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Vector-valued weakly analytic measures

Nakhl\’e H. ASMAR, Annela R. KELLY and Stephen MONTGOMERY-SMITH
(Received March 31, 1997)

Abstract. A celebrated result of Forelli extends the classical F. & M. Riesz Theorem to
representations on spaces of Baire measures on a locally compact Hausdorff topological
space. We extend these results to representations on vector valued measures, using meth-
ods previously developed by two of the authors. The results contained herein complement
a result of Ryan. Our paper is not based upon Forelli’s result or methods.
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1. Introduction

In this paper we study properties of weakly analytic vector-valued mea-
sures. To motivate the discussion, let us start with some relevant results
for scalar-valued measures. A fundamental result in harmonic analysis, the
F. and M. Riesz Theorem, states that if a complex Borel measure \mu on the
unit circle T (in symbols, \mu\in M(T) ) is analytic that is,

\int_{-\pi}^{\pi}e^{-int}d\mu(t)=0 , for all n<0 ,

then \mu is absolutely continuous with respect to Lebesgue measure m, that is
\mu<<m . Furthermore, the classical result of Raikov and Plessner [10], shows
that \mu<<m if and only if the measure \mu translates continuously. That is
the mapping tarrow\mu(\cdot+t) is continuous from \mathbb{R} into M(T) . Hence, if \mu is
analytic, then tarrow\mu(\cdot+t) is continuous.

The F. and M. Riesz Theorem has since been generalized to groups and
measure spaces by Helson and Lowdenslager [6], de Leeuw and Glicksberg
[3], Forelli [5], Yamaguchi [14], and many other authors.

In recent work in [1], it is shown that under certain conditions on T
where T=(T_{t})_{t\in \mathbb{R}} is a collection of uniformly bounded invertible isomor-
phisms of the space of measures on a given measure space, if a measure \mu

is analytic, in some weak sense, then the mapping tarrow T_{t}\mu is continuous.
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However, not as much is known for vector-valued measures. First, let us
consider measures on the unit circle with values in some dual space X=Y^{*}

that is measures in M(T, Y^{*}) . R. Ryan [12] obtained that if \mu is weakly
analytic i.e. \int_{-\pi}^{\pi}e^{-int}d\langle y, \mu(t)\rangle=0 , for all n<0 , for all y\in Y. then
\mu<<\lambda . Unlike the scalar case, there exist weakly analytic vector-valued
measures that do not translate continuously. As a corollary of our main
result, we show that if we further assume that Y^{*} has the analytic Radon-
Nikod\acute{y}m property (ARNP), then every weakly analytic measure translates
continuously.

We start with some definitions and notation. Denote the real numbers,
the complex numbers and the circle group \{e^{it} : 0\leq t<2\pi\} by \mathbb{R} , \mathbb{C} and
T respectively. Let M(\mathbb{R}) be the Banach space of complex regular Borel
measures on \mathbb{R} . Denote by L^{1}(\mathbb{R}) the space of Lebesgue integrable func-
tions and by L^{\infty}(\mathbb{R}) the space of essentially bounded Lebesgue measurable
functions. Define the spaces H^{1}(\mathbb{R}) and H^{\infty}(\mathbb{R}) as follows:

H^{1}(\mathbb{R})=\{f\in L^{1}(\mathbb{R}) : \hat{f}(s)=0, s<0\} ,

and

H^{\infty}(\mathbb{R})=\{f\in L^{\infty}(\mathbb{R}) : \int_{\mathbb{R}}f(t)g(t)dt=0 , for all g\in H^{1}(\mathbb{R})\} .

Throughout this paper, let \Sigma denote a \sigma-algebra of subsets of a set \Omega , and X
will be an arbitrary Banach space with norm denoted ||\cdot|| . If \mu is a positive
measure on \Omega , then a vector-valued function f : \Omegaarrow X is said to be Bochner
(or strongly) \mu -measurable if there exists a sequence \{f_{n}\} of X-valued simple
functions on \Omega such that \lim_{narrow\infty}f_{n}(\omega)=f(\omega)\mu- a.e . on \Omega . Let L^{1}(\Omega, \mu, X)

denote the Banach space of all strongly measurable functions which satisfy
\int_{\Omega}||f(\omega)||d\mu(\omega)<\infty , with norm ||f||= \int_{\Omega}||f(\omega)||d\mu(\omega) . Such functions f
are always limits, in the norm of L^{1}(X) , of simple functions, and this allows
us to define the Bochner integral of f . \int_{\Omega}f(\omega)d\mu(\omega) . For the remainder of
this paper we will only consider Bochner integrals. A function f : \Omegaarrow X

is called weakly measurable if for each x^{*}\in X^{*} . the map t\mapsto x^{*}(f(t)) is a
scalar-valued measurable function.

