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Periodic points of disk homeomorphisms having
a pseudo-Anosov component

Takashi MATSUOKA
(Received March 17, 1997; Revised June 30, 1997)

Abstract. We consider an orientation-preserving homeomorphism f of the disk. The
braid type is one of the topological invariants defined for finite invariant sets of f . We
show that if f has a finite invariant set S whose braid type contains a pseud0-Anosov
component, then there are at least 2n+3 periodic points of period \leq n for any n with
n\geq per(S) , where per(S) is the maximum of the periods of the points in S .
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1. Introduction

Let M be a compact connected orientable surface possibly with bound-
ary, and f : M – M an orientation-preserving homeomorphism. Given a
finite set S which is contained in the interior of M and is invariant under the
map f . its braid type bt(S, f) is defined as the isotopy class of f relative to
the set S[3] (see Section 2 below). From the Nielsen-Thurston classification
theory of isotopy classes for surface homeomorphisms [6, 22] , braid types
are classified into three classes: pseud0-Anosov, periodic, and reducible.
Moreover, in the reducible case, any braid type is decomposed into a finite
number of irreducible components, each of which is either pseud0-Anosov
or periodic.

This classification for braid types has great significance in the theory
of 2-dimensional dynamical systems: If f has a finite invariant set S whose
braid type bt(S, f) contains a pseud0-Anosov component, then f must have
dynamical complexity, e.g. positive topological entropy and an infinite num-
ber of periodic points. Also, the following results have been obtained on the
existence and the number of periodic points: The growth rate of the num-
ber of periodic points of period n , as n tends to infinity, is positive. (This
follows from Jiang [16, Theorem 3.8]. See also [15].) There exist infinitely
many period doubling sequences of periodic orbits (Guaschi [12, Theorem
4]). f has a periodic point with any sufficiently large period, provided that
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bt (S, f) is pseud0-Anosov [9].
Moreover, some further results on periodic points have been obtained

in the special case where M is the closed disk D and the braid type bt(S, f)
is pseud0-Anosov. A result of the author [20, Theorem 2] on embeddings of
the plane immediately implies that f has a periodic point of every period
greater than three, provided S has three points and f is differentiable.
(The same result is valid for the plane as well.) Following an example of
Gambaudo et al. [10], Kolev [18] has proved that f has periodic points of
all periods if S is a periodic orbit of period 3. Guaschi [11] generalized
Kolev’s result to the case of invariant sets having 3 or 4 points. Results of
Franks and Misiurewicz (Propositions 13.2 and 13.4 in [8]) imply that if S
is a periodic orbit, then either f has periodic points of all periods greater
than n-3 or f has periodic points of all periods divisible by n , where n is
the period of S .

In this paper, we also restrict ourselves to the case of the disk. How-
ever, we allow bt(S, f) to be reducible. Our main theorem gives an estimate
for the number of periodic points with period not exceeding a given num-
ber. Let per(S) denote the maximum of the periods of all periodic points
contained in S .

Theorem 1 Let f : Darrow D be an orientation-preserving homeomorphism
on the closed disk, and S a finite invariant set of f in the interior of D .
Suppose the braid type bt(S, f) has a pseudO-Anosov component. Then, for
every integer n\geq per(S) , f has at least 2n+3 periodic points whose periods
are less than or equal to n .

The above estimate can be improved if we assume some transversality
condition. Let n be a positive integer. We say f is n-transversal if f is
differentiate and for any positive integer m\leq n , the differential of f^{m} at
each fixed point of f^{m} does not have eigenvalue one.

Theorem 2 Assume the hypotheses of Theorem 1. Suppose n is an integer
such that n\geq per(S) and f is n -transversal. Then, f has at least 3n+6
periodic points whose periods are less than or equal to n .

In the special case of per(S) =n=1 , Theorem 2 has been obtained
and also shown to be the best possible estimate by the author [21] (Re-
mark, pp. 461-462). When S has three or four points, one can derive
sharper estimates than Theorems 1 and 2 for large n from Guashi’s result
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[11] mentioned above. The author does not know whether our theorems
give the best possible estimates in the remaining case.

The author wishes to thank the referee for providing many helpful sug-
gestions and corrections.

2. Preliminaries

Here we recall the definition of a braid type and the classification theory
for braid types. Also, we prove some results which are necessary for the
proof of Theorem 1.

Let M be \backslash {}^{t}X compact connected orientable surface possibly with bound-
ary \partial M Let f : M – M be an orientation-preserving homeomorphism. A
point x in M is a fixed point of f if f(x)=x . x is called a periodic point of

f if it is a fixed point of f^{n} for some positive integer n . The least such n is
called the period of the periodic point and denoted by per(x, f ). A periodic
point of period n will also be called an n-periodic point. Let Fix(/) denote
the set of fixed points of f . Let P(f) denote the set of all periodic points
of f . and P_{n}(f) the set of periodic points of period n . Let

P^{n}(f)=\cup m\leq nP_{m}(f)
.

Namely, P^{n}(f) is the set of periodic points whose periods are less than or
equal to n . Clearly P^{1}(f)=P_{1}(f)=Fix(f) . The aim of this paper is to
give lower bounds for the cardinality of this set P^{n}(f) in the case of M=D.

A subset S of M is called an invariant set of f if f(S)=S. Suppose

f, g : Marrow M are homeomorphisms. Suppose S is a finite set in the interior
Int M of M and it is an invariant set for both f and g . We say f and g
are isotopic relative to S if there exist homeomorphisms h_{t} : Marrow M for
0\leq t\leq 1 such that h_{0}=f , h_{1}=g , h_{t}(x) is continuous in x and t , and
h_{t}(S)=S for any t . An equivalence class under this relation is called an
isotopy class relative to S .

Definition 1 Suppose f : M – M is an orientation-preserving home0-
morphism, and S is a finite invariant set of f in Int M . Define the braid type
bt(S, f) of the set S with respect to f to be the isotopy class of f : M – M
relative to S .

Braid types can be classified according to the Nielsen-Thurston clas-
sification theory on surface homeomorphisms up to isotopy. We give a
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brief account of this theory. (We shall mainly follow [4, Section 7].) Let
\phi : M – M be a homeomorphism. \phi is said to be periodic if \phi^{m}=id for
some positive integer m , where id denotes the identity map. Let S be a
finite invariant set of \phi in Int M. \phi is said to be pseudO-Anosov relative to
S , if the following conditions hold:

(a) There exists a pair of transverse foliations \mathcal{F}^{u} , \mathcal{F}^{s} on M , carrying
transverse measures which are uniformly expanded and contracted by \phi

respectively.
(b) Each foliation has a finite number of singularities which coincide

in the interior Int M and alternate on the boundary \partial M . Any singularity
is p-pronged for some positive integer p , p\neq 2 .

(c) Any singularity on \partial M is 3-pronged. (We consider segments of
the boundary to be prongs.)

(d) 1-prongs are permitted only at points of S .
In the case where S is empty, \phi is simply said to be pseud0-Anosov. \phi is
called a generalized pseudO-Anosov homeomorphism if it is pseud0-Anosov
relative to some non-empty finite invariant set (see [6]). We say \phi is reducible
relative to S if there exists a disjoint union \Sigma=\Sigma_{1}\cup\cdots\cup\Sigma_{k} of simple closed
curves, called reducing curves, in Int M-S such that

(a) \Sigma is an invariant set of \phi , and
(b) each connected component of M-(\Sigma\cup S) has negative Euler

characteristic.

Theorem 3 (Nielsen-Thurston Classification Theorem) Let f : M – M
be a homeomorphism, and S a finite invariant set of f in Int M. Then f
is isotopic relative to S to a homeomorphism \phi which is periodic, pseudO-
Anosov relative to S , or reducible relative to S. In the reducible case, \phi

can be chosen to have an invariant open tubular neighborhood A(\Sigma) of \Sigma

such that on each connected component N of the complement of A(\Sigma) ,
\phi^{\mu} : Narrow N is either periodic or pseudO-Anosov relative to S\cap N . where \mu

is the least positive integer such that \phi^{\mu}(N)=N .

The map \phi in the above theorem is called a canonical homeomorphism
(or a canonical form) relative to S . In the case where S is empty, \phi is simply
called a canonical homeomorphism. Each component N is called a compO-

nent of \phi . Also, each connected component of A(\Sigma) is called a reducing
annulus. This classification theorem leads to the following definition:
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Definition 2 A braid type bt(S, f) is called periodic, pseudO-Anosov, or
reducible if a canonical homeomorphism \phi : Marrow M in the isotopy class of

f relative to S is periodic, pseud0-Anosov relative to S , or reducible relative
to S , respectively. We say bt(S, f) contains a pseud0-Anosov component if
so does \phi .

Now let \phi : M – M be an orientation-preserving pseud0-Anosov home-
omorphism relative to S . Let \mathcal{F} be one of the associated foliations \mathcal{F}^{u} and
\mathcal{F}^{s} . For x\in M . let p(x) denote the number of prongs of \mathcal{F} at x . (If x is
a regular point of \mathcal{F} , we regard the two half leaves emanating from x as
the prongs at x , and thus set p(x)=2.) Let Sing(F) denote the set of
singularities of \mathcal{F} . Then we have the following Euler-Poincar\’e formula [6,
p. 75]:

\sum (2-p(x))=2\chi(M) , (1)
x\in Sing(\mathcal{F})

where \chi(M) denotes the Euler characteristic of M .
Let x\in IntM be an n-periodic point of \phi . Then \phi^{n} induces a permu-

tation on the prongs at x of the foliation \mathcal{F} . Let l , a be positive integers.
We say x has type (l, a) if

(a) l is the least period of a prong at x under the permutation \phi^{n} .
and

(b) p(x)=al .
This definition makes sense, since the prongs at x have the same period
under \phi^{n} and l , p(x) do not depend on the choice of \mathcal{F} . Note also that l

always divides p(x) and hence p(x) is written in the form (b) above. For
example, if x is a one-pronged singularity, then it has type (1,1) . If x is a
regular point of \mathcal{F} , then it has type (1, 2) or (2, 1) .

We recall some facts about the index for a periodic point. Let f : M -,

M be a continuous map. Given a fixed point x of f , let ind(x, f) denote
its fixed point index. If x is an n-periodic point, we define its index to be
ind(x, f^{n}) . It is easy to see that if x is a periodic point of \phi in Int M which
has period n and type (l, a) , then for any q\geq 1 , we have

ind(x, \phi^{nq})=\{
1-al if q is a multiple of l ,

1 otherwise.
(2)

Namely, for an interior fixed point x of an iterate \phi^{m} , ind(x, \phi^{m})=1 if
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\phi^{r\prime\iota} rotates the prongs at x , and ind(x, \phi^{m})=1-p(x) if \phi^{m} preserves each
(equivalently some) prong. In particular, the index of an interior periodic
point is zero if and only if it is a one-pronged singularity. If x is a periodic
point in \partial M , then it must be a singularity of \mathcal{F}^{s} or \mathcal{F}^{u} . and

ind(x, \phi^{m})=\{
-1 if x\in Sing(\mathcal{F}^{s})

0 if x\in Sing(\mathcal{F}^{u}) ,
(3)

for any m such that \phi^{m} fixes x .
Two fixed points x_{0} and x_{1} of a continuous map f : M – M are said to

be f-Nielsen equivalent (or Nielsen equivalent, shortly) if there exists a path
\gamma : [0, 1] – M such that \gamma(0)=x_{0} , \gamma(1)=x_{1} , and f\circ\gamma is homotopic to \gamma

fixing end points. (See [2, 14].) An equivalence class under this relation is
called an f-Nielsen class or a Nielsen class. The Nielsen class represented
by x is denoted by NC(x, f) .

