Cubic P-Galois extensions over a field

Atsushi Nakajima
(Received January 20, 1997; Revised July 11, 1997)

Abstract

The notion of P-Galois extensions was introduced by K. Kishimoto [K1] and [K2]. We determine all cubic P-Galois extensions over a field except that P is a cyclic group.

Key words: Galois extension, σ-derivation.

Introduction

Let A / R be a ring extension with common identity 1 and $\operatorname{Hom}\left(A_{R}, A_{R}\right)$ the set of all right R-module endmorphisms of A. Let P be a subset of $\operatorname{Hom}\left(A_{R}, A_{R}\right)$. In [K2], Kishimoto gave a fundamental properties of P Galois extensions and in [K1], he determined the structure of cyclic P Galois extensions under the assumption $\sigma D=D \sigma$ and $\operatorname{char}(R)=p$, where $P=\left\{1, D, D^{2}, \ldots, D^{p-1}, D^{p}=0\right\}, \sigma$ is an automorphism of A and D is a σ-derivation.

In this note, we determine all cubic P-Galois extensions over a field except P is a cyclic group. A cubic P-Galois extension means that the cardinality of P is three. The notion of P-Galois extension is not familiar to the reader, so we will begin at the definition of a P-Galois extension.

1. Preliminary results

Let A / R and P be as above. We assume that P is a partially ordered set with respect to the order \leq. In the following, we denote the elements of P by Capital Greek Letters. A chain of Λ means a descending chain $\Lambda=\Lambda_{0} \gg \Lambda_{1} \gg \cdots \gg \Lambda_{m}$, where Λ_{m} is a minimal element and $\Lambda_{t} \gg \Lambda_{s}$ means that there is no $\Lambda_{t}>\Lambda_{u}>\Lambda_{s} . P$ is said to be a relative sequence of homomorphisms if it satisfies the following conditions (A.1)(A.4) and (B.1)-(B.4).
(A.1) $\Lambda \neq 0$ for all $\Lambda \in P$ and $P(\min)$, the set of all minimal elements in P, coincides with all $\Lambda \in P$ such that Λ is a ring automorphism.
(A.2) Any two chain of Λ have the same length.
(A.3) If $\Lambda \Gamma \neq 0$, then $\Lambda \Gamma \in P$ and if $\Lambda \Gamma=0$, then $\Gamma \Lambda=0$.
(A.4) Assume that $\Lambda \Gamma, \Lambda \Omega \in P$. Then
(i) $\Lambda \Gamma \geq \Lambda \Omega$ (resp. $\Gamma \Lambda \geq \Omega \Lambda$) if and only if $\Gamma \geq \Omega$.
(ii) If $\Lambda \Gamma \geq \Omega$, then $\Omega=\Lambda_{1} \Gamma_{1}$ for some $\Lambda \geq \Lambda_{1}$ and $\Gamma \geq \Gamma_{1}$.

Let $x, y \in A$.
(B.1) $\Lambda(1)=0$ for any $\Lambda \in P-P(\min)$.
(B.2) For any $\Lambda \geq \Gamma$, there exists $g(\Lambda, \Gamma) \in \operatorname{Hom}\left(A_{R}, A_{R}\right)$ such that

$$
\Lambda(x y)=\sum_{\Lambda \geq \Omega} g(\Lambda, \Omega)(x) \Omega(y)
$$

(If $\Lambda \nsupseteq \Gamma$, then we set $g(\Lambda, \Gamma)=0$.)
(B.3) (i) For the above $g(\Lambda, \Gamma)$, there holds

$$
g(\Lambda, \Gamma)(x y)=\sum_{\Lambda \geq \Omega \geq \Gamma} g(\Lambda, \Omega)(x) g(\Omega, \Gamma)(y)
$$

(ii) If $\Lambda \Gamma \geq \Omega$, then

$$
g(\Lambda \Gamma, \Omega)(x)=\sum_{\Lambda \geq \Lambda^{\prime}, \Gamma \geq \Gamma^{\prime}, \Lambda^{\prime} \Gamma^{\prime}=\Omega} g\left(\Lambda, \Lambda^{\prime}\right) g\left(\Gamma, \Gamma^{\prime}\right)(x)
$$

(B.4) (i) $g(\Lambda, \Lambda)$ is a ring automorphism.
(ii) $g(\Lambda, \Omega)=\Lambda$ for any $\Omega \in P(\min)$.
(iii) If $\Lambda>\Gamma$, then $g(\Lambda, \Gamma)(1)=0$.

