Some solvability criteria for finite groups

Angel CAROCCA¹ and Helder MATOS

(Received December 4, 1995; Revised March 19, 1996)

Abstract. We prove a variant of Kegel-Wielandt's theorem. We use this to give some solvability criteria for factorizable finite groups.

Key words: permutable subgroups, 2-nilpotent subgroups, simple groups.

Let G be a finite group and G = HK, where H and K are subgroups of G. There are a number of results which deduce the solvability of G from suitable conditions on H and K. In particular, two of these results are:

Huppert - Itô [4], If H is supersolvable and K is cyclic of odd order, then G = HK is solvable.

Kegel - Wielandt ([5], p. 674, Satz 4.3), If H and K are nilpotent, then G = HK is solvable.

In the first part of this communication, using classification theorems of simple groups we prove the following:

Theorem A Let G be a finite group, $H \leq G$ such that $|G : H| = p^a$ with p an odd prime number. If H is 2-nilpotent, then G is solvable.

In the second part, we consider the following definition: A subgroup H of a group G is said to be *semi-normal* in G if there exists a subgroup K of G such that G = HK and H permutes with every subgroup of K.

The solvability of the normal closure of a solvable semi-normal subgroup cannot be concluded in general: In the alternating group $G = \mathbf{A}_5$ the subgroups H of index 5 are solvable and semi-normal in G, but the normal closure $H^G = G$ is not solvable.

This makes the following theorem interesting:

Theorem B Let G be a finite group and $H \leq G$ a semi-normal subgroup.

¹⁹⁹¹ Mathematics Subject Classification: 20D40, 20D06.

¹Parcially supported by DIUC/9506j

- (a) If H is 2-nilpotent, then the normal closure H^G of H in G is solvable.
- (b) If the order |H| of H is odd, then $|H^G|$ is odd.

1. Preliminary Results

We prepare the proof of the theorems.

Lemma 1.1 (Fisman [3]) Let G = HK be a group with H and K proper solvable subgroups such that (|H|, |K|) = 1. Then the composition factors of G belong to one of the following types:

- (a) Cyclic of prime order
- (b) **PSL** $(2, 2^n), n \ge 2,$
- (c) $\mathbf{PSL}(2,q)$ with $q \equiv -1 \mod (4)$,
- (d) $\mathbf{PSL}(3,3),$
- (e) M_{11} .

Lemma 1.2 (Finkel and Lundgren [2]) Let G = HK be a group with Hand K subgroups such that (|H|, |K|) = 1. Let $R \leq H$ with $|H : R| = 2^i$ and $R = R_2 \times R_{2'}$ where R_2 is the Sylow-2-subgroup and $R_{2'}$ is the Hall-2'-subgroup of R. Assume further that, H/R is abelian or dihedral. If K is nilpotent of odd order, then G is solvable.

2. Semi-normal subgroups

A subgroup H of a group G is said to be semi-normal in G if there exists a subgroup K of G such that G = HK and H permutes with every subgroup of K. In this case, we say that K is an *s*-supplement of H in G. Clearly, every normal subgroup of G is semi-normal. Also every subgroup of prime index is semi-normal (see [1], [7], [8]).

Lemma 2.1 Let H be a semi-normal subgroup of a group G.

- (a) If $H \leq L \leq G$, then H is semi-normal in L.
- (b) If $N \leq G$, then HN/N is semi-normal in G/N.
- (c) Let K be an s-supplement of H in G and $L \leq K$. Then H permutes with every conjugate of L in G.

Proof. For (a) and (b) see (SU, [7]).

(c) Let $g \in G$. Put g = kh with $k \in K$ and $h \in H$. Since L^k is a subgroup

of K we have that

$$L^{g}H = L^{kh}H = (L^{k}H)^{h} = (HL^{k})^{h} = HL^{kh} = HL^{g}.$$

Lemma 2.2 Let G be a finite group, H and K subgroups of G. If H permutes with every conjugate of K in G, then $H^K \cap K^H$ is subnormal in G.

For a proof see ([6], p.221, Th. 7.2.5).

3. Proof of the theorems

Proof of Theorem A Suppose the theorem is false and let G be a counterexample of smallest order. We assume that H is of minimal order. Since H is solvable, we may assume (|H|, p) = 1. Hence G = HK, $K \in Syl_p(G)$ and $H \cap K = 1$.

First we prove that G is simple. Suppose $N \triangleleft G$. We have that $HN/N \cong H/H \cap N$ is 2-nilpotent and |G/N:HN/N| = |G:HN| divides p^a .

If $N \neq 1$, then by the minimality of |G|, we have that G/N is solvable. Since $|N : H \cap N|$ divides p^a , the minimality of |G| tells that N is solvable. So G is solvable, a contradiction. Hence G is simple.