Also, denote by M(\Omega, X) the space of countably additive X-valued
measures of bounded variation on (\Omega, \Sigma) , with the 1-variation norm ||\mu||_{1}<
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\infty where

|| \mu||_{1}=\sup_{\pi}\sum_{B\in\pi}||\mu(B)||_{X}
,

and the supremum is over all finite measurable partitions \pi of \Sigma . We obtain
results for M(\Omega, X) , where X is a dual space, that is X=Y^{*} . for some
Banach space Y So for the rest of the paper we will consider only M(\Omega, Y^{*}) .

From now on, let T=(T_{t})_{t\in \mathbb{R}} denote a collection of uniformly bounded
invertible isomorphisms of M(\Omega, Y^{*}) such that

\sup_{t\in \mathbb{R}}||T_{t}^{\pm 1}||\leq c , (1.1)

where c is a positive constant.
We can now turn to the notion of analyticity for measures. Two defi-

nitions are needed.

Definition 1.1 Let (T_{t})_{t\in \mathbb{R}} be a uniformly bounded collection of isomor-
phisms of M(\Omega, Y^{*}) . A measure \mu\in M(\Omega, Y^{*}) is called weakly measurable
if for every A\in\Sigma , the map tarrow T_{t}\mu(A) is Bochner measurable.

Definition 1.2 Let (T_{t})_{t\in \mathbb{R}} be a uniformly bounded collection of isomor-
phisms of M(\Omega, Y^{*}) . A weakly measurable \mu\in M(\Omega, Y^{*}) is called weakly
T-analytic (or simply weakly analytic) if for all A\in\Sigma and for all y\in Y .
the map tarrow y(T_{t}\mu(A)) is in H^{\infty}(\mathbb{R}) .

We will repeatedly use the following two lemmas.

Lemma 1.3 ([7], Corollary to Theorem 7.5.11) If T : X – Y is a
bounded linear operator, and f : \Omegaarrow X is a Bochner integrable function
with respect to a positive measure \lambda , then Tf is Bochner integrable with
respect to \lambda , and

\int_{\Omega}T(f(t))d\lambda(t)=T(\int_{\Omega}f(t)d\lambda(t)) . (1.2)

Lemma 1.4 Let T=(T_{t})_{t\in \mathbb{R}} be a uniformly bounded collection of isomor-
phisms of M(\Omega, Y^{*}) , and suppose that \mu\in M(\Omega, Y^{*}) is weakly measurable
with respect to T Then for all f\in L_{1}(\mathbb{R}) , and all y\in Y ,

\int_{\mathbb{R}}y(T_{t}\mu(A))f(t)dt=y(\int_{\mathbb{R}}T_{t}\mu(A)f(t)dt) . (1.3)



460 N. H. Asmar, A.R. Kelly and S. Montgomery-Smith

Proof. Since

\int_{\Omega}||y(T_{t}\mu(A))f(t)||dt\leq||y||||T||||\mu||_{1}||f||

then T_{t}\mu(A) is Bochner integrable and the result follows from Lemma 1.3.
\square

The following is a fundamental property that was introduced in [1] for
scalar valued measures.

Definition 1.5 Let T=(T_{t})_{t\in \mathbb{R}} be a uniformly bounded collection of
isomorphisms of M(\Omega, Y^{*}) . Then we say that T satisfies hypothesis (A) if
whenever \mu\in M(\Omega, Y^{*}) is weakly analytic and is such that for every A\in\Sigma

we have T_{t}\mu(A)=0 for almost all t\in \mathbb{R} , then \mu is the zero measure.

Next we introduce a property that has been studied extensively by
several mathematicians (for instance see [2], [8]). One way of defining it is
the following. Let \lambda denote the normalized Haar measure on T.

Definition 1.6 A complex Banach space X is said to have the analytic
Radon-Nikodym property (ARNP) if every measure \mu\in M(T, X) , such that

\int_{\mathbb{T}}e^{-int}d\mu(t)=0 , n<0

has a Radon- Nikod\acute{y}m derivative in L^{1}(T, \lambda, X) .

The following theorem shows that ARNP passes from X to M(\Omega, X) if
X is a dual space.

Theorem 1.7 [11] The Banach space M(\Omega, Y^{*}) has the ARNP whenever
Y^{*} does.