For a relative sequence of homomorphisms P, we set

$$
\begin{aligned}
& R_{0}=\{a \in A \mid \Lambda(a)=a \text { for all } \Lambda \in P(\min)\} \\
& R_{1}=\{a \in A \mid \Lambda(a)=0 \text { for all } \Lambda \in P-P(\min)\}
\end{aligned}
$$

Then R_{0} and R_{1} are subrings of $A . A^{P}=R_{0} \cap R_{1}$ is called the invariant subring of P. Next, we compose an algebra from A and P. Let $D(A, P)=$ $\sum_{\Lambda \in P} \oplus A u_{\Lambda}$ be a free left A-module with A-basis $\left\{u_{\Lambda} \mid \Lambda \in P\right\}$. Define the multiplication on $D(A, P)$ by

$$
\left(a u_{\Lambda}\right)\left(b u_{\Gamma}\right)=\sum_{\Lambda \geq \Omega} a g(\Lambda, \Omega)(b) u_{\Omega \Gamma}
$$

where $u_{\Omega \Gamma}=0$ if $\Omega \Gamma=0$. Then we can check that $D(A, P)$ is an algebra, which is called the trivial crossed product ([K2, Theorem 2.2.]). Under these circumstances, we define the following

Definition 1.1 A / R is called a P-Galois extension if it satisfies the following three conditins:
(P.1) $\quad A^{P}=R$.
(P.2) $\quad A$ is a finitely generated projective right R-module.
(P.3) The map $j: D(A, P) \rightarrow \operatorname{Hom}\left(A_{R}, A_{R}\right)$ defined by $j\left(a u_{\Lambda}\right)(x)=$ $a \Lambda(x)$ is an isomorphism.

We denote the cardinality of P by $|P|$. We mean a n-th P-Galois extension is $|P|=n$. Then by (P.3), if R is a field, a n-th P-Galois extension A of R is a free R-module of rank n. So to determine all cubic P-Galois extensions, we have to classify P of $|P|=3$.

Lemma 1.2 ([N1, Lemma 3.1]) Let P be a relative sequence of homomorphisms with $|P|=3$. Then P is one of the following:
(1) P is a cyclic group of order 3 .
(2) $P=\left\{1, \Lambda, \Lambda^{2} \mid \Lambda^{3}=0 ; 1<\Lambda<\Lambda^{2}\right\}$ and Λ is a $(1, \sigma)$-derivation, that is, $\Lambda(a b)=\Lambda(a) b+\sigma(a) \Lambda(b)(a, b \in \Lambda)$ and σ is an automorphism.
(3) $P=\left\{1, \Lambda, \Gamma \mid \Lambda \Gamma=\Gamma \Lambda=\Lambda^{2}=\Gamma^{2}=0 ; 1<\Lambda<\Gamma\right\}$ and Λ is a $(1, \sigma)$-derivation.
(4) $P=\left\{1, \Lambda, \Gamma \mid \Lambda \Gamma=\Gamma \Lambda=\Lambda^{2}=\Gamma^{2}=0 ; 1<\Lambda, 1<\Gamma\right\}$ and Λ is a $(1, \sigma)$-derivation, Γ is a $(1, \tau)$-derivation and τ is an automorphism.