Two invariant sets K_{0} and K_{1} of f are called f-related if there exists a
path \gamma : [0, 1] – \lambda I such that \gamma(0)\in K_{0} , \gamma(1)\in K_{1} , and f\circ\gamma and \gamma are
homotopic via a homotopy \{\gamma_{t}\}_{0\leq t\leq 1} of paths in M such that \gamma_{t}(0)\in K_{0}

and \gamma_{t}(1)\in K_{1} for any t . (See [17, p. 70].) In general, this is not an
equivalence relation among invariant subsets. When K_{0} and K_{1} are single
points, it reduces to the Nielsen equivalence relation between fixed points
of f .

Suppose g : M – \lambda l is a continuous map homotopic to f . Let H=
\{h_{t}\} : M – JI (0\leq t\leq 1) be a homotopy from f to g . Then x\in Fix(f)

and y\in Fix(g) are said to be H-related if there exists a path \alpha in M such
that \alpha(0)=x , \alpha(1)=y , and two paths \alpha and h_{t}(\alpha(t)) are homotopic fixing
end points.

Lemma 1 Suppose K is a subset of M such that h_{t}(K)=K for any t .
Suppose x\in Fix(f) and y\in Fix(g) are H-related and y is g -related to K .
Then x is f -related to K

Proof. Given paths \omega , \omega’ in M which have the same initial point and
whose terminal points are both contained in K , we write \omega\sim\omega’ if there
is a homotopy \{\omega_{t}\} of paths in M with \omega_{0}=\omega , \omega_{1}=\omega’ , \omega_{t}(0)=\omega(0) ,
\omega_{t}(1)\in K for any t . Since y and K are g-related, there is a path \gamma in M
such that \gamma(0)=y , \gamma(1)\in K . and \gamma\sim g\circ\gamma . Since x and y are i7-re1ated,
there is a path \alpha in M from x to y such that \alpha and \overline{\alpha} , where \alpha is given by
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\overline{\alpha}(t)=h_{t}(\alpha(t)) , are homotopic fixing end points. Thus we have that

\alpha\gamma\sim\overline{\alpha}(go\gamma) . (4)

Define a homotopy \{\beta_{t}\}(0\leq t\leq 1) of paths in M by

\beta_{t}(s)=\{

h_{2s(1-t)}(\alpha(2s)) s \leq\frac{1}{2}

h_{1-t}(\gamma(2s-1)) s \geq\frac{1}{2} .

Then \beta_{t}(0)=x and \beta_{t}(1)\in K for each t , and \beta_{0}=\overline{\alpha}(go\gamma) , \beta_{1}=(fo

\alpha)(f\circ\gamma)=f\circ(\alpha\gamma) . Therefore, \overline{\alpha}(g\circ\gamma)\sim f\circ(\alpha\gamma) and hence by (4),
\alpha\gamma\sim fo(\alpha\gamma) . This means that x is f-related to K. \square

The following lemma is closely related to Lemma 3.4 of Jiang and
Guo [17] and Proposition 1.5 of Boyland [5].

Lemma 2 Let M be a compact surface obtained from the disk D by re-
moving finitely many disjoint open disks in D. Let \psi : l\mathcal{V}I – M be a

canonical homeomorphism. Suppose \psi has a pseudO-Anosov component N
such that \psi(N)=N . Let K_{0} and K_{1} be disjoint connected invariant sets
of \psi . Suppose either

(a) K_{0} and K_{1} are contained in different connected components of
M- Int N, or

(b) K_{0} or K_{1} is a single point contained in Int N. Then K_{0} and K_{1}

are not \psi -related.

Proof. The method of the proof here is different from those in [5, 17] which
use the covering space technique. Instead, we use the hypothesis that M is a
subspace of the disk. Let X_{1} , . . ’

X_{k} be all of the connected components of
M- Int N and let C_{i}=N\cap X_{i} . Then, since N is a component of a canonical
homeomorphism of \psi , we see that either X_{i}=C_{i} or X_{i} is a compact surface
which has C_{i} as one of its boundary circles. We can assume, by rearranging
indices if necessary, that X_{i}=C_{i} if i<q , and X_{i} is a compact surface if
i\geq q , where 1\leq q\leq k+1 . Also, we can assume that \psi preserves each X_{i} ,
by taking its iterate if necessary, because \psi-related subsets are \psi^{m}-related
for any m\geq 1 . If i\geq q , then C_{i} is isotopic to some reducing curve and hence
X_{i} has at least two other boundary circles C_{i,1} , \ldots , C_{i,b_{i}} , where b_{i}\geq 2 . Let
\hat{M} be a compact surface obtained from M by collapsing each C_{i,j} to a point,
where i\geq q , 2\leq j\leq b_{i} . Denote by \pi : M –

\hat{M} the projection map, and
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let \hat{X}_{i}=\pi(X_{i}) . Since \pi is injective on N , we can regard N as a subspace
of \hat{M} . Then \hat{M}

– Int N=\hat{X}_{1}\cup
\cdot . \cup\hat{X}_{k} . For i<q , we have \hat{X}_{i}=C_{i} . If

i\geq q , then \hat{X}_{i} is a closed annulus whose boundary circles are C_{i} and C_{i,1} .
Thus N is a strong deformation retract of \hat{M} , i.e., there exists a homotopy
r_{t} : \hat{M}

–
\hat{M} such that

r_{0}=id , r_{1}(\hat{M})=N , r_{t}|_{N}=id

for any t . Moreover, we can choose r_{t} so that the image of \hat{M}
- Int N under

r_{t} is disjoint from Int N for any t . Let r=r_{1} : \hat{M}arrow N . Let \hat{\psi} : \hat{M}
–

\hat{M}

be a homeomorphism induced by \psi . Then \hat{\psi}\circ\pi=\pi\circ\psi , r(\hat{X}_{i})=C_{i} for any
i , and \hat{\psi}=\psi on N . Also, \hat{\psi}(\hat{X}_{i})=\hat{X}_{i} since \psi is assumed to preserve X_{i} .

Suppose K_{0} and K_{1} were \psi-related. Then there is a path \gamma in M such
that \gamma(0)\in K_{0} , \gamma(1)\in K_{1} , and \gamma is homotopic to \psi\circ\gamma via a homotopy
\{\gamma_{t}\} of paths in M such that \gamma_{t}(0)\in K_{0} , \gamma_{t}(1)\in K_{1} for any t . Define a
path \omega in N by \omega=r\circ\pi\circ\gamma . We shall make a homotopy \{\omega_{t}\} of paths in
N between \omega to \psi\circ\omega . Define two homotopies \{\omega_{t}’\} , \{\omega_{t}’\} of paths in N by

\omega_{t}’=r\circ\pi\circ\gamma_{t} , \omega_{t}’=r\circ\hat{\psi}\circ r_{t}\circ\pi 0\gamma .

Then \omega_{0}’=\omega , \omega_{1}’=\omega_{0}’ , \omega_{1}’=ro\hat{\psi}\circ\omega=\psi 0\omega , since \omega is a path in N
and r\circ\hat{\psi}=\psi on N . Therefore if we denote by \{\omega_{t}\} the product of two
homotopies \{\omega_{t}’\} and \{\omega_{t}’\} , ( i.e. , \omega_{t}=\omega_{2t}’ if t\leq 1/2 and \omega_{t}=\omega_{2t-1}’ if
t\geq 1/2) then it gives the desired homotopy. Note that if K_{\epsilon}\subset X_{i} , where
\epsilon=0,1 , then \omega_{t}’(\epsilon)\in r(\hat{X}_{i})=C_{i} , \omega_{t}’(\epsilon)\in r(\hat{\psi}(\hat{X}_{i}))=C_{i} , and hence
\omega_{t}(\epsilon)\in C_{i} .

Suppose first that the condition (a) holds. Then K_{0}\subset X_{i_{0}} , K_{1}\subset X_{i_{1}} ,
where i_{0}\neq i_{1} , and hence \omega_{t}(\epsilon)\in C_{i_{\epsilon}} for \epsilon=0,1 and any t . This means that
different boundary components C_{i_{0}} , C_{i_{1}} of N are related under the pseud0-
Anosov homeomorphism \psi|_{N} . This is a contradiction. (See e.g. Jiang and
Guo [17, Lemma 2.2] and Boyland [5, Lemma 1.1 (b) (iii)].)

Suppose next the condition (b) holds. We can assume that K_{0} consists
of a single point, say x_{0} , in Int N . Then clearly \omega_{t}(0)=x_{0} . Also, since K_{1} is
a connected invariant set disjoint from \{x_{0}\} , K_{1} is contained in some X_{i} or
is a single point in Int N . These imply that the fixed point x_{0} in the interior
of N is \psi|_{N}-related to another interior fixed point or some boundary circle
C_{i} of N . This also contradicts the results of [5, 17] cited above. Hence we
complete the proof. \square
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Suppose f, g:M – M are homotopic continuous maps, and H=\{h_{t}\} :
M – M is a homotopy from f to g . For a subset E of M. define a subset
\triangle_{H}(E) of Fix(g) by

\triangle_{H}(E)= {y\in Fix(g)| some x\in E\cap Fix(f) is H-related to y }.

Note that if x\in Fix(#) is H-related to y\in Fix(g) and y is g-Nielsen
equivalent to another y’\in Fix(g), then x is also H-related to y’ . As a
consequence, \triangle_{H}(E) is empty or a union of g-Nielsen classes. For a point
x\in M , let \triangle_{H}(x)=\triangle_{H}(\{x\}) . This is a single Nielsen class or an empty
set. We say Nielsen classes F of f and G of g are H-related if \triangle_{H}(F)=G ,
i.e., every x\in F and every y\in G (equivalently some x\in F and some
y\in G) are H-related. It is known that H-related Nielsen classes have the
same fixed point index (see e.g. [2]). In particular, if F is essential (i.e., if
its index is nonzero), then \triangle_{H}(F) is also essential and hence not empty.

Proposition 1 Let f : D – D be an orientation-preserving homeomor-
phism with a finite invariant set S in Int D. Let \phi : Darrow D be a canon-
ical homeomorphism relative to S which is isotopic to f . Assume \phi has a
pseudO-Anosov component. Let L be the union of all pseudO-Anosov com-
points of \phi . Then

(a) There exists an injective map \tau : P(\phi)\cap(IntL-S)arrow P(f)-S

which is period-preserving, i.e . per(x, \phi ) = per(\mbox{\boldmath $\tau$}(x),f) for every x .
(b) \# P^{n}(f)\geq\#(P^{n}(\phi)\cap(S\cup IntL)) for any n\geq 1 , where \# denotes

the cardinality.

Proof. (a) We need the notion of the blow-up of a homeomorphism.
Let D_{S} be the surface obtained from D-S by attaching a boundary circle
at each point of S . Let \Gamma be the union of the attached boundary circles,
and \pi_{S} : D_{S} – D the projection. Then we have D_{S}= (D - S)\cup\Gamma

and \Gamma=\pi_{S}^{-1}(S)=\partial D_{S}-\partial D . If g : D – D is a homeomorphism with
g(S)=S and its restriction to D-S is extendable to a homeomorphism
G : D_{S} – D_{S} , then we call G the blow-up of g at S . It is known that any
homeomorphism which is smooth at S and whose differential at each point
in S is non-singular has the blow-up at S [ 1 , p. 24]. Also, it is not difficult
to see that any canonical homeomorphism relative to S has the blow-up at
S . The blow-up of a homeomorphism which is pseud0-Anosov relative to S
becomes a pseud0-Anosov homeomorphism on D_{S} .

