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On Kato’s square root problem

A.F.M. ter ELST and Derek W. ROBINSON
(Received April 24, 1996)

Abstract. We consider abstract versions,

H=- \sum_{i,j=1}^{n}A_{i}c_{ij}A_{j}+\sum_{i=1}^{n}(c_{i}A_{i}+A_{i}c_{i}’)+c_{0} ,

of second-0rder partial differential operators defined by sectorial forms on a Hilbert space
H . The A_{i} are closed skew-symmetric operators with a common dense domain H_{1} and
the c_{ij} , c_{i} etc. are bounded operators on H with the real part of the matrix C=(c_{ij})

strictly positive-definite.
We assume that D(L) \subseteq\bigcap_{i,j=1}^{n}D(A_{i}A_{j}) where L=- \sum_{i=1}^{n}A_{i}^{2} is defined as a form

on H_{1}\cross H_{1} . We further assume the c_{ij} are bounded operators on one of the Sobolev
spaces H_{\gamma}=D((I+L)^{\gamma/2}) , \gamma\in\langle 0,1\rangle , equipped with the graph norm. Then we prove
that

D((\lambda I+H)^{1/2})=D((\lambda I+H^{*})^{1/2})=?\{_{1} (1)

for all large \lambda\in R .
As a corollary we deduce that in any unitary representation of a Lie group all second-

order subelliptic operators in divergence form with H\"older continuous principal coefficients
satisfy (1).

Let K be a closed maximal accretive, regular accretive, sectorial opera-
tor on the Hilbert space H with associated regular sesquilinear form k and
Re K the closed maximal accretive operator associated with the real part of
k . Kato [Katl], Theorem 3.1, proved that D(K^{\delta})=D(K^{*\delta})=D(({\rm Re} K)^{\delta})

for all \delta\in[0,1/2\rangle but Lions [Lio] subsequently gave an example of a
closed maximal accretive operator for which D(K^{1/2})\neq D(K^{*1/2}) . Then
Kato [Kat2], Theorems 1 and 2, proved that D(K^{1/2})=D(K^{*1/2}) if, and
only if, both D(K^{1/2})\subseteq D(k) and D(K^{*1/2})\subseteq D(k) . More generally
D(K^{1/2})\subseteq D(k) if and only if D(k)\subseteq D(K^{*1/2}) with a similar equivalence
if K and K^{*} are interchanged. Therefore the identity of any two of the sets
D(K^{1/2}) , D(K^{*1/2}) , D(k) implies the identity of all three. Establishing that
a particular operator K satisfies these last identities has become known as
Kato’s square root problem, or the Kato problem.

Kato’s initial interest in these questions was motivated by problems of

1991 Mathematics Subject Classification : 35B45,47B44,47A57 .



366 A.F.M. ter Elst and D. W. Robinson

evolution equations and much subsequent attention has been devoted to
the Kato problem for strongly elliptic second-0rder operators with complex
measurable coefficients in divergence form on L_{2}(R^{d};dx) or on a subspace
corresponding to a subdomain \Omega\subseteq R^{d} . The problem has proved remark-
ably intractable but it has been solved under some special additional as-
sumptions. For example the one-dimensional case was solved by Coifman,
Mclntosh and Meyer [CMM] in 1982 and in 1985 Mclntosh [McI2] showed
that the problem can be solved if the coefficients are H\"older continuous. A
survey of the situation up to 1990 is given by Mclntosh in [McIl] and a more
recent update in [AuT] . This latter paper establishes the equivalence of the
Kato problem with several other classical problems of harmonic analysis
and illustrates the difficulties of its solution.

Our purpose in this note is to solve the Kato problem for an abstract
class of second-0rder operators under a mild regularity condition on the
principal coefficients. In particular we extend the results of Mclntosh [McI2]
by quite different arguments which rely on interpolation theory. Indeed we
draw analogous conclusions to Mclntosh for operators associated with an
arbitrary unitary representation of a Lie group.