If P is a cyclic group, then a P-Galois extension A / R is a usual cyclic Galois extension and so the essential part of P-Galois extension is the cases (2), (3) and (4). If P is of type (2), then it is discussed in [K1] under the assumptions $\sigma \Lambda=\Lambda \sigma$ and $\operatorname{char}(R)=3$. We will discuss this case later without these conditions. First, we have the following

Theorem 1.3 Let R be an integral domain which is contained in the center of A and let P be a relative sequence of homomorphisms in $\operatorname{Hom}\left(A_{R}, A_{R}\right)$ with $|P|=3$. Assume that A has an R-free basis $\{1, x, y\}$. If P is of type (3) or (4) in the above Lemma 1.2, then $A^{P} \neq R$.

Proof. Assume that $A^{P}=R$. We note that $R=\{a \in A \mid \Lambda(a)=\Gamma(a)=$ $0\}$ and $\Lambda(a), \Gamma(a) \in R$ for any $a \in A$. By $\Lambda(x y)=\Lambda(x) y+\sigma(x) \Lambda(y)$ and $\Lambda\left(x^{2}\right)=\Lambda(x) x+\sigma(x) \Lambda(x)$, we see

$$
\Lambda(x) \Lambda(x y)-\Lambda(y) \Lambda\left(x^{2}\right)+\Lambda(x) \Lambda(y) x-\Lambda(x)^{2} y=0
$$

Since $\{1, x, y\}$ is an R-basis of A and R is an integral domain, we have
$\Lambda(x)=0$ and so $\Gamma(x) \neq 0$. Similarly we also get $\Lambda(y)=0$ and $\Gamma(y) \neq 0$. Therefore

$$
\Gamma(x) \Gamma(x y)-\Gamma(y) \Gamma\left(x^{2}\right)+\Gamma(x) \Gamma(y) x-\Gamma(x)^{2} y=0,
$$

which is a contradiction.
Corollary 1.4 Let $|P|=3$ and A an algebra over a field k. If P is of type (3) or (4) in Lemma 1.2, then A / k is not a P-Galois extension.

By corollary, the essential part of P-Galois extensions with $|P|=3$ is the case (2) in Lemma 1.2. In [K1], Kishimoto considered the cyclic P Galois extension A / R, that is, $P=\left\{1, \Lambda, \ldots, \Lambda^{p-1} \mid \Lambda^{p}=0,1<\Lambda<\Lambda^{2}<\right.$ $\left.\cdots<\Lambda^{p-1}\right\}$ under the assumptions $\Lambda \sigma=\sigma \Lambda$ and $\operatorname{char}(R)=p$, where Λ is a ($1, \sigma$)-derivation. These assumptions are essential in his paper [K1].

2. Cubic P-Galois extensions

In the following we assume that A is an algebra over a field k of $\operatorname{dim}_{k} A=3, A^{P}=k, P=\left\{1, \Lambda, \Lambda^{2} \mid \Lambda^{3}=0,1<\Lambda<\Lambda^{2}\right\}$ and Λ is a $(1, \sigma)$-derivation. We do not assume $\Lambda \sigma=\sigma \Lambda$ and $\operatorname{char}(k)=3$.

First, we have the following key lemma for cubic P-Galois extensions.
Lemma 2.1 There exists k-basis $\left\{1, x, x^{2}\right\}$ of A which satisfies the following properties.
(1) $\Lambda(x)=1$.
(2) $\sigma(x)=r_{0}+r_{1} x\left(r_{0}, r_{1} \in k\right)$.

Proof. First, we note that $k=\{a \in A \mid \Lambda(a)=0\}$. Since the maximal element of P is Λ^{2}, there exists an element $a \in A$ such that $\Lambda^{2}(a)=1$ [K1, Theorem 3.4]. We set $x=\Lambda(a)$ and we can take a k-basis $\{1, x, y\}$ of A. If $\Lambda(y) \in k$, then $\Lambda(y) x-y \in k$ and so $\Lambda(y) \notin k$. We denote $\sigma(x)=r_{0}+r_{1} x+r_{2} y\left(r_{i} \in k\right)$. Then by $\Lambda^{2}\left(x^{2}\right)=1+r_{1}+r_{2} \Lambda(y), \Lambda^{2}\left(x^{2}\right) \in k$ and $\Lambda(y) \notin k$, we get $r_{2}=0$.