Now we begin the proof. Let \phi_{S} : D_{S}arrow D_{S} be the blow-up of \phi at S .
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For each x\in S , we choose an open disk W^{x} centered at x so that these disks
are mutually disjoint. Also, for x\in S and m\geq 1 , choose open disks V_{m}^{x}

centered at x so that V_{m}^{x}\subset W^{x} and f^{m}(V_{m}^{x})\subset W^{f^{m}(x)} . Let V_{m}= \bigcup_{x\in S}V_{m}^{x} ,
and (V_{m})_{S}=(V_{m}-S)\cup\Gamma Then (V_{m})_{S} is an open neighborhood of \Gamma in
D_{S} . We isotope f . relative to S , to a homeomorphism f_{m} : D – D which
is smooth at S and has the non-singular differential at every point in S .
Furthermore, f_{m} can be chosen so that its m-th iterate (f_{m})^{m} coincides
with f^{m} away from V_{m} . It follows from the assumption on V_{m}^{x} that the
blow-up (f_{m})_{S} of f_{m} at S has the property that every fixed point of its
m-th iterate (f_{m})_{S}^{m} in (V_{m})_{S} is (f_{m})_{S}^{m} -related to \Gamma Since \phi^{m} and (f_{m})^{m}

are isotopic relative to S , there is an isotopy H_{m}=\{H_{m,t}\} : D_{S} – D_{S} from
\phi_{S}^{m} to (f_{m})_{S}^{m} .

We shall define the map \tau . Suppose x is a periodic point of \phi in Int L-S.
Then x is also a periodic point of \phi s . Let m=per(x, \phi) . Write f_{S} and V_{S}

for (f_{m})_{S} and (V_{m})_{S} respectively for the sake of simplicity. Since x\not\in S ,
it follows from (2) that x has nonzero index, and hence \{x\} is an essential
\phi_{S}^{m}-Nielsen class. This implies that the f_{S}^{m}-Nielsen class \triangle_{H_{m}}(x) is essential
and hence not empty. Choose an element from this class, and denote it by
\tau(x) . Namely, \tau(x) is a fixed point of f_{S}^{m} satisfying

NC(\tau(x), f_{S}^{m})=\triangle_{H_{m}}(x) . (5)

We show that the orbit of \tau(x) under f_{S} is contained in D_{S}-V_{S} . Suppose
to the contrary that f_{S}^{j}(\tau(x))\in V_{S} for some j . This implies that f_{S}^{j}(\tau(x))

is f_{S}^{m}-related to \Gamma by the property of f_{S} , and hence \tau(x) is f_{S}^{m} -related to
\Gamma Since x and \tau(x) are H_{m} -related, it follows from Lemma 1 that x is
\phi_{S}^{n\iota}-related to \Gamma This contradicts Lemma 2. Hence the orbit of \tau(x) is
contained in D_{S} – V_{S}=D – V_{m} . Since f^{m} and (f_{m})^{m} coincide on D-V_{m} ,
\tau(x) is a fixed point of f^{m} in D-S. Thus we have defined the map \tau .

We show \tau is period-preserving. Let x\in P(\phi)\cap(IntL-S) , and let
m , m’ be the periods of x , \tau(x) respectively. Since \phi_{S}^{m’}(x) is H_{m} -related to
f_{S}^{m’}(\tau(x)) , we have by (5)

\triangle_{H_{m}}(\phi_{S}^{m’}(x))=NC(f_{S}^{m’}(\tau(x)), f_{S}^{m})=NC(\tau(x), f_{S}^{m})=\triangle_{H_{m}}(x) .

Then x and \phi_{S}^{m’}(x) are \phi_{S}^{m} -Nielsen equivalent, and so they are identical.
Therefore m’ must be a multiple of m . On the other hand, since \tau(x)\in

Fix(f_{S}^{m}) , m is a multiple of m’ . Therefore m=m’
We show \tau is injective. Suppose x , y\in P(\phi)\cap(IntL-S) have the same
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image under \tau . Then, since \tau is period-preserving, they have the same
period, say m, and (5) implies x and y are \phi_{S}^{m}-Nielsen equivalent. Then by
Lemma 2, x and y must be equal.

(b) By (a), we have

\# P^{n}(f)=\beta(P^{n}(f)-S)+\#(P^{n}(f)\cap S)

\geq\#(P^{n}(\phi)\cap(IntL-S))+\#(P^{n}(\phi)\cap S)

=\#(P^{n}(\phi)\cap(S\cup IntL)) .

\square

Let g be a homeomorphism of the closed annulus A=S^{1}\cross[0,1] isotopic
to the identity. Let \overline{g} be a lift of g to the universal cover \overline{A}=R\cross[0,1] .
The projection onto the first factor is denoted by \pi_{1} : \tilde{A}arrow R.

Given x\in A , choose a lift \tilde{x}\in\tilde{A} and define its rotation number under
\tilde{g} as

\rho(x,\tilde{g})=\lim_{narrow\infty}\frac{\pi_{1}(\tilde{g}^{n}(\tilde{x}))-\pi_{1}(\tilde{x})}{n}

if this limit exists. It is clear that the rotation number does not depend on
the choice of the lift \tilde{x} . The set of all rotation numbers under \tilde{g} is denoted by
\rho(\tilde{g}) . On each boundary circle \Gamma of the annulus A , every point has the same
rotation number, since the restriction of g to \Gamma is an orientation-preserving
circle homeomorphism. We denote this rotation number by \rho(\Gamma,\tilde{g}) . The
following theorem is an immediate consequence of Franks [7, Cor. 2.4].

Theorem 4 ([7]) Let g : A –A be a generalized pseudO-Anosov home-
omorphism of the annulus isotopic to the identity. Let \tilde{g} : \tilde{A}

–

\tilde{A} be a lift
of g . Suppose \alpha , \beta are distinct numbers contained in \rho(\tilde{g}) . Then for every
rational number p/q between \alpha and \beta , where p and q are relatively prime,
g has a periodic point of period q and rotation number p/q .

Let \phi : Darrow D be an orientation-preserving generalized pseud0-Anosov
homeomorphism. Let x_{0} be a fixed point of \phi in Int D . Let g : Aarrow A be a
homeomorphism obtained by blowing up \phi at the fixed point x_{0} . Then g is
a generalized pseud0-Anosov homeomorphism on A isotopic to the identity.
Let \tilde{g} : \tilde{A}arrow\tilde{A} be a lift of g . We have the following lemma:

Lemma 3 Suppose l and n are positive integers, and x is a periodic point

of \phi in D-\{x_{0}\} . Assume the following conditions:
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(a) per (x, \phi)<l per (x, \phi^{l}) .
(b) \rho(\tilde{g})\ni k/l for some integer k prime to l .
(c) n\geq 2l+per(x, \phi) .

Then \phi has at least 2n+3 periodic points of period \leq n in the interior of
D .

Proof. We first show that \rho(x,\tilde{g})\neq k/l . Assume \rho(x,\tilde{g}) were equal to k/l .
Then per(x, \phi ) must be a multiple of l , and hence per(x, \phi^{l} ) = per(x,\phi ) /l .
This contradicts the hypothesis (a). Thus \rho(x,\tilde{g})\neq k/l .

We assume \rho(x,\tilde{g})>k/l , the other case being similar. Write \rho(x,\tilde{g}) as
\rho(x,\tilde{g})=k’/l’ . where k’/l’ is expressed in lowest terms. Let I be the interval
[k/l, k’/l’] . Let \mathcal{F}_{n} be the Farey series of order n , i.e. the ascending series
of rational numbers between 0 and 1 whose denominators do not exceed n .
Write \mathcal{F}_{n}\cap I as

\mathcal{F}_{n}\cap I=\{k_{1}/l_{1}, . , k_{\beta}/l_{\beta}\} ,

where k_{1}/l_{1}=k/l , k_{\beta}/l_{\beta}=k’/l’ , k_{i}/l_{i}<k_{i+1}/l_{i+1} and k_{i}/l_{i} is expressed in
lowest terms for every i .

The assumption (c) implies \beta\geq 4 . In fact, since 2l+l’\leq 2l+per(x, \phi)\leq

n , the set \mathcal{F}_{n}\cap I contains, besides k/l , k’/l’ , two distinct rationals (k+
k’)/(l+l’) , (2k+k’)/(2l+l’) .

Since \rho(\tilde{g}) contains k/l by (b) and also contains \rho(x,\tilde{g})=k’/l’ , we see
by Theorem 4 that, for any i with 1\leq i\leq\beta , g has an l_{i} periodic point
x_{i}\in A with rotation number k_{i}/l_{i} . A result of Guaschi [11, Theorem 3]
says that, for a generalized pseud0-Anosov homeomorphism on the closed
annulus, there are periodic points in the interior whose rotation numbers
are those of the boundaries. Hence, we can take all of the periodic points
x_{i} to be contained in the interior of A . Hence, they become periodic points
of \phi in Int D-\{x_{0}\} . Since the orbit of x_{i} consists of l_{i} points, this implies
\phi has at least l_{1}+\cdots+l_{\beta} periodic points of period \leq n except for x_{0} . Since
\beta\geq 4 and the sum of denominators of any consecutive two numbers in \mathcal{F}_{n}

is greater than n (see e.g. [13, Theorem 30]), l_{1}+\cdots+l_{\beta}\geq 2(n+1) . Hence
we have the proof. \square

Let \psi : S^{2}
–

S^{2} be an orientation-preserving generalized pseud0-
Anosov homeomorphism of a sphere S^{2} . Given positive integers n , l , a ,
let P_{n}(l, a) denote the set of n periodic points of \psi of type (l, a) . Let P_{n}^{+}

be the set of n periodic points of \psi with index one. We have the following
formula on these numbers:
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Proposition 2

\# P_{n}^{+}=\sum_{a\geq 1}\{

\backslash

\sum_{l>1}al\# P_{\frac{n}{l}}(l, a)+(a-1)\# P_{n}(1, a)

l|n

+\epsilon_{n} ,

where l|n means that l is a divisor of n , and \epsilon_{n}=0 or 2 according to n>1
or n=1 .

Proof. Let q be a positive integer. Since Fix(\psi^{q}) is the disjoint union of
P_{n}(l, a) for all positive integers l , a and all n with n|q , we have by (2)

2= \chi(S^{2})=\sum_{x\in Fix(\psi^{q})}ind(x, \psi^{q})

= \sum_{n|q}\# P_{n}(\psi)-\sum_{a\geq 1}\sum_{l,n}al\# P_{n}(l, a)
.

ln|q

Note that for each a ,

\sum_{l,n}al\# P_{n}(l, a)=\sum_{l,m}al\# P_{\frac{m}{l}}(l, a)=\sum_{l,n}al\# P_{\frac{n}{l}}(l, a)
.

ln|q l|m|q l|n|q

Therefore if we define an integer \Omega_{n} for any n\geq 1 by

\Omega_{n}=\# P_{n}(\psi)-\sum_{a\geq 1}\sum_{l|n}al\# P\underline{n},
(l, a) ,

then we have \sum_{n|q}\Omega_{n}=2 for any q\geq 1 . In the case of q=1 , this means
\Omega_{1}=2 . Hence we have \sum_{n>1,n|q}\Omega_{n}=0 for any q>1 . Therefore we can
easily prove that \Omega_{n}=0 for n>1 by induction on n . Thus we have proved
that

\Omega_{n}=\epsilon_{n} for any n\geq 1 . (6)

Since P_{n}(l, a)\subset P_{n}^{+} if and only if l\geq 2 , P_{n}(\psi) is the disjoint union of P_{n}^{+}

and \bigcup_{a}P_{n}(1, a) and hence \# P_{n}^{+}=\# P_{n}(\psi)-\sum_{a}\# P_{n}(1, a) . Therefore by (6),
the proof is completed. \square

3. Proof of Theorem 1

Let \phi : D – D be a canonical homeomorphism which is isotopic to
f relative to S . Since bt(S, f) contains a pseud0-Anosov component, so
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does \phi . Let L be the union of all pseud0-Anosov components of \phi . By
Proposition 1, it suffices for the proof to show that

\#(P^{n}(\phi)\cap(S\cup IntL))\geq 2n+3 (7)

for every n\geq per(S) . We shall fix an integer n with n\geq per(S) . The proof
is divided into two parts (I), (II).