2. Main Lemma

First we will define a subspace of M(\Omega, Y^{*})^{*} which is in effect the
simple Y-valued functions on \Omega . This concept was used by Talagrand [13].
Given B_{1} , \ldots , B_{n}\in\Sigma and y_{1} , . , y_{n}\in Y define \varphi_{y_{1},y_{2},\ldots,y_{n}}^{B_{1},B_{2},..,B_{n}}\in M(\Omega, Y^{*})^{*}

in the following way:

\varphi_{y_{1},y_{2},\ldots,y_{n}}^{B_{1},B_{2},..,B_{n}}(\mu)=\sum y_{i}(\mu(B_{i}))n , \mu\in M(\Omega, Y^{*}) . (2.1)
i=1
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Let E denote the collection of all such linear functional. The set E is a
norming subspace, that is for all \mu\in M(\Sigma, Y^{*})

|| \mu||_{1}=\sup\{\varphi(\mu) : ||\varphi||=1, \varphi\in E\} .

Now we will state the principal result of this section.

Lemma 2.1 Suppose Y^{*} has ARNP. Let E be as above, and let f : \mathbb{R}arrow

M(\Omega, Y^{*}) be such that \sup_{t\in \mathbb{R}}||f(t)||_{1}<\infty . Suppose further that for all
A\in\Sigma , t – f(t)(A) is Bochner measurable and that for all y\in Y. for all
A\in\Sigma the map t – y(f(t)(A)) is in H^{\infty}(\mathbb{R}) . Then there exists a Bochner
measurable essentially bounded g : \mathbb{R}arrow M(\Omega, Y^{*}) such that for all \varphi\in E

we have

\varphi(g(t))=\varphi(f(t)) ,

for almost all t\in \mathbb{R}

Proof. Let \Phi(z)=i\frac{1-z}{1+z} be the conformal mapping of the unit disk onto
the upper half plane, mapping T onto \mathbb{R} . Let F=f\circ\Phi . Consider the
expression

y( \int_{A}F(\theta)(B)\frac{d\theta}{2\pi}) ,

where A is a Borel subset of T , B\in\Sigma . Since F(\theta)(B) is Bochner integrable,
one can apply Lemma 1.4 to obtain that y(F(\theta)(B)) is Lebesgue integrable
and

y( \int_{A}F(\theta)(B)\frac{d\theta}{2\pi})=\int_{A}y(F(\theta)(B))\frac{d\theta}{2\pi} . (2.2)

Using (2.2), in the notation of (2.1), we see that for all \varphi=\varphi_{y_{1},\ldots,y_{n}}^{B_{1},\ldots,B_{n}}\in E :

y_{1}( \int_{A}F(\theta)(B_{1})\frac{d\theta}{2\pi})+ +y_{n}( \int_{A}F(\theta)(B_{n})\frac{d\theta}{2\pi})

= \int_{A}\varphi_{y_{1},\ldots,y_{n}}^{B_{1},\ldots,B_{n}}(F(\theta))\frac{d\theta}{2\pi} , (2.3)

and that \varphi(F(\theta)) is Lebesgue integrable for every \varphi\in E . Hence, \thetaarrow

\varphi(F(\theta))\in H^{\infty}(T) by (2.3) and by the assumption that y(f(t)(A))\in
H^{\infty}(\mathbb{R}) .
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Define a scalar-valued measure \mu_{\varphi} on the Borel sets of T by

\mu_{\varphi}(A)=\int_{A}\varphi(F(\theta))\frac{d\theta}{2\pi} , (\varphi\in E) (2.4)

Then for all continuous functions h on T , one has that

\int_{T}h(\theta)d\mu_{\varphi}(\theta)=\int_{T}h(\theta)\varphi(F(\theta))\frac{d\theta}{2\pi} .

Now we will restrict to \varphi_{y}^{B}\in E , for the clarity of the proof, and later we
will generalize the formulas for any \varphi\in E . First we want to prove that the
Y^{*} -valued set function defined by:

m(B)= \int_{A}F(\theta)(B)\frac{d\theta}{2\pi} , (B\in\Sigma)

is a countably additive measure of bounded variation, that is m\in M(\Omega, Y^{*}) .
To show that m is countably additive, it is enough ([4], Corollary 1.4.7) to
prove that the scalar measure, defined by:

\eta_{y}(B)=y(\int_{A}F(\theta)(B)\frac{d\theta}{2\pi}) ,

is countably additive. for every y\in Y Hence we need to show that for any
sequence of disjoint sets \{B_{k}\} in \Sigma , \bigcup_{k=1}^{\infty}B_{k}\in\Sigma :

\lim_{narrow\infty}y(\int_{A}F(\theta)(\bigcup_{k=1}^{n}B_{k})\frac{d\theta}{2\pi})=y(\int_{A}F(\theta)(\bigcup_{k=1}^{\infty}B_{k})\frac{d\theta}{2\pi}) . (2.5)

Since F(\theta)\in M(\Omega, Y^{*}) , then

\lim_{narrow\infty}F(\theta)(_{k=1}^{n}\cup B_{k})=F(\theta)(_{k=1}^{\infty}\cup B_{k}) , (\theta\in T)

and also

||F( \theta)(\bigcup_{k=1}^{n}B_{k})||_{Y^{*}}\leq||F(\theta)||_{1}<\infty , (n>0) .

