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Geodesic and metric completeness in infinite dimensions

Christopher J. ATKIN
(Received May 30, 1995)

Abstract. Some infinite-dimensional Riemannian manifolds are constructed in which
the induced metric is incomplete, but all geodesies may be indefinitely extended in both
directions and any two points may be joined by a minimizing geodesic. The construction
relies on some estimates for truncated Hilbert transforms.
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1. Introduction

Let M be a connected C^{\infty} Riemannian manifold without boundary,
modelled on a Hilbert space H ; the Riemannian structure g on M prescribes
on each tangent space to M an inner product which defines the original
topology on the tangent space. A metric d on M is determined by g , via
path-lengths, in the usual way, and induces the original topology on M. M
is described as “complete”, or “metrically complete”, if (M, d) is a complete
metric space.

A “geodesic” in M is a solution of the geodesic equation, defined on an
open interval in \mathbb{R}.\prime pA geodesic is right-complete if its domain is unbounded
on the right; a complete geodesic has domain (-\infty, +\infty) , so that it is either
constant or of infinite length in both directions. If every maximal geodesic
through the point x\in M is right-complete, say that M is “geodesically
complete at x” ; it is “geodesically complete” if every maximal geodesic is
complete. M is geodesically complete if it is metrically complete (a disguised
version of this easy fact is Lemma 2.6 below).

The standard proof (de Rham [17]; see [14], pp. 172-176, or [12], pp. 56-
58, or [13], pp. 126-127, etc.) of the Hopf-Rinow theorem shows also that,
if M is finite-dimensional and geodesically complete at x for some x\in M ,
then it is metrically complete. The proof evidently uses local compactness,
and the result is indeed false in infinite dimensions. If M is complete but
infinite-dimensional, there may be a pair of points a , b\in M which cannot
be joined by a geodesic (see [2]); then M_{1}=M\backslash \{b\} is geodesically complete
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at a , but its metric completion has an ideal point “b” The missing point
is, however, clearly the limit of many incomplete geodesies in M_{1} , obtained
from geodesies through b in M. (Similarly, a proper open submanifold of
any connected Riemannian manifold must be geodesically incomplete). In
fact, Ekeland has proved [10], by a method of great ingenuity, that the set of
points of a complete connected Riemannian manifold that cannot be joined
to a given point p by a unique minimizing geodesic is of first category.
One deduces, taking p=b, that the points at which the manifold M_{1} is

geodesically complete are rare.
It is natural to enquire whether geodesic completeness (at all points)

always implies metric completeness. As a conjecture, this has never to
my knowledge been publicly proposed or disproved; there are, for instance,

a striking silence on p. 126 of [13], and an oddly ambiguous statement
in the introduction of [8]. But there may be reasons for this omission.
In the first place, the question probably has no interesting consequences,
for it is difficult to envisage how a geodesically complete manifold might
arise naturally without being more obviously metrically complete anyway.
Secondly, the conjecture, although it does hold under certain strong but
reasonable additional conditions, perhaps does not seem on reflection at

all likely in full generality. My principal purpose here is to give a class of
explicit counterexamples.

Theorem A There is a Riemannian manifold M such that
(i) M is modelled on separable infifinite-dimensional Hilbert space H;

(ii) M is of differentiability class C^{\omega} ;
(iii) M is C^{v} -conformally equivalent to the Hilbert space H ;

(iv) M is geodesically complete;
(v) M is metrically incomplete;
(vi) The metric completion of M has exactly one ideal point;
(vii) M is geodesically convex (that is, any two points of M may be

joined by a minimizing geodesic).

Although the essential idea of the examples, namely to utilize a suitable
set of operators, will be obvious to any reader of [2], its realization has not

been trivial, and I expect that more natural examples, at least of properties
(iv) and (v), may be found in due course. However, the properties (ii),

(iii), (vi), and (vii) dispose of a number of further conjectures, of which
the most interesting are motivated in \S 2 (see Remarks 2.11). They are
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clearly, though distantly, related to the old problem of “prolongation”. that
is, of embedding an incomplete Riemannian manifold as an open subset of
a complete one; but the connection will not be discussed here. See [1], [4],
[9], [15], [18] for various aspects of this problem in finite dimensions.

The gist of the example is presented at Proposition 4.4-Theorem 4.10;
the proof of geodesic convexity, which depends on a specialized adaptation
to the weak topology of an argument of Hilbert (cf. [3], pp. 70-72, and
Theorem 1, p. 150, of [16] ) , is in \S 7 and \S 8. Various tedious but intuitively
plausible preliminaries to these arguments occupy \S 3, \S 5, and \S 6. Finally,
\S 9 contains the proof of Theorem A and some concluding remarks. Some
other addenda will be presented elsewhere.

The arguments and constructions were developed over a long period,
and I am particularly grateful for the hospitality and assistance I received
at Indiana University, Bloomington, in 1988, and at DPMMS, Cambridge,
in 1993.

2. Completions

(2.1) Let p : [\beta_{0}, \beta) – M be continuous, where -\infty<\beta_{0}<\beta\leq

\infty . In this case, where the domain is open on the right, p is described
as piecewise C^{q} (here 1 \leq q\leq\infty ) if there is a sequence of parameter
values \beta_{0}=t_{0}<t_{1}< \cdot . <t_{n}\uparrow\beta such that, for each n\geq 0 , p is C^{q} on
[t_{n}, t_{n+1}] . Then p certainly has a length \ell(p)=\lim_{\alpha\uparrow\beta}\int_{\beta_{0}}^{\alpha}||\dot{p}(t)||dt , possibly
with the symbolic value \infty . (Here |||| denotes the norm in T_{p(t)}M induced
by the Riemannian inner product). When p is of finite length, (p(t))_{t\uparrow\beta} is
a Cauchy net in (M, d) , defining a point p(\beta-) of the completion (\overline{M}, d) .
(This is certainly the case if p is the restriction to [\beta_{0}, \beta ) of a geodesic, and
\beta<\infty) . Two such paths, both of finite length, p_{i} : [0, \beta_{i}) – M for i=1,2 ,
will have the same limits p_{i}(\beta_{i}-) if and only if there are sequences u_{n}^{(i)}\uparrow\beta_{i}

such that d(p_{1}\underline{(u^{(1)}}_{n}) , p_{2}(u_{n}^{(2)})) –0.
Given a\in M , b\in M , and \epsilon>0 , there is a piecewise C^{q} path p:[0, \beta)arrow

M such that p(0)=b, p(\beta-)=a , and \ell(p)<d(a, b)+\epsilon . (Since d(p(t), b)\leq
\ell(p|[0, t]) for each t\in[0, \beta) , it follows in the limit that d(a, b)\leq\ell(p) too). To
see this, take a sequence (x_{n}) in M with d(a, x_{n})<2^{-n-2}\epsilon for n\geq 1 ; then
d(x_{n}, x_{n+1})<3.2^{-n-3}\epsilon , and join x_{n} , x_{n+1} by a C^{q} path p_{n} : [n, n+1]arrow M
of length less than 3.2^{-n-3}\epsilon . Finally let p_{0} : [0, 1]arrow M be a C^{q} path with
p0(1)=x_{1} and p0(0)=b, of length less than d(x_{1}, b)+ \frac{1}{4}\epsilon . Concatenate
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these paths to obtain p, of length less than d(x_{1}, b)+ \frac{1}{4}\epsilon+\sum_{n=1}^{\infty}3.2^{-n-3}\epsilon=

d(b, x_{1})+ \frac{5}{8}\epsilon<d(b, a)+\epsilon , since d(b, x_{1})<d(a, b)+ \frac{1}{8}\epsilon . The limit of p is

clearly a .
It follows that \overline{M} may be constructed as a space of equivalence classes

of piecewise C^{q} paths, rather than of sequences. From now on, all paths are
assumed piecewise C^{1} in the sense appropriate to their domain. (It would
indeed be possible to use rectifiable paths instead). A path p : J – M ,

where J is any interval in \mathbb{R} , is described as “minimizing” if, whenever
\beta_{0} , \beta\in J and \beta_{0}<\beta , \ell(p|[\beta_{0}, \beta])=d(p(\beta_{0}),p(\beta)) .

Lemma 2.2 For each x\in M t/iere is a closed neighbourhood C of x in M
such that (C, d) is complete. (In other words, (M, d) is “locally complete ”).

Proof. For sufficiently small \delta>0 , the exponential map \exp_{x} at x maps

the closed ball Q(\delta) of radius \delta about the origin in T_{x}M diffeomorphically
on to a closed neighbourhood C(\delta) of x in M in which any two points may

be joined by a minimizing geodesic. (This is the convex neighbourhood
theorem, which is still valid in infinite dimensions; see [13], pp. 83-85; and

such a neighbourhood C(\delta) is a “convex normal neighbourhood” of x). Thus

distances between points of C(\delta) may be computed from paths in C(\delta) alone.

But the derivative of \exp_{x} at 0 is the identity; hence, if \delta is small enough,

\exp_{x} will neither increase nor decrease the lengths of paths in Q(\delta) by a
factor greater than 2. For such \delta , a Cauchy sequence (y_{n}) in C(\delta) will

determine a Cauchy sequence (\exp_{x}^{-1}y_{n}) in Q(\delta) , which will converge to

some point z\in Q(\delta) (as H is complete). Then y_{n}arrow\exp_{x}z in C(\delta) . \square

(A proof is also given by Ekeland [10], but the result was known before;

a longer but more elementary argument establishes it for Finsler manifolds
modelled on Banach spaces. The model must be complete).

Remark 2.3 A metric space (X, d) is locally complete if and only if it is

open in its completion \hat{X} . If X is open in \hat{X} and x\in X , take a closed ball

about x in \hat{X} which lies within X . This is a complete neighbourhood of x in

X On the other hand, if x\in X and V is an open neighbourhood of x in X
whose closure \overline{V} in X is complete, then the closure \hat{V} of V in \hat{X} consists of

the equivalence classes of Cauchy sequences in V. and so is identified with
\overline{V} However, V\wedge is a neighbourhood of x in \hat{X} . So it is a neighbourhood of
x in \hat{X} which is included in X .
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Corollary 2.4 M is open in \overline{M}t

(2.5) It is natural in the present context to write \partial M:=\overline{M}\underline{\backslash }M . and
to call it the “ideal bound\underline{ar}y

” of M . As M is dense and open in M , \partial M is
its topological frontier in M , and is closed and nowhere dense.

Lemma 2.6 Let p : (\gamma, \beta) – M be a maximal geodesic which is right-
incomplete, so that \beta<\infty . Then p(\beta-)\in\partial M .

Proof. Certainly p is non-constant, so may be reparametrized by arc-
length if necessary. Suppose x=p(\beta-) \in M . Take a convex normal
neighbourhood C(\delta) of x , as in Lemma 2.2. The geodesic through p( \beta-\frac{1}{4}\delta)

in the direction \dot{p}(\beta-\frac{1}{4}\delta) may be extended as long as it remains in C(\delta) , and
so for a distance at least \frac{1}{2}\delta . After translation of parameter, this geodesic
will extend p to ( \gamma, \beta+\frac{1}{4}\delta) at least, which contradicts maximality of p .

\square

(2.7) If x\in M and a\in\partial M . say that a is optimally accessible [or
accessible] from x if there is a minimizing geodesic [or just a geodesic] p :
[0, \beta)arrow M for which p(0)=x and p(\beta-)=a . If a is [optimally] accessible
from some point x\in M , say that a is [optimally] accessible. Let \partial_{0}M denote
the set of accessible points of \partial M . and \partial_{1}M the set of optimally accessible
points. The equivalence of metric and geodesic completeness can then be
formulated as \partial M=\emptyset\Leftrightarrow\partial_{0}M=\emptyset .

Let me call a “unit geodesic” one parametrized by arc-length. Suppose
that M is finite-dimensional and x\in M. and that any unit geodesic p
with p(0)=x may be defined at least on [0, k] , for some k\geq 0 . Then
the argument of de Rham that I referred to in \S 1 proves incidentally that
C(x;k):=\{y\in M : d(x, y)\leq k\} is compact, and that any point of C(x;k)
may be joined to x by a minimizing geodesic.

Proposition 2.8 Let M be fifinite-dimensional, and \partial M\neq\emptyset . Suppose
x\in M .

(a) Let A be a closed subset of \partial M such that d(x, A)=d(x, \partial M) .
There is at least one point a\in A such that d(x, a)=d(x, \partial M) .

(b) If a\in\partial M and d(x, \partial M)=d(x, a) , then a is optimally accessible
from x .

Proof. Take a sequence (a_{n}) in A such that d(x, a_{n})<d(x, \partial M)+1/n .
By (2.1), there is a piecewise C^{1} path p_{n} : [0, \beta_{n}) – M such that p_{n}(0)=x ,
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p_{n}(\beta_{n}-)=a_{n} , and \ell(p_{n})<d(x, \partial M)+1/n . Let b_{n} be the last value of p_{n} in
C(x;d(x, \partial M)-1/n) . Then d(x, b_{n})=d(x, \partial M)-1/n , and the lengh of the
rest of p_{n} (after the value b_{n} ) must be less than 2/n , so that d(a_{n}, b_{n})<2/n .

(.1)
If 0<k<d(x, \partial M) , any unit geodesic starting at x can certainly

be defined for a distance k . Set k_{n}=d(x, \partial M)-1/n . Then there is by
(2.7) a unit vector \xi_{n}\in T_{x}M such that \exp_{x}(k_{n}\xi_{n})=b_{n} . Again using
finite-dimensionality, extract a subsequence (\xi_{n(i)}) for which n(i) increases
strictly with i and \xi_{n(i)}

– \xi as i – \infty . Now q(t)=\exp_{x}(t\xi) is a unit
geodesic defined for 0\leq t<d(x, \partial M) at least; set a_{0}=q(d(x, \partial M) -).

Thus d(q(t), a_{0})\leq d(x, \partial M)-t , for 0\leq t<d(x, \partial M) . (2)
Given \epsilon>0 , choose i such that \frac{1}{2}\epsilon>3/n(i) . As \eta\mapsto\exp_{x}(k_{n(i)}\eta) is

continuous on the unit sphere in T_{x}M , and \xi_{n(j)} – \xi therein as j – \infty , there
exists J\geq i such that, whenever j\geq J , d(\exp_{x}(k_{n(i)}\xi), \exp_{x}(k_{n(i)}\xi_{n(j)}))<

\frac{1}{2}\epsilon . Hence, if j\geq J ,

d(a_{0}, a_{n(j)})\leq d(a_{0}, \exp_{x}(k_{n(i)}\xi))+d(\exp_{x}(k_{n(i)}\xi), \exp_{x}(k_{n(i)}\xi_{n(j)}))

+d(\exp_{x}(k_{n(i)}\xi_{n(j)}), \exp_{x}(k_{n(j)}\xi_{n(j)}))

+d(\exp_{x}(k_{n(j)}\xi_{n(j)}), a_{n(j)})

\leq\frac{1}{n(i)}+\frac{1}{2}\epsilon+|k_{n(i)}-k_{n(j)}|+d(b_{n(j)}, a_{n(j)}) , by (2),

\leq\frac{1}{n(i)}+\frac{1}{2}\epsilon+\frac{1}{n(i)}-\frac{1}{n(j)}+\frac{2}{n(j)} , by (1),

\leq\frac{3}{n(i)}+\frac{1}{2}\epsilon<\epsilon , since n(j)\geq n(J)\geq n(i) . (3)

It follows that a_{n(j)}arrow a_{0} as j – \infty . By (2.5), \partial M , and consequently A,

are closed in \overline{M} , so this shows that a_{0}\in A ; as d(x, a_{n}) – d(x, \partial M) by
construction, it also follows that d(x, a_{0})= \lim d(x, a_{n(j)})=d(x, \partial M) . This
proves (a), if one takes a=a_{0} .

By the construction, a_{0} is optimally accessible from x by the path q .
Repeat the argument with A=\{a\} to establish (b). \square

Corollary 2.9 If M is fifinite-dimensional, \partial_{1}M is dense in \partial M . In par-
ticular, if y is an isolated point of \partial M , there is a neighbourhood U of y in
\overline{M} such that a is optimally accessible from every point of U\cap M .

Proof. Given y\in\partial M and \epsilon>0 , take x\in M such that d(x, y)< \frac{1}{2}\epsilon .
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By Proposition 2.8, there is a point a\in\partial M , optimally accessible from x ,
such that d(x, a)=d(x, \partial M)<\frac{1}{2}\underline{\epsilon.} Thus a\in\partial_{1}M and d(a, y)<\epsilon . If y

is the only point of \partial M in \{z\in M : d(z, y)<\epsilon\} , take U:=\{z\in\overline{M} :
d(z, y)< \frac{1}{2}\epsilon\} , and the argument then shows (since y=a necessarily) that
y is optimally accessible from any point of U\cap M . \square

Corollary 2.10 If M is fifinite-dimensional and \partial M=\{a\} , then a is op-
timally accessible from every point of M. (From Proposition 2.8(b)).

Remarks 2.11 It is not always true, even in finite dimensions, that \partial_{1}M=

\partial M or \partial_{0}M=\partial M . Let the region M in \mathbb{R}^{2} be defined in polar coordinates
by \{(r, \theta) : e^{\alpha\theta}<r<ke^{\alpha\theta}\} , where k , \alpha>0 , and e^{2\pi\alpha}>k to prevent over-
laps. Then \partial M is identified with the union of the bounding spirals r=e^{\alpha\theta}

and r=ke^{\alpha\theta} and the origin; but the origin is not in \partial_{0}M . More complicated
examples of the same type, in which the sets of inaccessible points of the
boundary may be dense, are furnished by “Euclidean pseud0-regions with
fractal boundary” (see [7] for more details). Such manifolds also show that
the completion of a metrically bounded finite-dimensional Riemannian man-
ifold need not be compact. As for Corollary 2.10, the result may fail if the
boundary has as few as two points (consider \mathbb{R}^{2}\backslash \{ (0, -1), (0, 1)}).

The significance here of the facts Proposition 2.8-Corollary 2.10 is that
they suggest more persuasive versions of the main conjecture. Maybe a
Riemannian manifold M which is geodesically complete but metrically in-
complete cannot have a “small” ideal boundary (finite or a singleton), or
cannot be geodesically convex. One might even conjecture from Ekeland’s
theorem [10] and from Corollary 2.10 that, if \partial M=\{a\} and M is infinite-
dimensional, the points of M from which a is not accessible should still form
a set of first category. My example disproves all these conjectures too.

3. The example: metric structure

(3.1) Henceforth, “operator” denotes a bounded linear operator in the
real Hilbert space H, and [I is occasionally used to denote the operator-
norm. An operator A is “non-negative”, A\geq 0 , if it is self-adjoint and

(\forall x\in H) \langle Ax, x\rangle\geq 0 ; (4)

one writes A\geq 0 . There is a corresponding partial order on the set of
self-adjoint operators. Let A , C , and Z be non-zero non-negative operators
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in H , and let \alpha:=\sqrt{[AI} , \gamma:=\sqrt{[CI} , \zeta:=\sqrt{[ZI} . Suppose further that
there is a scalar c_{0}>0 such that c_{0}Z\geq C . (These operators will be further
restricted later). Define

f(x):= \frac{\langle Ax,x\rangle+\exp(-\langle Cx,x\rangle)}{\Phi(\langle Zx,x\rangle)} ,

\Phi(t) :=(e^{e}+t)(\log(e^{e}+t))^{2} for any
wthere\geq 0

.
\} (5)

So f is C^{\omega} on H. and strictly positive because of the exponential term. If
\xi , \eta\in T_{x}H , treat them as vectors in H and set

g(x) (\xi, \eta):=f(x)\langle\xi, \eta\rangle . (6)

It will be convenient below to have the additional notations

f_{1}(x):= \frac{\langle Ax,x\rangle+\exp(-\langle Cx,x\rangle)}{e^{e}+\langle Zx,x\rangle} ,

f_{0}(x):= \frac{\langle Ax,x\rangle+\exp(-\langle Cx,x\rangle)}{(e^{e}+\langle Zx,x\rangle)^{1/2}1og(e^{e}+\langle Zx,x\rangle)} . (7)

Clearly f(x)\leq e^{-2}f_{1}(x)\leq 2e^{-3}f_{0}(x) . (6)

The Riemannian manifold M is to be H , with its natural C^{\omega} structure
and the Riemannian structure g . (Subsequently M_{1} will be similarly de-
fined from H_{1} , A_{1} , C_{1} , Z_{1} ). Except in \S 5, I shall write |\xi| for the norm of
\xi as an element of H ; when \xi\in T_{x}M . ||\xi|| denotes its Riemannian norm,
\sqrt{g(x)(\xi,\xi)} . I shall sometimes need to distinguish the Riemannian length
\ell(p) of a path p from its “norm-lengh” with respect to the norm in H .

The triangle inequalities for \sqrt{\langle Ax,x\rangle} , \sqrt{\langle Cx,x\rangle} , and \sqrt{\langle Zx,x\rangle} give for
x , y\in H

|\sqrt{\langle Ax,x\rangle}-\sqrt{\langle Ay,y\rangle}|\leq\sqrt{\langle A(x-y,x-y)\rangle}\leq\alpha|x-y||\sqrt{\langle Cx,x\rangle}-\sqrt{\langle Cy,y\rangle}|\leq\sqrt{\langle C(x-y,x-y)\rangle}\leq\gamma|x-y||\sqrt{\langle Zx,x\rangle}-\sqrt{\langle Zy,y\rangle}|\leq\sqrt{\langle Z(x-y,x-y)\rangle}\leq\zeta|x-y|.’, \} (9)

Lemma 3.2 Suppose that \partial M\neq\emptyset . Given \epsilon>0 , there exists \delta>0 such
that f_{0}(x)<\epsilon whenever x\in M and d(x, \partial M)<\delta .



Geodesic and metnc completeness in infifinite dimensions 9

Proof. Take \lambda := \min(\zeta^{-1}e, \gamma^{-1}\alpha) . Then, if |x-y|<\lambda ,

(e^{e}+\langle Zy, y\rangle)^{1/2}<(e^{e}+\langle Zx, x\rangle)^{1/2}+\zeta\lambda

log (e^{e}+\langle Zy, y\rangle)<\log 4+\log(e^{e}+\langle Zx, x\rangle)

\langle Cy, y\rangle\leq 2(e^{e}+\langle Zx,x\rangle)^{1/2},by(9),and<\langle Cx,x\rangle+\gamma^{2}\lambda^{2}+2\gamma\lambda\sqrt{\langle Cx,x\rangle}<21og(e^{e}+\langle Zx,x\rangle),anda1so\leq 2(\alpha^{2}+\langle Cx,x\rangle)(forinstance)

.