Now, for the above k-basis $\{1, x, y\}$, we set $x^{2}=s_{0}+s_{1} x+s_{2} y\left(s_{i} \in k\right)$. Since $\sigma(x)=r_{0}+r_{1} x$, we have

$$
\Lambda\left(x^{2}\right)=r_{0}+\left(1+r_{1}\right) x=s_{1}+s_{2} \Lambda(y) .
$$

If $s_{2}=0$, then $\sigma(x)=r_{0}-x$ and we get $\Lambda^{2}(x y)=x \Lambda^{2}(y)$. Since $\Lambda^{2}(x y)$ and $\Lambda^{2}(y)$ are contained in k, we have $\Lambda^{2}(y)=0$ and so $\Lambda(y) \in k$: contradiction.

Thus $s_{2} \neq 0$ and $\left\{1, x, x^{2}\right\}$ is a k-basis of A.
Lemma 2.2 Let $\left\{1, x, x^{2}\right\}$ be a k-basis of A in Lemma 2.1. Then the following holds.
(1) If $r_{1}=1$, then $\operatorname{char}(k)=3$. In this case, $\sigma(x)=r_{0}+x$ and

$$
x^{3}=s_{0}+r_{0}^{2} x \quad \text { for some } s_{0} \in k
$$

(2) If $r_{1} \neq 1$, then $\operatorname{char}(k) \neq 3$ and k containes the primitive 3 rd root ω of 1. In this case $\sigma(x)=r_{0}+\omega x$ and

$$
x^{3}=t_{0}+r_{0}^{2} \omega^{-1} x+r_{0}(\omega-1) \omega^{-1} x^{2} \quad \text { for some } t_{0} \in k
$$

Proof. We set $x^{3}=t_{0}+t_{1} x+t_{2} x^{2}\left(t_{i} \in k\right)$. Then by Lemma 2.1, $\sigma(x)=r_{0}+r_{1} x$ and

$$
\begin{aligned}
\Lambda\left(x^{3}\right) & =t_{1}+r_{0} t_{2}+\left(1+r_{1}\right) t_{2} x \\
& =r_{0}^{2}+r_{0}\left(1+2 r_{1}\right) x+\left(1+r_{1}+r_{1}^{2}\right) x^{2} .
\end{aligned}
$$

Comparing coefficients, we have
$(*) \quad t_{1}+r_{0} t_{2}=r_{0}^{2}, \quad\left(1+r_{1}\right) t_{2}=r_{0}\left(1+2 r_{1}\right) \quad$ and $\quad 0=1+r_{1}+r_{1}^{2}$.
If $r_{1}=1$, then $\operatorname{char}(k)=3, t_{2}=0$ and $t_{1}=r_{0}^{2}$. If $r_{1} \neq 1$, then r_{1} is the primitive 3 rd root of $1, \operatorname{char}(k) \neq 3, t_{2}=r_{0}(\omega-1) \omega^{-1}$ and $t_{1}=r_{0}^{2} \omega^{-1}$.

Now we get the following characterization of P-Galois extensions.
Theorem 2.3 Let $P=\left\{1<\Lambda<\Lambda^{2} \mid \Lambda^{3}=0\right\}$ and Λ is a $(1, \sigma)$ derivation. Let A be an algebra over a field k such that $A^{P}=k$ and $\operatorname{dim}_{k} A=3$. Then A / k is a P-Galois extension. Moreover there holds either
(1) $\operatorname{char}(k)=3$ and $A \cong k[X] /\left(X^{3}-r^{2} X-s\right)=k[x]$ for some $s \in k$, where $\Lambda(x)=1$ and $\sigma(x)=r+x$, or
(2) $\operatorname{char}(k) \neq 3$ and $A \cong k[X] /\left(X^{3}-t\right)=k[x]$ for some $t \in k$, where $\Lambda(x)=1$ and $\sigma(x)=\omega x$, where ω is the primitive 3 rd root of 1 .