Therefore one can use the Dominated Convergence Theorem ([7], Theorem
3.7.9) to obtain

\lim_{narrow\infty}\int_{A}F(\theta)(_{k=1}^{n}\cup B_{k})\frac{d\theta}{2\pi}=\int_{A}F(\theta)(\bigcup_{k=1}^{\infty}B_{k})\frac{d\theta}{2\pi} .
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Next we can apply y\in Y to both sides to get (2.5), which shows that m is
countably additive. All that is left to show is that ||m||_{1}<\infty :

||m||_{1}= \sup_{\pi}\sum_{B\in\Sigma}||m(B)||_{Y^{*=\sup_{\pi}\sum_{B\in\Sigma}}}||\int_{A}F(\theta)(B)\frac{d\theta}{2\pi}||_{Y^{*}}

\leq\sup_{\pi}\sum_{B\in\Sigma}\int_{A}||F(\theta)(B)||_{Y^{*}}\frac{d\theta}{2\pi}

\leq\sup_{\pi}\int_{A}\sum_{B\in\Sigma}||F(\theta)(B)||_{Y^{*}}\frac{d\theta}{2\pi}

\leq\sup_{\pi}\int_{A}||F(\theta)(B)||_{1}\frac{d\theta}{2\pi}

\leq\sup_{\theta\in \mathbb{T}}||F(\theta)||_{1}<\infty .

Thus we have shown that m\in M(\Omega, Y^{*}) . Denoting \mu(A)=m\in M(\Omega, Y^{*}) ,
it follows from (2.3) and (2.4) that

\mu_{\varphi_{y}^{B}}(A)=y(m(B))=\varphi_{y}^{B}(m)=\varphi_{y}^{B}(\mu(A)) .

Similarly, for any \varphi\in E using the definition of \mu_{\varphi}(A) , and the formula (2.3)
we can show that

\mu_{\varphi}(A)=\varphi(\mu(A)) . (2.6)

We show now that the above defined \mu is a M(\Omega, Y^{*}) -valued countably
additive measure of bounded variation. First, the fact that \mu is countably
additive follows easily from the definition of \mu . Next, we will obtain the
inequality:

|| \mu(A)||_{1}\leq\int_{A}||F(\theta)||_{1}\frac{d\theta}{2\pi} . (2.7)

This follows because E is a norming subspace and hence, given A\in\Sigma and
\epsilon>0 , there exists \varphi\in E , with ||\varphi||\leq 1 and ||\mu(A)||_{1}\leq|\varphi(\mu(A))|+\epsilon , and
hence (2.7) follows since

| \varphi(\mu(A))|=|\int_{A}\varphi(F(\theta))\frac{d\theta}{2\pi}|\leq\int_{A}||F(\theta)||_{1}\frac{d\theta}{2\pi} .

Therefore we have established that \mu is a measure of bounded variation,
that is \mu\in M(T, M(\Omega, Y^{*})) .
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Next we show that

\int_{T}e^{-in\theta}d\mu(\theta)=0 , (n<0) .

This follows because E is norming, and if \varphi\in E and n<0 , then

\varphi(\int_{T}e^{-in\theta}d\mu(\theta))=\int_{T}e^{-in\theta}d\mu_{\varphi}(\theta)=\int_{T}e^{-in\theta}\varphi(F(\theta))\frac{d\theta}{2\pi}=0 .

Since we assume that M(\Omega, Y^{*}) has ARNP, one can find a Bochner inte-
grable function G\in L^{1}(T, M(\Omega, Y^{*})) such that

\mu(A)=\int_{A}G(\theta)\frac{d\theta}{2\pi} , (2.8)

for all Borel subsets A of T Using (2.4), (2.6), and (2.8) one gets for all
A\in B , \varphi\in E ,

\int_{A}\varphi(G(\theta))\frac{d\theta}{2\pi}=\varphi(\mu(A))=\mu_{\varphi}(A)=\int_{A}\varphi(F(\theta))\frac{d\theta}{2\pi} .

Since this is true for all \varphi\in E and A\in B , one can conclude that for given
\varphi\in E ,

\varphi(G(\theta))=\varphi(F(\theta)) for almost all \theta .