\} (10)

Putting these facts (and \Phi ( \langle Zx , x\rangle)\geq 4e^{e}>16 ) together,

f(y) \geq\frac{\exp(-\langle Cy,y\rangle)}{\Phi(\langle Zy,y\rangle)}>K_{x}:=\exp(-2\alpha^{2})(\frac{\exp(-\langle Cx,x\rangle)}{\Phi(\langle Zx,x\rangle)})^{2} (11)

If \triangle_{1}:=\{y\in H : |x-y|<\lambda\} , and if the path of finite length
p : [0, \beta) – M joins x to a point of \partial M , there are two possibilities. The
whole path may lie in \triangle_{1} ; then, by (11), |p(s)-p(t)|\leq K_{x}^{-1/2}\ell(p|[s, t]) for
s\leq t in [0, \beta) , so that p(s) must converge in H as t\uparrow\beta . This contradicts
p(\beta-)\not\in M . Hence there is in fact a first parameter value t_{0} for which
p(t_{0})\not\in\triangle_{1} , and then (11) implies that \ell(p)>\ell(p|[0, t_{0}])>\lambda K_{x}^{1/2}

Since the path p was, however, arbitrary, it follows that d(x, \partial M)\geq

\lambda K_{x}^{1/2} . or

\frac{\exp(-\langle Cx,x\rangle)}{\Phi(\langle Zx,x\rangle)}\leq\lambda^{-1} (exp \alpha^{2} ) d(x, \partial M) . (12)

However, since c_{0}Z\geq C by (3. 1),

\frac{\exp(-\langle Cx,x\rangle)}{\Phi(\langle Zx,x\rangle)}\geq\frac{\exp(-c_{0}\langle Zx,x\rangle)}{e^{e}(1+e^{-e}\langle Zx,x\rangle)(e+1og(1+e^{-e}\langle Zx,x\rangle))^{2}}

\geq\frac{\exp(-e-(c_{0}+e^{-e})\langle Zx,x\rangle)}{(e+e^{-e}\langle Zx,x\rangle)^{2}}

\geq\exp(-e-2-(c_{0}+e^{-e}+2e^{-e-1})\langle Zx, x\rangle) . (13)

So, by (12),

-(c_{0}+e^{-e}+2e^{-e-1})\langle Zx, x\rangle\leq e+2+\log ( \lambda^{-1} (exp \alpha^{2} ) d(x, \partial M) )

and \langle Zx, x\rangle\geq-m-n log d(x, \partial M) , (14)

where n>0 and m are constants depending on \alpha , \gamma , \zeta , and c_{0} . If
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d(x, \partial M)<e^{-m/n} ,

\frac{\exp(-\langle Cx,x\rangle)}{(e^{e}+\langle Zx,x\rangle)^{1/2}}\leq\frac{l}{(e^{e}-m-n1ogd(x,\partial M))^{1/2}} . (15)

Suppose, if it is possible, that, for given \tau\in(0,1) ,

\langle Ax, x\rangle\geq\tau^{2}(e^{e}+\langle Zx, x\rangle)^{1/2}\log(e^{e}+\langle Zx, x\rangle) . (16)

If also |x-y|\leq L := \tau\frac{(e^{e}+\langle Zx,x\rangle)^{1/4}1og^{1/2}(e^{e}+\langle Zx,x\rangle)}{3(\alpha+\zeta)} , then, by

(16),

\langle Ay, y\rangle\geq\frac{4}{9}\tau^{2}(e^{e}+\langle Zx, x\rangle)^{1/2}\log(e^{e}+\langle Zx, x\rangle) ,

whilst, similarly,

e^{e}+\langle Zy, y\rangle\leq 2(e^{e}+\langle Zx, x\rangle) ,

\log(e^{e}+\langle Zy, y\rangle)<2\log(e^{e}+\langle Zx, x\rangle) .

Hence

\frac{\langle Ay,y\rangle}{\Phi(\langle Zy,y\rangle)}\geq\frac{\tau^{2}}{18(e^{e}+\langle Zx,x\rangle)^{1/2}\log(e^{e}+\langle Zx,x\rangle)} . (17)

Next, suppose that p : [0, \beta) – M is a path of finite length joining
p(0)=x to the point p(\beta-) of \partial M . It follows from (14) that |p(t)|\geq

\zeta^{-1}\sqrt{\langle Zp(t),p(t)\rangle} – \infty as t\uparrow\beta , since d(p(t), \partial M)arrow 0 , so that there is a
first parameter value t_{1} for which |p(t_{1})-p(0)|=L . Then, by (17),

\ell(p|[0, t_{1}])\geq k(\tau):=\frac{\tau^{2}}{3(\alpha+()\sqrt{18}} . (18)

Since p was any path from x to \partial M , it follows that d(x, \partial M)\geq k(\tau) . Con-
sequently, if d(x, \partial M)<k(\tau) , necessarily (16) must be false, and therefore

\frac{\langle Ax,x\rangle}{(e^{e}+\langle Zx,x\rangle)^{1/2}1og(e^{e}+\langle Zx,x\rangle)}<\tau^{2} . (19)

Given 0<\epsilon<2 , take \tau:=\sqrt{\frac{1}{2}\epsilon} . By (15), there exists \delta_{0}>0 such that

d(x, \partial M)<\delta_{0}\Rightarrow(e^{e}+\langle Zx, x\rangle)^{-1/2} exp (- \langle Cx, x\rangle)<\frac{1}{2}\epsilon . (20)

Hence, if \delta:=\min(\delta_{0}, k(\tau)) and d(x, \partial M)<\delta , necessarily f_{0}(x)<\epsilon . \square
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Corollary 3.3 (i) If p:[0, \beta) – M and d(p(t), \partial M) –0 as t\uparrow\beta , then
\langle Zp(t),p(t)\rangle – \infty and |p(t)| – \infty as t\uparrow\beta . If p is of fifinite length, then
p(\beta-)\not\in M if and only if either \langle Zp(t),p(t)\rangle – \infty or |p(t)|arrow\infty as t\uparrow\beta .

(ii) Given R>0 , there exists \epsilon>0 such that |y|>R if d(y, \partial M)<.\epsilon .

Proof Both (ii) and the first two assertions of (i) follow from (14). For
the third, notice that, if |p(t)|arrow\infty , then p(t) cannot converge in M. \square

Lemma 3.4 0<f(x)\Phi’(\langle Zx, x\rangle)<3f_{1}(x) for all x\in H .

Proof By direct computation:

f(x)\Phi’(\langle Zx, x\rangle)=f(x)\{(\log(e^{e}+\langle Zx, x\rangle))^{2}+2\log(e^{e}+\langle Zx, x\rangle)\}

<3f_{1}(x) .

\square

(3.5) Let J be an interval in \mathbb{R} which is bounded below and closed on
the left, with lower end-point a . Let \phi : Jarrow IR be a continuous function
such that

d:= \sup\phi(J)\geq b:=\phi(a) (21)

(d may be \infty ). Let J_{1}:=[b, d] or J_{1}:=[b, d) according as d is an attained
supremum or not; that is, in either case J_{1}:=\phi(J)\cap[b, \infty) . Define

\psi : J_{1}arrow J : x\mapsto inf \phi^{-1}\{x\} . (22)

By the intermediate value theorem, \phi^{-1}\{x\}\neq\emptyset when b\leq x<d ; if
d\in J_{1} , \phi^{-1}\{d\}\neq\emptyset . Clearly \psi(b)=a . If c\in\phi^{-1}\{x\} , inf \phi^{-1}\{x\}=

\inf(\phi^{-1}\{x\}\cap[a, c]) ; since \phi^{-1}\{x\}\cap[a, c] is compact, the infimum is at-
tained, and \phi(\psi(x))=x . If b\leq x<y\in J_{1} but u=\psi(x)\geq\psi(y)=v ,
then \phi(v)=y>\phi(u)=x\geq\phi(a)=b , and, again by the intermediate
value theorem, there is a point w\in[a, v) such that \phi(w)=x , contradicting
(22). Thus \psi is strictly increasing, and consequently Borel-measurable. If
b\leq x_{n}\uparrow x\in J_{1} , then \psi(x_{n})\uparrow\tau\leq\psi(x) , and x= \lim\phi(\psi(x_{n}))=\phi(\tau) , so
that, by (22), \tau\geq\psi(x) . So \tau=\psi(x) . This shows that \psi is continuous on
the left. In particular, if d\in J_{1} , it is a point of continuity of \psi .

Being strictly increasing, \psi has only countably many points of discon-
tinuity, (c_{i})_{i=1}^{\infty} . Let \alpha_{i}:=\psi(c_{i}) , \beta_{i}:=\lim_{x\downarrow c_{i}}\psi(x) (which makes sense as
c_{i}<d necessarily), so that, in view of left-continuity, the “values omitted
at c_{i}

” form (\alpha_{i}, \beta_{i}] . Note that here \beta_{i} cannot be the right-hand end-point
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of J , even if J is closed on the right, for that would force c_{i} to be a point
of continuity of \psi .

Suppose now that u\in J but u\not\in\psi(J_{1}) and u< \sup\psi(J_{1}) . Define \lambda:=

inf L(u) , where L(u):=\{x\in J_{1} : \psi(x)>u\}\neq\emptyset . Thus u \leq\inf\psi(L(u)) .
If b\leq\xi<\lambda , then \xi\not\in L(u) and so \psi(\xi)\leq u . However, as u is not a
value of \psi , \psi(\xi)\neq u\neq\psi(\lambda) . Therefore, if \psi(\lambda)>u , \psi(\xi)<u<\psi(\lambda) ,

which is absurd, since \psi(\xi)\uparrow\psi(\lambda) as \xi\uparrow\lambda by left-continuity. Consequently
\psi(\lambda)<u , and \lambda is a discontinuity of \psi , \lambda=c_{i} for some i , \psi(\lambda)=\alpha_{i} ,
inf \psi(L(u))=\beta_{i} , and u\in(\alpha_{i}, \beta_{i}] . The upshot of this is that

\psi(J_{1})=J_{0}\backslash (_{i=1}^{\infty}\cup(\alpha_{i}, \beta_{i}]) . (23)

where J_{0} may be J\cap(-\infty , sup \psi(J_{1})] or J\cap ( -\infty , sup \psi(J_{1}) ), depending
on whether the supremum of \psi is attained or not.

The right-hand side is a Borel set E in J that I shall call the “core of
\phi

” As \phi 0\psi is the identity, \phi(E)=J_{1} , and \phi , \psi are mutually inverse Borel
bijections between E and J_{1} . In effect, J_{1} is obtained by removing multiple
points of \phi .

If J is enlarged to J’ , which is still closed at the same left end-point a ,

and \phi is extended to \phi’ : J’ –
\mathbb{R} , the foregoing arguments lead to a function

\psi’ : J_{1}’arrow J’ which extends \psi , and \psi’(J_{1}’)\cap J differs from \psi(J_{1}) by at most
one point.

(3.6) Define a C^{\omega} function

\sigma : Marrow(0, \infty) :
x\mapsto f(x)(e^{e}+|x|^{2})\{\log(e^{e}+|x|^{2}) log log (e^{e}+|x|^{2})\}^{2} . (24)

Proposition For i=1,2 , . . , k , let p_{i} : [a_{i}, \beta_{i})arrow M be a path with
|p_{i}(a_{i})|=R_{0} and \sup\{|p_{i}(t)| : a_{i}\leq t<\beta_{i}\}\geq R_{1}>R_{0} , and let \lambda>0 . Then

either there exist R\in(R_{0}, R_{1}) and parameter values u_{i}\in(a_{i}, \beta_{i}) such that
|p_{i}(u_{i})|=R and \sigma(p_{i}(u_{i}))<\lambda^{2} for each i ; or

\sum_{i=1}^{k}\ell(p_{i})\geq\frac{1}{2}\lambda (\log log \log(e^{e}+R_{1}^{2})- log log \log(e^{e}+R_{0}^{2}) ). (25)

Proof. Suppose the first alternative is false. Write r_{i}(u):=|p_{i}(u)| , which

is continuous on [a_{i}, \beta_{i}) , and piecewise C^{1} except where it takes the value 0.
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The assumption means that, if v_{i}\in(a_{i}, \beta_{i}) for 1\leq i\leq k , and R\in(R_{0}, R_{1}) ,

if r_{i}(v_{i})=R for each i , there is an i such that \sigma(p_{i}(v_{i}))\geq\lambda^{2} . (26)

Apply (3.5) to r_{i} : [a_{i}, \beta_{i}) –
\mathbb{R} . Let E(i) be the core of r_{i} , with inverse

mapping q_{i} : J_{1}(i) – E(i) , where J_{1}(i) :=r_{i}([a_{i}, \beta_{i}))\cap[R_{0}, \infty)\supseteq[R_{0}, R_{1}) .
Let

F(i):=\{u : a_{i}\leq u<\beta_{i}, p_{i}(u)\neq 0, \sigma(p_{i}(u))\geq\lambda^{2}\} . (27)

Now, \ell(p_{i})=\int_{a_{i}}^{\beta_{i}}\sqrt{f(p_{i}(t))}|\dot{p}_{i}(t)|dt\geq\int_{E(i)\cap F(i)}\sqrt{f(p_{i}(t))}|\dot{p}_{i}(t)|dt .
However, |p_{i}(t+h)-p_{i}(t)|\geq|r_{i}(t+h)-r_{i}(t)| by the triangle inequal-
ity, so that |\dot{p}_{i}(t)|\geq\dot{r}_{i}(t) at every point of one-sided differentiability t\in

E(i)\cap F(i) ; by (27), \dot{r}_{i}(t) is piecewise defined and continuous on F(i) .
Consequently

\ell(p_{i})\geq\int_{E(i)\cap F(i)}\sqrt{f(p_{i}(t))}\dot{r}_{i}(t)dt=\int_{E(i)\cap F(i)}\sqrt{f(p_{i}(t))}dr_{i}(t) , (28)

where dr_{i} is of course the Lebesgue-Stieltjes measure on [a_{i}, \beta_{i}) induced
by r_{i} . (Note that \dot{r}_{i} is non-negative on E(i) , from (3.5)). By change of
variables,

\int_{E(i)\cap F(i)}\sqrt{f(p_{i}(t))}dr_{i}(t)

= \int_{r_{i}(E(i)\cap F(i))}\sqrt{f(p_{i}(q_{i}(\tau)))}(r_{i})_{*}dr_{i})(\tau) , (29)

where “
(r_{i})_{*}dr_{i}

” is the push-forward of the Lebesgue-Stieltjes measure dr_{i}

to a Borel measure on r_{i}(E(i)\cap F(i)) . Since r_{i} is one-0ne, and piecewise C^{1}

with non-vanishing derivative, on E(i)\cap F(i) , (r_{i})_{*}dr_{i} is just the restriction
of Lebesgue measure. Ergo,

\ell(p_{i})\geq\int_{r_{i}(E(i)\cap F(i))}\sqrt{f(p_{i}(q_{i}(\tau)))}d\tau . (30)

However, if \tau\in r_{i}(E(i)\cap F(i))\cap(R_{0}, R_{1}) , so that q_{i}(\tau)\in E(i)\cap F(i) , then,
by (27),

\sqrt{f(p_{i}(q_{i}(\tau)))}

\geq\frac{\lambda}{(e^{e}+|p_{i}(q_{i}(\tau))|^{2})^{1/2}\log(e^{e}+|p_{i}(q_{i}(\tau))|^{2})\log\log(e^{e}+|p_{i}(q_{i}(\tau))|^{2})}
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= \frac{\lambda}{(e^{e}+\tau^{2})^{1/2}\log(e^{e}+\tau^{2})\log\log(e^{e}+\tau^{2})} , (31)

(since |p_{i}(q_{i}(\tau))|=r_{i}(q_{i}(\tau))=\tau ), and consequently

\sum_{i=1}^{k}\ell(p_{i}) (32)

\geq\sum_{i=1}^{k}\int_{r_{i}(E(i)\cap F(i))\cap(R_{0},R_{1})}\frac{\lambda d\tau}{(e^{e}+\tau^{2})^{1/2}\log(e^{e}+\tau^{2})\log\log(e^{e}+\tau^{2})}

\geq\int_{(R_{0},R_{1})\cap\{\cup r_{i}(E(i)\cap F(i))\}}\frac{\lambda d\tau}{(e^{e}+\tau^{2})^{1/2}\log(e^{e}+\tau^{2})\log\log(e^{e}+\tau^{2})} .

Now \bigcup_{i=1}^{k}r_{i}(E(i)\cap F(i))\supseteq(R_{0}, R_{1}) . Indeed, if \tau\in(R_{0}, R_{1})\subseteq

r_{i}([a_{i}, \beta_{i})) , then |p_{i}(q_{i}(\tau))|=\tau>0 for each i , so that, by (26) and (27),
there is an i for which q_{i}(\tau)\in F(i) , and \tau=r_{i}(q_{i}(\tau)) is in \bigcup_{i=1}^{k}r_{i}(E(i)\cap

F(i)) . Hence

\sum_{i=1}^{k}\ell(p_{i})\geq\int_{R_{0}}^{R_{1}}\frac{\lambda d\tau}{(e^{e}+\tau^{2})^{1/2}\log(e^{e}+\tau^{2})\log\log(e^{e}+\tau^{2})}

\geq\frac{1}{2}\int_{R_{0}}^{R_{1}}\frac{2\lambda\tau d\tau}{(e^{e}+\tau^{2})\log(e^{e}+\tau^{2})\log\log(e^{e}+\tau^{2})}

= \frac{1}{2}\lambda (log log \log(e^{e}+R_{1}^{2})- log log \log(e^{e}+R_{0}^{2}) ).

\square

TVote. This argument does not depend on the form of the function of
conformality f . Analytically, it is the trick of integrating against a distri-
bution, as on p. 4 of [19]; geometrically, it isolates the radial component of
the motion.

Lemma 3.7 Given K>0 , there exists R_{3}(K)>0 such that, if x\in M

and |x|\geq R_{3}(K) and \sigma(x)<1 , necessarily \langle Zx, x\rangle\geq K .

Proof. If \sigma(x)<1 , then

exp (-c_{0}\langle Zx, x\rangle)

\leq\exp(-\langle Cx, x\rangle)

\leq\frac{(e^{e}+\zeta^{2}\langle x,x\rangle)1og^{2}(e^{e}+(^{2}\langle x,x\rangle)}{(e^{e}+\langle x,x\rangle)(1og(e^{e}+\langle x,x\rangle)1og1og(e^{e}+\langle x,x\rangle))^{2}} , (33)
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which will be less than exp (-c_{0}K) if \langle x, x\rangle is sufficiently large. \square

Lemma 3.8 Suppose that, for i=1,2,3 , p_{i} : [a_{i}, \beta_{i})arrow M is a path of
fifinite length with \sup\{|p_{i}(u)| : a_{i}\leq u<\beta_{i}\}=\infty . Then, given R’\geq 0 and
\lambda>0 , t/iere exist R\geq R’ and parameter values u_{i}\in[a_{i}, \beta_{i}) such that, for
each i , |p_{i}(u_{i})|=R and \sigma(p_{i}(u_{i}))<\lambda^{2} .

Proof. Take R_{0} := \max\{R’, |p_{1}(a_{1})|, |p_{2}(a_{2})|, |p_{3}(a_{3})|\} ; then one may
choose a_{i}’\in[a_{i}, \beta_{i}) so that |p_{i}(a_{i}’)|=R_{0} for each i . (3.6) applies for any
R_{1}>R_{0} , and the second alternative is impossible if

log 10g \log(e^{e}+R_{1}^{2})>\log log \log(e^{e}+R_{0}^{2})+2\lambda^{-1}\sum_{i=1}^{3}\ell(p_{i}) . (34)

(Thus one even has an estimate on the size of R). \square

Lemma 3.9 Let OAB be a triangle in H in which \angle AOB=\phi . Suppose
that C divides AB in the ratio 1- t : t , where 0\leq t\leq 1 . Then

(1 – \max(-\cos \phi, 0)) (t^{2}OA^{2}+(1-t)^{2}OB^{2})\leq OC^{2} . (35)

Proof. Let x:=\vec{OA} , y:=\vec{OB} , z:=\vec{OC} . Then

|z|^{2}=|tx+(1-t)y|^{2}=t^{2}|x|^{2}+(1-t)^{2}|y|^{2}+2t(1-t)|x||y| cos \phi ,

2t(1-t)|x||y| cos \phi\geq\min(\cos\phi, 0)(t^{2}|x|^{2}+(1-t)^{2}|y|^{2}) . (36)

The result follows. \square

Lemma 3.10 Suppose x , y\in M , |x|=|y|=R\geq\exp(\exp(1+\zeta^{-2}+\zeta^{2})) ,
and \sigma(x)<1 , \sigma(y)<1 . Then C^{1/2}x\neq 0\neq C^{1/2}y . If |z^{1/2}x|\geq e^{e/2}\leq

|Z^{1/2}y| , and the angles between Z^{1/2}x and Z^{1/2}y , and between C^{1/2}x and
C^{1/2}y , do not exceed \psi\in[0, \pi) , then there are positive numbers \kappa(\psi) , L(\psi) ,
not depending on R, such that the path p consisting of the straight-line
segments from x to \kappa(\psi)x , from \kappa(\psi)x to \kappa(\psi)y , and from \kappa(\psi)y to y ,

sa.tisfifies
(\forall t\in[0,1])|p(t)|\leq\kappa(\psi)R and

d(x, y)\leq\ell(p)\leq L(\psi) ( log \log(e^{e}+R^{2}))^{-1} . (37)

Proof. If \langle Cx, x\rangle=0 , (\Phi(\zeta^{2}\langle x, x\rangle))^{-1}\leq f(x) (by definition); if also
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\sigma(x)<1 ,

(e^{e}+\zeta^{2}R^{2})(\log(e^{e}+\zeta^{2}R^{2}))^{2}

>(e^{e}+R^{2})\{ log (e^{e}+R^{2}) log log (e^{e}+R^{2})\}^{2} , (38)

which is impossible if R\geq\exp(\exp(1+(^{2})) . Thus C^{1/2}x\neq 0 , and similarly
for y .