Let A_{1} , \ldots , A_{n} be closed skew-symmetric operators on the Hilbert space
H such that H_{1}= \bigcap_{i=1}^{n}D(A_{i}) is norm-dense. Define the corresponding
Laplacian L as the positive self-adjoint operator associated with the form
l with domain H_{1} given by

l( \varphi)=\sum_{i=1}^{n}||A_{i}\varphi||^{2} .

Then

i=1\cap D(A_{i})n=H_{1}=D((\lambda I+L)^{1/2}) (2)

for all \lambda\geq 0 by [Kat3], Theorem VI.2.23. In particular H_{1} is a Banach
space with respect to the norm

|| \varphi||_{1}=||(I+L)^{1/2}\varphi||=(||\varphi||^{2}+\sum_{i=1}^{n}||A_{i}\varphi||^{2})^{1/2}

Next introduce the corresponding Sobolev spaces H_{\gamma} , \gamma\in R , as H_{\gamma}=
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D((I+L)^{\gamma/2}) , if \gamma>0 , with the graph norm

||\varphi||_{\gamma}=||(I+L)^{\gamma/2}\varphi|| , (3)

and as the completion of (I+L)^{\gamma/2}H with respect to the norm (3) if \gamma\leq 0 .
Then H_{-\gamma} is the dual of H_{\gamma} . Since L is self-adjoint the Sobolev spaces form
a scale of complex interpolation spaces.

The class of operators we analyze are defined by sectorial forms h on
H_{1}\cross H_{1} with values

h( \psi, \varphi)=\sum_{i,j=1}^{n}(A_{i}\psi, c_{ij}A_{j}\varphi)

+ \sum_{i=1}^{n}((\psi, c_{i}A_{i}\varphi)-(A_{i}\psi, c_{i}’\varphi))+(\psi, c_{0}\varphi) (4)

where c_{ij} , c_{i} , c_{i}’ and c_{0} are bounded operators on H with the real part of
the matrix C=(c_{ij}) of principal coefficients strictly positive-definite, i.e.,

\sum_{i,j=1}^{n}{\rm Re}(\varphi_{i}, c_{ij}\varphi_{j})\geq\mu\sum_{i=1}^{n}||\varphi_{i}||^{2}

for some \mu>0 and all \varphi_{1} , \ldots , \varphi_{n}\in H . Forms of this type will be called
subelliptic. The positive-definiteness condition, i.e., the subellipticity, en-
sures that h is sectorial and closed on H_{1}\cross H_{1} . Hence if H is the sectorial
operator associated with h then \lambda I+H is a closed maximal accretive,
regularly accretive operator for all sufficiently large \lambda\in R . It follows that
\lambda I+H has a bounded H_{\infty}-functional calculus and bounded imaginary pow-
ers: ||(\lambda I+H)^{is}||\leq e^{\pi|s|/2} for all s\in R and all sufficiently large \lambda . A proof
of these facts can be found, for example, in [ADM]. One of the consequences
of the bounded imaginary powers is the fractional powers are well-defined
and form a scale of complex interpolation spaces. For example,

[D((\lambda I+H)^{\alpha}), D((\lambda I+H)^{\beta})]_{\theta}=D((\lambda I+H)^{(1-\theta)\alpha+\theta\beta})

for all large \lambda , all \alpha , \beta\geq 0 with \alpha\neq\beta and all \theta\in\langle 0,1\rangle (see [Tri], Theorem
1.15.2).

Our main result is the following.
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Theorem 1 Assume the regularity inclusion

D(L)\subseteq\cap D(A_{i}A_{j})i,j=1n . (5)

Let H be the closed sectorial operator associated with the subelliptic form
(4) and suppose the c_{ij} and their adjoints c_{ij}^{*} are bounded operators on the
Sobolev space H_{\gamma}=D((I+L)^{\gamma/2}) for some \gamma\in\langle 0,1\rangle . Then

D((\lambda I+H)^{1/2})=D((\lambda I+H^{*})^{1/2})=H_{1}

for all large \lambda\in R .