Since we have (2.7), and (2.8), we can apply Lemma 2.3 in [1], from which
it follows that G is essentially bounded. Let g(t)=G(\Phi^{-1}(t)) . Then g is a
Bochner measurable, essentially bounded function and for every \varphi\in E ,

\varphi(g(t))=\varphi(G(\Phi^{-1}(t)))=\varphi(F(\Phi^{-1}(t)))=\varphi(f(t)) ,

for almost all t\in \mathbb{R}

completing the proof of the lemma. \square

We will use the lemma in the following setting. Let T=\{T_{t}\}_{t\in \mathbb{R}} be a
family of uniformly bounded isomorphisms of M(\Omega, Y^{*}) such that ||T_{t}||\leq c .
Suppose that \mu\in M(\Omega, Y^{*}) is weakly analytic and let f(t)=T_{t}\mu for t\in \mathbb{R} .
Then we have that ||f(t)||_{1}\leq c||\mu||_{1} , and that the map t – y(f(t)(A))\in
H^{\infty}(\mathbb{R}) for all y\in Y and for all A\in\Sigma .

Corollary 2.2 Let Y^{*} Ziave ARNP. Let T=\{T_{t}\}_{t\in \mathbb{R}} be a family of
uniformly bounded isomorphisms of M(\Omega, Y^{*}) . Let \mu\in M(\Omega, Y^{*}) be a
weakly analytic measure. Then there exists a Bochner measurable essen-
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tially bounded function g:\mathbb{R}arrow M(\Omega, Y^{*}) such that for all A\in\Sigma ,

g(t)(A)=T_{t}\mu(A) for almost all t\in \mathbb{R} .

Remark 2.3. Since the results in this section hold for Banach spaces which
are dual spaces and have ARNP, we give some examples of these spaces.
Examples of Banach spaces which are dual spaces and have ARNP are:

(1) Orlicz spaces L^{\Phi}(\mu) , where (\Omega, \Sigma, \mu) is a \sigma-finite measure space,
and \Phi is an Orlicz function for which it and its Young’s comple-
mentary function satisfy the \triangle_{2} -condition (see [4] and [9]).

(2) All dual spaces that are Banach lattices not containing c_{0} , or
preduals of a von Neuman algebra (see [8]).

3. Bochner measurability of weakly analytic measures

For all the results of this section, which include the main results of
this paper, we will suppose that T=(T_{t})_{t\in \mathbb{R}} is a one-parameter group of
uniformly bounded invertible isomorphisms of M(\Sigma) for which (1.1) holds.
We will also suppose that

T_{t}^{*} : E-\overline{E} , (3.1)

where \overline{E} denotes the closure of E in M(\Omega, Y^{*})^{*} .

We begin with some properties of the convolution, which are technical,
but needed for proving the main theorem.

Consider a weakly measurable \mu\in M(\Omega, Y^{*}) and U\in M(\mathbb{R}) , where lJ

is absolutely continuous with respect to Lebesgue measure. Define:

\nu*\tau\mu(A)=\int_{\mathbb{R}}T_{-t}\mu(A)d_{lJ}(t) . (3.2)

When there is no risk of confusion, we will simply write \nu*\mu for lJ*_{T}\mu . The
integral is well defined since T_{-t}\mu(A) is lJ-measurable and bounded, hence
\mathfrak{l}J-integrable. One can check that the formula defines a countably additive
vector-valued measure of bounded variation, using properties of Bochner
integral and the fact that \mu\in M(\Omega, Y^{*}) . Hence, U*_{T}\mu\in M(\Omega, Y^{*}) .

From now on assume that z/ , \sigma\in M(\mathbb{R}) and let \mu\in M(\Omega, Y^{*}) be weakly
measurable. Let z/ , \sigma be absolutely continuous with respect to Lebesgue
measure. Let E be defined as in the previous section.

Lemma 3.1 Suppose that \varphi\in\overline{E} . Then the mapping t – \varphi(T_{t}\mu) is
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Lebesgue measurable on \mathbb{R} . Futhermore,

\int_{\mathbb{R}}\varphi(T_{-s}\mu)d_{lJ}(s)=\varphi(\nu*\tau\mu) .

Proof. It is sufficient to prove it in the case that \varphi\in E . The mapping tarrow

\varphi(T_{t}\mu) is Lebesgue measurable, because \mu is weakly measurable. Consider
\varphi_{y}^{A}\in E . Then

\int_{\mathbb{R}}\varphi_{y}^{A}(T_{-s}\mu)d\nu(s)=y(\int_{\mathbb{R}}(T_{-s}\mu)(A)d_{lJ}(s))

=y(\nu*\tau\mu(A))=\varphi_{y}^{A}(\iota/*\tau\mu) .