(I) Here we consider the case where bt(S, f) is pseud0-Anosov, that
is, the canonical homeomorphism \phi is pseud0-Anosov relative to S . Note
that, in this case, S\cup IntL=IntD and the inequality (7) is equivalent to

\#(P^{n}(\phi)\cap IntD)\geq 2n+3 . (8)

Since the Euler characteristic of the disk is one, \phi has a fixed point x_{1} in
Int D of index 1. Choose a singularity x_{2} of \mathcal{F}^{s} in \partial D . By (3), x_{2} is a
periodic point with index -1. Let (l_{1}, a_{1}) denote the type of x_{1} , and l_{2} the
period of x_{2} . Note that l_{1}>1 since x_{1} has index 1, but l_{2} may be 1.

We claim that \phi has an l_{1} periodic point y_{1} and an l_{2} periodic point
y_{2} in Int D-\{x_{1}\} which have index 1 and belong to different orbits. Let
\psi : S^{2}

–
S^{2} be the generalized pseud0-Anosov homeomorphism of the

sphere induced by \phi by collapsing the boundary of D to a point denoted
by \infty . Then \infty is a fixed point of \psi of type (l_{2}, a_{2}) for some a_{2}\geq 1 . By
Proposition 2, we have

\beta_{\}}P_{n}^{+}\geq\{

\sum_{a}an\# P_{1}(n, a) if n>1

2 if n=1 .
(9)

Since P_{1}(l_{1}, a_{1})\ni x_{1} , this implies that \# P_{l_{1}}^{+}\geq a_{1}l_{1}\# P_{1}(l_{1}, a_{1})>0 . Therefore,
there exists an l_{1} periodic point y_{1} of \psi with index 1. Since l_{1}>1 , we see
y_{1}\neq\infty and y_{1} is a periodic point of \phi in Int D-\{x_{1}\} . Let Y_{1} be the orbit
of y_{1} under the map \phi , and let Q=P_{l_{2}}^{+}-(Y_{1}\cup\{x_{1}, \infty\}) . To show the
existence of the desired l_{2} periodic point y_{2} , it suffices to see that \# Q >0 .
Consider first the case of l_{2}\neq l_{1} . If l_{2}\geq 2 , then Q=P_{l_{2}}^{+} Therefore, since
P_{1}(l_{2}, a_{2})\ni\infty , we have \# Q >0 by (9). If l_{2}=1 , then the fixed point \infty

has index 1-a_{2}\leq 0 . Therefore Q is equal to P_{1}^{+}-\{x_{1}\} and hence \# Q >0
by (9). Consider next the case of l_{2}=l_{1} . Then \bigcup_{a}P_{1}(l_{2}, a)\supset\{x_{1}, \infty\} , and
l_{2}>1 . Hence \# Q =\#(P_{l_{2}}^{+}-Y_{1})\geq a_{1}l_{1}+a_{2}l_{2}-l_{1}>0 . Thus we have verified
the existence of y_{2} . Let Y_{2} be the orbit of y_{2} . For i=1,2 , let (m_{i}, b_{i}) be
the type of y_{i} . Since y_{i} has index 1, m_{i}\geq 2 .
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Arguing similarly as above, we can show that for i=1,2 , \phi has an
l_{i}m_{i}-periodic point z_{i} in Int D-(Y_{1}\cup Y_{2}) of index 1 such that z_{1} and z_{2}

belong to different orbits. Let Z_{i} be the orbit of z_{i} . It is clear that \{x_{1}\} ,
Y_{1} , Y_{2} , Z_{1} , Z_{2} are mutually disjoint.

There are two cases to consider:
(1) n\geq l_{1}(m_{1}+2) or n\geq l_{2}(m_{2}+2) .
(2) n<l_{i}(m_{i}+2) for i=1 and 2.

Case (1): In this case n\geq l_{i_{0}}(m_{i_{0}}+2) , where i_{0}=1 or 2. To simplify
the notation, let l=l_{i_{0}} , a=a_{i_{0}} , m=m_{i_{0}} , b=b_{i_{0}} . Let A be the annulus
obtained from D by blowing up the point y_{i_{0}} into a circle \Gamma Let g:Aarrow A

be the blow-up of \phi^{l} at y_{i_{0}} . Since x_{1} is a fixed point of g , \rho(x_{1},\tilde{g}) is an
integer. By choosing an appropriate lift \tilde{g} of g , we can assume \rho(x_{1},\tilde{g})=0 .
Since y_{i_{0}} has type (m, b) , \rho(\Gamma,\overline{g})=d/m for some integer d prime to m .
These imply that \rho(\tilde{g}) contains 0 and d/m , and hence it contains [0, 1/m]

or [-1/m, 0] . We assume \rho(\tilde{g})\supset[0,1/m] , the other case being similar.
Then, by Theorem 4, for any s>m , g has an s-periodic point u_{s} with
\rho(u_{s},\tilde{g})=1/s . Since s>m , u_{s}\not\in\Gamma and hence u_{s} is an s-periodic point of
\phi^{l} and so per(u_{s}, \phi) is a divisor of Zs .

There are two subcases:
(i) per(u_{s}, \phi)<ls for some s with m<s\leq n/l .
(ii) per(u_{s}, \phi)=ls for every s with m<s\leq n/l .

Case (i): Choose an s such that m<s\leq n/l and per(u_{s}, \phi)<ls . Let
A’ be the annulus obtained by blowing up the point x_{1} to a circle \Gamma’ , and
g’ : A’ – A’ the blow-up of \phi at x_{1} . Let \overline{g}

’ : \tilde{A}’
–

\tilde{A}’ be a lift of g’ to
the universal cover \tilde{A}’ of A’ . We show that the hypotheses (a), (b), (c) of
Lemma 3 are satisfied if we replace x_{0} , x , g there by x_{1} , u_{s} , g’ respectively.

(a) This is the assumption of Case (i).
(b) If i_{0}=2 , then \rho(\tilde{g}’)\ni\rho(\partial D,\tilde{g})’=k/l , where k is an integer prime

to l . If i_{0}=1 , then since x_{1} is of type (l, a) , \rho(\tilde{g}’)\ni\rho(\Gamma’,\tilde{g})’=k/l for some
k prime to l .

(c) Since per(u_{s}, \phi) is a proper divisor of Zs , it does not exceed ls/2 .
Therefore, since m\geq 2 and the inequality n\geq l(m+2) is assumed,

2l+ per(u_{s}, \phi)\leq\frac{l(m+2)}{2}+\frac{ls}{2}\leq\frac{n}{2}+\frac{n}{2}=n .

Thus, all the hypotheses of Lemma 3 have been verified, and hence (8)
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holds.

Case (ii): Let \alpha=[n/l] , where [ ] denotes the Gauss symbol, i.e. \alpha is
the greatest integer which does not exceed n/l . The hypothesis n\geq l(m+2)

implies that \alpha\geq m+2\geq 4 . Since \#(P^{n}(\phi)\cap IntD) is equal to the sum of
periods of all interior periodic orbits with period \leq n , we have

\#(P^{n}(\phi)\cap IntD)\geq per(x_{1}, \phi)+per(y_{i_{0}}, \phi)+per(z_{i_{0}}, \phi)

+ \sum\alpha

per(u_{s}, \phi)

s=m+1

\geq 1+l+\sum_{s=m}^{\alpha}ls\geq 1+l+
\sum\alpha ls

s=\alpha-2

\geq 3\alpha l-2l+1 .

Since \alpha l\geq n-l+1 and \alpha\geq 4 , we have 3\alpha l-2l+1\geq 2(n-l+1)+(\alpha-2)l+1\geq

2n+3 . Therefore (8) holds.

Case (2): Let S (resp. S_{1} ) be the set of singularities (resp. one-pronged
singularities) of \mathcal{F}^{s} . Note that S_{1} is a subset of S by the definition of a
pseud0-Anosov homeomorphism relative to S . Also, S_{1} has no intersectin
with the disjoint union of \{x_{1}\} , Y_{1} , Y_{2} , Z_{1} , Z_{2} , since every point in S_{1} has
index zero. Clearly P^{n}(\phi)\cap Int D contains x_{1} . Also it contains S_{1} , since
n is taken to satisfy n\geq per(S) . Note that P^{n}(\phi)\cap IntD\supset Y_{i} (resp. Z_{i} )
if n\geq l_{i} (resp. n\geq l_{i}m_{i} ). Therefore, if we let \delta(k)=1 or 0 according to
whether k\leq n or k>n , then we have

\#(P^{n}(\phi)\cap IntD)\geq 1+\# S_{1}+\sum_{i=1,2}(l_{i}\delta(l_{i})+l_{i}m_{i}\delta(l_{i}m_{i}))1 (10)

Since the number of prongs at x_{1} , x_{2} , y_{i} , and any point in S_{1} are a_{1}l_{1},3 ,
b_{i}m_{i} , 1 respectively, the formula (1) implies the following:

-2= \sum_{x\in S}(p(x)-2)\geq(a_{1}l_{1}-2)+a_{2}l_{2}+\sum l_{i}(b_{i}m_{i}-2)-\# S_{1} .
i=1,2

Hence

\# S_{1}\geq\sum l_{i}(m_{i}-1) .
i=1,2

(11)
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Let

\mu_{i}=l_{i}(m_{i}-1)+l_{i}\delta(l_{i})+l_{i}m_{i}\delta(l_{i}m_{i}) .

Then we have by (10), (11),

\#(P^{n}(\phi)\cap IntD)\geq\mu_{1}+\mu_{2}+1 . (12)

We have by the definition of \mu_{i} :

\mu_{i}=\{

l_{i}(m_{i}-1) if n<l_{i}

l_{i}m_{i} if l_{i}\leq n<l_{i}m_{i}

2l_{i}m_{i} if l_{i}m_{i}\leq n<l_{i}(m_{i}+2) .

Since l_{i}(m_{i}-1)\geq l_{i} and 2l_{i}m_{i}\geq l_{i}(m_{i}+2)>n , this implies that \mu_{i}\geq n+1 .
Hence (12) implies (8).

(II) We consider here the case where bt(S, f) is reducible and con-
tains a pseud0-Anosov component. Choose a pseud0-Anosov component
of \phi and denote it by N . Let \mu be the least positive integer such that
\phi^{\mu}(N)=N . Let d be the number of boundary circles of N . Since N is
homeomorphic to a disk possibly with finitely many open disks removed,
N has a boundary circle C_{0} such that all the other boundary circles (called
the inner boudary circles) lie inside of C_{0} . Denote the inner boundary
circles of N by C_{1} , . , C_{d-1} . Let D’ be the disk obtained from N by col-
lapsing each C_{i} (i=1, \ldots, d-1) to a point, which we denote by c_{i} . Let
S’=(S\cap N)\cup\{c_{i}\}_{i=1}^{d-1} . Let \phi’ : D’ – D’ be a pseud0-Anosov homeomor-
phism relative to S’ induced by \phi^{\mu} : N – N .

Let n’=[n/\mu] . We show n’\geq per (S’) , where per(S’) = \max_{x\in S’}

per(x, \phi’ ). If x\in S\cap N . clearly per(x, \phi’ ) = per(x,\phi ) /\mu\leq per(S)/\mu . Let
X_{i} be the disk bounded by the simple closed curve C_{i} . Then S\cap X_{i} has at
least two points, since C_{i} is isotopic to a reducing curve in D-S. Choose
a point w_{i} in S\cap X_{i} . Then C_{i} must go back to itself under per(w_{i}, \phi) times
iterate of \phi . Hence per(c_{i}, \phi’)\leq per(w_{i}, \phi)/\mu\leq per(S)/\mu . Therefore we
have per(S’) \leq[per(S)/\mu]\leq n’ .