By lemma 1.1, G is isomorphic to one of the groups;

 $\begin{aligned} \mathbf{PSL}(2,2^n) \ n \geq 2, \quad \mathbf{PSL}(2,q) \ \text{ with } \ q \equiv -1 \ \text{mod } (4), \\ \mathbf{PSL}(3,3) \ \text{ or } \ \mathbf{M}_{11}. \end{aligned}$

Since \mathbf{M}_{11} has not a 2-nilpotent subgroup of prime power index, we have that G is not isomorphic to \mathbf{M}_{11} .

If $G \cong \mathbf{PSL}(3,3)$, then by ([4], p.189, Satz 7.4 Fall 1), we have that $|H| = 2^4 3^3$ and $K \in Syl_{13}(G)$. But, in this case H is not 2-nilpotent, because otherwise $H = \mathbf{N}_G(P)$, with $P \in Syl_3(G)$, a contradiction.

Since $\mathbf{PSL}(2, 2^n)$ has abelian Sylow-2-subgroups, lemma 1.2 tells that G is not isomorphic to $\mathbf{PSL}(2, 2^n)$.

Since $\mathbf{PSL}(2,q)$ with $q \equiv -1 \mod (4)$ has dihedral Sylow-2-subgroups, lemma 1.2 tells that G is not isomorphic to $\mathbf{PSL}(2,q)$.

Proof of Theorem B Suppose the theorem is false and let G be a counterexample of smallest order.

Since H is semi-normal in G, there exists a subgroup K of G such that G = HK and H permutes with every subgroup of K. We assume that K is chosen of minimal order.

The following items are valid in G:

(i) G has a unique minimal normal subgroup N and N is not solvable (in(b), N has even order).

Suppose N_1 and N_2 are minimal normal subgroups of G, with $N_1 \neq N_2$. By Lemma 2.1 (b), the quotient HN_i/N_i is semi-normal in G/N_i (i = 1, 2). Since HN_i/N_i is 2-nilpotent (in (b), HN_i/N_i has odd order), by the minimality of |G|, we have that H^GN_i/N_i is solvable (in (b), H^GN_i/N_i has odd order). Hence $H^G \cong H^G/(N_1 \cap N_2 \cap H^G)$ is solvable (in (b), H^G has odd order), a contradiction.

So G has a unique minimal normal subgroup N. Since $N \leq H^G$ and H^G/N is solvable (in (b), H^G/N has odd order), we have that N is not solvable (in (b), N has even order).

(ii) H centralizes every proper subgroup of K.

Let L be a proper subgroup of K. By Lemma 2.1 (a), H is semi-normal in HL = LH. Since K is of minimal order, we have that HL is a proper subgroup of G and $H^{HL} = H^L$ is solvable (in (b), H^L has odd order), since the theorem holds in HL.

By Lemma 2.1 (c), H permutes with every conjugate of L in G. By Lemma 2.2, the intersection $H^L \cap L^H$ is subnormal in G. Since H^L is solvable (in (b), H^L has odd order), by (i) we have $H^L \cap L^H = 1$, since every subnormal solvable (in (b), subnormal odd order) subgroup is contained in a solvable (in (b), odd order) normal subgroup. Therefore, the commutator group $[H, L] \leq [H^L, L^H] \leq H^L \cap L^H = 1$.

(iii) K is a cyclic p-group, for some prime number p and the maximal subgroup K_1 of K is normal in G.

If K has two different maximal subgroups, then by (ii), H centralizes K and H is normal in G, a contradiction.

So K is a cyclic p-group, for some prime number p and $K_1 \leq G$.

(iv) The contradiction

Item (i) shows that |K| = p = |G : H|. By Theorem A, we have that G is solvable. In the hypothesis (b), by (i) we have that p = 2 so $H \leq G$.

References

- Carocca A., A note on a theorem of W. Gaschütz and N. Itô. Bull. Braz. Math. Soc. Vol. 26, Num. 2, 161–165.
- [2] Finkel D. and Lundgren R., Solvability of factorizable groups II. J. Algebra **60** (1979), 43–50.
- [3] Fisman E., On the product of two finite solvable groups. J. Algebra 80 (1983), 517– 536.
- [4] Huppert B. and Itô N., Über die auflösbarkeit faktorisierbarer Gruppen II. Math. Z.
 61 (1954), 94–99.
- [5] Huppert B., Endliche Gruppen I. Springer-Verlag, Berlin/New York, 1967.
- [6] Lennox J.C. and Stonehewer S.E., Subnormal subgroups of groups. Clarendon Press, Oxford, 1987.
- [7] Su X., Semi-normal subgroups of a finite group. Math. Mag. 8 (1988), 7–9.

ۇ.

-2

[8] Wang P., Some sufficient conditions of a nilpotent group. J. Algebra 148 (1992), 289–295.

Angel Carocca Facultad de Matemáticas Pontificia Universidad Católica de Chile Casilla 306, Santiago 22 CHILE E-mail: ACAROCCA@MAT.PUC.CL

Helder Matos Departamento de Matemática Universidade de Brasília 70.910 Brasília - D.F. BRAZIL E-mail: HELDER@MAT.UNB.BR