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Blowup of solutions of dissipative
nonlinear wave equations
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Abstract. We consider the blowup problem for some dissipative nonlinear wave equa-
tions. Under appropriate conditions, it is shown that if the initial data belongs to the
so called unstable set, then the solution blows up in a finite time as well as the non-
dissipative case. In the proof, we propose a new method instead of the usual concavity
method. In particular, we use a blowup result for some ordinary differential inequalities
of the second order and the monotonicity of some Rayleigh type quotients.
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1. Introduction and Main Results

In this paper, we consider the blowup problem for nonlinear evolution
equations of the form:

u’(t)+\delta u’(t)+\partial\varphi(u(t))-\partial\psi(u(t))=0 , t\geq 0 , (1.1)

u(0)=u_{0} , u’(0)=u_{1} (1.2)

in a real Hilbert space H . Here, \partial\varphi and \partial\psi are single valued subdifferentials
of lower semicontinuous convex functions \varphi and \psi from H to (-\infty, +\infty] with
\varphi , \psi\not\equiv+\infty , u’(t) and u’(t) stand for d^{2}u(t)/dt^{2} and du(t)/dt, respectively,
and \delta is a positive constant.

Equation (1.1) includes as special cases dissipative nonlinear wave
equations:

u_{tt}+\delta u_{t}-(\alpha+\beta||\nabla u||_{L^{2}(\Omega)}^{2})\triangle u-\mu|u|^{q-2}u=0 ,
t\geq 0 , x\in\Omega , (1.3)

u(t, x)=0 , t\geq 0 , x\in\partial\Omega , (1.1)
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where \alpha\geq 0 , \beta\geq 0 , \alpha^{2}+\beta^{2}>0 , \mu>0 , q>2 and \Omega is a domain in R^{n} .

In the case of \delta=0 , the blowup problem for (1.1) has been studied
by many authors (see, e.g. , [16], [5], [11], [14], [1], [9], [2] and [7]). In
particular, under appropriate conditions on \varphi and \psi , it is shown that if the
initial data (u_{0}, u_{1}) belongs to the so called unstable set V defined by (1.8)
below, then the solution of (1.1)-(1.2) with \delta=0 blows up in a finite time
(see, e.g., [14] and [9], [2] and [7]). However, when \delta>0 , there are not so
many works dealing with the blowup problem for (1.1). Recently, Ikehata
[6] and Ikehata and Suzuki [8] studied the blowup problem for (1.3)-(1.4),
and under certain conditions on \alpha , \beta and q they showed that if \delta>0 is
small and the initial data belongs to some subset V_{\delta} of the unstable set V ,
then the solution blows up in a finite time. Here, we note that V_{\delta} is not
equal to V if \delta>0 .

Our main purpose in this paper is to remove the above technical restric-
tions on \delta and initial data imposed in [6] and [8]. That is, under appropriate
conditions on \varphi and \psi , for any \delta>0 , we shall show that if the initial data
(u_{0}, u_{1}) belongs to the unstable set V , then the solution of (1.1)-(1.2) blows
up in a finite time as well as the case of \delta=0 . Here, we note that this
problem is related to the instability of some stationary solutions of (1.1)
(see [14] and [2]).

To state our main result, we need to prepare some notations. We denote
by | |H and (\cdot, \cdot)_{H} the norm and the inner product of H , respectively.
Without loss of generality, we can assume that \varphi(0)=0 and \psi(0)=0 . For
the definition and basic properties of subdifferentials, see, e.g., Section 2 of
Ishii [9]. For u\in D(\partial\varphi)\cap D(\partial\psi) and v\in H , we put

J(u)=\varphi(u)-\psi(u) , (1.5)

K(u)=(u, \partial\varphi(u))_{H}-(u, \partial\psi(u))_{H} , (1.6)

E(u, v)=(1/2)|v|_{H}^{2}+J(u) , (1.7)

and we define the unstable set V as follows:

V=\{(u, v)\in[D(\partial\varphi)\cap D(\partial\psi)]\cross H;E(u, v)<d, K(u)<0\} , (1.8)

where

d= \inf\{J(u);u\in D(\partial\varphi)\cap D(\partial\psi), K(u)=0, u\neq 0\} . (1.9)
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In what follows, we assume that
(A1) there exists q>2 such that qJ(u)-K(u)\geq 0 for all u\in D(\partial\varphi)\cap

D(\partial\psi) .
We put Q(u)=qJ(u)-K(u) . From (1.9) and (A1), we have

d= \inf\{(1/q)Q(u);u\in D(\partial\varphi)\cap D(\partial\psi), K(u)=0, u\neq 0\}\geq 0 .
(1.10)

Furthermore, we also assume that the following (A2) holds.
(A2) d= \inf\{(1/q)Q(u);u\in D(\partial\varphi)\cap D(\partial\psi), K(u)\leq 0, u\neq 0\} .

Remark 1.1. When \varphi and \psi are homogeneous functions of degree p and
q>1 respectively, we have K(u)=p\varphi(u)-q\psi(u) and qJ(u)-K(u)=
(q-p)\varphi(u) . Thus, (A1) is satisfied if p\leq q , q>2 and \varphi(u)\geq 0 for u\in H .
In addition, if \varphi(u)>0 for u\neq 0 , then (A2) is satisfied (see Proof of
Theorem 1.2 in Section 2). We also note that d=0 if p=q .

Remark 1.2. By (A1), we have (1/q)K(u)\leq J(u)\leq E(u, v) , so in the case
when d=0, we have V=\{(u, v)\in[D(\partial\varphi)\cap D(\partial\psi)]\cross H;E(u, v)<0\} .

In this paper, we consider the following class of solutions of (1.1)-(1.2).

Definition A function u(t)\in C^{1}([0, T];H) is said to be a strong solution
of (1.1)-(1.2) in [0, T] if u’(t) , \partial\varphi(u(t)) , \partial\psi(u(t))\in L^{2}(0, T;H) , K(u(t))\in

C([0, T];R) , and u(t) satisfies (1.1)-(1.2).

Remark 1.3. When \varphi and \psi are homogeneous functions of degree p and
q>1 respectively, we have K(u)=p\varphi(u)-q\psi(u) . Thus, the continu-
ity of K(u(t)) follows from u(t)\in C^{1}([0, T];H) and \partial\varphi(u(t)) , \partial\psi(u(t))\in

L^{2}(0, T;H) .
In what follows, we assume that the problem (1.1)-(1.2) with (u_{0}, u_{1})\in

V has a strong solution in [0, T] for some T>0 . We now state our main
result in this paper.

Theorem 1.1 Let \delta>0 . Assume that (A1) and (A2) are satisfied. Then
any strong solution of (1.1)-(1.2) with (u_{0}, u_{1})\in V can not be continued to
[0, +\infty) as a strong solution of (1.1)-(1.2).

Combining Theorem 1.1 and Remark 1.1, we obtain the following result.

Theorem 1.2 Let \delta>0 and let \varphi and \psi be homogeneous functions of
degree p and q , respectively. Suppose that 1<p\leq q , q>2 , and \varphi(u)>0
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for u\in H\backslash \{0\} . Then any strong solution of (1.1)-(1.2) with (u_{0}, u_{1})\in V

can not be continued to [0, +\infty) as a strong solution of (1.1)-(1.2).

Most of the proofs for the case of \delta=0 are based on the so called
concavity method, which is useful for the case of \delta=0 (see, e.g., [11], [14]
and [9] ) . However, it seems that this method does not give sharp results
for the case of \delta>0 . So, in the proof of Theorem 1.1, we use a blowup
result for some ordinary differential inequalities of the second order by Li
and Zhou [12] and Souplet [15] (see Lemma 2.3 in Section 2), instead of
the concavity method. Moreover, the monotonicity of some Rayleigh type
quotients plays an important role in the proof of Theorem 1.1 (see Lemma
2.4 in Section 2). A similar technique was previously used by Fujii and the
author [4] for parabolic equations. Our method works for all \delta>0 and
(u_{0}, u_{1})\in V

The plan in this paper is as follows. In Section 2 we prove Theorems
1.1 and 1.2 together with several lemmas. In Section 3 we apply Theorems
1.1 and 1.2 to the blowup problem for dissipative nonlinear wave equations
(1.3)-(1.4).