If the matrix of principal coefficients C=(c_{ij}) is self-adjoint, i.e., if
c_{ij}=c_{ji}^{*} for all i , j\in\{1, , n\} , there is no need for the regularity assump-
tions of the theorem. Then the principal part H_{0}=- \sum_{i,j=1}^{n}A_{i}c_{ij}A_{j} of H
is positive, self-adjoint, and D((\lambda I+H_{0})^{1/2})=D((\lambda I+H_{0}^{*})^{1/2})=H_{1} for all
\lambda\geq 0 by [Kat3], Theorem VI.2.23. This conclusion can then be extended to
H. at least for large positive values of \lambda , by the interpolation-perturbation
argument used at the end of the following proof. Thus the difficulty in the
theorem occurs when the principal coefficients are not self-adjoint. Then
the assumptions, CH_{\gamma}\subseteq H_{\gamma} and C^{*}\mathcal{H}_{\gamma}\subseteq H_{\gamma} , reflect a form of smoothness
of the action of the operators c_{ij} by the following reasoning.

First remark that the value of \gamma in the assumption is not of particular
significance. If c is a bounded operator on H and in addition bounded on
H_{\gamma} for some \gamma\in\langle 0,1\rangle then it is bounded on H_{\delta} , for all \delta\in\langle 0, \gamma\rangle , by
complex interpolation. Secondly, let c be a bounded operator on H with
norm ||c||_{74} and T the ‘heat’ semigroup generated by L on H . Then for c

and c^{*} to be bounded on H_{\gamma} it suffices that one has bounds

||T_{t}c-cT_{t}||\leq at^{\nu/2}e^{\omega t} (6)

for some lJ >\gamma>0 , some \omega\geq 0 and all t>0 . This follows because

( \lambda I+L)^{\gamma/2}=c_{\gamma}^{-1}\int_{0}^{\infty}dtt^{-1-\gamma/2}(I-e^{-\lambda t}T_{t})

for all \lambda>0 where c_{\gamma}= \int_{0}^{\infty}dtt^{-1-\gamma/2}(1-e^{-t}) . Hence

( \lambda I+L)^{\gamma/2}c-c(\lambda I+L)^{\gamma/2}=c_{\gamma}^{-1}\int_{0}^{\infty}dtt^{-1-\gamma/2}e^{-\lambda t}(cT_{t}-T_{t}c)
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and the bounds (6) give

|((\lambda I+L)^{\gamma/2}\psi, c\varphi)-(\psi, c(\lambda I+L)^{\gamma/2}\varphi)|

\leq ac_{\gamma}^{-1}||\psi|| || \varphi||\int_{0}^{\infty}dtt^{-1+(\iota/-\gamma)/2}e^{-(\lambda-\omega)t}

\leq a_{\gamma,\lambda}||\psi|| ||\varphi||

for all \varphi , \psi\in H_{\gamma} where a_{\gamma,\lambda} is finite for all large \lambda whenever \nu>\gamma . It
follows immediately that c\varphi\in H_{\gamma} and

||c\varphi||_{\gamma}\leq||c||_{H}||\varphi||_{\gamma}+a_{\gamma,\lambda}||\varphi|| .

Thus c is bounded on H_{\gamma} . Since T is self-adjoint the bounds (6) are also
valid for c^{*} and then c^{*} is bounded on H_{\gamma} by the same argument.

Proof of Theorem 1. We first prove the theorem for the principal part
H_{0} of H and subsequently extend the result to H by an interpolation-
perturbation argument.