Now assume that |Z^{1/2}x|\geq e^{e/2}\leq|Z^{1/2}y| . Then e^{e}+\langle Zx, x\rangle\leq

2\langle Zx, x\rangle , \log(e^{e}+\langle Zx, x\rangle)\leq\log 2+\log\langle Zx, x\rangle<2\log\langle Zx, x\rangle , and

8 f(x) \geq\frac{\langle Ax,x\rangle+\exp(-\langle Cx,x\rangle)}{\langle Zx,x\rangle(\log\langle Zx,x\rangle)^{2}} , (39)

and similarly for y . Let \tau:=1-\max(-\cos \psi, 0)>0 . (40)
Take \kappa>1 . If w is any point of the straight-line segment [x, \kappa x] ,

clearly f(w)\leq\kappa^{2}f(x) ; so the |||| -length of the segment, and d(x, \kappa x) , are
not greater than

\kappa(\kappa-1)|x|\sqrt{f(x)}<\frac{\kappa(\kappa-1)R}{R\log(e^{e}+R^{2})\log 1og(e^{e}+R^{2})} . (41)

Similarly for d(y, \kappa y) .
Now, as R \geq\exp(\exp(1+\zeta^{-2}+\zeta^{2}))>\max(\zeta^{4}, \zeta^{-4}) , one has 4| log \zeta|<

log R and 8 (log R)^{2}>(\log(\zeta^{2}R^{2}))^{2}\geq(\log\langle Zx, x\rangle)^{2} . Hence, from (39), since
\sigma(x)<1 ,

\frac{\langle Ax,x\rangle+\exp(-\langle Cx,x\rangle\rangle}{\langle Zx,x\rangle}\leq 8f(x)(\log\langle Zx, x\rangle)^{2}

< \frac{64}{(R\log\log(e^{e}+R^{2}))^{2}} . (42)

The same applies to y .
Let z:=(1-t)\kappa x+t\kappa y be a point of [\kappa x, \kappa y] . As \sqrt{\langle A\xi,\xi\rangle} is a seminorm

on H.

\sqrt{\langle Az,z\rangle}\leq\kappa(1-t)\sqrt{\langle Ax,x\rangle}+\kappa t\sqrt{\langle Ay,y\rangle} , (43)

whilst, applying Lemma 3.9 to the triangle 0, \kappa Z^{1/2}x , \kappa Z^{1/2}y , and recalling
(40),

\sqrt{\langle Zz,z\rangle}\geq\kappa\tau^{1/2}\sqrt{(1-t)^{2}\langle Zx,x\rangle+t^{2}\langle Zy,y\rangle} .

Similarly
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\sqrt{\langle Cz,z\rangle}\geq\kappa\tau^{1/2}\sqrt{(1-t)^{2}\langle Cx,x\rangle+t^{2}\langle Cy,y\rangle} .

Hence
\frac{\sqrt{\langle Az,z\rangle}}{\sqrt{e^{e}+\langle Zz,z\rangle}}\leq\frac{(1-t)\sqrt{\langle Ax,x\rangle}+t\sqrt{\langle Ay,y\rangle}}{\tau^{1/2}\sqrt{(1-t)^{2}\langle Zx,x\rangle+t^{2}\langle Zy,y\rangle}}

\leq\tau^{-1/2}(\sqrt{\frac{\langle Ax,x\rangle}{\langle Zx,x\rangle}}+\sqrt{\frac{\langle Ay,y\rangle}{\langle Zy,y\rangle}})

\leq 8\tau^{-1/2} (Rlog \log(e^{e}+R^{2}))^{-1} . (44)

from (42). Also

\sqrt\frac{\exp(-\langle\overline{Cz,z\rangle)}}{e^{e}+\langle Zz,z\rangle}

\leq\frac{\exp(-\frac{1}{2}\kappa^{2}\tau(1-t)^{2}\langle Cx,x\rangle)\exp(-\frac{1}{2}\kappa^{2}\tau t^{2}\langle Cy,y\rangle)}{\kappa\tau^{1/2}\sqrt{(1-t)^{2}\langle Zx,x\rangle+t^{2}\langle Zy,y\rangle}} . (45)

Let s:=t^{2}+(1-t)^{2} \geq\frac{1}{2} , and q:=s^{-1}t^{2} . The right-hand side becomes

\frac{\exp(-\frac{1}{2}\kappa^{2}\tau(1-q)s\langle Cx,x\rangle)\exp(-\frac{1}{2}\kappa^{2}\tau qs\langle Cy,y\rangle)}{\kappa\tau^{1/2}\sqrt{s(1-q)\langle Zx,x\rangle+sq\langle Zy,y\rangle}}

\leq(\frac{2}{\kappa^{2}\tau})^{1/2}(\frac{\exp(-\frac{1}{2}\kappa^{2}\tau\langle Cx,x\rangle)}{\langle Zx,x\rangle})^{(1-q)/2}(\frac{\exp(-\frac{1}{2}\kappa^{2}\tau\langle Cy,y\rangle)}{\langle Zy,y\rangle})^{q/2}

(since s \geq\frac{1}{2} , and the inequality of the means applies to the denominators)

\leq 8(R log \log(e^{e}+R^{2}))^{-1} if \kappa:=(\frac{1}{2}\tau)^{-1/2} , by (42).

Then, recalling (41),

\sqrt{f(z)}\leq\frac{\sqrt{\langle Az,z\rangle}+\exp(-\frac{1}{2}\langle Cz,z\rangle)}{\sqrt{e^{e}+\langle Zz,z\rangle}}\leq\frac{8(1+\kappa\sqrt{2})}{R1og1og(e^{e}+R^{2})} (46)

at every point z of the segment [\kappa x, \kappa y] , and the Riemannian length of the
segment does not exceed 16\kappa(1+\kappa\sqrt{2})(\log\log(e^{e}+R^{2}))^{-1} . So (using (41))

d(x, y)\leq d(x, \kappa x)+d(\kappa x, \kappa y)+d(\kappa y, y)

\leq(2\kappa(\kappa-1)+16\kappa(1+\kappa\sqrt{2})) ( log \log(e^{e}+R^{2}))^{-1} . (47)

Since \kappa=(\frac{1}{2}\tau)^{-1/2} , where \tau depends only on \psi , this proves the result; for
one may take \kappa(\psi) :=\kappa and L(\psi) :=2\kappa(\kappa-1)+16\kappa(1+\kappa\sqrt{2}) . \square
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(3.11) Suppose that, for k=1,2 , 3, p_{k} : [0, \beta_{k}) – M is a path of finite
length which does not converge in M . By Corollary 3.3(i) and an inductive

application of Lemma 3.8, there exist sequences (u_{i}^{(k)})_{i=1}^{\infty} of parameter val-

ues for k=1,2,3 , such that, for each k , u_{i}^{(k)}\uparrow\beta_{k} ; for each i , |p_{k}(u_{i}^{(k)})| is in-

dependent of k and exceeds \exp(\exp(1+(^{2}+(^{-2}));e^{e}\leq\langle Zp_{k}(u_{i}^{(k)}), p_{k}(u_{i}^{(k)})\rangle

for all i and k;|p_{k}(u_{i}^{(k)})| – \infty as iarrow\infty for each k ; and \sigma(p_{i}(u_{i}^{(k)}))<1 for
all i and k . For brevity, let me call such a triple of sequences a triple param-
eter sequence for p_{1} , p_{2} , p_{3} . Let \theta_{i}^{(kj)} be the angle between C^{1/2}p_{k}(u_{i}^{(k)}) and
C^{1/2}p_{j}(u_{i}^{(j)}) , and \phi_{i}^{(kj)} the angle between Z^{1/2}p_{k}(u_{i}^{(k)}) and Z^{1/2}p_{j}(u_{i}^{(j)}) ; the

sequence of pairs (\theta_{i}^{(kj)}, \phi_{i}^{(kj)}) may be called the (k, j)-angle sequence of the
triple parameter sequence.

(3.12) The involution J : xarrow-x is a Riemannian isometry of M ,
and therefore extends to an involution J : \partial M – \partial M .

Proposition \partial M has at most four points and two J-conjugacy classes.

Proof. Suppose x_{1} , x_{2} , x_{3} are distinct points of \partial M , with x_{1}\neq Jx_{2}\neq x_{3} .
Take paths of finite length p_{1} , p_{2} , p_{3} with limits x_{1} , x_{2} , x_{3} respectively.
Construct a triple parameter sequence (u_{i}^{(k)})_{i=1}^{\infty} for p_{1} , p_{2} , p_{3} , with (k, j)-

angle sequences (\theta_{i}^{(kj)}, \phi_{i}^{(kj)}) .

If (\theta_{i}^{(12)}, \phi_{i}^{(12)})_{i=1}^{\infty} had a cluster point in [0, \pi) \cross[0, \pi) , there would be a

subsequence (\theta_{i(r)}^{(12)}, \phi_{i(r)}^{(12)})_{r=1}^{\infty} for which both components are bounded above

by some \psi<\pi , and Lemma 3.10 would show that d(p_{1}(u_{i(r)}^{(1)}),p_{2}(u_{i(r)}^{(2)})) –0

as r – \infty . So p_{1} , p_{2} would have the same limit (see (2.1)): x_{1}=x_{2} . If
(\theta_{i}^{(12)}, \phi_{i}^{(12)})_{i=1}^{\infty} had a cluster point in ((0, \pi]\cross\{\pi\})\cup(\{\pi\}\cross(0, \pi]) , then
substituting Jp_{2} for p_{2} would change the angles to their supplements, and
the resulting sequence would have a cluster point in [0, \pi) \cross[0, \pi) ; thus
x_{1}=Jx_{2} . Both these possibilities were denied at the outset, so the only
admissible cluster points are the ordered pairs (0, \pi) and (\pi, 0) . If only one

is indeed a cluster point, it must be the limit of (\theta_{i}^{(12)}, \phi_{i}^{(12)})_{i=1}^{\infty} . If both
are cluster points, omit (in all three sequences) those indices i for which
\theta_{i}^{(12)}>\phi_{i}^{(12)} , and renumber; after this, necessarily (\theta_{i}^{(12)}, \phi_{i}^{(12)})

– (0, \pi) .

The same analysis of (\theta_{i}^{(23)}, \phi_{i}^{(23)})_{i=1}^{\infty} now shows that either x_{3}=x_{2} or
x_{3}=Jx_{2} (both denied), or else the only cluster points are the pairs (o, \pi)

or (\pi, 0) . In this last case, one may again pass to a further subsequence and
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assume (\theta_{i}^{(23)}, \phi_{i}^{(23)}) has a limit, either (0, \pi) or (\pi, 0) . But now, it is clear
geometrically that (\theta_{i}^{(13)}, \phi_{i}^{(13)}) also converges – to (0, 0) if the limits of
(\theta_{i}^{(12)}, \phi_{i}^{(12)}) and (\theta_{i}^{(23)}, \phi_{i}^{(23)}) are the same, and to (\pi, \pi) otherwise. From
Lemma 3.10, this entails that either x_{1}=x_{3} (denied) or x_{3}=Jx_{1} .

Therefore, of any three distinct ideal points, two must be J-conjugate.
This evidently proves the Proposition. \square

(3.13) I expect that (3.12) is the best such result available without
more information. A convenient condition is that M have the tetrapod
property: there exist paths of finite length \wp_{i} : [a_{i}, \beta_{i}’) – M , for i=1,2 ,
and an angle \phi\in(0, \frac{1}{4}\pi) , such that |\wp_{i}(t)|arrow\infty as t\uparrow\beta_{i}’ for i=1,2 (that
is, both paths have limits in \partial M\neq\emptyset ) and, for each choice of u_{1}\in[a_{1}, \beta_{1}’)

and u_{2}\in[a_{2}, \beta_{2}’) such that |\wp_{1}(u_{1})|=|\wp_{2}(u_{2})|>0 , the angles between
C^{1/2}\wp_{1}(u_{1}) and C^{1/2}\wp_{2}(u_{2}) , and between Z^{1/2}\wp_{1}(u_{1}) and Z^{1/2}\wp_{2}(u_{2}) , if
defined, both lie in (2\phi, \pi-2\phi) . Here \phi is a tetrapod parameter. (The
paths \wp_{i} , J\wp_{i} are the four feet of the tetrapod; it will be convenient to
set \wp_{i+2}:=J\wp_{i} ). Since ray segments may be added at the start of the
paths, and one may reparametrize, there is no loss of generality in assuming
henceforth that a_{1}=a_{2}=0 , \beta_{1}’=\beta_{2}’=\beta’ . and \wp_{1}(0)=0=\wp_{2}(0) .

(3.14) Suppose that H:=H_{1}\cross H_{1} (the Hilbert direct sum of a Hilbert
space H_{1} with itself), A:=A_{1}\cross A_{1} , C:=C_{1}\cross C_{1} , Z:=Z_{1}\cross Z_{1} . Let M_{1} be
constructed as at (3.1) from H_{1} , A_{1} , C_{1} , Z_{1} , whilst M , as before, is defined
from H , A , C , Z . In M there is a second isometric involution T. commuting
with J : the coordinate transposition T(x, y):=(y, x) . Certainly M_{1}\cross\{0\}

is a closed Riemannian submanifold of M . Riemannian-isometric with M_{1}

in the obvious way. In this case

Lemma If \partial M_{1}\neq\emptyset , then M has the tetrapod property of (3.13).

Proof. Let \wp be a path of finite length in M_{1} , converging to a point of \partial M_{1} .
It gives rise to paths \wp_{1} , \wp_{2} in M, where \wp_{1}(t):=(\wp(t), 0) and \wp_{2}:=T\circ\wp_{1} ;
both are of finite length, and cannot converge in M (if \wp_{1} converges in M ,
its limit is in M_{1}\cross\{0\} , and is also its limit in the topology of M_{1}\cross\{0\} ,
which is denied. The metric of M_{1} need not agree with the restriction to
M_{1}\cross\{0\} of the metric of M). But the angles between Z^{1/2}\wp_{1}(u_{1}) and
Z^{1/2}\wp_{2}(u_{2}) and between C^{1/2}\wp_{1}(u_{1}) and C^{1/2}\wp_{2}(u_{2}) , if defined, are both
\pi/2 , for any u_{1} , u_{2} . Take \phi :=\pi/5 , say. \square
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Proposition 3.15 If M , defifined as in (3.1), has the tetrapod property of
(3.13), then \partial M is a singleton.

Proof. Suppose \wp_{1} , \wp_{2} , and \phi are as in (3.13). So \wp_{i} defines a point x_{i}

of \partial M , for i=1,2 . Let \wp_{0} be any other path of finite length in M that
converges to a point x_{0} of \partial Mr Take a triple parameter sequence (u_{i}^{(k)})_{i=1}^{\infty}

for \wp 0 , \wp_{1} , \wp_{2} , with (k, j)-angle sequences (\theta_{i}^{(kj)}, \phi_{i}^{(kj)}) . Then, evidently,
2\phi<\theta_{i}^{(12)}<\pi-2\phi and 2\phi<\phi_{i}^{(12)}<\pi-2\phi , so that, by Lemma 3.10,

x_{1}=x_{2} . If \wp_{1} is replaced by Jo\wp_{1} , the angles are substituted by their
supplements, and Lemma 3.10 gives Jx_{1}=x_{2}=x_{1} .

Now, if ((\theta_{i}^{(01)}, \phi_{i}^{(01)}))_{i=1}^{\infty} has a cluster point in [0, \pi)\cross[0, \pi) , Lemma 3.10
shows that x_{0}=x_{1} . If its only cluster points are in ((0, \pi]\cross\{\pi\})\cup(\{\pi\}\cross

(0, \pi]) , then, as in (3.12), x_{0}=Jx_{1} , since taking J\circ\wp_{1} instead of \wp_{1}

supplements the angles. If its only cluster points are the pairs (0, \pi) or
(\pi, 0) , then by spherical geometry \theta_{i}^{(02)} . \phi_{i}^{(02)} can have cluster points only
between 2\phi and \pi-2\phi . Thus Lemma 3.10 shows x_{0}=x_{2} . But I have
already shown that Jx_{1}=x_{2}=x_{1} . \square

(3.16) For Lemma 3.17-Lemma 3.19, again suppose M , defined as in
(3.1), has the tetrapod property of (3.13), with paths \wp_{1} , \wp_{2} and parameter
\phi ; thus \partial M is a singleton, \{*\} . By Corollary 3.3, |\wp_{i}(t)|arrow\infty as t\uparrow\beta’ .

and \ell(\wp_{i}|[t, \beta’))arrow 0 too. For any \delta>0 there is an R_{2}(\delta)>0 such that, for
either i , d(\wp_{i}(t), *)\leq\ell(\wp_{i}|[t, \beta’))<\delta whenever |\wp_{i}(t)|\geq R_{2}(\delta) . The same
will be true for \wp_{i+2}=J\wp_{i} .

Lemma 3.17 Suppose \mu\geq 0 and R’\geq 0 . There are numbers R_{1}(\mu, R’)>

R_{0}(\mu, R’)\geq R’ with the following property. Given x\in M for which |x|\leq R’ ,
and a path p:[a, \beta)arrow M for which p(a)=x , \ell(p)\leq\mu , and \sup\{|p(t)| : t\in

[a, \beta)\}\geq R_{1} , then there are numbers R’\in(R_{0}, R_{1}) , u\in[a, \beta) , v_{j}\in[0, \beta’)

for j=1,2 , such that R’=|p(u)|=|\wp_{j}(v_{j})| and \sigma(p(u))<1>\sigma(\wp_{j}(v_{j}))

for each j . For any such R’ , u , and v_{j} , necessarily \langle Zp(u), p(u)\rangle\geq e^{e}\leq

\langle Z\wp_{j}(v_{j}), \wp_{j}(v_{j})\rangle and C^{1/2}p(u)\neq 0\neq C^{1/2}\wp_{j}(v_{j}) for each j .

Proof. Let R_{3}(e^{e}) be as in Lemma 3.7. Set

R_{0} := \max(R’, R_{3}(e^{e}) , exp(exp (1+\zeta^{-2}+\zeta^{2}) ) and

R_{1}(\mu, R’) (48)

:=
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Therefore R_{1}>R_{0} . Suppose \sup\{|p(t)| : a\leq t<\beta\}\geq R_{1} . Take parameter
values a’\in[a, \beta) , b_{j}’\in[0, \beta’) which satisfy the equalities |p(a’)|=|\wp_{j}(b_{j}’)|=

R_{0} . Then

\frac{1}{2} (\log\log\log(e^{e}+R_{1}^{2})- log log \log(e^{e}+R_{0}^{2}) )

>\ell(p)+\ell(\wp_{j})+\ell(\wp_{2}) , as \mu\geq\ell(p) , (49)

and, setting k=3 in (3.6), there are parameter values u\in(a’, \beta) , v_{j}\in

(b_{j}’, \beta’) such that R’ :=|p(u)|=|\wp_{j}(v_{j})|\in(R_{0}, R_{1}) and \sigma(p(u))<1 ,
\sigma(\wp_{j}(v_{j}))<1 . From this, Lemma 3.7, Lemma 3.10, and the choice of R_{0}

ensure that \langle Zp(u),p(u)\rangle\geq e^{e} , C^{1/2}p(u)\neq 0 , and similarly for the other
paths. \square

Lemma 3.18 Let |x|=|\wp_{1}(v_{1})|=|\wp_{2}(v_{2})| , where v_{1} , v_{2}\in[0, \beta’) . Set
v_{i+2}:=v_{i} for i=1,2 . Then there exists j\in\{1, 2, 3, 4\} such that the angles
between Z^{1/2}x and Z^{1/2}\wp_{j}(v_{j}) , and between C^{1/2}x and C^{1/2}\wp_{j}(v_{j}) , do not
exceed \pi-\phi .

Proof. Try first j=1 . If the angles are not both less than \pi-\phi , but
are both greater than \phi , change to j=3; this supplements both angles. If,
however, j=1 makes one angle not less than \pi-\phi and the other not greater
than \phi , change to j=2 . (3.13) applies, since |\wp_{1}(v_{1})|=|\wp_{2}(v_{2})|=|x| , and
the triangle inequality for spherical triangles shows that both angles now
lie in (\phi, \pi-\phi)) . \square

Lemma 3.19 On the hypotheses of (3.16), suppose x\in M and 0\leq\mu<

d(x, *) . There exists R(x, \mu)>|x| such that, if y\in M and d(x, y)\leq\mu ,
then |y|\leq R(x, \mu) .

Proof. Suppose d(x, y)<\mu , and take a path p : [a, \beta] - M for which
p(a)=x, p(\beta)=y , and \ell(p)<\mu . Let \delta:=\frac{1}{2}(d(x, *)-\mu) , L(\psi) be as in
Lemma 3.10, and R_{2}(\delta) as in (3.16). Set in the statement of Lemma 3.17

R’ := \max(|x|, R_{2}(\delta) , exp ( \frac{1}{2} exp (L(\pi-\phi)/\delta))), (50)

and R(x, \mu):=R_{1}(\mu, R’) in the conclusion.
Suppose, if possible, that \sup\{|p(t)| : t\in[a, \beta)\}>R(x, \mu) . Ap-

ply Lemma 3.17, with the same notation R’ . By Lemma 3.18, there is
a j such that the angles between Z^{1/2}\wp_{j}(v_{j}) and Z^{1/2}p(u) , and between
C^{1/2}\wp_{j}(v_{j}) and C^{1/2}p(u) , do not exceed \pi-\phi . Thus, by the last statement
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of Lemma 3.17, Lemma 3.10 applies, and

d(p(u), \wp_{j}(v_{j}))\leq L(\pi-\phi)/\log log (e^{e}+R^{\prime\prime 2})

\leq L(\pi-\phi)/\log\log(e^{e}+R^{\prime 2})\leq\delta . (51)

Also, from (3.16), as |\wp_{j}(v_{j})|=R’>R’\geq R_{2}(\delta) by (50), d(\wp_{j}(v_{j}), *)<\delta .
So

d(x, *)\leq d(x,p(u))+d(p(u), \wp_{j}(v_{j}))+d(\wp_{j}(v_{j}), *)

<\ell(p)+2\delta<d(x, *) , by the definition of \delta . (52)

This is a contradiction, so that | \wp_{j}(v_{j})|\leq\sup\{|p(t)| : t\in[a, \beta)\}\leq R(x, \mu) .
If d(x, z)=\mu , and \epsilon>0 , take a path p from x to z of length not

exceeding \mu+\frac{1}{2}\epsilon , and let y be the point on the path such that its length
between x and y is \mu-\frac{1}{2}\epsilon . Then d(x, y)<\mu and d(z, y)<\epsilon . Hence z is
in the closure of \{y : d(x, y)<\mu\} , and the Lemma follows by a limiting
argument. \square

4. The example: geodesic structure

(4.1) Let \nabla denote the gradient with respect to the flat Rieman-
nian structure \langle , \rangle in H . The geodesic equation for a path p(t) in M ,
most easily obtained as the Euler-Lagrange equation for the energy integral
\int f(p(t))\langle\dot{p},\dot{p}\rangle dt , takes the form

f \dot{p}+\langle\nabla f,\dot{p}\rangle\dot{p}=\frac{1}{2}\langle\dot{p},\dot{p}\rangle\nabla f . (53)

Taking inner products with \dot{p} , one has the expected special integral

f(p)\langle\dot{p},\dot{p}\rangle=\mu (a constant on the geodesic). (54)

Substituting this back into (53), one finds

f(p) \dot{p}+\langle\dot{p}, \nabla f\rangle\dot{p}=\frac{d}{dt}(f\dot{p})=\frac{1}{2}\mu\nabla f/f . (55)

Introduce a new parameter s , with respect to which differentiation will be
denoted by primes, by ds:=dt/f(p(t)) . Thus (55) becomes

p’= \frac{1}{2}\mu\nabla f , and (54) gives (56)

\langle p’,p’\rangle=\mu f(p) . (57)
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(The constant \mu could be normalized to 1, but it is a useful check on the
later calculations to retain it). On its own, (56) clearly implies only that

\langle p’,p’\rangle-\mu f(p)=c’ , constant on the path. (58)

(56) and (57) are together equivalent to (53) and (54), in the sense that
a maximal solution of (56) and (57) corresponds to a maximal solution of
(53) and (54), and vice versa, by the appropriate changes of parameter.