2. Proof of Theorems

In this section, we give the proof of Theorems 1.1 and 1.2. First, we
prove Theorem 1.1. The proof of Theorem 1.1 consists of two steps. The
first step is to show the following lemma, which is almost the same as that
in [14], [9], [6] and [8]. Our new idea is introduced in the second step.

Lemma 2.1 Assume (A1) and (A2). Let u(t) be a strong solution of
(1.1)-(1.2) with (u_{0}, u_{1})\in V in [0, T] . If we put I(t)=(1/2)|u(t)|_{H}^{2}

and E(t)=E(u(t), u’(t)) , then we have I’(t)+\delta I’(t)\geq(1+q/2)|u’(t)|_{H}^{2}

+q(d-E(t)) for all t\in[0, T] .

To prove Lemma 2.1, we need one lemma, which is also used by many
authors.

Lemma 2.2 Assume (A1) and (A2). Let u(t) be a strong solution of
(1.1)-(1.2) with (u_{0}, u_{1})\in V in [0, T] . Then, E(u(t), u’(t))<d and
K(u(t))<0 for all t\in[0, T] .
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Proof. We put E(t)=E(u(t), u’(t)) . Multiplying (1.1) by u’(t) , we have

E’(t)=-\delta|u’(t)|_{H}^{2} (2.1)

for almost all t\in[0, T] . So, we have E(t)\leq E(0)<d for all t\in[0, T] . If
d=0, Lemma 2.2 follows from Remark 1.2. Thus, we assume that d>0 .
To conclude the proof, we have only to show that K(u(t))<0 holds for all
t\in[0, T] . Suppose that there exists t_{0}\in(0, T] such that K(u(t_{0}))=0 and
K(u(t))<0 for all t<t_{0} . Then, it follows from (A2) that Q(u(t))\geq qd for
all t<t_{0} . By the continuity of t\mapsto Q(u(t)) , Q(0)=0 (we always assume
that \varphi(0)=0 and \psi(0)=0) and d>0 , we have u(t_{0})\neq 0 . Therefore, from
(1.9), we have d\leq J(u(t_{0}))\leq E(t_{0})<d , which is a contradiction. Hence,
by the continuity of t – K(u(t)) , we have K(u(t))<0 for all t\in[0, T] .
This completes the proof. \square

Proof of Lemma 2.1 Multiplying (1.1) by u(t) , we have

(u(t), u’(t))_{H}+\delta(u(t), u’(t))_{H}+K(u(t))=0 . (2.2)

Using the identities:

I’(t)=(u(t), u’(t))_{H} , I’(t)=|u’(t)|_{H}^{2}+(u(t), u’(t))_{H} (2.3)

and

K(u)=qE(u, v)-(q/2)|v|_{H}^{2}-Q(u) , (2.4)

we have

I’(t)+\delta I’(t)=(1+q/2)|u’(t)|_{H}^{2}-qE(t)+Q(u(t)) , (2.5)

Lemma 2.1 follows from (2.5), (A2) and Lemma 2.2. \square

The rest of the proof of Theorem 1.1 seems new. The following two
lemmas play important roles in this part.

Lemma 2.3 (Li and Zhou [12] and Souplet [15]) Let \delta>0 . Suppose
that h(t) satisfies

h’(t)+\delta h’(t)\geq C_{0}h^{1+\alpha}(t) , t>0 , (2.6)

h(0)>0 , h’(0)>0 (2.7)

for some positive constants C_{0} and \alpha . Then, h(t) can not exist for all t>0 .
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Lemma 2.3 is a special case of Theorem 3.1 in Li and Zhou [12] and
Theorem 1.1 in Souplet [15] (see also Zhou [17] and Mizoguchi, Ninomiya
and Yanagida [13] ) . Our main task in this paper is to show the following
lemma.