First, since

D(H_{0}^{1/2})=[H, D(H_{0})]_{1/2}=[H, D(I+H_{0})]_{1/2}=D((I+H_{0})^{1/2})

it suffices to establish the result for the operator I+H_{0} .
Secondly, fix \psi\in D(H_{0}^{*})\subseteq H_{1} and \varphi\in H_{1+\gamma}\subset H_{1} . Then (I+

H_{0}^{*})^{-(1-\gamma)/2}\psi\in D(H_{0}^{*})\subseteq H_{1} and

((I+H_{0}^{*})^{(1+\gamma)/2}\psi, \varphi)

=((I+H_{0}^{*})(I+H_{0}^{*})^{-(1-\gamma)/2}\psi, \varphi) (7)

= \sum_{i,j=1}^{n}(A_{i}(I+H_{0}^{*})^{-(1-\gamma)/2}\psi, c_{ij}A_{j}\varphi)+((I+H_{0}^{*})^{-(1-\gamma)/2}\psi, \varphi) .

Now we aim to bound the terms on the right hand side of (8) by use of the
Sobolev norms || ||_{-\gamma} and || ||_{\gamma} . This estimation is based on the following
observation.

Lemma 2 The A_{i} , i\in\{1, . . ’ n\} , are bounded operators from H_{1+\delta} to
H_{\delta} for each \delta\in[-1,1] .

Proof The space \mathcal{K}=\bigcap_{i,j=1}^{n}D(A_{i}A_{j}) equipped with the norm

\varphi\mapsto\sup_{1\leq i,j\leq n}||A_{i}A_{j}\varphi||+\sup_{1\leq i\leq n}||A_{i}\varphi||+||\varphi||
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is a Banach space since all the operators A_{i} are closed. Then the regularity
hypothesis (5) gives the set inclusion D(I+L)\underline{\subseteq}\mathcal{K} . But since D(I+L) is
a Banach space with respect to the norm \varphi\mapsto||(I+L)\varphi|| it follows from
the closed graph theorem that the inclusion is continuous, i.e., there exists
an a>0 such that

\sup_{1\leq i,j\leq n}||A_{i}A_{j}\varphi||+\sup_{1\leq i\leq n}||A_{i}\varphi||+||\varphi||\leq a||(I+L)\varphi||

for all \varphi\in D(L) . These bounds, together with the Kato identity (2), imply
that one has bounds ||A_{i}\varphi||_{1}\leq a’||\varphi||_{2} for all \varphi\in H_{2} and i\in\{1, \ldots, n\} .
Hence the A_{i} are bounded operators from H_{2} into H_{1} . On the other hand
D((I+L)^{1/2})\subseteq D(A_{i}) and hence the operators A_{i}(I+L)^{-1/2} are bounded
on H . By duality the operators (I+L)^{-1/2}A_{i} extend to bounded operators
on H and therefore the A_{i} are bounded from H into H_{-1} . Since the H_{\gamma}

form a scale of complex interpolation spaces the statement of the lemma
follows by interpolation. \square

Now we return to the estimation of the right hand side of (8).
Since \gamma\in\langle 0,1\rangle it follows that \delta=(1-\gamma)/2\in\langle 0,1/2\rangle and (I+H_{0}^{*})^{-\delta} is

a continuous operator from 7{ into D((I+H_{0}^{*})^{\delta}) . But by [Katl], Theorem
3.1, and complex interpolation one deduces that

D((I+H_{0}^{*})^{\delta})=D(({\rm Re}(I+H_{0}^{*}))^{\delta})

=[H, D(({\rm Re}(I+H_{0}^{*}))^{1/2})]_{2\delta}=[H, \mathcal{H}_{1}]_{2\delta}=H_{2\delta} ,

since {\rm Re}(I+H_{0}^{*}) is self-adjoint. Therefore (I+H_{0}^{*})^{-(1-\gamma)/2} is a continuous
operator from H into H_{1-\gamma} . Then by Lemma 2 the A_{i}(I+H_{0}^{*})^{-(1-\gamma)/2} are
continuous operators from H into H_{-\gamma} . Thus one has bounds