Let X(x):= \frac{1}{2}\nabla f(x) . Now, taking into account the definition of f
given at (3) of (3.1), the equation (56) and the normalization (57) take the
forms

p’=\mu X(p)=\mu\{ \frac{Ap-\exp(-\langle Cp,p\rangle)Cp}{\Phi(\langle Zp,p\rangle)}

(59)
- \frac{\langle Ap,p\rangle+\exp(-\langle Cp,p\rangle)}{(\Phi(\langle Zp,p\rangle))^{2}}\Phi’(\langle Zp, p\rangle)Zp) ,

\langle p’,p’\rangle=\mu\frac{\langle Ap,p\rangle+\exp(-\langle Cp,p\rangle)}{\Phi(\langle Zp,p\rangle)} . (60)

Notice that \Phi(t)\geq e^{2+e}\geq 1 and |\Phi(t)^{-1}\Phi’(t)|\leq 2e^{-e}\leq 1 for all t\geq 0 .
(61)

Lemma 4.2 Let \mu>0 , and suppose p : [\eta, \beta)arrow H is a path satisfying
(58) at each point of differentiability. Then, for s\in[\eta, \beta) ,

|p(s)| \leq\max(|p(\eta)|, \mu^{-1/2}\alpha^{-1}(|c’|+\mu)^{1/2})\exp(\alpha\sqrt{2\mu}(\beta-\eta)) . (62)

Proof. Write r(s):=\langle p(s),p(s)\rangle . Then, for each s\in[\eta, \beta) ,

(r’(s))^{2}=4\langle p’(s), p(s)\rangle^{2}\leq 4(c’+\mu f(p(s)))r(s)

\leq 4(|c’|+\mu+\mu\alpha^{2}r(s))r(s) (63)

by the definition of f . (3.1). The derivative may be one-sided. When
\mu\alpha^{2}r(s)\leq|c’|+\mu , there is nothing to prove. If \mu\alpha^{2}r(s)>|c’|+\mu , let \xi

be the greatest parameter value, if there is one, such that \eta\leq\xi<s and
\mu\alpha^{2}r(\xi)=|c’|+\mu ; if no such value exists, set \xi:=\eta . In either case, for
one-sided derivatives

r’(s_{1})\leq 2\alpha\sqrt{2\mu}r(s_{1}) for \xi\leq s_{1}\leq s . (64)

Hence r(s)\leq r(\xi)\exp(2\alpha\sqrt{2\mu}(s-\xi)) , and the result follows. \square
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Lemma 4.3 The maximal solutions of p’=\mu X(p) , for any non-negative
constant \mu , are defifined for all s .

Proof. If \mu=0 , this is clear. If \mu>0 , take a maximal solution y(s)

whose non-empty domain J has supremum \beta<\infty . Choose \eta\in J;(58)

holds for suitable c’ . By Lemma 4.2, there exists a constant Q>0 such
that |y(s)|\leq Q for \eta\leq s<\beta . For these values of s , (59), (61), and (58)
give the feeble estimates

|y’(s)| \leq\mu\{(\alpha^{2}+\gamma^{2})Q+(\alpha^{2}Q^{2}+1)\zeta^{2}Q\} ,
\} (65)

|y’(s)|^{2}\leq c’+\mu(1+\alpha^{2}Q^{2}) .

By the mean value theorem, (y’(s))_{s\uparrow\beta} and (y(s))_{s\uparrow\beta} are Cauchy nets, and
converge to limits v , u . A standard argument proves that the solution of
the equation with initial conditions p(\beta):=u , p’(\beta):=v extends y beyond
\beta , which contradicts the hypothesis. To show that J is not bounded below,
reverse the parameter. \square

Proposition 4.4 Let p : [a, \beta)arrow M be differentia te and satisfy (57),
with \mu>0 , and suppose that

\infty>d:=\sup\{|p(s)|^{2} _{:} _{a\leq S}<\beta\}\geq b:=|p(a)|^{2}>0 . (66)

Defifine Q:=\{b\log^{2}b\}/\{(e^{e}+b)\log^{2}(e^{e}+b)\} . Then (67)

\int_{a}^{\beta}\frac{ds}{\Phi(\langle p(s),p(s)\rangle)}\geq\frac{1}{4}\mu^{-1/2}Q\frac{(\log\log d-1og\log b)^{2}}{\ell(p)} . (68)

Proof. Set r(s):=\langle p(s),p(s)\rangle . Let E be the core (see (3.5)) of r : [a, \beta)arrow

\mathbb{R} , with inverse q:J_{1}arrow E , where J_{1} is [b, d] or [b, d) . For s\in E , r(s)\in J_{1} ,

and

\int_{a}^{\beta}\Phi(r(s))^{-1}ds\geq Q\int_{E}\{r(s)\log^{2}r(s)\}^{-1}ds . (69)

Now, by the Cauchy-Schwarz inequality,

( \int_{a}^{\beta}f(p(s))ds)^{1/2}(\int_{E}\{r(s)\log^{2}r(s)\}^{-1}ds)^{1/2}

\geq\int_{E}\sqrt{\frac{f(p(s))}{r(s)1og^{2}r(s)}}ds=\int_{r(E)}\sqrt{\frac{f(p(q(\tau)))}{\tau 1og^{2}\tau}}(r_{*}ds)(\tau) . (70)
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Here r_{*}ds denotes the push-forward of ds to a Borel measure on r(E)=J_{1} .
Next, for s\in E (so that r(s)\neq 0 and r is differentiable at s), from (57)

r’(s)=2\langle p’(s),p(s)\rangle\leq 2|p’(s)||p(s)|=2\sqrt{\mu r(s)f(p(s))} . (71)

Hence, as measures on J_{1} , r_{*}ds \geq\frac{d\tau}{2\sqrt{\mu\tau f(p(q(\tau)))}} (as in (3.6), I omit the

details) and so

\int_{r(E)}\sqrt{\frac{f((p(q(\tau)))}{1og^{2}\tau}}(r_{*}ds)(\tau)

\geq\int_{b}^{d}\frac{\mu^{-1/2}d\tau}{2\tau 1og\tau}=\frac{1}{2}\mu^{-1/2}(\log\log d-\log\log b) . (72)

Recall that \ell(p)=\int_{a}^{\beta}\mu^{1/2}f(p(s))ds . Putting this fact together with (69),
(70), and (72), one has the result. \square

Note. The argument again involves the radial component only.

Corollary 4.4 Suppose that p:[a, \beta) – M satisfifies (57), that \ell(p)<\infty ,
and that \sup\{|p(s)| : a\leq s<\beta\}=\infty . Then the integral \int_{a}^{\beta}\frac{ds}{\Phi(\langle p(s),p(s)\rangle)}

diverges.

Proof. Proposition 4.4 applies to [a, c) for any c\in[a, \beta) ; let c\uparrow\beta . \square

(4.5) The conditions (4.7)(i)-(iv) given below are those which are ac-
tually used in the subsequent argument, and not necessarily the simplest
or most natural hypotheses available. In particular, the requirement in (iii)
that \eta_{1}<1 is rather asymmetrical. If one had instead

[C, S]\leq\eta_{1}[A, S]+\nu_{1}A , for some \eta_{1} , \nu_{1}>0 , (73)

then (i)-(iv) would hold for the new system obtained by multiplying C by
a sufficiently small positive scalar and changing \eta_{1} , \nu_{1} correspondingly.

(4.6) Suppose that, in addition to the non-negative operators A , C ,
and Z of (3.1), there is a skew-adjoint operator S satisfying the following
further conditions:

(i) [A, S]:=AS-SA\geq 0 ,
(ii) \eta_{0}C\leq[A, S] , for some positive constant \eta_{0} ,
(iii) [C, S]\leq\eta_{1}[A, S]+\nu_{1}A , for some \eta_{1}\in(0,1) and \nu_{1}>0 ,
(iv) [Z, S]\leq\eta_{2}[A, S]+\nu_{2}A , for some \eta_{2} , \nu_{2}>0 .
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Notes. The commutators [A, S] , [C, S] , [Z, S] are self-adjoint, so the
order relation \leq makes sense. There is no need to assume [C, S]\geq 0 or
[Z, S]\geq 0 .

Proposition 4.7 Let A , C, Z, S satisfy the conditions of (4.7). There
are constants \delta_{1} , \delta_{2} , \delta_{3}>0 , depending on \eta_{0} , \eta_{1} , \eta_{2} , \nu_{1} , \nu_{2} , such that if
p:[a, c]arrow M is a path satisfying (59) and (60) /or which f_{1}(p(s))\leq\delta_{1} for
a\leq s\leq c , then

\langle p’(c), Sp(c)\rangle-\langle p’(a), Sp(a)\rangle+\mu^{1/2}\delta_{2}\ell(p)

\geq\mu\delta_{3}\int_{a}^{c}\frac{1}{\Phi(\langle Zp(s),p(s)\rangle)}ds . (74)

Proof From (59), since H is real and S^{*}=-S ,

\frac{d}{ds}\langle p’, Sp\rangle=\langle p’, Sp\rangle+\langle p’, S’p\rangle=\langle p’, Sp\rangle (75)

= \mu\frac{\langle Ap,Sp\rangle-\exp(-\langle Cp,p\rangle)\langle Cp,Sp\rangle-f(p)\Phi’(\langle Zp,p\rangle)\langle Zp,Sp\rangle}{\Phi(\langle Zp,p\rangle)} .

Also

\langle Ap, Sp\rangle=\langle p, ASp\rangle=\langle ASp, p\rangle=\langle-SAp, _{p}\rangle=\frac{1}{2}\langle[A, S]p,p\rangle (76)

(and similarly for \langle Cp , Sp\rangle and \langle Zp , Sp\rangle ). Ergo, (75) may be written

\frac{d}{ds}\langle p’, Sp\rangle (77)

= \mu\frac{\langle[A,S]p,p\rangle-\exp(-\langle Cp,p\rangle)\langle[C,S]p,p\rangle-f(p)\Phi’(\langle Zp,p\rangle)\langle[Z,S]p,p\rangle}{2\Phi(\langle Zp,p\rangle)}\geq

\mu\frac{\{1-\eta_{1}-\eta_{2}f(p)\Phi’(\langle Zp,p\rangle)\}\langle[A,S]p,p\rangle-\{\nu_{1}+\nu_{2}f(p)\Phi’(\langle Zp,p\rangle)\}\langle Ap,p\rangle}{2\Phi(\langle Zp,p\rangle)} ,

by (4.7) (iii), (iv). T he \delta_{1} := \frac{1}{3} min (1, \frac{1}{2}(1-\eta_{1})/\eta_{2}) and \delta_{0} :=1-\eta_{1}-3\eta_{2}\delta_{1} .
Thus \delta_{0}>0 , and, if f_{1}(p(s))\leq\delta_{1} for any s\in[a, c] , then, by Lemma 3.4,
for such s

1-\eta_{1}-\eta_{2}f(p(s))\Phi’(\langle Zp(s),p(s)\rangle)\geq\delta_{0} ,
f(p(s))\Phi’(\langle Zp(s),p(s)\rangle\leq 1. (78)

Integrate (77) between a and c, recalling that A and [A, S] are non-
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negative:

\langle p’(c), Sp(c)\rangle-\langle p’(a), Sp(a)\rangle+\frac{1}{2}(\nu_{1}+\nu_{2})\mu\int_{a}^{c}\frac{\langle Ap(s),p(s)\rangle}{\Phi(\langle Zp(s),p(s)\rangle)}ds

\geq\frac{1}{2}\delta_{0}\mu\int_{a}^{c}\frac{\langle[A,S]p(s),p(s)\rangle}{\Phi(\langle Zp(s),p(s)\rangle)}ds

\geq\frac{1}{2}\delta_{0}\mu\eta_{0}\int_{a}^{c}\frac{\langle Cp(s),p(s)\rangle}{\Phi(\langle Zp(s),p(s)\rangle)}ds (79)

by (4.7) (ii). Let \delta_{2}:=\max(\frac{1}{2}(\nu_{1}+\nu_{2}), \frac{1}{2}\delta_{0}\eta_{0}) , \delta_{3} := \frac{1}{2}\delta_{0}\eta_{0} . If necessary
(that is, if \nu_{1}+\nu_{2}<\delta_{0}\eta 0 ) one may increase the left-hand side of (79); in
any case, \delta_{2}\geq\delta_{3} and

\langle p’(c), Sp(c)\rangle-\langle p’(a), Sp(a)\rangle

+ \delta_{2}\mu\int_{a}^{c}\frac{\langle Ap(s),p(s)\rangle+\exp(-\langle Cp(s),p(s)\rangle}{\Phi(\langle Zp(s),p(s)\rangle)}ds

\geq\delta_{3}\mu\int_{a}^{c}\frac{\langle Cp(s),p(s)\rangle+\exp(-\langle Cp(s),p(s)\rangle}{\Phi(\langle Zp(s),p(s)\rangle)}ds (80)

\geq\delta_{3}\mu\int_{a}^{c}\frac{1}{\Phi(\langle Zp(s),p(s)\rangle)}ds (as \xi+e^{-\xi}\geq 1 for all \xi\geq 0 ).

This is the result stated, as \ell(p)=\int_{a}^{C}\mu^{1/2}f(p(s))ds . \square

Corollary 4.8 Assume (4.7). Suppose that the path p:[a, \beta) – M (where
\beta may be \infty ) satisfifies (59) and (60), that \ell(p)<\infty , that f_{1}(p(s))\leq\delta_{1} for
a\leq s<\beta , and that \sup\{|p(s)| : a\leq s<\beta\}=\infty . Then \langle p’(s), Sp(s)\rangle – \infty

as s\uparrow\beta .

Proof For each x\in H

e^{e}+\langle Zx, x\rangle\leq(1+\zeta^{2})(e^{e}+\langle x, x\rangle) and so
\log(e^{e}+\langle Zx, x\rangle)\leq\log(1+\zeta^{2})+\log(e^{e}+\langle x, x\rangle)

\leq(1+(^{2})\log(e^{e}+\langle x, x\rangle). (80)

Now, for each s , \frac{1}{\Phi(\langle Zp(s),p(s)\rangle)}\geq\frac{1}{(1+\zeta^{2})^{3}}\frac{1}{\Phi(\langle p(s),p(s)\rangle)} .

Thus, by Corollary 4.5, the integral in (74) diverges as c\uparrow\beta , whilst the
length remains bounded. The result follows. \square

Theorem 4.9 If M is defifined as in (3.1) and the conditions (4.7) are
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satisfified, then M is geodesically complete.

Proof. Let p(s) be a right-incomplete maximal geodesic, reparametrized
to satisfy (59) and (60). It is defined for all s , by Lemma 4.3, and \mu\neq 0

since p(s) must be non-constant; and \ell(p)<\infty . Next, as sarrow\infty , p(s) must
tend to a point of \partial M by Lemma 2.6, so that, by Lemma 3.2, f_{1}(p(s))arrow 0

as s -, \infty , and by Corollary 3.3(i) |p(s)| - \infty . Hence there exists a such
that f_{1}(p(s))\leq\delta_{1} whenever s\geq a . Consequently Corollary 4.9 applies, and
\langle p’(s), Sp(s)\rangle -\infty as sarrow\infty .

Now

|\langle p’(s), Sp(s)\rangle|\leq|p’(s)|[SI|p(s)|=\mu^{1/2}[SI|p(s)|\sqrt{f(p(s))} (82)

<\mu^{1/2} [SI \{\log(e^{e}+|p(s)|^{2}) log \log(e^{e}+|p(s)|^{2})\}^{-1}\sqrt{\sigma(p(s))} ,

whilst Lemma 3.8 shows that lim \inf_{sarrow\infty}\sigma(p(s))=0 . Thus

\lim_{sarrow}\inf_{\infty}|\langle p’(s), Sp(s)\rangle|=0 .

This contradiction establishes the theorem. \square

Remarks 4.10 The proof of Theorem 4.10 could be presented somewhat
more directly, since it relies only on a contradiction between convergence
of \int_{a}^{\infty}f(p(s))ds and divergence of \int_{a}^{\infty}\Phi(\langle p(s), p(s)\rangle)^{-1}ds . The numerical
estimates of Proposition 4.8, Proposition 4.4, and (3.6) are unnecessarily
detailed for this limited purpose.

5. Construction of suitable operators

In this section, and only here, |||| will denote the norm in the Hilbert
spaces H_{0} and H_{1} (to avoid needless confusion with the absolute value in
\mathbb{R}) .

(5.1) The condition (4.7)(i) says that A+S is a hyponormal operator.
In [2], where a similar condition was needed, it was sufficient to choose a
strictly hyponormal operator at random, but here the further conditions
(4.7)(ii) and (iii) complicate matters. There are definite obstacles to basing
the construction on a weighted shift or a modification of one. However, there
is another standard class of hyponormal operators, derived from “truncated
Hilbert transforms”, from which it is possible, with some effort, to construct
operators satisfying (4.7). The general information on Hilbert transforms
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that I shall use is summarized below, (5.2). For hyponormal operators, see
[5] – from which I took the idea –and [6]. For the Hilbert transform on
the line, see [11]; for higher dimensions and generalizations, [19]; and [20]
and [21] (where the transform on the line appears in vol. 2, p. 243).

(5.2) Let L^{p}(\mathbb{R}) , L^{p}([-1,1]) denote the Lebesgue spaces of complex-
valued functions integrable in pth power with respect to Lebesgue measure
on \mathbb{R} or on [-1, 1]. The second space embeds in the first (extension of
functions by zero).

Given f\in L^{p}(\mathbb{R}) , where 1<p<\infty , one defines for each \delta>0

(H_{\delta} \{f\})(s):=-\frac{1}{\pi}\int_{|t|\geq\delta}\frac{f(t+s)}{t}dt=\frac{1}{\pi}\int_{|s-t|\geq\delta}\frac{f(t)}{s-t}dt , (83)

(which is clearly in L^{\infty}(\mathbb{R}) , by the H\"older inequality). Then
(i) for each \delta>0 , H_{\delta}\{f\}\in L^{p}(\mathbb{R}) ;
(ii) as \delta\downarrow 0 , H_{\delta}\{f\} converges in L^{p}(\mathbb{R}) to a limit H\{f\} , the Hilbert

transform of f (which may therefore be symbolically represented
by the formula

H \{f\}(s)=\frac{1}{\pi}\int\frac{f(t)}{s-t}dt ,

the integral being understood as a “Cauchy principal value in the
L^{p} sense”);

(iii) when p=2, H is a skew-adjoint isometry of L^{2}(\mathbb{R}) (more gen-
erally, H is a bounded linear operator in L^{p}(\mathbb{R}) , satisfying H^{2}=

-I) ;
(iv) if \phi(s)=as+b , where a\neq 0 , is an affine automorphism of \mathbb{R} ,

then, for any f\in L^{2}(\mathbb{R}) , H\{f\circ\phi\}=H\{f\}0\phi ;
(v) if f is C^{\infty} of compact support, H\{f\} is a.e . equal to a C^{\infty} func-

then, and \mathcal{H}\{f’\}=(?t\{f\})’a.e . (This is all that is used below,
but, with (iii), it evidently implies a more general and elegant
statement for Sobolov spaces).

(5.3) The argument will mostly concern the order of magnitude of
various non-negative functions, on a domain D which will vary with the
context. To avoid introducing unnecessary constants, I shall write inter-
changeably \phi=O(\psi) , \phi\prec\psi , or \psi\succ\phi when there is a positive constant
\Lambda such that \phi(\xi)\leq\Lambda\psi(\xi) for all \xi\in D . If both \phi\prec\psi and \psi\prec\phi , I shall
write \phi\wedge-\psi . (Thus the Landau O is always to be understood uniformly in
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D ; but the other symbols, which sometimes have notational advantages, do
not have their usual asymptotic meanings). The relations\prec and-\wedge , thus
defined, enjoy obvious algebraic and analytical properties.

(5.4) Fix a C^{\infty} function \psi : IR – [0, 1] such that \psi(t)=0 for t\leq 0

and \psi(t)=1 for t\geq 1 . Suppose that 0< \theta<\frac{1}{3} , and set

h[\theta](t):=\{

g[\theta](t):=e

0 for t \leq\theta and for t\geq 2 ,

\psi(\frac{t-\theta}{\theta}) for \theta\leq t\leq 2\theta ,

1 for 2\theta\leq t\leq 1 ,
\psi(2-t) for 1\leq t\leq 2 ,

xp(\pi i\theta^{-2}t)h[\theta](t) .

\} (84)

Thus g[\theta] and g[\theta]^{2} are C^{\infty} of compact support [\theta, 2] , and bounded in mod-
ulus by 1; their kth derivatives, for k\geq 1 , are uniformly O(\theta^{-2k}) .