Similarly, one can show the result holds for any \varphi\in E , so the lemma follows.
\square

Corollary 3.2 For all t\in \mathbb{R} , we have

T_{t}(\nu*\mu)=\nu*(T_{t}\mu) .

Moreover, the measure JJ*\mu is weakly measurable.

Proof. Using lemma 1.3 we have that for any A\in\Sigma , y\in Y :

y( \nu*(T_{t}\mu)(A))=y(\int_{\mathbb{R}}T_{-s+t}\mu(A)d\nu(s))

= \int_{\mathbb{R}}y(T_{-s+t}\mu(A))d_{\mathfrak{l}J}(s)

= \int_{\mathbb{R}}\varphi_{y}^{A}(T_{t}(T_{-s}\mu)) du(s)

= \int_{\mathbb{R}}T_{t}^{*}(\varphi_{y}^{A})(T_{-s}\mu)d\nu(s) .

Applying the previous lemma:

\int_{\mathbb{R}}T_{t}^{*}(\varphi_{y}^{A})(T_{-s}\mu)d_{lJ}(s)=T_{t}^{*}(\varphi_{y}^{A})(\nu*\tau\mu)

=\varphi_{y}^{A}(T_{t}(l/*\tau\mu))

=y(T_{t}(l/*\tau\mu)(A)) ,

hence U*(T_{t}\mu)=T_{t}(\nu*\mu) .
Next we want to show that U*\tau\mu is weakly measurable, that is we need

to prove that f(t)=T_{t}(u*\mu)(A) is Bochner measurable for all A\in\Sigma . By
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the previous part we have that

f(t)=T_{t}( \nu*\mu)(A)=\nu*(T_{t}\mu)(A)=\int_{\mathbb{R}}T_{t-s}\mu(A)d_{lJ}(s) .

By the Pettis measurability theorem [4, Theorem II.2], we need to show that
f(t) is weakly measurable and essentially separably valued. Since T_{t}\mu(A) is
Bochner measurable, there exists a sequence of simple functions \{f_{n}\} such
that f_{n}(t) – T_{t}\mu(A) in Y^{*} -norm. Let

f_{n}(t)= \sum_{i=1}^{k}y_{i,n}^{*}\chi_{A_{i,n}}(t) .

Note that for all n\in \mathbb{N}

lJ*f_{n}(t)= \int_{\mathbb{R}}\sum_{i=1}^{k}y_{i,n}^{*}\chi_{A_{i,n}}(t-s)du(s)

= \sum_{i=1}^{k}y_{i,n}^{*}\int_{\mathbb{R}}\chi_{A_{i,n}}(t-s)du(s)

= \sum_{i=1}^{k}y_{i,n}^{*}(\chi_{A_{i,n}}*U(t)) .

This calculation shows that lJ*f_{n} has finite dimensional range, hence lJ*
f_{n}(\mathbb{R}) is separable for all n\in N . It can be easily checked that lJ*(T_{t}\mu)(A)=

\lim_{narrow\infty}(u*f_{n})(t) in Y^{*} -norm, therefore lJ*(T_{t}\mu)(A) has separable range.
To show that f(t) is weakly measurable, we need to verify that y(f(t)) is
measurable for all y\in Y It follows from Lemma 1.3 that

y(f(t))= \int_{\mathbb{R}}y(T_{t-s}\mu(A)) du(s),

and hence y(f(t)) is measurable being the convolution of a measure in M(\mathbb{R})

and a bounded measurable function on \mathbb{R} . This finishes the proof of the
corollary \square

Corollary 3.3 With the above notation, one has

(\sigma*U)*\mu=\sigma*(\nu*\mu) .

Proof. For A\in\Sigma , y\in Y . one can reduce it to the scalar case using
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Lemma 1.3:

y[( \sigma*\nu)*\mu(A)]=y[\int_{\mathbb{R}}(T_{-s}\mu(A)d(\sigma*\nu)(s)]

= \int_{\mathbb{R}}y(T_{-s}\mu(A))d(\sigma*\nu)(s) .

Next we can use the results known in scalar case [5, Theorem 19.10] to
obtain that

\int_{\mathbb{R}}y(T_{-s}\mu(A))d(\sigma*\nu)(s)=\int_{\mathbb{R}}y(\nu*T_{-s}\mu(A))d\sigma(s) .

Finally, using Lemma 1.3 again gives us that:

\int_{\mathbb{R}}y(\nu*T_{-s}\mu(A))d\sigma(s)=y(\sigma*(\nu*\mu)(A)) .