Thus, replacing \phi , D , n in the estimate (8) by \phi’ . D’ . n’ respectively,
we have \# ( P^{n’}(\phi’)\cap Int D’ ) \geq 2n’+3 . Since Int N=IntD’-\{c_{i}\}_{i=1}^{d-1} ,
this implies \#(P^{n’}(\phi^{\mu})\cap IntN)\geq 2n’+4-d . Therefore, letting \overline{N} be the
disjoint union of N, \phi(N) , , \phi^{\mu-1}(N) , we have the following: (Note that
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\#\} ( P^{71}(\phi)\cap\phi^{i} (Int N) ) is independent of i. )

\#(P^{n}(\phi)\cap Int\overline{N})=\mu\#(P^{n}(\phi)\cap IntN)\geq\mu\#(P^{n’}(\phi^{\mu})\cap IntN)

\geq\mu(2n’+4-d) .

Therefore, since L\supset\overline{N} , S\subset P^{n}(\phi) , and \# (S- Int \overline{N} ) \geq\mu\sum_{i=1}^{d-1}\#(S\cap X_{i})\geq

2\mu(d-1) , we have

\beta_{\}}(P^{n}(\phi)\cap(S\cup IntL))\geq\#(P^{n}(\phi)\cap Int\overline{N})+\# (S- Int \overline{N} )
\geq\mu(2n’+4-d)+2\mu(d-1)

\geq\mu(2n’+3) .

Since n’\geq(n-\mu+1)/\mu , we have \mu(2n’+3)\geq 2n+\mu+2\geq 2n+3 . Thus
(7) is proved and the proof is completed.

4. Transversal homeomorphisms

We prove here some results on n-transversal homeomorphisms on the
disk which will be needed to prove Theorem 2. Let S be a finite set in Int D .
Let \phi : Darrow D be a canonical homeomorphism relative to S with a pseud0-
Anosov component. Let L be the union of all pseud0-Anosov components
of \phi .

Given a periodic point x\in L of \phi with period m , define integers lJ^{n}(x, \phi)

for n\geq 1 by

IJ^{n}(x, \phi)=\{

max |ind(x, \phi^{mk})| if n\geq m and x\not\in S_{1} ,
21\leq k\leq n/m

if n\geq m and x\in S_{1} ,

0 if n<m .

Note that if x is in Int L-S_{1} and has type (l, a) , then by (2), lJ^{n}(x, \phi)=al-1

if n\geq ml and i/n(x, \phi)=1 if m\leq n<ml .
We can assume without loss of generality that \phi has no periodic points

on the open tubular neighborhood A(\Sigma) , and moreover that \phi sends every
point in A(\Sigma)-\Sigma to a point having a greater distance from \Sigma . Then any
singular point of \mathcal{F}^{s} (resp. \mathcal{F}^{u} ) on \partial L has index -1 (resp. 0) as a periodic
point of \phi . This implies that if x is an m-periodic point in \partial L , then for any
n\geq m , we have i/n(x, \phi)=1 or 0 according to whether x\in Sing(\mathcal{F}^{s}) or
x\in Sing(\mathcal{F}^{u}) .

We extend the definition of lJ^{n}(x, \phi) for all points in L by setting
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I/^{n}(x, \phi)=0 for every non-periodic point x . For a subset E of L , let

\nu^{n}(E, \phi)=\sum_{x\in E}lJ^{n}(x, \phi)
.

This sum can be defined, since P^{n}(\phi) has finitely many points and so
l/^{n}(x, \phi)=0 except for finitely many x . To simplify the notation, we shall
write lJ^{n}(x) , lJ^{n}(E) for lJ^{n}(x, \phi) , lJ^{n}(E, \phi) respectively. We have:

Proposition 3 Let n be a positive integer. Suppose f : D – D is an
orientation-preserving n -transversal homeomorphism with f(S)=S and
per(S)\leq n . Suppose f is isotopic to \phi relative to S. Let N be a pseudO-
Anosov component of \phi . Let \mu be the least positive integer such that
\phi^{\mu}(N)=N . Then we have

\# P^{n}(f)\geq\mu(\nu^{n}(N)+2d_{0}-d_{1}) ,

where d_{0} (resp. d_{1} ) is the number of inner boundary circles C of N which
satisfy the condition that the common period of the periodic points on C is
greater than n (resp. less than or equal to n).

Proof. Let \overline{N}=\bigcup_{j=0}^{\mu-1}\phi^{J}(N) . Let d be the number of boundary circles of
N . Let C_{0} be the outer boundary circle of N. and C_{1} , \ldots , C_{d-1} the inner
boundary circles. Let \overline{C}_{0}=\bigcup_{j=0}^{\mu-1}\phi^{g}(C_{0}) . Let X_{0} be the outer connected
component of D- Int \overline{N} . i.e., the connected component of D- Int \overline{N} which
contains \partial D . Then C_{0}=X_{0}\cap N , and either X_{0}=C_{0}=\partial D or X_{0} is a
compact surface with boundary \overline{C}_{0}\cup\partial D . For 1\leq i\leq d-1 , let X_{i} be the
connected component of D- Int \overline{N} whose boundary circle is C_{i} . Namely,
X_{i} is a disk bounded by the simple closed curve C_{i} . Clearly, for every i>0 ,
X_{i} lies inside of C_{0} .

Let D_{S} be the compactification of D-S, \pi_{S} : D_{S}arrow D the projection,
and \Gamma the union of the attached boundary circles. For x\in S , let \Gamma_{x}=

\pi_{S}^{-1}(x) . Let N_{S}=\pi_{S}^{-1}(N) . N_{S} is a compact surface whose boundary circles
are C_{0} , C_{1} , \ldots , C_{d-1} , \Gamma_{x}(x\in S\cap N) . Let Y_{i}=\pi_{S}^{1}(X_{i}) for 0\leq i\leq d-1 .
For i>0 , Y_{i} is a compact surface whose boundary is the union of C_{i} and
\Gamma_{x} , x\in S\cap X_{i} .

Let \phi_{S} : D_{S}arrow D_{S} be the blow-up of \phi at S . Let \mathcal{E} be the collection of
the following subsets of D_{S} :

\{x\}(x\in IntN-S) , \Gamma_{x}(x\in S\cap N) , Y_{i}(1\leq i\leq d-1) .
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Let

\overline{\mathcal{E}}=\{Y_{0}\}\cup\{\phi_{S}^{j}(E)|E\in \mathcal{E}, 0\leq j\leq\mu-1\} .

Then D_{S} is the disjoint union of the sets in \overline{\mathcal{E}} .
An important property of \overline{\mathcal{E}} is that for any m>0 , every \phi_{S}^{m}-Nielsen

class is contained in exactly one of the elements of \overline{\mathcal{E}} . This follows easily
from Lemma 2. Furthermore, if two invariant sets of \phi_{S}^{m} are \phi_{S}^{m}-related,
then they are contained in the same element of \overline{\mathcal{E}} .

For x\in S and m\geq 1 , let V_{m}^{x} be the open disk centered at x introduced
in the proof of Proposition 1. Since f is n-transversal, any fixed point of
f^{m} is isolated for all m\leq n . Hence we can assume that x is the only point
in the set P^{n}(f)\cap V_{m}^{x} . Let

V^{x}=m=1\cap V_{m}^{x}n ,
V=\cup V^{x}x\in S^{\cdot}

V_{S}^{x}=(V^{x}-\{x\})\cup\Gamma_{x} ,

V_{S}=(V-S)\cup\Gamma

These sets are open neighborhoods of x , S , \Gamma_{x} and \Gamma respectively. Perturb-
ing f in a sufficiently small neighborhood of S contained in V. we obtain
a homeomorphism f’ : D – D which is isotopic to f relative to S and has
the blow-up, which we denote by f_{S} , at S . We can also require that for
all m\leq n , f^{m} and (f’)^{m} coincide away from V Then for all m\leq n , we
have (f’)^{m}(V^{x})=f^{m}(V^{x})\subset W^{f^{m}(x)} and hence every fixed point of f_{S}^{m} in
V_{S}^{x} is f_{S}^{m}-related to \Gamma_{x} . Note also that P^{n}(f_{S})-V_{S}=P^{n}(f)-V Let
H=\{H_{t}\} : D_{S}arrow D_{S} be the isotopy from \phi_{S} to f_{S} .

For E\in\overline{\mathcal{E}} and m\geq 1 , define a subset \triangle_{m}(E) of Fix(f_{S}^{m}) by

\triangle_{m}(E)=\triangle_{H^{m}}(E)(=\triangle_{H^{m}}(E\cap Fix(\phi_{S}^{m}))) ,

where H^{m}=\{H_{t}^{m}\} . If E , E’ are distinct elements of \overline{\mathcal{E}} , then \triangle_{m}(E) and
\triangle_{m’}(E’) are disjoint for any m , m’ In fact, if they have an intersection
for some m , m’ . then some x\in E\cap Fix(\phi_{S}^{m}) and some x’\in E’\cap Fix(\phi_{S}^{m’})

are H^{mm’} -related to the same point, and hence x and x’ are \phi_{S}^{mm’} -Nielsen
equivalent. This contradicts the property of \overline{\mathcal{E}} stated above.

Let E be an element of \overline{\mathcal{E}} . Since E\cap Fix(\phi_{S}^{m}) is empty or a union of \phi_{S}^{m} -

Nielsen classes and \triangle_{H^{m}} preserves the fixed point index for each \phi_{S}^{m}-Nielsen
class, we have

ind(\triangle_{m}(E), f_{S}^{m})=ind(E\cap Fix(\phi_{S}^{m}), \phi_{S}^{m}) . (13)
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For m\geq 1 , let \Theta_{m}(E) be the set of fixed points x of f_{S}^{m} satisfying the
condition that x is f_{S}^{m} -related to some f_{S}^{m} -invariant, connected component
of \Gamma\cap E . Note that \Theta_{m}(E)-\triangle_{m}(E) is a union of f_{S}^{m}-Nielsen classes,
and moreover all of these Nielsen classes are inessential. In fact, suppose
F is an essential f_{S}^{m} -Nielsen class contained in\ominus_{m}(E) . If we denote by F’
the unique \phi_{S}^{m}-Nielsen class satisfying \triangle_{m}(F’)=F . then F’ is \phi_{S}^{m}-related
to \Gamma\cap E by Lemma 1 and so F’\subset E . This implies F\subset\triangle_{m}(E) , and
hence \ominus_{m}(E)-\triangle_{m}(E) contains no essential Nielsen classes. Thus the set
\triangle_{m}(E)\cup O-_{m}(E) has the same fixed point index under f_{S}^{m} as the set \triangle_{m}(E) .
Note also that \triangle_{m}(\Gamma\cap E)\subset\ominus_{m}(E) . If E is a single point in Int N-S,
then \ominus_{m}(E) is empty for every m , since \Gamma\cap E is empty in this case. Let
V_{S}^{E}= \bigcup_{x}V_{S}^{x} , where the union is taken over all x\in S with \Gamma_{x}\subset E . It is
clear that if E is a single point in Int N-S, then V_{S}^{E} is empty. Also, if E
is \Gamma_{x} , where x\in S , then V_{S}^{E}=V_{S}^{x} . We show that

(\triangle_{m}(E)\cup\Theta_{m}(E))\cap V_{S}\subset V_{S}^{E} . (14)

Suppose first that y is a point in \triangle_{m}(E)\cap V_{S} . Then there is a point
x\in E\cap Fix(\phi_{S}^{m}) which is H^{m} -related to y . Also, y\in V_{S}^{z} for some z\in S . It
follows from the property of V^{z} that y and \Gamma_{z} are f_{S}^{m} -related. Therefore by
Lemma 1, x and \Gamma_{z} are \phi_{S}^{m}-related, and hence by the property of \overline{\mathcal{E}} , they
are contained in the same element of \overline{\mathcal{E}} . Since x\in E , this element must be
E and hence \Gamma_{z}\subset E . Thus, y\in V_{S}^{E} . Suppose next that y\in\ominus_{m}(E)\cap V_{S} .
Then y\in V_{S}^{z} for some z , which implies y is f_{S}^{m}-related to \Gamma_{z} . On the other
hand, y\in\ominus_{m}(E) implies y is f_{S}^{m}-related to a component of \Gamma\cap E . These
imply \Gamma_{z} is f_{S}^{m}-related, and so \phi_{S}^{m} -related, to \Gamma\cap E . Hence \Gamma_{z}\subset E and
y\in V_{S}^{E} . Thus (14) is proved.