(5.5) If q is a piecewise C^{1} function supported on [0, 2] and \delta\in(0,1) ,
then

|( \int_{t\leq s-\delta}+\int_{t\geq s+\delta})\frac{q(t)dt}{s-t}|\leq 2\int_{\delta}^{2}\frac{Qdt}{t}=2Q (\log 2- log \delta ), (85)

where Q is the L^{\infty} -norm of q . Also the principal value

| \int_{s-\delta}^{s+\delta}\frac{q(t)dt}{s-t}|=\lim_{\epsilon\downarrow 0}|\int_{\epsilon}^{\delta}\frac{q(s-t)-q(s+t)}{t}dt|

= \lim_{\epsilon\downarrow 0}|\int_{\epsilon}^{\delta}(\int_{-t}^{t}(-q’(s+\tau))d\tau)\frac{dt}{t}|

\leq\lim_{\epsilon\downarrow 0}\int_{\epsilon}^{\delta}2Q’dt=2Q’\delta , (86)

if |q’(t)|\leq Q’ where q’ is defined, for s-\delta\leq t\leq s+\delta . So in this case, from
(83),

\pi|H\{q\}(s)|\leq 2Q (\log 2- log \delta ) +2Q’\delta . (87)

When q:=g[\theta]^{2} , take Q:=1 and Q’=O(\theta^{-2}) , by (5.4); then (87) shows
that

|H\{g[\theta]^{2}\}(s)|\prec| log \theta| uniformly for all s . (88)

(It is only necessary to take \delta:=\theta^{2} ). One may proceed similarly when
q:=(g[\theta]^{2})’ , with Q=O(\theta^{-2}) and Q’=O(\theta^{-4}) , and \delta:=\theta^{2} (or \theta^{4} ). With
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(5.2) (v), this gives

|(H\{g[\theta]^{2}\})’(s)\prec\theta^{-2}| log \theta| uniformly for all s . (89)

(5.6) Let r[\theta](s):=(1-|g[\theta](s)|^{2})H\{g[\theta]^{2}\}(s) . Then, by (88),

|r[\theta](s)|\prec| log \theta| uniformly in s , (90)

whilst, from (89) and the product rule,

|r[\theta]’(s)|\prec\theta^{-2}| log \theta| . (91)

Applying (87) with Q=O ( | log \theta| ) and Q’=O( \theta^{-2}| log \theta| ), and with \delta:=

\theta^{2} ,

|H\{r[\theta]\}(s)|\prec| log \theta|^{2} uniformly for all s . (92)

So far, the oscillatory factor in g[\theta] has not improved the estimates I have
given.

(5.7) Next, consider what happens when s\not\in(0,3) . Then, writing
\gamma_{\theta}(t):=(h[\theta](t))^{2} ,

\int_{\theta}^{2}\frac{(g[\theta](t))^{2}}{s-t}dt=\int_{\theta}^{2}\frac{\exp(2\pi i\theta^{-2}t)\gamma_{\theta}(t)}{s-t}dt

=[ \frac{\theta^{2}\exp(2\pi i\theta^{-2}t)\gamma_{\theta}(t)}{2\pi i(s-t)}]_{t=\theta}^{2} (93)

- \frac{\theta^{2}}{2\pi i}\int_{\theta}^{2}\frac{((s-t)\gamma_{\theta}’(t)+\gamma_{\theta}(t))\exp(2\pi i\theta^{-2}t)}{(s-t)^{2}}dt .

Since |s-\theta| and |s-2| are not less than \theta , and \gamma_{\theta} takes values in [0, 1] ,
the modulus of the first term is uniformly O(\theta) ; moreover, \gamma_{\theta}’ vanishes on
[2\theta, 1] , and is uniformly O(1) on [1, 2] and O(\theta^{-1}) on [\theta, 2\theta] . Hence

| \int_{\theta}^{2}\frac{\gamma_{\theta}’(t)\exp(2\pi i\theta^{-2}t)}{s-t}dt|

= \frac{\theta.O(\theta^{-1})}{\theta-s}+\frac{1.O(1)}{1-s} for all s\leq 0 , and
also\} (94)

| \int_{\theta}^{2}\frac{\gamma_{\theta}(t)\exp(2\pi i\theta^{-2}t)}{(s-t)^{2}}dt|

\leq\int_{\theta}^{2}\frac{1}{(s-t)^{2}}dt=\frac{1}{2-s}-\frac{1}{\theta-s}=\frac{O(1)}{\theta-s} .
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Similar estimates hold for s\geq 3 , and my (rather weak) conclusion from (93)
is that

|7 \{\{g[\theta]^{2}\}(s)|=\frac{1}{\pi}\int_{\theta}^{2}\frac{(g[\theta](t))^{2}}{s-t}dt

\prec\frac{\theta}{\min(|\theta-s|,|s-2|)} for s\not\in(0,3) . (95)

(5.8) Let 3 \theta<s<\frac{1}{2} . Then, with r[\theta] as in (5.6),

| \int_{-\infty}^{0}\frac{r[\theta](t)dt}{s-t}|=|\int_{-\infty}^{0}\frac{H\{g[\theta]^{2}\}(t)dt}{s-t}| as g[\theta](s)=0 for s\leq 0

\prec\theta\int_{-\infty}^{0}\frac{dt}{(s-t)(\theta-t)} by (95)

\leq\theta\int_{-\infty}^{0}\frac{dt}{(\theta-t)^{2}}=\theta.\frac{1}{\theta}=1 and similarly

| \int_{3}^{\infty}\frac{r[\theta](t)dt}{s-t}|\prec\theta\int_{3}^{\infty}\frac{dt}{(t-2)^{2}}=\theta . But (88) implies that

| \int_{0}^{3\theta}\frac{r[\theta](t)dt}{s-t}|\leq|\int_{0}^{2\theta}\frac{|H\{g[\theta]^{2}\}(t)|dt}{s-t}|\prec\frac{2\theta|1og\theta|}{s-2\theta}\prec| log \theta| , (96)

as |g[\theta](t)|=1 for 2\theta\leq t\leq 1 , and in the same way

| \int_{3\theta}^{3}\frac{r[\theta](t)dt}{s-t}|\leq|\int_{1}^{3}\frac{H\{g[\theta]^{2}\}(t)dt}{s-t}|\prec\frac{2|1og\theta|}{3-s}\prec| log \theta| . (97)

Putting these estimates together,

|\mathcal{H}\{r[\theta]\}(s)|\prec| log \theta| for 3 \theta<s<\frac{1}{2} . (88)

However,

H\{r[\theta]\}=H\{H\{g[\theta]^{2}\}\}-H\{|g[\theta]|^{2}H\{g[\theta]^{2}\}\}

=-g[\theta]^{2}-H\{|g[\theta]|^{2}H\{g[\theta]^{2}\} , by (5.8) (iii), (99)
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|H\{|g[\theta]|^{2}H\{g[\theta]^{2}\}\}(s)|\prec| log \theta|^{2}

whenceand

for s\leq 3\theta and \frac{1}{2}\leq s , by (92),
\}(100)

|H\{|g[\theta]|^{2}?\{\{g[\theta]^{2}\}(s)|\prec| log \theta|

for 3 \theta<s<\frac{1}{2} , by (98).

Lemma 5.9 \int s^{-1}|\overline{g[\theta]}H\{g[\theta]^{2}\}|^{2}|H\{|g[\theta]|^{2}H\{g[\theta]^{2}\}\}|^{2}ds\prec| log \theta|^{6} .

Proof. |g[\theta](s)|\leq 1 , and is 0 unless \theta\leq s\leq 2 . Hence, by (88) and (100),

\int s^{-1}|\overline{g[\theta]}H\{g[\theta]^{2}\}|^{2}|H\{|g[\theta]|^{2}H\{g[\theta]^{2}\}\}|^{2}ds

\prec| log \theta|^{2}\int_{\theta}^{2}s^{-1}|7\{\{|g[\theta]|^{2}H\{g[\theta]^{2}\}\}|^{2}ds

\prec| log \theta|^{2}\{| log \theta|^{4}(\int_{\theta}^{3\theta}s^{-1}ds+\int_{1/2}^{2}s^{-1}ds)

+| log \theta|^{2}\int_{3\theta}^{1/2}s^{-1}ds\}

=| log \theta|^{4}(| log \theta|^{2} (log 3+\log 4 ) + \log(\frac{1}{2}) - log 3 -log \theta)

\prec| log \theta|^{6} . (101)

\square

Note. Because of the oscillatory term in the definition of g[\theta] the es-
timate is | log \theta|^{6} , whereas the elementary arguments of (5.6) would lead to
| log \theta|^{7}1

(5.10) Define H_{0} to be the complex Hilbert space L^{2}([-1,1]) , and set
for f\in H_{0}

(A_{1}f)(s):=s\chi_{[0,1]}(s)f(s) . (102)

Then A_{1} is a bounded non-negative operator in H_{0} . Fix b>0 , c>1 , and
define ng and g_{n} for n=1,2,3 , . . by

ng:=g[2^{n^{c}+1-(n+1)^{c}}] , g_{n}(t):=n^{-b}(^{n}g\circ\phi_{n})(t) , (103)
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where g[\theta] is as in (5.4) and \phi_{n} is multiplication by 2^{n^{c}+1} . Thus g_{n} is zero
off E_{n}:=(2^{-(n+1)^{c}}, 2^{-n^{c}}) , and, by (5.2) (iv), (88) of (5.5), and obviously,

\sup\{|g_{n}(t)|^{2} : t\in \mathbb{R}\}=n^{-2b} and, as c>1 ,
\sup\{|\overline{g_{n}(t)}\mathcal{H}\{g_{n}^{2}\}(t)| _{:} _{t\in \mathbb{R}\}}\prec n^{-3b}’((n+1)^{c}-n^{c}-1)\wedge-n^{c-1-3b}. \}(104)

Define h_{n}:=\overline{g}_{n}H\{g_{n}^{2}\} , which is also zero off E_{n} . If I suppose that 3b\geq

c-1 , then, by (104), there exists a constant K such that essup |g_{n}|\leq K\geq

essup |h_{n}| for all n . Let \chi_{n} denote the characteristic function of E_{n} . Define
Q_{n} : H_{0}arrow H_{0} by

(\forall f\in H_{0}) Q_{n}(f):=\overline{g}_{n}H\{g_{n}f\}+\overline{h}_{n}H\{h_{n}f\} . (105)

As g_{n}f , h_{n}f\in H_{0} and ||g_{n}f||\leq K||\chi_{n}f||\geq||h_{n}f|| , (5.2) (iii) shows that
Q_{n}(f)\in H_{0} and ||Q_{n}(f)||\leq 2K^{2}||\chi_{n}f|| . Moreover, Q_{n} is skew-adjoint
(because H is). Also,

(\forall f\in H_{0}) \sum_{n=1}^{\infty}||Q_{n}(f)||^{2}\leq\sum_{n=1}^{\infty}4K^{4}||\chi_{n}f||^{2}\leq 4K^{4}||f||^{2} (106)

since the (E_{n}) are disjoint. As Q_{n}(f) clearly vanishes off E_{n} , this proves that
\sum\frac{1}{2}Q_{n} converges strongly to an operator S_{1} , where ||S_{1}||\leq K^{2} . Clearly S_{1}

is skew-adjoint. I recall that this presupposes 3b\geq c-1>0 .

(5.11) A simple computation from (5.2)(ii) and (102) shows that, for
each f\in H_{0} ,

[A_{1}, S_{1}]f= \frac{1}{2}\pi^{-1}\sum_{n=1}^{\infty}(\langle f, g_{n}\rangle g_{n}+\langle f, h_{n}\rangle h_{n}) ,

so that

\langle[A_{1}, S_{1}]f, f\rangle=\frac{1}{2}\pi^{-1}\sum_{n=1}^{\infty}(|\langle f, g_{n}\rangle|^{2}+|\langle f, h_{n}\rangle|^{2}).\}(107)

Therefore [A_{1}, S_{1}]\geq 0 . Note that g_{k} and g_{n} are orthogonal for k\neq n , as
are h_{k} and h_{n} , because E_{n} and E_{k} are disjoint. Furthermore, g_{n} and h_{n} are
orthogonal, because H is skew-adjoint.

Since g_{n} and h_{n} are uniformly essentially bounded and the measure of
their support E_{n} does not exceed 2^{-n^{c}} , \sum(||g_{n}||^{2}+||h_{n}||^{2})<\infty , and (107)

now shows that [A_{1}, S_{1}] is in the trace-class.



Geodesic and metnc completeness in infifinite dimensions 35

Take (\mu_{n}) such that 0\leq\mu_{n}<\mu for all n , and define C_{0} by

(\forall f\in H_{0}) C_{0}f:= \frac{1}{2}\sum_{n=1}^{\infty}\mu_{n} \langle f, g_{n}\rangle g_{n} . (108)

Hence 0\leq(\pi\mu)^{-1}C_{0}\leq[A_{1}, S_{1}] , and C_{0} is in the trace-class.

Proposition 5.12 Suppose that \mu_{n}||s^{-1/2}\overline{h}_{n}H\{h_{n}g_{n}\}||\leq L for all n .
Then

[C_{0}, S_{1}] \leq\pi(1+\frac{1}{2}\mu^{2})[A_{1}, S_{1}]+\frac{1}{8}L^{2}A_{1} . (109)

Proof. Given n ,

S_{1}g_{n}= \frac{1}{2}\sum_{k=1}^{\infty}Q_{k}(g_{n})=\frac{1}{2}Q_{n}(g_{n})

= \frac{1}{2}\overline{g}_{n}H\{g_{n}^{2}\}+\frac{1}{2}\overline{h}_{n}H\{h_{n}g_{n}\}=\frac{1}{2}h_{n}+\frac{1}{2}\overline{h}_{n}H\{h_{n}g_{n}\} (110)

whichissupportedonE_{n}(asg_{k}g_{n}=h_{k}g_{n}=0fork\neq. Let\Gamma bethesetofindicesnforwhichS_{1}g_{n}-\frac{g1}{2}h_{n}n),andconsequent1yS_{1}g_{n}-\frac{1}{2}h_{n}=\frac{1}{2}\overline{h}_{n}H\{h_{nn}\}

,

is not zero a.e . (in fact \Gamma contains all n , but that need not be proved); for
each n\in\Gamma , let

\omega_{n}:=||s^{-1/2}\overline{h}_{n}H\{h_{n}g_{n}\}||^{-1}s^{-1/2}\overline{h}_{n}H\{h_{n}g_{n}\} . (111)

Then \{\omega_{n} : n\in\Gamma\} is orthonormal. Now, for any f\in H_{0} , from (108)

\langle[C_{0}, S_{1}]f, f\rangle=\langle S_{1}f, C_{0}f\rangle+\langle C_{0}f, S_{1}f\rangle (112)
(compare the real case (76))

= \sum_{n=1}^{\infty}\mu_{n}\Re(\langle f, g_{n}\rangle\langle g_{n}, S_{1}f\rangle)\leq\sum_{n=1}^{\infty}\mu_{n}|\langle f, g_{n}\rangle||\langle f, S_{1}g_{n}\rangle|

\leq\sum_{n=1}^{\infty}\mu_{n}|\langle f, g_{n}\rangle||\langle f, S_{1}g_{n}-\frac{1}{2}h_{n}\rangle|+\frac{1}{2}\sum_{n=1}^{\infty}\mu_{n}|\langle f, g_{n}\rangle||\langle f, h_{n}\rangle|

\leq\frac{1}{2}(1+\frac{1}{2}\mu^{2})\sum_{n=1}^{\infty}|\langle f, g_{n}\rangle|^{2}

+ \frac{1}{4}\sum_{n=1}^{\infty}|\langle f, h_{n}\rangle|^{2}+\frac{1}{2}\sum_{n=1}^{\infty}\mu_{n}^{2}|\langle f, S_{1}g_{n}-\frac{1}{2}h_{n}\rangle|^{2}
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\leq\pi(1+\frac{1}{2}\mu^{2})\langle[A_{1}, S_{1}]f, f\rangle

+ \frac{1}{2}\sum\mu_{n}^{2}|\langle s^{1/2}f, s^{-1/2}(S_{1}g_{n}-\frac{1}{2}h_{n})\rangle|^{2} by (107)
n\in\Gamma

\leq\pi(1+\frac{1}{2}\mu^{2})\langle[A_{1}, S_{1}]f, f\rangle

+ \frac{1}{8}\sum\mu_{n}^{2}||s^{-1/2}\overline{h}_{n}H\{h_{n}g_{n}\}||^{2}|\langle s^{1/2}f, \omega_{n}\rangle|^{2}

n\in\Gamma

\leq\pi(1+\frac{1}{2}\mu^{2})\langle[A_{1}, S_{1}]f, f\rangle+\frac{1}{8}L^{2}\langle s^{1/2}\chi_{[0,1]}f, s^{1/2}\chi_{[0,1]}f\rangle

(Bessel’s inequality)

= \pi(1+\frac{1}{2}\mu^{2}) \langle[A_{1}, S_{1}]f, f\rangle+\frac{1}{8}L^{2}\langle A_{1}f, f\rangle ,

which is the result. \square

Lemma 5.13 ||s^{-1/2}\overline{h}_{n}H\{h_{n}g_{n}\}||\prec n^{3(c-1)-7b} .

Proof. For each index n ,

||s^{-1/2} \overline{h}_{n}H\{h_{n}g_{n}\}||^{2}=\int s^{-1}|\overline{g}_{n}\mathcal{H}\{g_{n}^{2}\}|^{2}|H\{|g_{n}|^{2}H\{g_{n}^{2}\}|^{2}ds

=n^{-14b} \int s^{-1}(|(^{\overline{n}}g)H\{(^{n}g)^{2}\}|^{2}|\mathcal{H}\{|^{n}g|^{2}H\{(^{n}g)^{2}\}|^{2})0\phi_{n}ds

by (5.2) (iv)

=n^{-14b} \int t^{-1}|(^{\overline{n}}g)H\{(^{n}g)^{2}\}|^{2}|H\{|^{n}g|^{2}\mathcal{H}\{(^{n}g)^{2}\}|^{2}dt ,

where t:=\phi_{n}(s) ,

\prec n^{-14b}| log (2^{n^{c}+1-(n+1)^{c}})|^{6}\wedge\vee n^{6(c-1)-14b} .

by Lemma 5.9. (113)

The result follows. \square

(5.14) Let (m_{k}) be any orthonormal sequence in L^{2}([-1,0))\subseteq L^{2}(\mathbb{R}) .

Thus g_{n}m_{k}=0a.e . for all j and k . Take a bounded sequence (\lambda_{k}) of non-

negative real numbers, and define the bounded non-negative self-adjoint

operator Z_{0} by

Z_{0}f:= \sum_{k=1}^{\infty}\lambda_{k} \langle f, m_{k}\rangle m_{k} . (114)
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Lemma 5.15 [Z_{0}, S_{1}]=0 .

Proof. For any f\in H_{0} ,

\langle[Z_{0}, S_{1}]f, f\rangle=2\Re(\langle Z_{0}f, S_{1}f\rangle)

=2\Re ( \sum_{=1}^{\infty}\lambda_{k} \langle f, m_{k}\rangle\langle m_{k}, S_{1}f\rangle) (115)

However,foreachk,\langle m_{k},S_{1}f\rangle=\frac{1}{2}\sum_{from}n=1\langle\infty m_{k},\overline{g}_{n}H\{g_{n}f\}+\overline{h}_{n}H\{h_{n}f\}\rangle sincethesupportofm_{k}i_{S}disj_{oint}thesupportsofg_{n}and_{0}fh_{n}.=0\square
’

(5.16) Let \mu_{n}:=\frac{1}{2}n^{-d} , \mu:=1 , in (108), where d\geq 0 . S_{1} is defined if
3b\geq c-1>0 , as in (5.10); then 0\leq\pi^{-1}C_{0}\leq[A_{1}, S_{1}] , as in (5.11); and,
if d+7b\geq 3(c-1) , Lemma 5.13 ensures that Proposition 5.12 applies and
[C_{0}, S_{1}] \leq\frac{3}{2}\pi[A_{1}, S_{1}]+\frac{1}{8}L^{2}A_{1} for some L . Thus the conditions (4.7)(i), (ii),
(iii) are satisfied (mutatis mutandis, i.e. with subscript 1) if C_{1}:= \frac{1}{3}\pi^{-1}C_{0} .
For (4.7)(iv), it then suffices, by Lemma 5.15, to take Z_{1}:=Z_{0}+C_{1} , so that
C_{1}\leq Z_{1}\geq Z_{0} , and the requirements of (3.1) are met with c_{0}=1 . Since C_{1}

is trace-class (see (5.11)), Z_{1} will be trace-class if and only if Z_{0} is, that is,
if \sum\lambda_{n} converges.

Let H_{1} be the real Hilbert space obtained by restriction of the scalar
field of H_{0} to \mathbb{R} , with real inner product given by the real part of the inner
product in H_{1} ; the operators act in H_{1} , and the properties referred to above
(non-negative self-adjoint, skew-adjoint, trace-class) hold in H_{1} as they did
in H_{0} . The norms in H_{1} and in H_{0} agree, so the “complex” calculations
below give valid results in H_{1} too.

Define the manifold M_{1} from the operators A_{1} , C_{1} , Z_{1} in H_{1} , as at (3.1).

(5.17) Let e_{n}:=n^{a}s^{-1}g_{n}+\sigma_{n}m_{n} , where a\in \mathbb{R} , and \sigma_{n}>0 is defined
by

\sigma_{n}^{2}=||n^{a}s^{-1}g_{n}||^{2}=n^{2(a-b)}\int s^{-2}|^{n}g|^{2}\circ\phi_{n}ds ,

which, with t=\phi_{n}(s) ,

-= \wedge n^{2(a-b)}2^{n^{c}+1}\int_{n^{2(a-b)}2^{(n+1)^{c}}}t^{-2}|g[2^{n^{c}+1-(n+1)^{c}}](t)|^{2}dt(116)

as \chi_{[2\theta,1]}\leq g[\theta]\leq\chi_{[\theta,2]} , where \chi_{E} denotes the characteristic function of E .
Since c>1 , the sequence (\sigma_{n}) is strictly increasing for sufficiently large n .
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But also

||e_{n}||=\sigma_{n}\sqrt{2}arrow\infty as narrow\infty . (117)

Moreover,

||s^{-1/2}g_{n}||^{2}=n^{-2b} \int t^{-1}|g[2^{n^{c}+1-(n+1)^{c}}](t)|^{2}dt

-\wedge n^{-2b}\log(2^{(n+1)^{c}-n^{c}-1})\vee\wedge n^{c-1-2b} , (118)

by an argument similar to that justifying (116).

