Delta^{y^3} = \Delta$. This is a contradiction by Lemma 1 (1). If n = 12 and Δ contains a symbol $\alpha \in \{8, 9, 10, 11, 12\}$, then $\Delta \supseteq \{1, 8, 9, 10, 11, 12\}$. In this case we have $\Delta = \Omega$ since $\Delta^y = \Delta$, a contradiction. We have $\Delta \subseteq \{1, 2, 3, 4, 5, 6, 7\}$. If $|\Delta| \ge 2$, we can get a contradiction in any cases by the action of x, y or y^3 on Δ . This yields that G is primitive on Ω by Lemma 1 (2). By Jordan's theorem, we have $G = A_n$.

References

[1] Isaacs I.M. and Zieschang Thilo, *Generating symmetric groups*. Amer. Math. Monthly **102** (1995), 734–739.

> Department of Mathematics Kumamoto University Kumamoto 860, Japan E-mail: chigira@sci.kumamoto-u.ac.jp