For E\in\overline{\mathcal{E}} , define a subset F^{n}(E) of P^{n}(f_{S})-V_{S} by

F^{n}(E)=\cup(\triangle_{m}(E)\cup\Theta_{m}(E))-V_{S}m=1n .

Then it follows from the property of \overline{\mathcal{E}} that F^{n}(E) , E\in\overline{\mathcal{E}} , are disjoint
subsets of P^{n}(f)-S . We can assume that V^{f^{j}(x)}\subset f^{j}(V^{x}) for every
x\in S inside C_{0} and for all positive integers j<\mu . Then, for any E\in \mathcal{E}

and every positive j<\mu , we have F^{n}(\phi_{S}^{j}(E))\supset f_{S}^{j}(F^{n}(E)) and hence
\beta F^{n}(\phi_{S}^{j}(E))\geq\# F^{n}(E) . Thus we obtain the following inequality:

\# P^{n}(f)\geq\mu\sum_{E\in \mathcal{E}}\# F^{n}(E)+\# F^{n}(Y_{0})+\# S
. (15)
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We now estimate each term in the right-hand side of this inequality.
Suppose m is a positive integer with m\leq n . Since f is n-transversal, any
fixed point x of f^{m} has index 1 or -1 if x\in IntD (see 3.2 (2) in [14, p. 12]),
and index 1, -1, or 0 if x\in\partial D . Therefore, for any set K of fixed points of
f_{S}^{m} in D_{S}-V_{S} , we have

\# K \geq|ind(K, f_{S}^{m})| . (16)

Also, since for any x\in S , (f’)^{m} and f^{m} have the same fixed point index on
V^{x} and Fix(f^{m})\cap V^{x}=\{x\} , we have for any x\in Fix(f^{m})\cap S , that

ind(Fix(f_{S}^{m})\cap V_{S}^{x}, f_{S}^{m})=ind(x, f^{m})-1=0 or -2. (17)

By (16), we see that if \triangle_{m}(E) is disjoint from V_{S} , then

\#\triangle_{m}(E)\geq|ind(\triangle_{m}(E), f_{S}^{m})|=|ind(E\cap Fix(\phi_{S}^{m}), \phi_{S}^{m})| . (18)

Suppose x\in IntN-S . We show

\# F^{n}(\{x\})\geq lJ^{n}(X) . (19)

If x\not\in P^{n}(\phi) , then clearly F^{n}(\{x\}) is empty and hence \# F^{n}(\{x\})=0=

lJ^{n}(x) . Suppose x\in P^{n}(\phi) . Let m=per(x, \phi) . By (14), \triangle_{j}(\{x\})\cap V_{S}=\emptyset

for any j>0 , and hence F^{n}( \{x\})\supset\bigcup_{k\leq n/m}\triangle_{mk}(\{x\}) . Also, by (18) we
have

\#\triangle_{mk}(\{x\})\geq|ind(x, \phi_{S}^{mk})|=|ind(x, \phi^{mk})|

for any k . Therefore

\# F^{n}(\{x\})\geq mak\leq\frac{nx}{m}|ind(x, \phi^{mk})|=l/^{n}(x) .

Thus (19) is proved.
Suppose x\in S\cap N . Let (l, a) be its type with respect to \phi and m=

l per(x, \phi ). Then m is the period of the periodic points of \phi_{S} on \Gamma_{x} . Let
Q=\triangle_{m}(\Gamma_{x})\cup O-_{m}(\Gamma_{x}) , Q’=Q\cap V_{S}^{x} . Since Q\cap V_{S}\subset Q’ by (14), we have
Q-V_{S}\supset Q-Q’ and hence by (16),

\# F^{n}(\Gamma_{x})\geq\delta(m)\#(Q-Vs)\geq\delta(m)|ind(Q, f_{S}^{m})-ind(Q’, f_{S}^{m})| ,

where \delta(m) is the number defined in I , Case (2) of Section 3. Since \phi_{S}^{m} has
al fixed points of index -1 on \Gamma_{x} , we see by (13) that

ind (Q, f_{S}^{m})=ind(\triangle_{m}(\Gamma_{x}), f_{S}^{m})=ind(\Gamma_{x}\cap Fix(\phi_{S}^{m}), \phi_{S}^{m})=-al.
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Since Q’=Fix(f_{S}^{m})\cap V_{S}^{x} , we have by (17) that if m\leq n then ind(Q’, f_{S}^{m})=

0, -2. As a consequence, if x\not\in S_{1} , then \beta_{\}}F^{n}(\Gamma_{x})\geq\delta(m) (al-2) \geq\iota/^{n}(x)-1 .
Suppose x\in S_{1} . Then since m=per(x, \phi)\leq per(S)\leq n , we have \delta(m)=1 .
Also ind(Q, f_{S}^{m})=-al=-1 . Therefore we have \# F^{n}(\Gamma_{x})\geq 1=lJ^{n}(x)-1 .
Thus, in either case, we have proved that

\# F^{n}(\Gamma_{x})\geq\nu^{n}(x)-1 . (20)

Let i be an integer with 0\leq i\leq d-1 . Let n_{i} denote the period of
a periodic point of \phi on C_{i} . Note that n_{i} does not depend on the choice
of a periodic point. Note also that d_{0} (resp. d_{1} ) is equal to the number
of integers i such that 1 \leq i\leq d-1 and n<n_{i} (resp. n\geq n_{i} ). Let
u_{i}=\beta_{\dagger}(Sing(\mathcal{F}^{s})\cap C_{i}) , i.e., the cardinality of the set of periodic points of
\phi_{S} on C_{i} with index -1. Then u_{i}>0 , since \mathcal{F}^{s} has at least one singularity
on each boundary circle. Let \lambda_{i} be the number of points in S\cap X_{i} which
are fixed by \phi^{n_{i}} (or equivalently by \cdot f^{n_{i}} ). Then \lambda_{i} is equal to the number of
connected components of \Gamma\cap Y_{i} which are invariant under \phi_{S}^{n_{i}} . Therefore,
since \ominus_{n_{i}}(Y_{i})\cap V_{S} is identical to Fix(f_{S}^{n_{i}})\cap V_{S}^{Y_{i}} . which is the union of
Fix(f_{S}^{n_{i}})\cap V_{S}^{x} for all x\in S\cap X_{i}\cap Fix(f^{n_{i}}) , we have by (17) that if n\geq n_{i}

then

0\geq ind(\ominus_{n_{i}}(Y_{i})\cap V_{S}, f_{S}^{n_{i}})\geq-2\lambda_{i} . (21)

Consider the case of i>0 . Let A_{i} be the reducing annulus which
is contained in Y_{i} and is adjacent to N . Let \Sigma_{i} be the reducing curve
lying in A_{i} . Let A_{i}’ be the connected components of A_{i}-\Sigma_{i} which is
adjacent to N. and let Y_{i}^{0}=Y_{i}-A_{i}’ . Then, Y_{i}^{0} is a compact surface which
has \Sigma_{i} as a boundary circle, and \phi_{S}^{n_{i}} maps Y_{i}^{0} onto itself. Let \eta be the
restriction of \phi_{S}^{n_{i}} to Y_{i}^{0} . Since \phi is assumed to have no periodic points
on A_{i} , ind((Y_{i}-C_{i})\cap Fix(\phi_{S}^{n_{i}}), \phi_{S}^{n_{i}}) is equal to ind(Y_{i}^{0}\cap Fix(\phi_{S}^{n_{i}}), \eta)=

ind(Fix(\eta), \eta) , and hence equal to the Lefschetz number of \eta . Since this
Lefschetz number is easily seen to be 1-\lambda_{i} , we have by (13)

ind(\triangle_{n_{i}}(Y_{i}), f_{S}^{n_{i}})=ind(Y_{i}\cap Fix(\phi_{S}^{n_{i}}), \phi_{S}^{n_{i}})

=ind(C_{i}\cap Fix(\phi_{S}^{n_{i}}), \phi_{S}^{n_{i}})

+ind((Y_{i}-C_{i})\cap Fix(\phi_{S}^{n_{i}}), \phi_{S}^{n_{i}})

=-u_{i}+(1-\lambda_{i}) .

Therefore, since (\triangle_{n_{i}}(Y_{i})\cup\Theta_{n_{i}}(Y_{i}))\cap V_{S}=\ominus_{n_{i}}(Y_{i})\cap V_{S} , and since \triangle_{n_{i}}(Y_{i})\cup
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\ominus_{n_{i}}(Y_{i}) has the same fixed point index as \triangle_{n_{i}}(Y_{i}) , we see by (16), (21) that
if n\geq n_{i} then

\#(\triangle_{n_{i}}(Y_{i})\cup\ominus_{n_{i}}(Y_{i})-V_{S})\geq ind(\ominus_{n_{i}}(Y_{i})\cap V_{S}, f_{S}^{n_{i}})

-ind(\triangle_{n_{i}}(Y_{i}), f_{S}^{n_{i}})

\geq u_{i}-\lambda_{i}-1 .

Hence

\# F^{n}(Y_{i})\geq\delta(n_{i})(u_{i}-\lambda_{i}-1)=\nu^{n}(C_{i})-\delta(n_{i})(\lambda_{i}+1) . (22)

Now consider the case of i=0. Then, in the same way as in the case
of i>0 , we can prove that

ind(\triangle_{n_{0}}(Y_{0}), f_{S}^{n_{0}})=ind(\overline{C}_{0}\cap Fix(\phi_{S}^{n_{0}}), \phi_{S}^{n_{0}})

+ind((Y_{0}-\overline{C}_{0})\cap Fix(\phi_{S}^{n_{0}}), \phi_{S}^{n_{0}})

=-\mu u_{0}+(1-\mu-\lambda_{0}) .

Hence, if n\geq n_{0} , then by (16), (21), \#(\triangle_{n_{0}}(Y_{0})\cup\ominus_{n_{0}}(Y_{0})-V_{S})\geq-2\lambda_{0}-

(-\mu u_{0}+1-\mu-\lambda_{0})\geq\mu u_{0}-\lambda_{0} . Therefore

\beta F^{n}(Y_{0})\geq\delta(n_{0})(\mu u_{0}-\lambda_{0})\geq\mu lJ^{n}(C_{0})-\delta(n_{0})\lambda_{0}

\geq\mu\nu^{n}(C_{0})-\lambda_{0} . (23)

Since S has at least \max\{\lambda_{i}, 2\} points in X_{i} ,

\# S
\geq\mu\#(S\cap N)+\mu\sum_{i>0}\max\{\lambda_{i}, 2\}+\lambda_{0} .