(5.18) From (116), \sigma_{n+1}>2\sigma_{n} for all sufficiently large n (how large
depends on a and b); restrict attention to such n . Define y_{n}(t):=(1-t)e_{n}+

te_{n+1} for 0\leq t\leq 1 . Writing y for y_{n}(t) and \nu_{n} for \sqrt{\min(\lambda_{n},\lambda_{n+1})} , one
then has from (114)

\langle Z_{1}y, y\rangle\geq\langle Z_{0}y, y\rangle=\lambda_{n}(1-t)^{2}\sigma_{n}^{2}+\lambda_{n+1}t^{2}\sigma_{n+1}^{2}

\geq\nu_{n}^{2}\{(1-t)^{2}\sigma_{n}^{2}+t^{2}\sigma_{n+1}^{2}\} ,

and \langle A_{1}y, y\rangle=\int s\chi_{[0,1]}(s)|(1-t)e_{n}(s)+te_{n+1}(s)|^{2}ds

= \int_{\vee,\wedge’ n^{2a+c-2b-1}}s^{-1}\{n^{2a}(,1-t)^{2}|g_{n}|^{2}+(n+1)^{2a}t^{2}|g_{n+1}|^{2}\}ds(119)

from (118), since m_{n} , m_{n+1} are supported on [-1, 0), g_{n} and g_{n+1} have
disjoint supports, and \frac{1}{2}\leq(1-t)^{2}+t^{2}\leq 1 . Next,

\langle C_{1}e_{n}, e_{n}\rangle=\overline{6}\pi n
1 -1 2a-d|\langle s-1g_{n}, g_{n}\rangle|^{2} ,

by the definitions of e_{n} and C_{1} ,
\wedge-n^{2a-d+2c-4b-2}\wedge\vee\langle C_{1}e_{n+1}, e_{n+1}\rangle , by (118). (120)

Since C_{1}e_{n} (a multiple of g_{n} ) and e_{n+1} are orthogonal, it follows that

\langle C_{1}y, y\rangle=(1-t)^{2}\langle C_{1}e_{n}, e_{n}\rangle

+t^{2}\langle C_{1}e_{n+1}, e_{n+1}\rangle\wedge\cdot n^{2a-d+2c-4b-2} . (121)

So, for suitable positive constants U and V , large enough n , and 0\leq t\leq 1 ,
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f(y_{n}(t)) \leq\frac{Un^{2a+c-2b-1}+\exp(-2Vn^{2a-d+2c-4b-2})}{\nu_{n}^{2}\{(1-t)^{2}\sigma_{n}^{2}+t^{2}\sigma_{n+1}^{2}\}\{\log(\nu_{n}^{2}\{(1-t)^{2}\sigma_{n}^{2}+t^{2}\sigma_{n+1}^{2}\})\}^{2}} .

(122)

(5.19) If 2a-d+2c-4b-2>0 , then exp(-2Vn^{2a-d+2c-4b-2})\prec

n^{2a+c-2b-1} ; so the Riemannian length \ell_{n} of the segment y_{n}(t) may be esti-
mated for large n :

\ell_{n}=\int_{0}^{1}\sqrt{f(y_{n}(t))}||y_{n}’(t)||dt=\int_{0}^{1}\sqrt{f(y_{n}(t))}||e_{n+1}-e_{n}||dt

\prec\int_{0}^{1}\frac{n^{(2a+c-2b-1)/2}\sigma_{n+1}}{\nu_{n}\{(1-t)^{2}\sigma_{n}^{2}+t^{2}\sigma_{n+1}^{2}\}^{1/2}1og(\nu_{n}^{2}\{(1-t)^{2}\sigma_{n}^{2}+t^{2}\sigma_{n+1}^{2}\})}dt ,

(123)

since \sigma_{n+1}\geq 2\sigma_{n} . Define \tau:=\sigma_{n+1}^{-1}\sigma_{n}\leq\frac{1}{2} , and then, as t^{2}+(1-t)^{2} \geq\frac{1}{4} ,

\int_{0}^{\tau}\frac{n^{(2a+c-2b-1)/2}\sigma_{n+1}}{\nu_{n}\{(1-t)^{2}\sigma_{n}^{2}+t^{2}\sigma_{n+1}^{2}\}^{1/2}1og(\nu_{n}^{2}\{(1-t)^{2}\sigma_{n}^{2}+t^{2}\sigma_{n+1}^{2}\})}dt

\leq\frac{\tau n^{(2a+c-2b-1)/2}\sigma_{n+1}}{\frac{1}{2}\nu_{n}\sigma_{n}.21og(\frac{1}{2}\nu_{n}\sigma_{n})}=\frac{n^{(2a+c-2b-1)/2}}{\nu_{n}1og(\frac{1}{2}\nu_{n}\sigma_{n})} , (124)

if \nu_{n}\sigma_{n}>2 . Also,

\int_{\tau}^{1}\frac{n^{(2a+c-2b-1)/2}\sigma_{n+1}}{\nu_{n}\{(1-t)^{2}\sigma_{n}^{2}+t^{2}\sigma_{n+1}^{2}\}^{1/2}1og(\nu_{n}^{2}\{(1-t)^{2}\sigma_{n}^{2}+t^{2}\sigma_{n+1}^{2}\})}dt

\leq\int_{\tau}^{1}\frac{n^{(2a+c-2b-1)/2}\sigma_{n+1}}{2\nu_{n}t\sigma_{n+1}1og(\nu_{n}t\sigma_{n+1})}dt

= \frac{1}{2}n^{(2a+c-2b-1)/2}\nu_{n}^{-1} (log \log(\nu_{n}\sigma_{n+1})- log \log(\nu_{n}\tau\sigma_{n+1}) )

= \frac{1}{2}n^{(2a+c-2b-1)/2}\nu_{n}^{-1}(\log\log(\nu_{n}\sigma_{n+1})-\log\log(\nu_{n}\sigma_{n})) . (125)

Putting together (124) and (125), I have the estimate, for \nu_{n}\sigma_{n}>2 ,

\ell_{n}\prec n^{(2a+c-2b-1)/2}\{\frac{1}{\nu_{n}\log(\frac{1}{2}\nu_{n}\sigma_{n})}

+ \frac{\log\log(\nu_{n}\sigma_{n+1})-\log\log(\nu_{n}\sigma_{n}))}{2\nu_{n}}\} . (126)

Proposition 5.20 Suppose that there is a positive number \epsilon such that
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l\nearrow n\succ n^{-\epsilon} . that c>1 , that 2a-d+2c-4b-2>0 , and that 2a+c-2b-1+2\epsilon<

0 . Then M_{1} is metrically incomplete.

Proof. Let 2\delta:=-(2a+c-2b-1+2\epsilon)>0 . Then \nu_{n}^{-1}n^{(2a+c-2b-1)/2}\prec

n^{-\delta} . But (\nu_{n}) is bounded above (by (5.14) and (5.18)), and, as \nu_{n}\succ n^{-\epsilon} ,
from (116)

n^{a-b}2^{(n+1)^{c}/2}\succ\sigma_{n}\succ\nu_{n}\sigma_{n}\succ n^{a-b-\epsilon}2^{(n+1)^{c}/2} . (127)

Thus \nu_{n}\sigma_{n}>2 for large n ,

(n+2)^{-c}1 og(\nu_{n}\sigma_{n+1})=(n+1)^{-c}1og(\nu_{n}\sigma_{n})=\frac 1og2+O(n^{-c}1ogn)\frac{211}{2}\log 2+O(n^{-c}\log n)’

,

and1ikewiseasnarrow\infty.\} (128)

As \log(\frac{1}{2}\nu_{n}\sigma_{n})=n^{c} , \sum\frac{n^{(2a+c-2b-1)/2}}{I/_{n}1og(\frac{1}{2}l_{n}\sigma_{n})}, is dominated by \sum n^{-c-\delta} , and con-
verges.

Next, from (128),

log log (\nu_{n}\sigma_{n+1})- log log (\nu_{n}\sigma_{n})

= \log\{\frac{1og(\nu_{n}\sigma_{n+1})}{1og(\nu_{n}\sigma_{n})}\}=\log\{\frac{(n+2)^{c}}{(n+1)^{c}} ( 1+O (n^{-c} log n)) \}

=c \log(1+\frac{1}{n+1})+O (n^{-c} log n) \wedge\vee n^{-1} . (129)

Hence \sum n^{(2a+c-2b-1)/2}\{[mathring]_{[mathring]_{[mathring]_{[mathring]_{\frac{1g1g(\iota/_{n}\sigma_{n+1})-1g1g(\nu_{n}\sigma_{n})}{\iota/_{n}}}}}}\} is dominated by

\sum n^{-1-\delta} . and also converges. Now, by (126), \sum\ell_{n} converges. Thus the
path formed by the rectilinear segments y_{n}(t) , for n=1,2,3 , \ldots , is of finite
length in M_{1} . As it passes through all the points e_{n} , it has by (117) no limit
in H_{1} , or in M_{1} . \square

Proposition 5.21 Operators A_{1} , C_{1} , S_{1} , Z_{1} in the separable Hilbert space
H_{1} may be constructed as above to satisfy (mutatis mutandis) all the con-
ditions of (3.1) and (4.7), and to make the Riemannian manifold M_{1} of
(3.1) metrically incomplete. Moreover, both C_{1} and Z_{1} may be trace-class
operators.

Proof. This follows from Proposition 5.20 and (5.16) if I can satisfy the
assumptions 3b\geq c-1>0 of (5.10), d>1 (to ensure \sum\lambda_{n}<\infty ), and
d+7b\geq 3(c-1) from (5.16), 2a-d+2c-4b-2>0 from (5.19), \epsilon>0
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and 2a+c-2b-1+2\epsilon<0 from Proposition 5.20. A possible solution is
a:=-8 , b:=30 , c:=71 , d:=2 , \epsilon:=2 . \square

Note. Clearly one needs c-2b-1>0 and a<0 . The estimate | log \theta|^{7}

mentioned in the note to Lemma 5.9 would lead, via Lemma 5.13, to the
condition 2d+14b\geq 7(c-1) , and no solution would be possible; for then
2(c-1-2b) \leq\frac{4}{7}d , and cannot outweigh-d. As for d, it plays no essential
part.

6. Normal neighbourhoods

In this section, M and f are defined from operators A , C , and Z as at
(3.1), || once more denotes the norm in H, and |||| the Riemannian norm
in the tangent spaces of M, whilst [ I , as before, is the operator norm in
L(H) (or in other spaces of operators). Recall that X(x)= \frac{1}{2}\nabla f(x) .

Lemma 6.1 |X(x)|=O(1+\langle x, x\rangle) and [ DX(x)I =O(1+\langle x, x\rangle) .

Proof. Note that |Zx|\leq(\zeta^{2}\langle Zx, x\rangle)^{1/2} , for instance by the spectral
theorem. So

\frac{|Zx|}{1+\langle Zx,x\rangle}\leq\frac{1}{2} ( for all x . In like manner

exp (-\langle Cx, x\rangle)|Cx|\leq\gamma exp (-|C^{1/2}x|^{2})|C^{1/2}x| (130)

is also bounded for all x . The first statement therefore follows from (59)
and Lemma 3.4, since \Phi(\langle Zx, x\rangle)>1+\langle Zx, x\rangle . On differentiating to find
DX(x)\cdot h , one obtains a sum of many terms all of which are O(|h|(1+|x|^{2})) .
(It should be noted that \Phi’ and \Phi’/\Phi are both bounded; compare (52) of
(4.1) ) . \square

(6.2) Fix–\cup\geq 1 such that \max(|X(x)|, [ X’(x)I)\leq---(1+|x|^{2}) for all
x\in H . (131)

The desideratum is an estimate for the size of a normal neighbourhood
in terms of the norm in H. In the s-parametrization of (4.1) the geodesic
equation is x’=\mu X(x) (see (56)) with initial condition |x’|^{2}=\mu f(x) as at
(57). It will help to study its modification

x’= \frac{\langle x’,x’\rangle}{f(x)}X(x) , (130)

which, like the geodesic equation itself, is invariant under affine changes of
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parameter. On “dotting” with 2x’ . (132) has the special integral

f(x)^{-1}\langle x’, x’\rangle=\mu , (133)

\mu being a constant of the solution. Hence a solution of (132) is a solution of
(56), (57), for a suitable \mu , whilst any solution of (56), (57) is a solution of
(132). It follows from Lemma 4.3 that the maximal solutions of (132) are
defined for all s .

Now fix a point x\in M . Denote by p(s, x, \xi) , or (when ambiguity
does not arise) by p(s;\xi) , for -\infty<s<\infty , the solution of (132) which
satisfies the initial conditions p(0, x, \xi)=x , p’(0, x, \xi)=\xi (the prime
denotes differentiation with respect to the first variable “s”); and write
E_{x}(\xi)=E(x, \xi):=p(1, x, \xi) , so that, by the afRne-invariance of (132),
E(x, s\xi)=p(s, x, \xi) for all s and \xi . Given r\geq 0 , let

R_{1}(r):=--\cup-1 exp (-(\alpha^{2}+1)(\gamma^{2}+1)(\zeta^{2}+1)(e^{e}+r^{2})) . (134)

(Recall that \Xi\geq 1 . This is just a convenient value, not the “best possibl\"e).

Lemma 6.3 |p(s, x, \xi)-x|<\frac{1}{3}(1+|x|)^{-1} if |s\xi|\leq R_{1}(|x|) .

Proof. Take \tau as the least positive number, if one exists, for which
|p( \tau, x, \xi)-x|=\frac{1}{3}(1+|x|)^{-1} (if no such \tau exists, there is nothing to prove);
and \mu:=f(x)^{-1}\langle\xi, \xi\rangle . Thus, for 0\leq s\leq\tau .

|X(p(s; \xi))|\leq K:=--\cup(1+(\frac{1}{3}(1+|x|)^{-1}+|x|)^{2})

by (131), so that, by (132),
|p’(s;\xi)|\leq\mu K , and, by the mean-value inequality,

|p’(s;\xi)-\xi|\leq\mu Ks ; in turn, this leads to

|p(s; \xi)-s\xi-x|\leq\frac{1}{2}\mu Ks^{2} . so that, recalling the meaning of \mu ,

\frac{1}{3}(1+|x|)^{-1}=|p(\tau;\xi)-x|\leq\frac{1}{2}Kf(x)^{-1}|\tau\xi|^{2}+|\tau\xi| .

Hence trivially | \tau\xi|\geq\min(\frac{1}{6}(1+|x|)^{-1},2f(x)K^{-1}) . (135)

But (134) implies min ( \frac{1}{6}(1+|x|)^{-1},2f(x)K^{-1})>R_{1}(|x|) . \square

Lemma 6.4 Suppose that \xi , \eta\in H , \tau>0 , and |\tau\xi| , |\tau\eta|\leq R_{1}(x) ; then

|p( \tau, x, \xi)-\tau\xi-p(\tau, x, \eta)+\tau\eta|\leq\frac{1}{5}|\tau\xi-\tau\eta| . (136)
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Proof. Let \rho(\tau) := \max\{|p(s;\xi)-p(s;\eta)| : 0\leq s\leq\tau\} . By Lemma 6.3,
p(s;\xi) and p(s;\eta) (and the straight-line segment joining them) lie for 0\leq

s\leq\tau in the || -ball of radius \frac{1}{3}(1+|x|)^{-1} about x , on which |X(y)| and
[ X’(y) I are both bounded by–\cup(1+(|x|+\frac{1}{3}(1+|x|)^{-1})^{2})<---[x]:=\Xi(2+

|x|^{2}) . Thus for each such s

|p’(s;\xi)-p’(s;\eta)|

=|’ \frac{\langle p’(s\cdot\xi),p’(s\cdot\xi)\rangle}{f(p(s,\xi))}.’ X(p(s;\xi))-,\frac{\langle p’(s\cdot\eta),p’(s\cdot\eta)\rangle}{f(p(s,\eta))}.’ X(p(s;\eta))|

=| \frac{\langle\xi,\xi\rangle}{f(x)}X(p(s;\xi))-\frac{\langle\eta,\eta\rangle}{f(x)}X(p(s;\eta))| by (133)

\leq\frac{\langle\xi,\xi\rangle}{f(x)}|X(p(s;\xi))-X(p(s;\eta))|+\frac{---[x]}{f(x)}|\langle\xi, \xi\rangle-\langle\eta, \eta\rangle|

\leq\frac{\langle\xi,\xi\rangle}{f(x)}---[x]\rho(\tau)+\frac{--[-x]}{f(x)}|\xi-\eta|(|\xi|+|\eta|) , (137)

by the mean-value inequality; in turn

|p’(s;\xi)-\xi-p’(s;\eta)+\eta|

\leq s_{-}^{-}-[x]f(x)^{-1}\{\langle\xi, \xi\rangle\rho(\tau)+|\xi-\eta|(|\xi|+|\eta|)\} and
|p(s;\xi)-s\xi-p(s;\eta)+s\eta|

<-s_{\cup}^{2_{-}}-[x]f(x)^{-1}\{\langle\xi, \xi\rangle\rho(\tau)1+|\xi-\eta|(|\xi|+|\eta|)\} . (138)
-2

Therefore

\rho(\tau)\leq\frac{1}{2}\tau^{2-}--[x]f(x)^{-1}\{|\xi|^{2}\rho(\tau)+|\xi-\eta|(|\xi|+|\eta|)\}+\tau|\xi-\eta|

\leq\frac{1}{240}\rho(\tau)+\frac{7}{6}\tau|\xi-\eta| , (139)

consequent1y\rho(’\tau)\leq\frac{280f(}{239}\tau|\xi-\eta|.Substituteackinsince,by(134)_{\cup}^{-}-[x]x)^{-1}(R_{1}(|x|))^{2}<\frac{1}{120,b’}and\frac{1}{6}\leq\frac{1}{5}(138)--[-x]f, (x)^{-l}R_{1}(| andnote\frac{x|)1}{240}\frac{280<}{239}+\Pi^{\frac{1}{6}}.

,

Lemma 6.5 For any w\in H such that |w-x| \leq\frac{4}{5}R_{1}(|x|) , there exists
a unique \xi\in H such that |\xi|\leq R_{1}(|x|) and E(x, \xi)=w . This \xi satisfifies
the further conditions that | \xi|\leq\frac{5}{4}|w-x| and |E(x, s \xi)-x|\leq\frac{3}{2}|w-x|

for 0\leq s\leq 1 . Lastly, E_{x} is a C^{\omega} diffeomorphism between the open sets
V:= \{w\in H : |w-x|<\frac{4}{5}R_{1}(|x|)\} and U:=\{\xi\in H : |\xi|<R_{1}(|x|) &
|E(x, \xi)-x|<\frac{4}{5}R_{1}(|x|)\} .
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Proof. If | \xi|\leq\frac{5}{4}|w-x|\leq R_{1}(|x|) , define T\xi:=\xi+w-E(x, \xi) . Then

|T \xi|\leq|w-x|+|E(x, \xi)-\xi-x|\leq|w-x|+\frac{1}{4}|w-x| (140)

also (take \eta=0 , \tau=1 in Lemma 6.4, so that E (x , \eta)=x ). If |\xi| , |\eta|\leq

\frac{5}{4}|w-x| , from Lemma 6.4

|T \xi-T\eta|=|E(x, \eta)-\eta-E(x, \xi)+\xi|\leq\frac{1}{5}|\xi-\eta| . (141)

Since T\xi=\xi if and only if E(x, \xi)=w , the existence and uniqueness of
\xi follows by the contraction principle. Again from Lemma 6.4, |E(x, s\xi)-

s \xi-x|\leq\frac{1}{5}|s\xi| for each s\in[0,1] , so that |E(x, s \xi)-x|\leq\frac{6}{5}|s\xi| ; the second
sentence of the Lemma follows. As for the third, it has just been shown that
E_{x} is a bijective correspondence between the stated sets, and the general
theory of differential equations ensures that it is C^{\omega} . It only remains to
show that its derivative is invertible at all points of U . For sufficiently
small h , Lemma 6.4 gives |E(x, \xi+h)-E(x, \xi)-h|\leq\frac{1}{5}|h| , so that in the
limit [ DE_{x}( \xi)-II\leq\frac{1}{5} . This proves the result. \square

Lemma 6.6 If y , x\in H and |y-x|\leq R_{1}(|x|) , then

\frac{20}{21}f(x)\leq f(y)\leq\frac{21}{20}f(x) . (142)

Proof. Since R_{1}(|x|)\leq \exp ( -e^{e}(1+(^{2}))<(1+e^{e}\zeta^{2})^{-1} exp(-e^{e})<

\frac{1}{600}\zeta^{-1} ,

\sqrt{e^{e}+\langle Zy,y\rangle}\leq\sqrt{e^{e}+\langle Zx,x\rangle}+\zeta|y-x|

\leq\frac{601}{600}\sqrt{e^{e}+\langle Zx,x\rangle} (143)

and

\sqrt{e^{e}+\langle Zy,y\rangle}\geq\sqrt{e^{e}+\langle Zx,x\rangle}-\zeta|y-x|

\geq\frac{599}{600}\sqrt{e^{e}+\langle Zx,x\rangle} . (144)

Secondly,

\langle Cy, y\rangle\leq(\sqrt{\langle Cx,x\rangle}+\gamma|y-x|)^{2}\leq\langle Cx, x\rangle+\frac{1}{1800} , (145)
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since

2\gamma|y-x|\sqrt{\langle Cx,x\rangle}\leq 2\gamma|2x| exp (-e^{e}-e^{e} \gamma^{2}-|x|^{2})<\frac{1}{3600}

and

\gamma^{2}|y-x|^{2}\leq\gamma^{2} exp (-2e^{e}-2e^{e} \gamma^{2})<\frac{1}{3600} .

Similarly,

\langle Cy, y\rangle\geq(\sqrt{\langle Cx,x\rangle}-\gamma|y-x|)^{2}\geq\langle Cx, x\rangle-\frac{1}{1800} ; (146)

and also

\langle Ay, y\rangle\leq(\sqrt{\langle Ax,x\rangle}+\alpha|y-x|)^{2}

\leq\langle Ax, x\rangle+\frac{1}{1800} exp (-\langle Cx, x\rangle) , (147)

since

\alpha^{2}|y-x|^{2}\leq\alpha^{2} exp (-2e^{e}-2e^{e22}\alpha-2\gamma\langle x, x\rangle)

< \frac{1}{3600} exp (-\langle Cx, x\rangle)

and
2\alpha|y-x|\sqrt{\langle Ax,x\rangle}\leq 2\alpha^{2}|x| exp (-e^{e}-e^{e}\alpha^{2}-|x|^{2}-\gamma^{2}|x|^{2})

\leq\frac{1}{3600} exp (-\langle Cx, x\rangle) .

Likewise

\langle Ay, y\rangle\geq\langle Ax, x\rangle-\frac{1}{1800} exp (-\langle Cx, x\rangle) . (148)

Now, applying (144), (146), and (147),

\frac{\langle Ay,y\rangle+\exp(-\langle Cy,y\rangle)}{\Phi(\langle Zy,y\rangle)}

\leq(\frac{600}{599})^{2}\frac{\langle Ax,x\rangle+(e^{1/1800}+\frac{1}{1800})\exp(-\langle Cx,x\rangle)}{(e^{e}+\langle Zx,x\rangle)(1og(e^{e}+\langle Zx,x\rangle)+21og(\frac{599}{600}))^{2}}

< \frac{21}{20}f(x) . (149)
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For the other inequality, use (148), (145), and (143):

\frac{\langle Ay,y\rangle+\exp(-\langle Cy,y\rangle)}{\Phi(\langle Zy,y\rangle)}

\geq(\frac{600}{601})^{2}\frac{\langle Ax,x\rangle+(e^{-1/1800}-\frac{1}{1800})\exp(-\langle Cx,x\rangle)}{(e^{e}+\langle Zx,x\rangle)(1og(e^{e}+\langle Zx,x\rangle)+21og(\frac{601}{600}))^{2}}

> \frac{20}{21}f(x) . (150)

For example, \log(e^{e}+\langle Zx, x\rangle)+2 log ( \frac{601}{600})<\frac{601}{600}\log(e^{e}+\langle Zx, x\rangle) . \square

Corollary 6.7 Whenever |y-x|< \frac{1}{2}R_{1}(|x|) , there is a unit geodesic from
x to y in M , unique both as a minimizing unit geodesic from x to y and
as the only unit geodesic from x to y within the ball {w\in H : |w-x|<
\frac{4}{5}R_{1}(|x|)\} ; it is obtained by reparametrizing E(x, s\xi) , 0\leq s\leq 1 , for a

suitable \xi , where | \xi|\leq\frac{5}{4}|y-x| , and it lies within the ball {w\in H : |w-x|<
\frac{3}{2}|y-x|\} .