Lemma 2.4 Assume (A1) and (A2). Suppose that a strong solution u(t)

of (1.1)-(1.2) with (u_{0}, u_{1})\in V exists globally in time. Then, lhere exists
t_{1}>0 such that I(t)>0 , I’(t)>0 and

\frac{d}{dt}\frac{E(u(t),u’(t))-d}{I^{\gamma}(t)}\leq 0 (2.8)

for almost all t\in[t_{1}, +\infty) , where \gamma=(q+2)/4 and I(t)=(1/2)|u(t)|_{H}^{2} .

Proof. We put

E(t)=E(u(t), u’(t)) , F(t)=\delta I’(t)+(1+q/2)(E(t)-d) . (2.9)

Then, from Lemma 2.1 and (2.1), we have

F’(t)=\delta I’(t)+(1+q/2)E’(t)\geq-\delta^{2}I’(t)+\delta q(d-E(t))

=-\delta F(t)+\delta(q/2-1) (d-E(t)) ,

from which it follows that

(e^{\delta t}F(t))’=e^{\delta t}(F’(t)+\delta F(t))\geq\delta(q/2-1)(d-E(t))e^{\delta t}

\geq\delta(q/2-1) (d-E(0))e^{\delta t} . (2.10)

Integrating (2.10) yields

F(t)\geq e^{-\delta t}\{F(O)-(q/2-1) (d-E(0))\}

+(q/2-1)(d-E(0)) . (2.11)

Since E(0)<d and q>2 , there exists t_{1}>0 such that

F(t)>0 , t\geq t_{1}/2 . (2.12)

In particular, from (2.12), we have

\delta I’(t)\geq(1+q/2)(d-E(t))

\geq(1+q/2)(d-E(0))>0 , t\geq t_{1}/2 , (2.13)

from which it follows that

I(t)>0 and I’(t)>0 , t\geq t_{1} . (2.14)
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For t\geq t_{1} , we have

\frac{d}{dt}\frac{E(t)-d}{I^{\gamma}(t)}=I^{-\gamma-1}(t)\{E’(t)I(t)-\gamma I’(t)(E(t)-d)\} , (2.12)

and from (2.1), (2.12) and (2.14), we have for \gamma=(q+2)/4

E’(t)I(t)-\gamma I’(t)(E(t)-d)

\leq-(\delta/2)|u(t)|_{H}^{2}|u’(t)|_{H}^{2}+(\delta/2)(I’(t))^{2}\leq 0 . (2.16)

Here, we have used the fact I’(t)=(u(t), u’(t))_{H} and the Cauchy-Schwarz
inequality. Lemma 2.4 follows from (2. 14)-(2. 16). \square

We are now in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1 Suppose that a strong solution u(t) of (1.1)-(1.2)
with (u_{0}, u_{1})\in V exists globally in time. Then, from Lemma 2.4, there
exists t_{1}>0 such that

I(t)>0 , I’(t)>0 , d-E(t)\geq C_{1}I^{\gamma}(t) , t\geq t_{1} , (2.17)

where we put C_{1}=(d-E(t_{1}))/I^{\gamma}(t_{1}) . Here, from Lemma 2.1, we have

I’(t)+\delta I’(t)\geq q(d-E(t))\geq qC_{1}I^{\gamma}(t) , t\geq t_{1} . (2.18)

Since \gamma=(q+2)/4>1 , C_{1}>0 , I(t_{1})>0 and I’(t_{1})>0 , it follows from
Lemma 2.3 that I(t) can not exist for all t>0 . However, this contradicts
the assumption that the strong solution u(t) exists globally in time. Hence,
we obtain Theorem 1.1. \square

Finally, we prove Theorem 1.2.