\square

Let g be the Bochner measurable function defined on 1R with values in
M(\Omega, Y^{*}) given by Corollary 2.2. Let \mu be a weakly analytic measure in
M(\Omega, Y^{*}) . For y>0 , let P_{y} be the Poisson kernel on \mathbb{R} :

P_{y}(x)= \frac{1}{\pi}\frac{y}{x^{2}+y^{2}} (x\in \mathbb{R}) .

We can form the Poisson integral of g as follows:

P_{y}*g(t)= \int_{\mathbb{R}}g(t-x)P_{y}(x)dx ,

where the integral exists as a Bochner integral.

Proposition 3.4 We have that

\lim_{yarrow 0}P_{y}*g(t)=g(t) (3.3)

in M(\Omega, Y^{*}) -norm, for almost all t\in \mathbb{R} .

Proof. Since g is measurable and essentially bounded, the proof is similar
to the classical proof for scalar-valued functions. \square

Lemma 3.5 For all t\in \mathbb{R} , one has that

P_{y}*g(t)=P_{y}*T_{t}\mu .
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Proof. For any A\in\Sigma , y_{1}\in Y . one has by Lemma 1.3:

y_{1}(P_{y}*g(t)(A))=y_{1}( \int_{\mathbb{R}}g(s)(A)P_{y}(t-s)ds)

= \int_{\mathbb{R}}y_{1}(g(s)(A))P_{y}(t-s)ds .

By Lemma 1.3 again,

\int_{\mathbb{R}}y_{1}(g(s)(A)\})P_{y}(t-s)ds=\int_{\mathbb{R}}y_{1}(T_{s}\mu(A)\})P_{y}(t-s)ds

= \int_{\mathbb{R}}y_{1}(T_{t-s}\mu(A))P_{y}(s)ds

=y_{1}( \int_{\mathbb{R}}T_{t-s}\mu(A)P_{y}(t-s)ds)

=y_{1}(P_{y}*(T_{t}\mu)(A)) ,

which completes the proof of the lemma. \square

Lemma 3.6 Let t_{0} be any real number such that (3.3) holds. Then for all
t\in \mathbb{R} , we have:

\lim_{yarrow 0}P_{y}*T_{t}\mu=T_{t-t_{0}}(g(t_{0}))

in M(\Omega, Y^{*}) -norm.

Proof. Since P_{y}*g(t_{0}) – g(t_{0}) , it follows that

T_{t-t_{0}}((P_{y}*g(to))arrow T_{t-t_{0}}(g(to)) .

By Lemma 3.5 and Corollary 3.2 we get

T_{t-t_{0}}(P_{y}*g(t_{0}))=T_{t-t_{0}}(P_{y}*T_{t_{0}}\mu)=P_{y}*T_{t}\mu ,

establishing the lemma. \square

Theorem 3.7 (Main theorem) Suppose T=(T_{t})_{t\in \mathbb{R}} satisfies hypothesis
(A). Let g be as above. Then we have

T_{t}\mu=g(t) , for almost all t\in \mathbb{R} .

Consequently, the mapping tarrow T_{t}\mu is Bochner measurable.

Proof. It is enough to show that the equality in the theorem holds for all
t=t_{0} where (3.3) holds. Fix such a t_{0} and let A\in\Sigma . Since tarrow T_{t}\mu(A) is
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a bounded, measurable function on \mathbb{R} , then, as in Proposition 3.4, one can
show that

P_{y}*(T_{t}\mu)(A) – T_{t}\mu(A) , for almost all t\in \mathbb{R} .

By Lemma 3.6:

P_{y}*(T_{t}\mu)(A)arrow T_{t-t_{0}}(g(t_{0})(A)) , (t\in \mathbb{R}) .

Hence

T_{t}\mu(A)=T_{t-t_{0}}g(t_{0})(A) , for almost all t\in \mathbb{R} . (3.4)

From Lemma 3.5, one has that T_{t_{0}}g(t_{0})= \lim_{tarrow 0}P_{y}*\mu in M(\Omega, Y^{*}) norm.
Since \mu is weakly analytic, it follows that P_{y}*\mu is weakly analytic, because
for all y_{1}\in Y and all A\in\Sigma and all h(t)\in H^{1}(\mathbb{R}) we have that

\int_{\mathbb{R}}y_{1}(T_{t}(P_{y}*\mu)(A))h(t)dt

= \int_{\mathbb{R}}y_{1}(T_{t}\int_{\mathbb{R}}T_{-s}\mu(A)P_{y}(s)ds)h(t)dt

= \int_{\mathbb{R}}\int_{\mathbb{R}}y_{1}(T_{t-s}\mu(A))P_{y}(s)h(t)dsdt

= \int_{\mathbb{R}}\int_{\mathbb{R}}y_{1}(T_{t-s}\mu(A))P_{y}(s)h(t)dtds

= \int_{\mathbb{R}}y_{1}(T_{-s}\int_{\mathbb{R}}T_{t}\mu(A)h(t)dt)P_{y}(s)ds=0 .