Proof. First, we show A / k is a P-Galois extension. Since k is a field, it is enough to show that the map $j: D(A, P) \rightarrow \operatorname{Hom}\left(A_{k}, A_{k}\right)$ defined in (P.3) is a monomorphism. Let $\left\{1, x, x^{2}\right\}$ be a k-basis of A in Lemma 2.1.

For $\alpha=a_{0}+a_{1} u_{\Lambda}+a_{2} u_{\Lambda^{2}} \in D(A, P)$, we assume $j(\alpha)=0$. Then by $j(\alpha)\left(x^{i}\right)=0(i=0,1,2)$, we have $a_{0}=a_{1}=0$ and $a_{2}\left(1+r_{1}\right)=0$, where $\sigma(x)=r_{0}+r_{1} x$ in Lemma 2.1. Since $1+r_{1}+r_{1}^{2}=0$ in the last equation of (*) in Lemma 2.2, we see $r_{1}+1 \neq 0$. Thus $a_{2}=0$, which means that j is a monomorphism.

Now by Lemma 2.2, we may assume

$$
\begin{aligned}
& x^{3}=t_{0}+r_{0}^{2} \omega^{-1} x+r_{0}(\omega-1) \omega^{-1} x^{2}, \\
& \Lambda(x)=1 \quad \text { and } \quad \sigma(x)=r_{0}+\omega x .
\end{aligned}
$$

Since $\operatorname{char}(k) \neq 3$, if we set $x=z+(\omega-1)(3 \omega)^{-1} r_{0}$ as usual, then $\left\{1, z, z^{2}\right\}$ is a free basis of A, where $z^{3}=v$ for some $v \in k, \Lambda(z)=1$ and $\sigma(z)=\omega z$. This show the second part of the theorem.

In the sequel, we denote the extensions of type (1) and (2) in the above theorem by $A=\left(x, r^{2}, s\right)$ and $A=(x, t)$, respectively.

Now, we classify these P-Galois extensions. P-Galois extensions A_{1} and A_{2} are called isomorphic if there exists an isomorphism $\varphi: A_{1} \rightarrow A_{2}$ such that $\varphi(\Omega a)=\Omega(\varphi(a))$ for any $a \in A$ and $\Omega \in P$.

Theorem 2.4 Let $A_{i}=\left(x_{i}, r_{i}^{2}, s_{i}\right)$ be P-Galois extensions $(i=1,2)$. Then A_{1} and A_{2} are isomorphic as P-Galois extensions if and only if

$$
r_{1}=r_{2} \quad \text { and } \quad u^{3}=r_{1}^{2} u+s_{1}-s_{2} \quad \text { for some } u \in k .
$$

When this is the case, the isomorphism $\varphi: A_{1} \rightarrow A_{2}$ is given by $\varphi\left(x_{1}\right)=$ $u+x_{2}$.

Proof. Let $\varphi: A_{1}=\left(x_{1}, r_{1}^{2}, s_{1}\right) \rightarrow A_{2}=\left(x_{2}, r_{2}^{2}, s_{2}\right)$ be an isomorphism of P-Galois extensions. Then by $\varphi\left(\Lambda\left(x_{1}^{i}\right)\right)=\Lambda\left(\varphi\left(x_{1}^{i}\right)\right)(i=1,2)$ and $\varphi\left(x_{1}^{3}\right)=$ $\varphi\left(x_{1}\right)^{3}$, there exists $u \in k$ such that

$$
\varphi\left(x_{1}\right)=u+x_{2}, \quad u^{3}=r_{1}^{2} u+s_{1}-s_{2} \quad \text { and } \quad r_{1}=r_{2} .
$$

The converse is clear.
For a P-Galois extension $A=(x, t)$, the following is easily seen.
Theorem 2.5 (1) P-Galois extensions $A_{1}=\left(x_{1}, t_{1}\right)$ and $A_{2}=\left(x_{2}, t_{2}\right)$ are isomorphic if and only if $t_{1}=t_{2}$.
(2) $A=(x, t)$ is a cyclic $\langle g\rangle$-Galois extension with $g(x)=\omega x$, where ω is a primitive 3 rd root of 1 .