Proof of Theorem 1.2 As stated in Remark 1.1, when \varphi and \psi are hom0-
geneous functions of degree p and q>1 respectively, we have K(u)=
p\varphi(u)-q\psi(u) and Q(u)=qJ(u)-K(u)=(q-p)\varphi(u) , so we have
only to check (A2). To do so, it suffices to show that K(u)<0 implies
qd\leq Q(u)=(q-p)\varphi(u) . If p=q, we have d=0, so (A2) holds. Thus, we
assume that p<q . Then, it follows from K(u)<0 that u\neq 0 , \varphi(u)>0

and \psi(u)>0 . Since K(\lambda u)=p\lambda^{p}\varphi(u)-q\lambda^{q}\psi(u) and K(u)<0 , there
exists \lambda_{1}\in(0,1) such that K(\lambda_{1}u)=0 , so it follows from (1.10) that
qd\leq Q(\lambda_{1}u)=(q-p)\varphi(\lambda_{1}u)=(q-p)\lambda_{1}^{p}\varphi(u)\leq(q-p)\varphi(u) . This com-
pletes the proof. \square
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3. Examples

In this section, we apply Theorems 1.1 and 1.2 to the blowup problem
for dissipative nonlinear wave equations (1.3)-(1.4).

Let \Omega be a bounded domain in R^{n} with smooth boundary \partial\Omega and let
H=L^{2}(\Omega) . For \alpha\geq 0 , \beta\geq 0 , \alpha^{2}+\beta^{2}>0 , \mu>0 and q>2 , we define
functions \varphi and \psi from H to (-\infty, +\infty] by

\varphi(u)=\{

(\alpha/2)||\nabla u||_{L^{2}(\Omega)}^{2}+(\beta/4)||\nabla u||_{L^{2}(\Omega)}^{4} , if u\in H_{0}^{1}(\Omega) ,
(3.3)

+\infty , otherwise,

and

\psi(u)=\{
(\mu/q)||u||_{L^{q}(\Omega)}^{q} , if u\in L^{q}(\Omega) ,
+\infty , otherwise,

(3.3)

respectively. It is easy to see that the functions \varphi and \psi are lower semicon-
tinuous convex and\not\equiv+\infty , and that \partial\varphi and \partial\psi are single valued and given
by

\partial\varphi(u)=-(\alpha+\beta||\nabla u||_{L^{2}(\Omega)}^{2})\triangle u and \partial\psi(u)=\mu|u|^{q-2}u . (3.3)

Then, (1.3)-(1.4) is reduced to (1.1). The local existence of strong solutions
for (1.3)-(1.4) is already established (see, e.g. , [3] and [7]). Let \alpha>0 ,
\beta\geq 0 , q>2 and q\leq 1+n/(n-2) if n\geq 3 . Then, for any (u_{0}, u_{1})\in

[H^{2}(\Omega)\cap H_{0}^{1}(\Omega)]\cross H_{0}^{1}(\Omega) , there exists a unique strong solution of (1.3)-
(1.4) and (1.2) in [0, T] for some T>0 . Applying Theorems 1.1 and 1.2
and using the notations (1.5)-(1.9), we have the following results.

Theorem 3.1 Let \delta>0 , \alpha>0 , \beta=0 and \mu>0 . Assume q>2 and
q\leq 1+n/(n-2) if n\geq 3 . If (u_{0}, u_{1})\in[H^{2}(\Omega)\cap H_{0}^{1}(\Omega)]\cross H_{0}^{1}(\Omega) satisfies
E(u_{0}, u_{1})<d and K(u_{0})<0 , then the strong solution of (1.3)-(1.4) and
(1.2) can not be continued to [0, +\infty) as a strong solution of (1.3)-(1.4) and
(1.2).

Theorem 3.2 Let \delta>0 , \alpha>0 and \beta>0 . Assume n=3, q=4 and
\mu>\beta C(\Omega)^{-1} , there C( \Omega)=\sup\{||u||_{L^{4}(\Omega)}^{4}/||\nabla u||_{L^{2}(\Omega)}^{4} ; u\in H_{0}^{1}(\Omega), u\neq 0\} .