||A_{i}(I+H_{0}^{*})^{-(1-\gamma)/2}\psi||_{-\gamma}\leq a||\psi||

for all \psi\in H . Alternatively, by Lemma 2, the A_{j} are continuous operators
from H_{1+\gamma} into H_{\gamma} and, by assumption, the c_{ij} are continuous on H_{\gamma} .
Therefore one has bounds

||c_{ij}A_{j}\varphi||_{\gamma}\leq a’||\varphi||_{1+\gamma}

for all \varphi\in H_{1+\gamma} . Then (8) gives
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|((I+H_{0}^{*})^{(1+\gamma)/2} \psi, \varphi)|\leq\sum_{i,j=1}^{n}||A_{i}(I+H_{0}^{*})^{-(1-\gamma)/2}\psi||_{-\gamma} ||c_{ij}A_{j}\varphi||_{\gamma}

+||(I+H_{0}^{*})^{-(1-\gamma)/2}\psi|| ||\varphi||

\leq b||\psi|| ||\varphi||_{1+\gamma}

for some b>0 and all \psi\in D(H_{0}^{*}) and \varphi\in H_{1+\gamma} . Here we have used
the foregoing estimates and the bounds ||(I+H_{0}^{*})^{-(1-\gamma)/2}\psi||\leq||\psi|| and
||\varphi||\leq||\varphi||_{1+\gamma} . Since D(H_{0}^{*}) is a core of (I+H_{0}^{*})^{(1+\gamma)/2} one concludes that
H_{1+\gamma}\subseteq D((I+H_{0})^{(1+\gamma)/2}) and

||(I+H_{0})^{(1+\gamma)/2}\varphi||\leq b||\varphi||_{1+\gamma} (8)

for all \varphi\in H_{1+\gamma} . But then

H_{1}=[H, H_{1+\gamma}]_{1/(1+\gamma)}\subseteq[H, D((I+H_{0})^{(1+\gamma)/2})]_{1/(1+\gamma)}

=D((I+H_{0})^{1/2}) .

Now H_{0}^{*} is an operator analogous to H_{0} , with c_{ij} replaced by c_{ji}^{*} , and the
same arguments apply. Therefore one has two inclusions

H_{1}\subseteq D((I+H_{0})^{1/2}) , H_{1}\subseteq D((I+H_{0}^{*})^{1/2}) .

But I+H_{0} is a closed maximal accretive operator associated with a form
whose domain is H_{1} . Therefore, from the result of Kato cited in the in-
troduction, [Kat2], Theorem 1, one concludes that H_{1}=D((I+H_{0})^{1/2})=

D((I+H_{0}^{*})^{1/2}) . Thus the desired identities are established for the principal
part of H . Next consider the addition of lower order terms.

First let h_{1} denote the form obtained from h by setting c_{i}’=0 and H_{1}

the corresponding closed sectorial operator. Then

h_{1}(\psi, \varphi)=h_{0}(\psi, \varphi)+(\psi, V\varphi)

for all \psi , \varphi\in \mathcal{H}_{1} where h_{0} is the form associated with the principal part H_{0}

and V is the operator \sum_{i=1}^{n}c_{i}A_{i}+c_{0} with D(V)=7\{_{1} . But D(H_{1}) consists
of those \varphi\in H_{1} for which there is an a>0 such that |h_{1}(\psi, \varphi)|\leq a||\psi||

for all \psi\in H_{1} . The domain D(H_{0}) is defined similarly, relative to h_{0} . It
follows immediately that D(H_{1})=D(H_{0}) . Hence

D((\lambda I+H_{1})^{1/2})=[H, D(H_{1})]_{1/2}

=[H, D(H_{0})]_{1/2}=D((\lambda I+H_{0})^{1/2})
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for sufficiently large \lambda . Therefore, by the foregoing, one has D((\lambda I+

H_{1})^{1/2})=H_{1} . But K=\lambda I+H_{1} is a closed maximal accretive opera-
tor corresponding to a form k with D(k)=H_{1} . Thus D(K^{1/2})=D(k) and
again invoking [Kat2], Theorem 1, one concludes that D(K^{*1/2})=D(k) .
Therefore D((\lambda I+H_{1}^{*})^{1/2})=H_{1} .