This implies that

- \lambda_{0}+\# S\geq\mu(\#(S\cap N)+\sum_{i>0}\delta(n_{i})(\lambda_{i}+1)+2d_{0}-d_{1}) ,

since \max\{\lambda_{i}, 2\}-\delta(n_{i})(\lambda_{i}+1)\geq 2 or -1 according to n<n_{i} or n\geq n_{i} .
Thus by (15), (19), (20), (22), (23),

\# P^{n}(f)\geq\mu(\sum_{x\in IntN-S}l/^{n}(x)+\sum_{x\in S\cap N}(\nu^{n}(x)-1)

+ \sum_{i>0}(\nu^{n}(C_{i})-\delta(n_{i})(\lambda_{i}+1)))+\mu\nu^{n}(C_{0})-\lambda_{0}+\# S
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\geq\mu(\nu^{n}(N)-\#(S\cap N)-\sum_{i>0}\delta(n_{i})(\lambda_{i}+1))-\lambda_{0}+\# S

\geq\mu(\nu^{n}(N)+2d_{0}-d_{1}) .

\square

In the rest of this section, we return to the situation of Lemma 3 in
Section 2, i.e. \phi : Darrow D is an orientation-preserving generalized pseud0-
Anosov homeomorphism, x_{0}\in IntD a fixed point of \phi , g : Aarrow A the
blow-up of \phi at x_{0} , and \tilde{g} : \tilde{A}

–

\tilde{A} a lift of g . Given a positive integer n
and an integer k prime to n , let

P_{n,k}(g)=\{x\in P_{n}(g)|\rho(x,\tilde{g})=k/n\} .

Each P_{n,k}(g) is identical to some g^{n}-Nielsen class. Since g is homotopic to
the identity map, every g^{n}-Nielsen class has index zero. Therefore, we have:

ind(P_{n,k}(g), g^{n})=0 . (24)

Lemma 4 Assume all the hypotheses of Lemma 3. Then \nu^{n}(D)\geq 3n+8 .

Proof. Let k_{1}/l_{1} , \ldots , k_{\beta}/l_{\beta} be the rational numbers and \{x_{i}\}_{i=1}^{\beta} the inte-
rior periodic points of g in the proof of Lemma 3. Let X_{i} denote the orbit
of x_{i} . Then X_{i} is a periodic orbit of \phi in Int D-\{x_{0}\} with period l_{i}\leq n .
If X_{i}\subset S_{1} , then \nu^{n}(X_{i})=2l_{i} by the definition of lJ^{n} . Suppose X_{i} is not
contained in S_{1} . Since x_{i}\in P_{l_{i},k_{i}}(g) and by (2) ind(x_{i}, g^{l_{\iota}})\neq 0 , it follows
from (24) that there is another l_{i} -periodic point x_{i}’ in A with nonzero index
and rotation number k_{i}/l_{i} . Let X_{i}’ be the orbit of x_{i}’ . Since x_{i} and x_{i}’ have
nonzero index, \nu^{n}(X_{i}) , \nu^{n}(X_{i}’)\geq l_{i} . Let \Gamma be the boundary circle of A

corresponding to x_{0} . Divide \{ 1, . , \beta\} into three subsets J_{1} , J_{2} , J_{3} given by

J_{1}=\{i|X_{i}\subset S_{1}\} , J_{2}=\{i\not\in J_{1}|X_{i}’\cap\Gamma=\emptyset\} ,

J_{3}=\{i\not\in J_{1}|X_{i}’\subset\Gamma\} .

Since X_{i}’\subset\Gamma implies k_{i}/l_{i}=\rho(\Gamma,\tilde{g}) , it is impossible that J_{3} contains more
than one element. Therefore, J_{3} is empty or consists of a single integer, say
i_{0} . Consider first the case of J_{3}=\{i_{0}\} . Then x_{0} has type (l_{i_{0}}, a) for some
a\geq 1 . Since n\geq l_{i_{0}} , this implies that \nu^{n}(x_{0})\geq l_{i_{0}} –1. Therefore, since
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l_{1}+ +l_{\beta}\geq 2n+2 ,

lJ^{n}(D) \geq\sum_{i\in J_{1}}lJ^{n}(X_{i})+\sum_{i\in J_{2}}lJ^{n}(X_{i}\cup X_{i}’)+\mathfrak{l}J^{n}(X_{i_{0}})+JJ^{n}(x_{0})

\geq 2\sum_{i\neq i_{0}}l_{i}+l_{i_{0}}+(l_{i_{0}}-1)\geq 4n+3 .

Since the assumption (a) implies l\geq 2 , we have n\geq 5 by (c) and hence
4n+3\geq 3n+8 . Thus we have the proof in this case. The proof for the
case of J_{3} empty is easier. \square

5. Proof of Theorem 2

The proof is divided into two parts (I), (II).
(I) Consider the case where bt(S, f) is pseud0-Anosov. Then the

canonical homeomorphism \phi isotopic to f is pseud0-Anosov relative to S ,
and we have \# P^{n}(f)\geq lJ^{n}(D) by Proposition 3. Therefore, it is enough to
show that

\nu^{n}(D)\geq 3n+6 . (25)

Let x_{i} , y_{i} , z_{i}(i=1,2) be the periodic points of \phi introduced in Section 3.
x_{1} is a fixed point of index 1, and its type is denoted by (l_{1}, a_{1}) . x_{2} is one of
the periodic points on \partial D with index-l; its period is l_{2} and there are a_{2}l_{2}

periodic points on \partial D with index -1. y_{i} is an l_{i}-periodic point of index 1,
and its type is (m_{i}, b_{i}) . z_{i} is an l_{i}m_{i}-periodic point of index 1. Let X_{i} , Y_{i} ,
Z_{i} be the orbits of x_{i} , y_{i} , z_{i} respectively.

We have two cases to consider:
(1) n\geq l_{i_{0}}(m_{i_{0}}+2) , where i_{0} is 1 or 2.
(2) n<l_{i}(m_{i}+2) for i=1 and 2.

Case (1): Let l=l_{i_{0}} , m=m_{i_{0}} . Let g : A –A be the blow-up of \phi^{l}

at y_{i_{0}} . Let \Gamma be a circle corresponding to y_{i_{0}} , and \alpha=[n/l] . For s with
m<s\leq\alpha , let U_{s}=P_{s,1}(g)\cup P_{s,-1}(g) . We have shown in Section 3 that
U_{s} is not empty for any s , if we choose the lift \tilde{g} appropriately.

Consider first the case where, for some s , U_{s} contains an element u
with per(u, \phi ) </s . Then, as has been shown in Case (1), (i) of Section 3,
all the hypotheses of Lemma 3 are satisfied if x_{0} , x are replaced by x_{1} , u
respectively. Thus by Lemma 4, (25) is proved.

Consider next the case where per(u, \phi ) =ls for any s and any u\in U_{s} .
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Let W=X_{i_{0}}\cup Y_{i_{0}}\cup Fix(\phi) . Since \rho(\Gamma,\tilde{g})=d/m for some d prime to m ,
we see U_{s}\cap\Gamma is empty. Therefore U_{s} can be thought of as a subset of D .
Moreover, \{U_{s}\}_{s>m} , Z_{i_{0}} , and W are mutually disjoint subsets of D . Thus

\nu^{n}(D)\geq\sum_{s=m+1}^{\alpha}lJ^{n}(U_{s})+lJ^{n}(Z_{i_{0}})+JJ^{n}(W) . (26)

Note that lJ^{n}(Z_{i_{0}})\geq Im . We show lJ^{n}(U_{s})\geq 2ls . In fact, if U_{s}\subset S_{1} ,
then by the definition of \nu^{n} , \nu^{n}(U_{s})\geq 2ls . Also if U_{s} is disjoint from S_{1} ,
then every point in U_{s} has nonzero index, and hence by (24), U_{s} contains
at least two ls-periodic orbits with nonzero index. Thus lJ^{n}(U_{s})\geq 21s .
Therefore, since n\geq l(m+2) and hence \alpha-1\geq m+1 , we have

\sum_{s=m+1}^{\alpha}lJ^{n}(U_{s})\geq\sum_{s=\alpha-1}^{\alpha}2ls\geq 2l(2\alpha-1) .

We show \nu^{n}(W)\geq 2l+\epsilon , where \epsilon=1, -1 according to l=1 or l\geq 2 .
If l\geq 2 , then

l/^{n}(W)\geq\nu^{n}(X_{i_{0}})+\nu^{n}(Y_{i_{0}})\geq(al-1)+l(bm -- 1) \geq 2l-1 .

In the case of l=1 , we have lJ^{n}(W)\geq 3 . In fact, l=1 is possible only if
i_{0}=2 . Then x_{2} is a fixed point of \phi on \partial D with index-l. Therefore, since
\chi(D)=1 , there must be a fixed point of nonzero index different from x_{1}

and x_{2} . Thus, i/n(W)\geq lJ^{n} (Fix(\mbox{\boldmath $\phi$}))\geq 3.
The above estimates together with (26) imply \nu^{n}(D)\geq 4l\alpha+lm+\epsilon .

Since l\alpha\geq n-l+1 and n\geq l(m+2) , this implies 7J^{n}(D)-(3n+6)\geq

2l(m-1)-2+\epsilon>0 . Hence (25) holds.

Case (2): Let

\nu_{1}=2l_{1}(m_{1}-1)+(2l_{1}-2)\delta(l_{1})+2l_{1}(m_{1}-1)\delta(l_{1}m_{1})+1 ,

\nu_{2}=2l_{2}(m_{2}-1)+2l_{2}\delta(l_{2})+2l_{2}(m_{2}-1)\delta(l_{2}m_{2}) .

For i=1,2 , let Q_{i}=X_{i}\cup Y_{i}\cup Z{. Then we have:

Lemma 5 lJ^{n}(S_{1}\cup Q_{1}\cup Q_{2})\geq\nu_{1}+\nu_{2} .

Proof. Since ind (x_{1}, \phi^{l_{1}})=1-a_{1}l_{1} , ind(x_{2}, \phi^{l_{2}})=-1 , ind(y_{i}, \phi^{l_{i}m_{i}})=
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1-b_{i}m_{i} , we have

lJ^{n}(X_{1})=1+(a_{1}l_{1}-2)\delta(l_{1}) , lJ^{n}(X_{2})=a_{2}l_{2}\delta(l_{2}) ,
(27)

lJ^{n}(Y_{i})=l_{i}\delta(l_{i})+l_{i}(b_{i}m_{i}-2)\delta(l_{i}m_{i}) , lJ^{n}(Z_{i})\geq l_{i}m_{i}\delta(l_{i}m_{i}) .

Also by (11), we have \mathfrak{l}/^{n}(S_{1})=2\# S_{1}\geq 2\sum_{i=1}^{2}l_{i}(m_{i}-1) . Therefore, since
S_{1} , Q_{1} , Q_{2} are mutually disjoint, we have the lemma. \square

Lemma 6

\nu_{1}\geq\{

2n+3 if n\leq l_{1}

2n+1 if n<3l_{1} or m_{1}\geq 3

n+4 for any n\geq 1 ,

\nu_{2}\geq\{

2n+2 if n<3l_{2} or m_{2}\geq 3

n+5 if n\geq l_{2}\geq 2

n+3 if l_{2}=1 .

Proof. These follow from the following, which can be easily verified:

\nu_{1}=

/
2l_{1}(m_{1}-1)+1\geq 2l_{1}+1 if n<l_{1}

2l_{1}m_{1}-1 if l_{1}\leq n<l_{1}m_{1}

\backslash 4l_{1}m_{1}-2l_{1}-1 if l_{1}m_{1}\leq n<l_{1}(m_{1}+2) ,

\nu_{2}=

/

2l_{2}(m_{2}-1)\geq 2l_{2} if n<l_{2}

2l_{2}m_{2} if l_{2}\leq n<l_{2}m_{2}

\backslash l_{2}(4m_{2}-2) if l_{2}m_{2}\leq n<l_{2}(m_{2}+2) .