A P-Galois extension (x, t) in Theorem 2.5(2) is a strongly cyclic 3 extension in the sense of [NN2], and a P-Galois extension $(x, 0, s)$ is a modular extension in the sense of Kersten [Ker]. For $A=\left(x, r^{2}, s\right)$ with $r \neq 0$, if we take $x=r y$, then A is isomorphic to $k[Y] /\left(Y^{3}-Y-s r^{-3}\right)=k[y]$ with $\operatorname{group}\langle g\rangle$, where $g(y)=1+y$. This extension is called a cyclic 3-extension in [NN1]. Conversely, if $k[y]=k[Y] /\left(Y^{3}-Y-s\right)(s \in k)$ is a cyclic 3extension, then it is a P-Galois extension with $\Lambda(y)=1$ and $\sigma(y)=1+y$. If P-Galois extensions $A_{1}=\left(x_{1}, r_{1}^{2}, s_{1}\right)$ and $A_{2}=\left(x_{2}, r_{2}^{2}, s_{2}\right)$ are isomorphic, then the map

$$
\begin{aligned}
\psi: k\left[y_{1}\right] & =k\left[Y_{1}\right] /\left(Y_{1}^{3}-Y_{1}-s_{1} r_{1}^{-3}\right) \rightarrow k\left[y_{2}\right] \\
& =k\left[Y_{2}\right] /\left(Y_{2}^{3}-Y_{2}-s_{2} r_{2}^{-3}\right)
\end{aligned}
$$

defined by $\psi\left(y_{1}\right)=u r_{1}^{-1}+y_{2}$ is an isomorphism for the corresponding cyclic 3 -extensions. The converse is not true.

We know that the set of isomorphism classes $\operatorname{Gal}(R, G)$ of Galois extensions of R with group G has a group structure (cf. $[\mathrm{H}],[\mathrm{CS}])$, and for several cases, we see the structure of $\operatorname{Gal}(R, G)(\mathrm{cf}$. [CS], [N2]). On the other hand it is not known that the set of isomorphism classes $\operatorname{Gal}(R, P)$ of P-Galois extensions of R has a group structure or not. But by theorems 2.4 and 2.5 , we can compute the cardinality of $\operatorname{Gal}(k, P)$ in our case.

References

[CS] Chase S.U. and Sweedler M.E., Hopf Algebras and Galois Theory. Lecture Note in Math. 97 (1969), Springer-Verlag, Berlin, 1969.
[H] Harrison D.K., Abelian extension of commutative rings. Mem. Amer. Math. Soc. 52 (1965), 1-14.
[Ker] Kersten I., Modulare Ringerweiterrungen, Abh. Math. Sem. Univ. Hamburg 51 (1981), 29-37
[K1] Kishimoto K., On P-Galois extensions of rings of cyclic type. Hokkaido Math. J. 20 (1991), 123-133.
[K2] Kishimoto K., Finite posets P and P-Galois extensions of rings. Math. J. Okayama Univ. 34 (1992), 21-47.
[NN1] Nagahara T. and Nakajima A., On cyclic extensions of commutative rings. Math. J. Okayama Univ. 15 (1971), 81-90.
[NN2] Nagahara T. and Nakajima A., On strongly cyclic extensions of commutative rings. Math. J. Okayama Univ. 15 (1971), 91-100.
[N1] Nakajima A., Weak Hopf Galois extensions and P-Galois extensions of a ring. Comm. in Alg. 23 (1995), 2851-2862.
[N2] Nakajima A., P-polynomials and H-Galois extensions. J. Alg. 110 (1987), 124133.

Department of Mathematical Science
Faculty of Environmental Science and Technology
Okayama University
Tsushima, Okayama 700-8530, Japan
E-mail: nakajima@math.ems.okayama-ac.jp