Finally

h^{*}( \varphi, \psi)=h_{1}^{*}(\varphi, \psi)-\sum_{i=1}^{n}(c_{i}’\varphi, A_{i}\psi)

for all \varphi , \psi\in H_{1} where h^{*} and h_{1}^{*} are the forms associated with H^{*} and
H_{1}^{*} , respectively. Then repetition of the foregoing argument gives D((\lambda I+

H^{*})^{1/2})=D((\lambda I+H_{1}^{*})^{1/2})=H_{1} and another application of Theorem 1 in
[Kat2] yields D((\lambda I+H)^{1/2})=H_{1} . \square

Theorem 1 has a simple implication for subelliptic operators associated
with a unitary representation of a Lie group because the basic regularity
properties are a direct consequence of unitarity.

Let (H, G, U) denote a representation of the Lie group G by unitary
operators g – U(g) on the Hilbert space H . Further let a_{1} , . . , a_{n} be
elements of the Lie algebra g of G . Denote the skew-adjoint generators of
the one-parameter unitary groups t\mapsto U(\exp(-ta_{i})) by A_{1} , . . ’

A_{n} , i.e , the
A_{i} are the representatives of the a_{i} in the derived representation of the Lie
algebra. Then the C^{1} subspace H_{1} corresponding to the A_{i} is automatically
dense in H because it contains the dense subspace of C^{\infty} elements of the
representation. Moreover, if the a_{1} , \ldots , a_{n} form a vector space basis of g
then the regularity property (5) is a result of Nelson [Nel] (a simple proof
is given in [Rob], Section 1.6, page 53). More generally, if the a_{1} , . , a_{n} are
a Lie algebraic basis of g then (5) is established in [E1R] , Theorem 7.2.IVr
In light of these observations one has the following conclusion.

Corollary 3 Let (H, G, U) denote a unitary representation of a Lie group
G and A_{1} , . . , A_{n} the skew-adjoint representatives of an algebraic basis
a_{1} , \ldots , a_{n} of the Lie algebra of G. Let H be the closed sectorial opera-
tor associated with the subelliptic form (4) and the A_{i} and suppose the c_{ij}

and c_{ij}^{*} are bounded operators on the Sobolev space \gamma\{_{\gamma}=D((I+L)^{\gamma/2}) for
some \gamma\in\langle 0,1\rangle .

Then D((\lambda I+H)^{1/2})=D((\lambda I+H^{*})^{1/2})=H_{1} for all large \lambda\in R .
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Again it is worth noting that the assumption that a bounded operator
c on 7{ is also bounded on H_{\gamma} is a type of H\"older continuity. It follows, for
example, if c satisfies bounds

||U(g)cU(g)^{-1}-c||\leq a|g|^{lJ} (9)

for some lJ >\gamma and all g\in G with |g|\leq 1 where | | denotes the subelliptic
distance to the identity element corresponding to the basis a_{1} , . . ’ a_{n} (see,
for example, [Rob], Section IV.4). These bounds imply the boundedness of
c and c^{*} on H_{\gamma} by the following reasoning.

The action of T , the semigroup generated by L on H , is given by a
kernel K ,

T_{t}= \int_{G}dgK_{t}(g)U(g)

where dg denotes left invariant Haar measure. This kernel is positive and
satisfies Gaussian bounds

0\leq K_{t}(g)\leq at^{-D/2}e^{\omega t}e^{-b|g|^{2}t^{-1}} (10)

with D the local subelliptic dimension (see [Rob], Section IV.4). Therefore

T_{t}c-cT_{t}= \int_{G}dgK_{t}(g)(U(g)c-cU(g))

and the bounds (9), which extend to all g\in G , together with (10), imme-
diately give estimates

||T_{t}c-cT_{t}|| \leq at^{\nu/2}\int_{G}dgt^{-D/2}e^{\omega t}e^{-b|g|^{2}t^{-1}}(|g|^{2}t^{-1})^{\nu/2}

The integral, however, is bounded by a factor a’e^{\omega’t} and hence one concludes
that

||T_{t}c-cT_{t}||\leq at^{\mathfrak{l}//2}e^{\omega t}

for some a>0 , \omega\geq 0 and all t>0 . Then the boundedness of c and c^{*} on
H_{\gamma} for each \gamma\in\langle 0, \nu\rangle follows from the discussion following Theorem 1.