\square

Let \Lambda be the set of pairs (l, m) of integers which satisfy n<3l or m\geq 3 .
There are four subcases.
(i) (l_{2}, m_{2})\in\Lambda .
(ii) (l_{1}, m_{1})\in\Lambda , (l_{2}, m_{2})\not\in\Lambda , and l_{2}\geq 2 .
(iii) (l_{1}, m_{1})\in\Lambda , (l_{2}, m_{2})\not\in\Lambda , and l_{2}=1 .
(iv) (l_{1}, m_{1}) , (l_{2}, m_{2})\not\in\Lambda .

Case (i): By Lemma 6, \nu_{1}\geq n+4 and \nu_{2}\geq 2n+2 . Then Lemma 5
implies (25).
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Case (ii): Since (l_{2}, m_{2})\not\in\Lambda , we have n\geq 3l_{2} . Therefore, by Lemma 6,
\nu_{1}\geq 2n+1 and \nu_{2}\geq n+5 , and so (25) holds.

Case (iii): This case is possible only if n=3. In fact, since n\geq 3l_{2} ,
m_{2}=2 , and the inequality n<l_{2}(m_{2}+2) is assumed, the hypothesis l_{2}=1

implies n=3 . Note that by (11) we see that S_{1} has at least three points.
There are three subcases:

(iii-a) l_{1}\geq 3 .
(iii-b) l_{1}=2 and \# S_{1}\geq 4 .
(iii-c) \# S_{1}=3 .

Case (iii-a): Since n=3\leq l_{1} , by Lemma 6, \nu_{1}\geq 2n+3 . Therefore,
\nu_{2}\geq n+3 implies (25).

Case (iii-b): By (27), we have \nu^{3}(X_{1}\cup X_{2})=a_{1}l_{1}-1+a_{2}l_{2}\geq 2 , \nu^{3}(Y_{1}\cup

Y_{2})\geq l_{1}+l_{2}=3 , and \nu^{3}(Z_{2})\geq l_{2}m_{2}=2 . Therefore, since \nu^{3}(S_{1})\geq 8 , we
see \nu^{3}(S_{1}\cup Q_{1}\cup Q_{2})\geq 15=3n+6 .

Case (iii-c): Let \psi be the homeomorphism on the sphere S^{2} induced by
\phi by collapsing \partial D to a point \infty . Then \psi is pseud0-Anosov relative to the
invariant set S_{1}\cup\{\infty\} . Since this invariant set has four points, \psi^{q} has tr A^{q}

fixed points on S^{2} for every q\geq 1 , where A is a 2\cross 2 matrix whose entries
are all positive integers and tr A\geq 3 . (See [19, Theorem 2.4] or [20, p. 70].)
This implies \#Fix(\psi^{3})\geq trA^{3}\geq 18 , and hence the set Fix(\phi^{3})\cap IntD has
at least 17 points. Since \nu^{3}(x)>0 for any x in this set, we have \nu^{3}(D)\geq 17

and (25) holds.

Case (iv): The hypotheses imply that m_{i}=2 and

3l_{i}\leq n<l_{i}(m_{i}+2)=4l_{i} (28)

for i=1 and 2. Note that, since l_{1}\geq 2 , (28) implies l_{2}\geq 2 and Q_{2} contains
no fixed points. Therefore, if we let R=Fix(\phi)-(S_{1}\cup X_{1}) , then R is
disjoint from S_{1} , Q_{1} , Q_{2} . Since l_{1}m_{1}=2l_{1}<n\leq 4l_{1}-1 by (28), we have
lJ^{n}(Q_{1})\geq 4l_{1}-1\geq n by (27). Similarly \nu^{n}(Q_{2})\geq 4l_{2}\geq n+1 . Therefore

\nu^{n}(S_{1}\cup Q_{1}\cup Q_{2}\cup R)\geq 2\beta S_{1}+2n+1+l/^{n}(R) . (28)

There are three subcases.
(iv-a) l_{2}\geq 2 and \# S_{1}\geq 2l_{2}+2 .
(iv-b) l_{2}=2 and \# S_{1}=5 .
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(iv-c) l_{2}\geq 3 and \beta S_{1}\leq 2l_{2}+1 , or l_{2}=2 and \# S_{1}\leq 4 .

Case (iv-a): In this case, 2\# S_{1}\geq 4l_{2}+4\geq n+5 . Therefore (25) follows
from (29).

Case (iv-b): Let S’=S-(S_{1}\cup\partial D) . Then by (1) the sum \sum_{x\in S} , (2-p(x))
is equal to 2-\# S_{1}+a_{2}l_{2}=2a_{2} –3, and hence equal to -1 or a positive
number. Since 2-p(x) is negative for any x\in S’- this sum must be -1.
This means that there is one and only one singularity in S’ and moreover
it must be 3-pronged. We denote this singurality by x_{0} . Then, since x_{0} is
3-pronged, ind(x_{0}, \phi)=1 or -2. Since l_{2}=2 , l_{1}=2 by (28) and hence
x_{1} is a regular point of \mathcal{F}^{s} . This implies x_{0}\neq x_{1} , and so x_{0}\in R . Since
x_{1} has index one and any point of S_{1} has index zero, R has fixed point
index zero. Therefore, R has a fixed point of nonzero index different from
x_{0} . This implies \nu^{n}(R)\geq 2 . Therefore, since n=6 or 7 by (28), we have
2\# S_{1}+lJ^{n}(R)\geq 12\geq n+5 . Thus (25) follows from (29).

Case (iv-c): Let g : Aarrow A be the blow-up of \phi^{l_{2}} at y_{2} . Since y_{2} has
type (m_{2}, b_{2})=(2, b_{2}) , we see \rho(\Gamma,\tilde{g})=d/2 , where \Gamma is a boundary circle
corresponding to y_{2} and d is odd. Also, \rho(\partial D,\tilde{g}) is an integer. Therefore,
we can assume that \rho(\tilde{g}) contains [0, 1/2] or [-1/2, 0]. We assume \rho(\tilde{g})\supset

[0,1/2] , the other case being similar. Then by Theorem 4, there is a 3-
periodic point of g with rotation number 1/3. Choose such a point w . It
is easy to see that w is an interior periodic point of \phi and w\in Fix(\phi^{3l_{2}})-

Fix(\phi^{l_{2}}) . Hence per(w, \phi ) is written as per(w, \phi ) =3l_{2}/r , where r is a
divisor of l_{2} and r\neq 3 .

If r\geq 4 , then per(w, \phi ) <l_{2}\leq l_{2} per(w, \phi^{l_{2}} ). Also by (28), 2l_{2}+

per(w, \phi ) <3l_{2}\leq n . Let g’ : A’arrow A’ be the blow-up of \phi at x_{1} . Then \rho(\tilde{g}’)

contains \rho(x_{2},\tilde{g}’) which is equal to k/l_{2} for some k prime to l_{2} . Therefore
by Lemma 4, (25) holds.

Assume r\leq 2 . Consider first the case of w\in S_{1} . Then its orbit Orb(iu)
under \phi is contained in S_{1} . By a hypothesis, \# S_{1}\leq 2l_{2}+\epsilon , where \epsilon=1 or 0
according to l_{2}\geq 3 or l_{2}=2 . In the present case, we have r=2 , because if
r=1 , the number per(w, \phi ) =3l_{2} could exceed the cardinality of S_{1} . Thus
per (w, \phi)=3l_{2}/2 . By (11) and (28), \# S_{1}\geq l_{1}+l_{2}>7l_{2}/4 . Therefore, we
have

\frac{l_{2}}{4}<\# ( S_{1}- Orb(w) ) =\# S_{1}- per(w, \phi ) \leq(2l_{2}+\epsilon)-\frac{3}{2}l_{2}
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= \frac{l_{2}}{2}+\epsilon<l_{2} .

This implies that there is a periodic point y\in S_{1} of \phi with period less than
l_{2} . Then per(y, \phi ) <l_{2} per(y, \phi^{l_{2}} ), and 2l_{2}+per(y, \phi)<3l_{2}\leq n . Also we
showed above that \rho(\tilde{g}’)\ni k/l_{2} . Hence by Lemma 4, we have (25).

Consider the case of w\not\in S_{1} . Then ind(w, g^{3})\neq 0 , since any periodic
point of index zero is contained in S_{1} or \partial D . Therefore by (24), there is
another 3-periodic point w’\not\in S_{1} of g with \rho(w’,\tilde{g})=1/3 . We show w ,
w’\not\in Q_{1}\cup Q_{2} . In fact, if w\in Q_{2} , then per(w, \phi ) =l_{2} or 2l_{2} , since x_{2} ,
y_{2} , z_{2} have periods l_{2} , l_{2},2l_{2} respectively. Then 3l_{2}/r=l_{2} or 2l_{2} , which
contradicts that r=1,2 . Suppose w\in Q_{1} . Then 3l_{2}/r=per(w, \phi)=l_{1}

or 2l_{1} . Therefore since r=1,2 and 3l_{2}<4l_{1} by (28), we have 3l_{2}=l_{1}

or 2l_{1} . This contradicts that 3l_{1}<4l_{2} . In the same way, we can verify
w’\not\in Q_{1}\cup Q_{2} .

Let W. W’ be the orbits of w , w’ respectively. We can assume that
per (w’, \phi)\geq per(w, \phi) without loss of generality. Then, \nu^{n}(W) , l/^{n}(W’)\geq

3l_{2}/2 . Therefore, we have by Lemma 5,

\nu^{n}(S_{1}\cup Q_{1}\cup Q_{2})+lJ^{n}(W)+lJ^{n}(W’)\geq\nu_{1}+\nu_{2}+3l_{2} . (30)

Since n\geq 3l_{2} and m_{2}=2 , we have \nu_{2}=6l_{2} by the definition of \nu_{2} . Also, by
Lemma 6, \nu_{1}\geq n+4 . Therefore, since W. W’ . S_{1}\cup Q_{1}\cup Q_{2} are mutually
disjoint, we have l/^{n}(D)\geq n+4+9l_{2} by (30). Since 4l_{2}\geq n+1 , this implies
(25).

(II) Here we consider the general case; namely, the case where bt(S, f)
is reducible and contains a pseud0-Anosov component. We shall use the
same notations as in (II) of Section 3. Since \phi’ : D’arrow D’ is pseud0-Anosov
relative to S’ and n’\geq per(S’), applying the result in (I) of this section to
\phi’- we have lJ^{n’}(D’, \phi’)\geq 3n’+6 . Let n_{i} (resp. u_{i} ) be the period (resp. the
number) of periodic points of \phi on C_{i} . Note that \nu^{n’}(c_{i}, \phi’)=1 or u_{i}-1

according to whether n’<n_{i}/\mu (equivalently n<n_{i} ) or n’\geq n_{i}/\mu . Hence
we have \mathfrak{l}J^{n}(C_{i}, \phi)=lJ^{n’}(c_{i}, \phi’)-1+2\delta(n_{i}) . Therefore, we have

lJ^{n}(N)=lJ^{n}(N- \cup C_{i})id-1=1+\sum_{i=1}^{d-1}\nu^{n}(C_{i})

=JJ^{n’}(D’- \{c_{i}\}_{i=1}^{d-1}, \phi’)+\sum_{i=1}^{d-1}(\nu^{n’}(c_{i}, \phi’)-1+2\delta(n_{i}))
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=lJ^{n’}(D’, \phi’)-d_{0}+d_{1} .

Therefore by Proposition 3,

\# P^{n}(f)\geq\mu(lJ^{n}(N)+2d_{0}-d_{1})\geq\mu(\nu^{n’}(D’, \phi’)+d_{0})

\geq\mu(3n’+6) .

Since \mu n’\geq n-\mu+1 , this shows \beta P^{n}(f)\geq 3n+6 , and the proof is
completed.
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