One can also show that T_{-t_{0}}g(t_{0}) is weakly analytic, because \mu is weakly
analytic, that is for all y_{1}\in Y and all A\in\Sigma and all h(t)\in H^{1}(\mathbb{R}) we have
that

\int_{\mathbb{R}}y_{1}(T_{t-t_{0}}g(t_{0})(A))h(t)dt=\int_{\mathbb{R}}y_{1}(T_{t}\{\lim_{yarrow 0}P_{y}*\mu(A)\})h(t)dt

= \int_{\mathbb{R}}\lim_{yarrow 0}y_{1}(T_{t}(P_{y}*\mu(A)))h(t)dt

= \lim_{yarrow 0}\int_{\mathbb{R}}y_{1}(T_{t}(P_{y}*\mu(A)))h(t)dt .

Taking t=0 in (3.5) one has that

\mu(A)-T_{-t_{0}}g(t_{0})(A)=0 , (A\in\Sigma) .

Since the measure \mu-T_{-t_{0}}g(t_{0}) is weakly analytic, then using hypothesis
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(A), we have that

\mu=T_{-t_{0}}g(t_{0}) .

Applying T_{t_{0}} to both sides of this equality completes the proof. \square

Theorem 3.8 Let T and \mu be as in the main theorem. Then

\lim_{yarrow 0}P_{y}*\mu=\mu in the M-norm.

Proof. Let t_{0} be such that (3.3) holds. Then

T_{-t_{0}}(P_{y}*g(t_{0}))arrow T_{-t_{0}}(g(t_{0}))

in the M(\Omega, Y^{*}) -norm. By Lemma 3.2, we have that T_{-t_{0}}(P_{y}*g(t_{0}))=

P_{y}*\mu . By Theorem 3.7 we have that T_{-t_{0}}g(t_{0})=\mu . The result follows.
\square

Theorem 3.9 Let \mu and T be as in the main theorem. Then the mapping
tarrow T_{t}\mu is uniformly continuous from \mathbb{R} into M(\Omega, Y^{*}) .

Proof. For each y>0 , consider the map t – P_{y}*g(t) . Since g is
essentially bounded, one can easily see that this map is continuous. Hence
by Lemma 3.2 we have that the map tarrow P_{y}*T_{t}\mu=T_{t}(P_{y}*\mu) is continuous.
By Theorem 3.5. one has that

T_{t}(P_{y}*\mu)arrow T_{t}\mu

uniformly in t . It follows that tarrow T_{t}\mu is uniformly continuous. \square

Definition 3.10 Let \mu\in M(\Omega, Y^{*}) , where \Omega is a \sigma-field and \lambda\in M(\Omega) .
The measure \mu is called \lambda-continuous (in symbols \mu<<\lambda ), if \mu vanishes on
sets of |\lambda| measure zero.

Let \Omega=T , take T_{t} to be translation, that is T_{t}\mu(\cdot)=\mu(\cdot+t) . It is
possible to show (see [1] and Proposition 1.7, [5]), similarly as in scalar case
that, the definition of weak analyticity of the measure \mu can be written as
a condition:

\int_{-\pi}^{\pi}e^{-int}d\langle y, \mu(t)\rangle=0 , \forall n<0 , \forall y\in Y.

This definition coincides with the definition of the analyticity in [12] by
R. Ryan. Although in [12] it is referred to as a Pettis integral, it is an
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example of what [4] calls a Gelfand or weak* integral. R. Ryan [12] obtained
that if \mu is weakly analytic, then \mu<<\lambda . Unlike the scalar case, there exist
weakly analytic vector-valued measures that do not translate continuously.
For example, let g(t)= \exp(-i\cot\frac{t}{2}) Then the measure defined by d\mu(t)=

g(t-\cdot)dt , is a weakly analytic measure in M(T, L^{\infty}(T)) , but it does not
translate continuously, although \mu<<\lambda . We have the following as a corollary
of Theorem 3.9.

Corollary 3.11 Let \mu\in M(T, Y^{*}) . Assume that Y^{*} has ARNP. If \mu is
a measure such that

\int_{-\pi}^{\pi}e^{-int}d\langle y, \mu(t)\rangle=0 , \forall n<0 , \forall y\in Y.

then the mapping tarrow\mu(e^{i(\cdot+t)}) is continuous.

Hence we have obtained that if we further assume that Y^{*} has the an-
alytic Radon-Nikodym property (ARNP), then every weakly analytic mea-
sure translates continuously.
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