Thus if the c_{ij} are operators which act by multiplication by H\"older con-
tinuous functions then the corollary applies. This is a general Lie group
version of Mclntosh’s result [McIl] for R^{n} . But if one specializes to Eu-
clidean space one can draw more general conclusions. For example, let
H =L_{2}(\Omega;dx) for some open set \Omega\subseteq R^{n} and set A_{i}=\partial_{i}=\partial/\partial x_{i} , the
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partial differential operators with Dirichlet boundary conditions. Then L is
the Dirichlet Laplacian and the regularity property (5) is valid. Therefore
Theorem 1 applies to Dirichlet operators

H=- \sum_{i,j=1}^{n}\partial_{i^{C}ij}\partial_{j}+\sum_{i=1}^{n}(c_{i}\partial_{i}+\partial_{i}c_{i}’)+c_{0}

with coefficients in the bounded operators on L_{2}(\Omega;dx) . The only restraints
are the ellipticity condition and the ‘H\"older continuity’ on the principal
coefficients c_{ij} . The theorem also has applications to operators on other
manifolds as long as the C^{2}-regularity condition (5) is satisfied.

There is one natural question which is not resolved by the foregoing
arguments.

It follows from [Katl], Theorem 3.1 that for each subelliptic operator
H given by a subelliptic form (4) one has

D((\lambda I+H)^{\alpha})=H_{2\alpha}

for all large \lambda and all \alpha\in[0,1/2\rangle . This conclusion does not need any
regularity of the coefficients c_{ij} or the Laplacian. But Theorem 1 establishes
that the regularity condition (5) together with the boundedness of the c_{ij}

and c_{ij}^{*} on H_{\gamma} ensures the stronger conclusion

D((\lambda I+H)^{1/2})=H_{1} .

In the course of the proof, however, we also deduced in (8) that

D((\lambda I+H)^{\alpha})\supseteq H_{2\alpha} (11)

for all \alpha\in\langle 1/2 , (1+\gamma)/2] and H a pure second-0rder subelliptic operator
satisfying the assumptions of Theorem 1. On the other hand, if H is an
operator with c_{i}=0 for all i but the c_{i}’ are possibly non-zero then the
additional terms in (8) can be dealt with as before. So (11) is valid for all
operators with the c_{i} equal to zero. But then one can add the terms c_{i}A_{i} by
the perturbation-interpolation argument. Thus one arrives at the following
conclusion.

Proposition 4 Assume the regularity inclusion

D(L)\subseteq\cap D(A_{i}A_{j})i,j=1n .
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Let H be the closed sectorial operator associated with the subelliptic form
(4) and suppose the c_{\iota j} are bounded operators on the Sobolev space H_{\gamma}=

D((I+L)^{\gamma/2}) for some \gamma\in\langle 0,1\rangle . Then

D((\lambda I+H)^{\alpha})\supseteq H_{2\alpha}

for all large \lambda\in R and all \alpha\in[0, (1+\gamma)/2] , with equality if \alpha\in[0,1/2] .

It is, however, unclear whether the hypotheses of Theorem 1 imply that
these the containments are identities for \alpha>1/2 . Probably some additional
regularity is required.
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Note Added in Proof After this paper was completed we learned that
the interpolation-perturbation argument used to complete the proof of The-
orem 1 occurred earlier in a paper of P. Auscher and P. Tchamitchian, Rev.
Ibero. Mat. 8 (1992) 149-199.
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