Proof For any y with |y-x|< \frac{1}{2}R_{1}(|x|) there is by Lemma 6.5 a
unique \xi such that | \xi|\leq\frac{5}{4}|y-x|\leq\frac{5}{8}R_{1}(|x|) and E(x, \xi)=y . Moreover,
|E(x, s \xi)-x|<\frac{3}{4}R_{1}(|x|) for 0\leq s\leq 1 . It follows from “Gauss’s lemma”
(see 1.9.2 on p. 80 of [12]) that, if |y-x|< \frac{1}{2}R_{1}(|x|) , the reparametrized
geodesic E(x, s\xi) , 0\leq s\leq 1 , is the shortest amongst those paths from
x to y which remain in the ball \{z\in H : |z-x|<\frac{4}{5}R_{1}(|x|)\} (and are
therefore images under the exponential of paths in T_{x}M , by Lemma 6.5).
Its Riemannian length consequently cannot exceed that of the straight-line

segmentinHfromxtoy,whichisnotgreaterthan\sqrt{\frac{21}{20h}f(x)}Lemma6.6.Ontheotherhand,Lemma6.6a1soshowstatany
.

\frac{1}{2}R_{1}(|x|)pathfro’ mbyy

to x which leaves the ball of radius \frac{4}{5}R_{1}(|x|) about x must have Riemannian

length at least \sqrt{\frac{20}{21}f(x)}\frac{11}{10}R_{1}(|x|) (since the segment “from x to outside”

has || length at least \frac{4}{5}R_{1}(|x|) , and the segment “from outside to y” at
least \frac{3}{10}R_{1}(|x|)) , and this is larger than the previous estimate. Hence the
reparametrized geodesic E(x, s\xi) is unconditionally the shortest path from
x to y . The concluding assertion is taken from Lemma 6.5. \square

Proposition 6.8 There is a decreasing function \chi : [0, \infty)arrow(0,1] such
that, whenever x , y , z\in H and |x-y|<\chi(|x|)>|x-z| , there is a

unique minimizing geodesic segment in M which joins y to z . Furthermore,
|w-x|<4\chi(|x|) for any point w on this geodesic segment.
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Proof. Take \chi(r):=\frac{1}{4}R_{1}(r+1)<\frac{1}{4} by (134), and use Corollary 6.7.
\square

7. Sequential compactness in sets of paths

(7.1) I shall use an analogue for the weak topology of the “sufficiency”
part of the Ascoli-Arzel\‘a theorem; it can be modified in many ways.

Let E be a normed space with norm || , and let I temporarily denote
the interval [0, a] , where a>0 . Endow the space C^{1}(I, E) of C^{1} (not just
piecewise C^{1} ) paths I -arrow E with the C^{1} -weak topology; that is, the topology
of uniform weak convergence of values and of first derivatives. (This space is
convenient for dealing with lengths). A neighbourhood base for p\in C^{1}(I, E)

is furnished by sets of the form

\{q\in C^{1}(I, E) : q(0)-p(0)\in V\ (\forall t\in I)\dot{q}(t)-\dot{p}(t)\in V\} (151)

as V varies over weak neighbourhoods of 0 in E.

(7.2) Given G_{0} , G_{1}\subseteq E and a modulus of continuity \kappa : (0, \infty)arrow

(0, \infty) , let \mathcal{P}_{I}(G_{0}, G_{1}, \kappa)\subseteq C^{1}(I, E) consist of the differentiable paths p such
that p(0)\in G_{0},\dot{p}(0)\in G_{1} , and, for any t’ , t\in I and \epsilon>0 , |\dot{p}(t’)-\dot{p}(t)|\leq\epsilon

whenever |t’-t|<\kappa(\epsilon) . Then there exists a number k:=k(a, \kappa) such that,
for all p\in P_{I}(G_{0}, G_{1}, \kappa) and t\in I , |\dot{p}(t)-\dot{p}(O)|\leq k . If G_{1} is bounded,
it follows that \mathcal{P}_{I}(G_{0}, G_{1}, \kappa) is equicontinuous with respect to the norm
topology.

Proposition 7.3 Let E be reflexive, and G_{0} and G_{1} weakly compact in
E. Then \prime p_{I}(G_{0}, G_{1}, \kappa) is sequentially compact in C^{1}(I, E) in the C^{1} weak
topology.

Proof. Let (p_{n}) be a sequence in \prime p_{I}(G_{0}, G_{1}, \kappa) . Now G_{0} and G_{1} are
norm-bounded in E , with bounds \lambda_{0} , \lambda_{1} , and therefore, for any \xi\in I , and
all n ,

|\dot{p}_{n}(\xi)|\leq k+|\dot{p}_{n}(0)|\leq k+\lambda_{1} (see (7.2)); (152)

since the closed balls of radii \lambda_{0} , k+\lambda_{1} about 0 are weakly sequentially
compact, a subsequence (p_{n(i)}) may be selected by a diagonal process so
that, for each \xi\in \mathbb{Q}\cap I,\dot{p}_{n(i)}(\xi) converges weakly, say to q(\xi) , and also
p_{n(i)}(0) converges weakly to v . As G_{0} and G_{1} are weakly closed, q(0)\in G_{1}

and v\in G_{0} . (153)
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Take \xi , \eta\in \mathbb{Q}\cap I . Thus \dot{p}_{n(i)}(\xi)-\dot{p}_{n(i)}(\eta)arrow q(\xi)-q(\eta) weakly. If
\epsilon>0 and |\xi-\eta|<\kappa(\epsilon) , then |\dot{p}_{n(i)}(\xi)-\dot{p}_{n(i)}(\eta)|\leq\epsilon for each i , and, by
Mazur ’s lemma,

|q( \xi)-q(\eta)|\leq\lim inf |\dot{p}_{n(i)}(\xi)-\dot{p}_{n(i)}(\eta)|\leq\epsilon . (154)

Consequently q extends to a mapping of I , which I still call q and which
still admits the modulus of continuity \kappa . (155)

Let \phi\in E’ , with norm 1, and let \epsilon>0 . Cover I by open intervals
U_{1} , U_{2} , . , U_{u} , each of length less than \kappa(\frac{1}{3}\epsilon) , and choose \xi_{j}\in \mathbb{Q}\cap I\cap U_{j} for
each j , 1\leq j\leq u . Then there exists N such that | \phi(\dot{p}_{n(i)}(\xi_{j})-q(\xi_{j}))|\leq\frac{1}{3}\epsilon

for 1\leq j\leq u whenever i\geq N\tau Given any t\in I , take j so that t\in U_{j} , and
then, for i\geq N .

|\phi(\dot{p}_{n(i)}(t)-q(t))|

\leq|\phi(\dot{p}_{n(i)}(t)-\dot{p}_{n(i)}(\xi_{j}))|+|\phi(\dot{p}_{n(i)}(\xi_{j})-q(\xi_{j}))|+|\phi(q(\xi_{j})-q(t))|

\leq\frac{1}{3}\epsilon+\frac{1}{3}\epsilon+\frac{1}{3}\epsilon=\epsilon , by (155) (154)

Hence \dot{p}_{n(i)} converges uniformly to q in the weak topology.
As q is continuous in norm, by (155), define p_{0} by p_{0}(s):=v+ \int_{0}^{s}q(\tau)d\tau ,

for each s\in I . Then \dot{p}_{0}=q , and, since p_{n(i)}(O)arrow v weakly, p_{n(i)}
– p_{0}

C^{1} -weakly by the characterization (151) of the C^{1} -weak topology. By (153)
and (155), p_{0}\in P_{I}(G_{0}, G_{1}, \kappa) . \square

(7.4) Let the Riemannian manifold M again be constructed as at (3.1).
As before, || is the norm in H , [ I the operator-norm, |||| the Riemannian
norm in tangent spaces to M. and d the Riemannian distance. Recall from
(4.1) that X(x)= \frac{1}{2}\nabla f(x) .

Lemma 7.5 Suppose G_{0} , G are bounded sets in H and \Lambda\geq 0 . Then there
exist a (Lipschitz) modulus of continuity \kappa and a weakly compact subset G_{1}

of H such that all paths p:Iarrow H which are geodesies in M of Riemannian
length not exceeding \Lambda , start at a point of G_{0} , and take values in G , belong

to P_{I}(G_{0}, G_{1}, \kappa) .

Proof As before, let \lambda_{0} be a norm-bound for G_{0} . Certainly, for any

geodesic p : Iarrow H of length not exceeding \Lambda , ||\dot{p}(t)|| is constant for all
t \in I , as at (54) of (4.1), and cannot exceed \Lambda a^{-1} ; Hence
\langle\dot{p}(t),\dot{p}(t)\rangle\leq\Lambda^{2}a^{-2}f(p(t))^{-1} . (157)
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Also 1/f is bounded above on G_{0} , for instance by

\sigma:=\Phi((^{2}\lambda_{0}^{2})\exp(\gamma^{2}\lambda_{0}^{2}), (158)
so that, in particular, ||p(0)||\leq\lambda_{1}:=\Lambda a^{-1}\sqrt{\sigma} . Thus one may take G_{1} to
be the closed ball of radius \Lambda a^{-1}\sqrt{\sigma} about 0.

Let \lambda be a norm-bound for G . For x\in G , X(x)= \frac{1}{2}\nabla f(x) is bounded,
by (6.2):

| \frac{1}{2}\nabla f(x)|\leq K_{1}:=--\cup(1+\lambda^{2}) , (159)

and K_{2}=K_{2}( \lambda):=\frac{\exp(-\gamma^{2}\lambda^{2})}{\Phi(\zeta^{2}\lambda^{2})}\leq f(x) . (160)

From the geodesic equation (53) of (4.1), for 0\leq t\leq a

| \dot{p}(t)|=f(p(t))^{-1}|\frac{1}{2}\langle\dot{p},\dot{p}\rangle\nabla f-\langle\nabla f,\dot{p}\rangle\dot{p}|\leq f(p(t))^{-1}\{\frac{3}{2}\langle\dot{p},\dot{p}\rangle|\nabla f|\}

\leq 3\Lambda^{2}a^{-2}f(p(t))^{-2}K_{1}\leq 3\Lambda^{2}a^{-2}K_{2}^{-2}K_{1} ,

by (157), (160), (159). (161)

So take \kappa(\epsilon):=(3\Lambda^{2}a^{-2}K_{2}^{-2}K_{1})^{-1}\epsilon , which depends only on \lambda_{0} , \lambda , \Lambda and a .
\square

(7.6) Besides the assumptions of (3.1) and (4.7), let now C and Z be
compact. As before, \kappa is a modulus of continuity.

Proposition Let G_{0} , G_{1} be weakly compact sets in HI If (p_{n}) is a se-
quence in P_{I}(G_{0}, G_{1}, \kappa) which converges in the C^{1} -weak topology to p_{0} , then

p_{0} satisfifies the inequality \ell(p_{0})\leq\lim\sup_{narrow\infty}\ell(p_{n}) .

Proof. By Proposition 7.3, p_{0}\in P_{I}(G_{0}, G_{1}, \kappa) too. Let \lambda_{0} , \lambda_{1} be norm-
bound for G_{0} , G_{1} , and let k be as in (7.2). The \dot{p}_{n} are norm-equicontinuous
by the definition of \prime \mathcal{P}_{I}(G_{0}, G_{1}, \kappa) , and uniformly bounded by k+\lambda_{1} (see
(152) of Proposition 7.3); so the (p_{n}) are Lipschitz with common Lipschitz
constant k+\lambda_{1} , and uniformly bounded with bound \lambda:=(k+\lambda_{1})a+\lambda_{0} .
On the closed ball B(\lambda) of radius \lambda , \nabla f , f , and 1/f are bounded (see (159),
(158) ) ; therefore \sqrt{f} is uniformly continuous (and bounded) on B(\lambda) .

Define h_{n} : Iarrow \mathbb{R} by h_{n}(t):=\sqrt{f(p_{n}(t))}|\dot{p}_{n}(t)| , for n:=1,2,3 , . So
(h_{n}) , (|\dot{p}_{n}(t)|) , and (|A^{1/2}p_{n}(t)|) are equicontinuous and uniformly bounded.
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By the classical Ascoli-Arzel\‘atheorem, there is a subsequence of indices
(n(i)) such that both (h_{n(i)}) and (|A^{1/2}p_{n(i)}|) converge uniformly.

Recall that \ell(p_{n})=\int_{0}^{a}\sqrt{f(p_{n}(\tau))}|\dot{p}_{n}(\tau)|d\tau=\int_{0}^{a}h_{n}(\tau)d\tau for n=
0,1 , 2, . . Thus

\lim_{narrow}\sup_{\infty}\ell(p_{n})\geq\lim_{iarrow\infty}\ell(p_{n(i)})=\int_{0}^{a}\lim_{iarrow\infty}h_{n(i)}(\tau)d\tau , (162)

by uniform convergence. Now p_{n(i)}(t)arrow p_{0}(t) weakly for each t , and C^{1/2}

and Z^{1/2} are compact; hence |C^{1/2}p_{n(i)}(t)|arrow|C^{1/2}p_{0}(t)| and |Z^{1/2}p_{n(i)}(t)|arrow

|Z^{1/2}p0(t)| , so

\langle Cp_{n(i)}(t), p_{n(i)}(t)\ranglearrow\langle Cp_{0}(t), p_{0}(t)\rangle ,
(162)

\Phi(\langle Zp_{n(i)}(t), p_{n(i)}(t)\rangle)arrow\Phi(\langle Zp_{0}(t),p_{0}(t)\rangle .

By Mazur’s lemma,

|A^{1/2}p_{0}(t)| \leq\lim|A^{1/2}p_{n(i)}(t)| ,

| \dot{p}_{0}(t)|\leq\lim\inf|\dot{p}_{n(i)}(t)|iarrow\infty .

So

f(p_{0}(t))= \frac{\langle Ap0(t),p0(t)\rangle+\exp(-\langle Cp0(t),p0(t)\rangle)}{\Phi(\langle Zp0(t),p0(t)\rangle)}

\leq\lim_{iarrow\infty}f(p_{n(i)}(t)) (164)

(which exists), and in turn

\sqrt{f(p_{0}(t))}|\dot{p}_{0}(t)|\leq\lim_{iarrow\infty}\sqrt{f(p_{n(i)}(t))}\lim_{iarrow}\inf_{\infty}|\dot{p}_{n(i)}(t)|

= \lim\inf h_{n(i)}(t)iarrow\infty ’
(165)

which, by construction, is the limit \lim_{i-\infty}h_{n(i)}(t) . The result follows from
integrating this inequality and comparing with (162). \square

Note. The proof can be set out in various ways, but subsequences

cannot be used to avoid the need for compactness of C and Z . The limits

of convergent subsequences \langle Cp_{n(i)}(s_{j}),p_{n(i)}(s_{j})\rangle and \langle Zp_{n(i)}(s_{j}),p_{n(i)}(s_{j})\rangle

may not be \langle Cp_{0}(s_{j}),p_{0}(s_{j})\rangle and \langle Zp_{0}(s_{j}), p_{0}(s_{j})\rangle , and Mazur’s inequality
goes in the wrong direction.
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8. Geodesic convexity

In this section, let M be defined from A , C , Z as in (3.1), where C and
Z are compact; fix x\in M . To construct a minimizing geodesic between x
and y , one might try to extract a C^{1} -weakly convergent subsequence from
a sequence of paths between x and y whose lengths approximate d(x, y) .
Unfortunately, one cannot a priori choose paths with norm-equicontinuous
derivatives, as required in Proposition 7.3. A chosen sequence of paths
might be unavoidably unbounded in Hr

Suppose that M has the tetrapod property of (3.13), with parameter
\phi\in(0, \frac{1}{4}\pi) and feet \wp_{1} , \wp_{2} , \wp_{3}:=J\wp_{1} , \wp_{4}:=J\wp_{2} . Then \partial M is a singleton
\{*\} , by Proposition 3.15.

Lemma 8.1 Suppose K\geq 0 , \nu\in(0,1] , and let p : [a, b] – M be a path
such that |p(a)|\leq K and |p(b)|\geq K+\nu . Then \ell(p)\geq\nu\sqrt{\omega} , where

\omega:=\Phi(\zeta^{2}(K+1)^{2})^{-1} exp (-\gamma^{2}(K+1)^{2}) . (166)

Proof. There is a last point p(s_{1}) such that |p(s_{1})|=K and an earliest
subsequent point p(s_{2}) for which |p(s_{2})|=K+\nu . Then, for s\in(s_{1}, s_{2}] ,
K<|p(s)|\leq K+\nu . As \nu\leq 1 , therefore f(p(s))\geq\omega . But the norm-length
of p|[s_{1}, s_{2}] is at least \nu , and so \ell(p)\geq\ell(p|[s_{1}, s_{2}])\geq\nu\sqrt{\omega} . \square

Lemma 8.2 Suppose d(x, y)<d(x, *) . Then x and y may be joined by a

minimizing geodesic.

Proof. Given x\in M , the numbers r\geq 0 such that, whenever d(x, y)<r ,
there is a minimizing geodesic from x to y , form an interval containing
0. Suppose its supremum \mu<d(x, *) . By Lemma 3.19, all points within
Riemannian distance \mu of x lie within a ball of radius K:=R(x, \mu)>|x|
about the origin. Define \omega by (166). Note \mu>\xi(|x|) by Proposition 6.8.

Now suppose that d(x, y)<\mu+\nu\chi(K+1)\sqrt{\omega} (see Proposition 6.8),
where \nu\in(0,1) .

Firstly, |y|\leq K+\nu . If not, any path p joining x to y will have a last
point p(s_{1}) such that |p(s_{1})|=K , and a first subsequent point p(s_{2}) with
|p(s_{2})|=K+\nu . Clearly \ell(p|[0, s_{1}])\geq\mu (otherwise s_{1} could be increased),
and, by Lemma 8.1, \ell(p|[s_{1}, s_{2}])\geq\nu\sqrt{\omega} , so that \ell(p)\geq\mu+\nu\sqrt{\omega} ; since
\chi(K+1)\leq 1 by construction (see Proposition 6.8), this contradicts the
hypothesis.
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Suppose that y\in M satisfies \mu\leq d(x, y)<\mu+\frac{1}{6}\chi(K+1)\sqrt{\omega} . For
i=1,2 , 3, . ., take a path p_{i} between x and y such that d(x, y)\leq\ell(p_{i})\leq

d(x, y)+ \frac{1}{6}i^{-1}\chi(K+1)\sqrt{\omega} . Then, for all relevant values of s , d(x,p_{i}(s))\leq

\ell(p_{i})<\mu+\frac{1}{3}\chi(K+1)\sqrt{\omega} , and by the last paragraph (with lJ = \frac{1}{3} ) |p_{i}(s)|\leq

K+ \frac{1}{3} ; so, by (166), f(p_{i}(s))\geq\omega . Let z_{i} be the last point on p_{i} for which
d(x, z_{i})= \mu-\frac{1}{6}\chi(K+1)\sqrt{\omega} ; by hypothesis, there is a minimizing geodesic
q_{i} from x to z_{i} , \ell(q_{i})=d(x, z_{i}) . The length of the remainder of p_{i} , between
z_{i} and y , cannot exceed \ell(p_{i})-d(x, z_{i})\leq\frac{1}{6}(2+i^{-1})\chi(K+1)\sqrt{\omega} , and so
its length in H (taking \nu=\frac{1}{2} above) is not greater than \frac{1}{2}\chi(K+1) . By
Proposition 6.8, there is a (unique) minimizing geodesic r_{i} from z_{i} to y , and

\ell(r_{i})=d(z_{i}, y)\leq\ell(p_{i})-d(x, z_{i})

\leq d(x, y)-\mu+\frac{1}{6}(1+i^{-1})\chi(K+1)\sqrt{\omega} . (167)

The Riemannian distance from x of any point on q_{i} or on r_{i} does not exceed

\mu-\frac{1}{6}\chi(K+1)\sqrt{\omega}+\frac{1}{6}(2+i^{-1})\chi(K+1)\sqrt{\omega}

< \mu+\frac{1}{3}\chi(K+1)\sqrt{\omega} , (168)

so that (taking \nu=\frac{1}{3} again) q_{i} and r_{i} are norm-bounded by K+ \frac{1}{3} for all i .
Reparametrize affinely so that q_{i} , r_{i} : [0, 1]arrow M . Their Riemannian

lengths are bounded by \Lambda:=\mu+\frac{1}{3}\chi(K+1)\sqrt{\omega} . So Lemma 7.5 and PropO-
sition 7.3 may be applied; passing (twice) to a subsequence, I may assume
both q_{i} and r_{i} converge C^{1} -weakly to C^{1} paths q_{0} , r_{0} . Since q_{i}(0)=x ,
r_{i}(1)=y , and q_{i}(1)=z_{i}=r_{i}(0) , for each i , in the weak limit

q_{0}(0)=x , r_{0}(1)=y , and q_{0}(1)=r_{0}(0) . (168)

By (7.6),

\ell(q_{0})\leq\lim_{iarrow}\sup_{\infty}\ell(q_{i})=\mu-\frac{1}{6}\chi(K+1)\sqrt{\omega} and, from
(167),\} (170)

\ell(r_{0})\leq\lim\sup\ell(r_{i})\leq d(x, y)-\mu+\frac{1}{6}\chi(K+1)\sqrt{\omega} .
iarrow\infty

The concatenation of q_{0} and r_{0} is defined and has length not exceeding
d(x, y) ; ergo, it is a minimizing path from x to y , and may be reparametrized
as a geodesic.