If (u_{0}, u_{1})\in[H^{2}(\Omega)\cap H_{0}^{1}(\Omega)]\cross H_{0}^{1}(\Omega) satisfies E(u_{0}, u_{1})<d and K(u_{0})<

0 , then the strong solution of (1.3)-(1.4) and (1.2) can not be continued to
[0, +\infty) as a strong solution of (1.3)-(1.4) and (1.2).

Theorem 3.3 Let \delta>0_{f}\alpha=0 and \beta>0 . Assume n=3, q=4 and
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\mu>\beta C(\Omega)^{-1} . If (u_{0}, u_{1})\in[H^{2}(\Omega)\cap H_{0}^{1}(\Omega)]\cross H_{0}^{1}(\Omega) satisfies E(u_{0}, u_{1})<

0 , then the strong solution of (1.3)-(1.4) and (1.2) can not be continued to
[0, +\infty) as a strong solution of (1.3)-(1.4) and (1.2).

Theorems 3.1 and 3.3 follow immediately from Theorem 1.2 (see also
Remarks 1.1 and 1.2 for Theorem 3.3). Under the conditions in TheO-
rem 3.2, (A1) and (A2) are easily verified similarly to the proof of TheO-
rem 1.2, so Theorem 3.2 follows from Theorem 1.1. Theorems 3.1 and 3.2
improve Theorem 4.2 in Ikehata and Suzuki [8] and Theorem 3.2 in Ike-
hata [6], respectively. We also note that under the conditions in Theorem
3.3, for the strong solution u(t) of (1.3)-(1.4) and (1.2), it follows from
J(u(t))\leq E(u(t), u’(t))\leq E(u_{0}, u_{1}) that \beta||\nabla u(t)||_{L^{2}(\Omega)}^{4}\leq\mu||u(t)||_{L^{4}(\Omega)}^{4}+

4E(u_{0}, u_{1})\leq C(\Omega)\mu||\nabla u(t)||_{L^{2}(\Omega)}^{4}+4E(u_{0}, u_{1}) , so 0<-4E(u_{0}, u_{1})(C(\Omega)\mu-

\beta)^{-1}\leq||\nabla u(t)||_{L^{2}(\Omega)}^{4} holds as long as the strong solution u(t) exists. More-
over, if v\in H^{2}(\Omega)\cap H_{0}^{1}(\Omega) satisfies J(v)=(\beta/4)||\nabla v||_{L^{2}(\Omega)}^{4}-(\mu/4)||v||_{L^{4}(\Omega)}^{4}<

0 , then for any\in>0 we have E(\epsilon v, O)=J(\in v)=\epsilon^{4}J(v)<0 , so the strong
solution of (1.3)-(1.4) and (1.2) with (u_{0}, u_{1})=(\in v, 0) blows up in a finite
time by Theorem 3.3.

Finally, we note that our abstract result is also applicable to the problem
for \Omega=R^{n} :

u_{tt}+\delta u_{t}-\triangle u+mu-|u|^{q-2}u=0 , t\geq 0 , x\in R^{n} , (3.4)

where m>0 and q>2 . From Theorem 1.2, we have the following result.

Theorem 3.4 Let \delta>0 , m>0 , q>2 and q<2n/(n-2) if n\geq 3 .

If (u_{0}, u_{1})\in H^{2}(R^{n})\cross H^{1}(R^{n}) satisfies E(u_{0}, u_{1})<d and K(u_{0})<0 ,
then the strong solution of (3.4)-(1.2) can not be continued to [0, +\infty) as a

strong solution of (3.4)-(1.2).

Theorem 3.4 gives the instability of ground states (least energy sta-
tionary solutions) of (3.4) as well as the case of \delta=0 by Berestycki and
Cazenave [2] (see also Keller [10] for a related result).
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