Therefore, if d(x, y)< \mu+\frac{1}{6}\chi(K+1)\sqrt{\omega} , there is a minimizing geodesic
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from x to y –by hypothesis, if d(x, y)<\mu , and by the above argument
if d(x, y)\geq\mu . This contradicts the definition of \mu at the beginning of the
proof; consequently the assumption that \mu<d(x, *) is untenable, which
proves the result. \square

Note, q_{0} and r_{0} are in fact already geodesies, for (7.6) applies to seg-
ments of the paths. Their concatenation reparametrizes piecewise-linearly
to a geodesic.

Lemma 8.3 If x , y\in M and \delta:=d(x, *)+d(*, y)-d(x, y)>0 , then
there is a minimizing geodesic from x to y . Furthermore, for any \epsilon\in(0, \delta)

there exists K(x, y, \epsilon)>0 such that any path p from x to y for which
\ell(p)<d(x, y)+\epsilon lies within the ball of norm-radius K(x, y, \epsilon) about the
origin in H .

Proof. Let

K(\epsilon)=K(x, y, \epsilon) (171)

:= \max(R(x, d(x, *)-\frac{1}{2}(\delta-\epsilon)), R(y, d(y, *)-\frac{1}{2}(\delta-\epsilon)))

(recall Lemma 3.19). Take a path p from x to y such that \ell(p)<d(x, y)+\epsilon ,
and split it into two segments: the first, of length d(x, *)- \frac{1}{2}(\delta-\epsilon) , starts at
x and ends at z(p, \epsilon) , and the second, from z(p, \epsilon) to y , is then necessarily
of length

\ell(p)-d(x, *)+\frac{1}{2}(\delta-\epsilon)

<d(x, y)-d(x, *)+ \frac{1}{2}(\delta+\epsilon)=d(y, *)-\frac{1}{2}(\delta-\epsilon) . (172)

By Lemma 3.19, these segments lie in the balls of norm-radius R(x, d(x, *)-
\frac{1}{2}(\delta-\epsilon)) and of radius R(y, d(y, *)- \frac{1}{2}(\delta-\epsilon)) . So p lies in the ball of radius
K(\epsilon) .

Now choose a sequence (p_{n})_{n=1}^{\infty} of paths from x to y such that \ell(p_{n})<

d(x, y)+ \frac{1}{2}\delta/n . If z_{n}:=z(p_{n}, \frac{1}{2}\delta/n) , then d(x, z_{n}) \leq d(x, *)-\frac{1}{2}(\delta-\frac{1}{2}\delta/n)

and, from (172), d(y, z_{n})<d(y, *)- \frac{1}{2}(\delta-\frac{1}{2}\delta/n) . So Lemma 8.2 yields
minimizing geodesic q_{n} : [0, 1] – M from x to z_{n} and r_{n} : [0, 1] – M from
z_{n} to y . Since they are included in the ball of radius K( \frac{1}{2}\delta) , Lemma 7.5
and Proposition 7.3 and 7.6 apply; there is a sequence (n(i)) of indices such
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that q_{n(i)} , r_{n(i)} have C^{1} -weak limits q , r , where

\ell(q)\ell(r)\leq\lim\sup_{iarrow\infty}\ell(q_{n(i)})\leq\lim\sup\ell(r_{n(i)})\leq d(x,*)-\leq d(y,*)-\frac\delta\frac{1}{221}\delta.’\} (173)

iarrow\infty

Furthermore, q(1)=r(0) , both being weak limits of (z_{n(i)}) , and similarly
q(0)=x , r(1)=y . Thus the concatenation of q and r is defined, and is a
path from x to y of length not exceeding d(x, *)- \frac{1}{2}\delta+d(y, *)-\frac{1}{2}\delta=d(x, y)

by hypothesis. It may therefore be reparametrized as a minimizing geodesic
between x and y . \square

Corollary 8.4 There is a minimizing geodesic from x to y if d(x, y)\leq

d(x, *) .

Proposition 8.5 Suppose that M is geodesically complete. Then, for any
x\in M , the set \{y\in M : d(x, y)=d(x, *)\} is bounded in H .

Proof. Write \triangle:=d(x, *) , and suppose there is a sequence (y_{n}) in M
such that d(x, y_{n})=\triangle for all n and |y_{n}| – \infty . By Corollary 8.4, there is
a minimizing geodesic p_{n} from x to y_{n} , which may be parametrized by arc-
length. For each integer k>\triangle^{-1} , the sequence (p_{n}|[0, \triangle-k^{-1}]) is uniformly
bounded in H , by Lemma 3.19. Thus Lemma 7.5, Proposition 7.3 and a
diagonal process may be applied, to select a subsequence (p_{n(i)}) such that
(p_{n(i)}|[0, \triangle-k^{-1}]) converges C^{1} -weakly as iarrow\infty for every choice of k .

Renumber it as (p_{n}) . The limits for different k agree (as pointwise weak
limits), so they define a C^{1} map p_{0} : [0, \triangle)arrow M . By (7.6), p_{0} must be
distance-nonincreasing:

(\forall s, t\in[0, \triangle)) d(p_{0}(s),p_{0}(t))\leq|s-t| . (174)

Fix \epsilon\in(0, \triangle) , Q>0 . By Lemma 3.19, p_{n}|[0, \triangle-\epsilon] is bounded in norm
for all n by \Omega’=\Omega’(Q, \epsilon):=\max(Q, R(x, \triangle-\epsilon)) . Set

\Omega_{0}=\Omega_{0}(Q, \epsilon):=R_{0}(\triangle, \Omega’) , \Omega_{1}=\Omega_{1}(Q, \epsilon):=R_{1}(\triangle, \Omega’) (175)

as in Lemma 3.17. There exists N such that, whenever n\geq N , |p_{n}(\triangle)|=

|y_{n}|>\Omega_{1}+1 . For each such n , let s_{n} be the first value of the parameter
such that p_{n}(s_{n})=\Omega_{1} . If

\omega=\omega(Q, \epsilon):=\Phi(\zeta^{2}(\Omega_{1}+1)^{2})^{-1} exp (-\gamma^{2}(\Omega_{1}+1)^{2}) , (176)
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as at (166), then, by Lemma 8.1, necessarily \triangle-s_{n}\geq\sqrt{\omega} for n\geq N .
Hence, if k>\omega^{-1/2} , [\triangle-\epsilon, s_{n}]\subseteq[0, \triangle-k^{-1}] .

In Lemma 3.17, I may take, for each n\geq N , a:=\triangle – \epsilon , \beta:=s_{n}

and R’:=\Omega’ (as above). Thus there are numbers R^{(n)}\in(\Omega_{0}, \Omega_{1}) , u^{(n)}\in

(\triangle-\epsilon, s_{n}) , v_{j}^{(n)}\in[0, \beta’) for j=1,2,3,4 , such that, for each j ,

R^{(n)}=|p_{n}(u^{(n)})|=|\wp_{j}(v_{j}^{(n)})| and

\max(\sigma(p_{n}(u^{(n)}), \sigma(\wp_{j}(v_{j}^{(n)})))j<1. (177)

Reparametrize p_{n}|[\triangle-\epsilon, u^{(n)}] as \overline{p}_{n} : [0, 1] – M, which remains a
geodesic, of length not exceeding \epsilon-\sqrt{\omega} , and norm-bounded by \Omega_{1} . Now,
by Lemmas 3.17, 3.18, and 3.10, for some index j(n)\in\{1, 2, 3, 4\} there
is a path, consisting of straight-line segments r_{i}^{(n)} : [0, 1]arrow M (for 1\leq

i\leq 3) , between \overline{p}_{n}(1) and \wp_{j(n)}(v_{j(n)}^{(n)}) , of total length not greater than
L(\pi-\phi)/\log\log(e^{e}+(R^{(n)})^{2})\leq L(\pi-\phi)/\log log (e^{e}+Q^{2}) ; and each seg-
ment is norm-bounded by \kappa(\pi-\phi)\Omega_{1} . Certainly the Riemannian length
of each individual segment does not exceed L(\pi-\phi)/\log\log(e^{e}+Q^{2}) . (In
Lemma 3.10 there are better estimates). By passing to a subsequence and
renumbering, I may assume that j(n) is constant, with value j , and that
|p_{n}(\triangle)|=|y_{n}|>\Omega_{1}+1 , for all n . After this, \Omega_{0}<|\wp_{j}(v_{j}^{(n)})|<\Omega_{1} for
all n . Let \lambda=\lambda(Q, \epsilon) be the least parameter for which |\wp_{j}(\lambda)|=\Omega_{0}

and \mu=\mu(Q, \epsilon) the greatest parameter for which |\wp_{j}(\mu)|=\Omega_{1} . Then
\lambda<v_{j}^{(n)}<\mu for all n , and, by extracting a further subsequence, I may

assume that v_{j}^{(n)} – v_{j}\in[\lambda, \mu] as n – \infty . Consequently \wp_{j}(v_{j}^{(n)}) converges
strongly to \wp_{j}(v_{j}) .

By Lemma 7.5 and Proposition 7.3 (for the geodesies \overline{p}_{n} in particular
–for the rectilinear segments, C^{1} -weak convergence is merely weak conver-
gence of the end-points), there is a further subsequence (n(k)) of the indices
such that (\overline{p}_{n(k)}) and (r_{i}^{n(k)}) for 1\leq i\leq 3 all converge C^{1} -weakly. So does
(p_{n(k)}|[0, \triangle-\epsilon]) . As previously, for instance in Lemma 8.3, the C^{1} weak
limits may be concatenated, since the appropriate end-points coincide (as
weak limits of the same sequences of points). Thus, in the C^{1} -weak limit,
one obtains a path r_{0} from p_{0}(\triangle-\epsilon) to \wp_{j}(v_{j}) . By Proposition 7.6, the C^{1}

-

weak limit of \overline{p}_{n(k)} has Riemannian length not greater than \epsilon-\sqrt{\omega} , whilst,
for 1\leq i\leq 3 ,
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\ell(\lim r_{i}^{n(k)})\leq L(\pi-\phi)/\log log (e^{e}+Q^{2}) . (178)

Hence \ell(r_{0})\leq\epsilon+3L(\pi-\phi)/\log\log(e^{e}+Q^{2}) , and

d(p_{0}(\triangle-\epsilon), *)\leq\ell(r_{0})+d(\wp_{j}(v_{j}), *) (179)
\leq\epsilon+3L(\pi-\phi)/\log\log(e^{e}+Q^{2})+\ell(\wp_{j}|[\lambda, \beta’)) .

Here Q is arbitrary, \lambda\uparrow\beta’ as Q\uparrow\infty , so that d(p0(\triangle-\epsilon), *)\leq\epsilon . (180)
But

\triangle=d(x, *)\leq d(x, p0(\triangle-\epsilon))+d(p0(\triangle-\epsilon), *)

\leq d(x, p0(\triangle-\epsilon))+\epsilon , (181)

whence d(x,p0(\triangle-\epsilon))\geq\triangle-\epsilon . This is true for any \epsilon\in(0, \triangle) ; comparing
(174), one sees that p_{0} : [0, \triangle)arrow M is a minimizing geodesic. By (180),
it converges to * . This is contrary to the hypothesis that all geodesies are
complete. \square

Note. The last paragraph of the proof of Lemma 3.19 may be adapted
to show that*can be approximated arbitrarily closely by points at distance
less than \triangle from x , and (see Lemma 8.2) such points may be joined to x by
minimizing geodesies. Each such geodesic, on extension to length \triangle , must
move away from* .

(8.6) The case remaining to be considered is when d(x, y)=d(x, *)+
d(*, y) . Let \triangle:=d(x, *) , \triangle’:=d(*, y) , and suppose that (p_{n}) is a sequence
of paths, parametrized by arc-length, between x and y , of lengths decreasing
monotonically to d(x, y) . Let v_{n}=p_{n}(t_{n}) be the last point on p_{n} such that
d(x, v_{n})=\triangle , and w_{n}=p_{n}(t_{n}’) the first point such that d(w_{n}, y)=\triangle_{-}’

Then \triangle\leq t_{n} , t_{n}’\leq\ell(p_{n})-\triangle’ , and t_{n}\leq t_{n}’ , for otherwise \ell(p_{n})<\triangle+\triangle’ ;
and t_{n}’-t_{n}\leq\ell(p_{n})-\triangle-\triangle

’ –0. (182)

Lemma 8.7 The paths p_{n} of (8.6) are uniformly bounded in H if and only

if either of the sequences (v_{n}) , (w_{n}) is bounded in H .

Proof. Suppose that |v_{n}|\leq K for all n . Define \omega by (166), and choose
N so that \ell(p_{n})<\triangle+\triangle’+\frac{1}{4}\sqrt{\omega} for n\geq N . In that case, by Lemma 8.1,
|p_{n}(s)|\leq K+1 for t_{n}- \frac{1}{2}\sqrt{\omega}\leq s\leq t_{n}+\frac{1}{2}\sqrt{\omega} . But, if 0\leq s\leq t_{n}’ ,

d(x, y)\leq d(x, p_{n}(s))+d(p_{n}(s), p_{n}(t_{n}’))+d(p_{n}(t_{n}’), y)

\leq d(x,p_{n}(s))+t_{n}’-s+\triangle
’
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\leq\ell(p_{n})<\triangle+\triangle’+\frac{1}{4}\sqrt{\omega} , (183)

so that d(x,p_{n}(s)) \leq\triangle-\frac{1}{4}\sqrt{\omega} when 0 \leq s\leq t_{n}’-\frac{1}{2}\sqrt{\omega} . (This shows that
t_{n}’- \frac{1}{2}\sqrt{\omega}<t_{n} necessarily). Similarly, if s\geq t_{n} ,

d(x, y)\leq d(x, p_{n}(t_{n}))+d(p_{n}(t_{n}),p_{n}(s))+d(p_{n}(s), y)

\leq\triangle+s-t_{n}+d(p_{n}(s), y)

\leq\ell(p_{n})<\triangle+\triangle’+\frac{1}{4}\sqrt{\omega} , (184)

so that d(p_{n}(s), y) \leq\triangle’-\frac{1}{4}\sqrt{\omega} when t_{n}+ \frac{1}{2}\sqrt{\omega}\leq s\leq\ell(p_{n}) . For 0\leq s\leq

\ell(p_{n}) , either 0 \leq s\leq t_{n}-\frac{1}{2}\sqrt{\omega}\leq t_{n}’-\frac{1}{2}\sqrt{\omega} or t_{n}- \frac{1}{2}\sqrt{\omega}\leq s\leq t_{n}+\frac{1}{2}\sqrt{\omega}

or t_{n}+ \frac{1}{2}\sqrt{\omega}\leq s\leq\ell(p_{n}) , so that

|p_{n}(s)| \leq\max(R (x , \triangle-\frac{1}{4}\sqrt{\omega}), K+1 , R(y, \triangle’-\frac{1}{4}\sqrt{\omega})) . (185)

This holds for all n\geq N and all s , which clearly suffices. There is a
symmetrical argument, with t_{n} and t_{n}’ interchanged, if (w_{n}) is bounded.

\square

Proposition 8.8 If M is geodesically complete, it is geodesically convex.
Moreover, for any x , y\in M_{i} there exist K, \epsilon>0 such that any path between
x and y of length less than d(x, y)+\epsilon is norm-bounded by Kt

Proof. After Lemma 8.3, the only case of interest is when d(x, y)=
d(x, *)+d(*, y) . Given any sequence (p_{n}) of paths from x to y with lengths
decreasing to d(x, y) , reparametrize by arc-length and use the conventions of
(8.6). By Proposition 8.5, the sequence (v_{n}) is bounded; by Lemma 8.7, the
paths (p_{n}) are uniformly bounded. This clearly proves the second sentence
of the Proposition. Now choose a specific sequence (p_{n}) .

Define \omega:=\Phi(\zeta^{2}(K+1)^{2})^{-1} exp (-\gamma^{2}(K+1)^{2}) , as at (166), and restrict
attention to indices n which are so large that \ell(p_{n})<d(x, y)+\frac{1}{2}\sqrt{\omega} . Since

\triangle+\triangle’+\frac{1}{2}\sqrt{\omega}>\ell(p_{n})\geq d(x, v_{n})+d(v_{n}, w_{n})+d(w_{n}, y)

=\triangle+d(v_{n}, w_{n})+\triangle’ , (186)

then d(v_{n}, w_{n})< \frac{1}{2}\sqrt{\omega} . But, as |v_{n}|\leq K , Lemma 8.1 and Corollary 3.3(i)
show d(v_{n}, *)\geq\sqrt{\omega} . From Lemma 8.2, there is a minimizing geodesic \gamma_{n} :
[0, 1] – M joining v_{n} to w_{n} , and Corollary 8.4 gives minimizing geodesies
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q_{n} , r_{n} : [0, 1]arrow M between x and v_{n} , w_{n} and y in turn. Together they form
a path of length not greater than \ell(p_{n}) , which is therefore norm-bounded
by K for all the n under consideration. By Lemma 7.5 and Proposition 7.3,
there is a subsequence (n(k)) of the indices such that (q_{n(k)}) , (\gamma_{n(k)}) , and
(r_{n(k)}) all converge C^{1} -weakly to limits q_{0} , \gamma_{0} and r_{0} . As previously (in
Lemma 8.2, 8.3, and Proposition 8.5), these paths may be concatenated to
give a path between x and y . From Proposition 7.6, and (182) of (8.6),

\ell(\gamma 0)\leq\lim sup \ell(\gamma_{n(k)})\leq\lim\sup(t_{n}’-t_{n})=0 , (187)

since \ell(\gamma_{n(k)})=d(v_{n}, w_{n})\leq t_{n}’-t_{n}arrow 0 . Thus \gamma_{0} is constant, and q_{0} , r_{0}

may be immediately concatenated. The length of the resulting path is

\ell(qo)+\ell(r_{0})\leq\lim\sup\ell(q_{n(k)})+\lim\sup\ell(r_{n(k)})

karrow\infty karrow\infty

=\triangle+\triangle’=d(x, y) , (188)

by (7.6), so that it is minimizing, and may be reparametrized, in fact
piecewise-linearly, to become a minimizing geodesic from x to y . \square

9. Concluding remarks

(9.1) Proof of Theorem A. Construct operators A_{1} , S_{1} , C_{1} , Z_{1} in a
separable Hilbert space H_{1} to satisfy the conditions of (3.1) and of (4.7),
and so that C_{1} and Z_{1} are compact and the manifold M_{1} (defined as at
(3.1), but with subscripts) is metrically incomplete. This is possible, by
Proposition 5.21. Take A:=A_{1}\cross A_{1} in H:=H_{1}\cross H_{1} , and so on, as at
(3.14), and define M exactly as at (3.1). By Proposition 3.15, M is met-
rically incomplete and \partial M is a singleton. But A , S:=S_{1}\cross S_{1} , C , Z also
satisfy the requirements of (3.1) and (4.7), so that M is geodesically com-
plete by Theorem 4.10, and C and Z are compact, so that M is geodesically
convex by Proposition 8.8.

(9.2) Notes. Separability of H is quite inessential; one may take or-
thogonal sums of the operators of \S 5 with 0 to obtain examples in any
infinite-dimensional Hilbert space. Also, the minimizing geodesies between
x and y are not in general unique up to parametrization. Choose a\in M such
that d(a, *)<d(a, 0) , and suppose there is a unique minimizing geodesic
p(t) , - 1\leq t\leq 1 , from a to Ja=-a. Then p(t) agrees with -p(-t) , and
therefore p(0)=0. But this means the length of p cannot be less than
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d(a, O)+d(0, Ja)=2d(a, O)>d(a, *)+d(*, Ja)\geq d(a, Ja) , so that p is not
after all minimizing.

(9.3) The choice of A, C , Z may obviously be varied, and both the
definition of M at (3.1) and the conditions (4.7) may be modified. Nev-
ertheless, there is a sense in which my construction of M is perhaps the
simplest of its type.

One must prove geodesic completeness without metric completeness.
For this, conformal modifications of the flat structure on H are convenient,
because the geodesic equation can then be put in the transparent form (56),
(57) (which is familiar in the geometrical optics of inhomogeneous media).
The easiest non-trivial conformal multiplier is perhaps f(x):=\langle Ax, x\rangle+

exp (-\langle Cx, x\rangle) , for a suitable choice of A and C, and assumptions like (4.7)
(specifically, that \eta_{0}C\leq[A, S] ) yield a proof of geodesic completeness. But
M is then forced to be metrically complete.

Let p be of finite length, and set r(s):=|p(s)| . Then there exists \kappa>0

with

\langle Cp(s),p(s)\rangle\leq 2\eta_{0}^{-1}\langle Ap(s), Sp(s)\rangle\leq 2\kappa|A^{1/2}p(s)|r(s) ,

andso2(f(s))^{1/2}\geq\geq(\kappa r(s))^{-1}\sqrt{\langle Ap(s),p(s)\rangle}.+\exp(-\kappa r(s)\sqrt{\langle Ap(s),p(s)\rangle})

\} (189)

If p is unbounded in H , its finite lengh entails (as in (3.5)) the convergence
of \int_{1}^{\infty}f^{1/2}dr and therefore of \int_{1}^{\infty}\frac{dr}{r} . This contradiction means that p

is bounded, and, as f is bounded away from 0 on bounded sets, p must
therefore converge in H .

This argument involves only the radial component of the motion of p,
and may be overcome by introducing into f a denominator (1 +\langle x, x\rangle)^{\epsilon}

for some \epsilon>0 . For \epsilon>1 , metric incompleteness is trivial, but geodesic
incompleteness is also to be expected (the ray tx , for t \geq 0 , is a geodesic if
Ax=0, which implies Cx=0 by (189) ) . Therefore the obvious choice of
\epsilon is 1. But metric incompleteness still presents difficulties, although they
may be due only to my unskilled constructions in \S 5.

For a path p which tends to infinity to have finite length, one needs
that “on the whole” \langle Ap(s),p(s)\ranglearrow 0 and \langle Cp(s),p(s)\ranglearrow\infty . To arrange
this in \S 5, |p(s)| must increase so rapidly in comparison that the trans-
verse component of the motion may make an infinite contribution to its
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length. Therefore I have multiplied the denominator of f by the further
term \log^{2}(e^{e}+\langle x, x\rangle) , which is crucial in (5.19).

Finally, \langle Zx, x\rangle is used in the denominator instead of \langle x, x\rangle for the
technical reasons given in the note to (7.6). For a geodesically complete but
metrically incomplete Riemannian manifold, it suffices to take the identity
for Z .

(9.4) It is noteworthy that the metric structure of M is more trouble-
some than the geodesic structure. It is less surprising, since the example
must be essentially infinite-dimensional, that it is not robust. The con-
ditions (4.7) do allow perturbations, but only very restricted ones. One
might vaguely conjecture that there is some interesting sense (uninteresting
statements are easily found) in which geodesic completeness “generically”
implies metric completeness, but it is not clear how such a statement can
be credibly and non-trivially formulated.
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