Cubic *P*-Galois extensions over a field

Atsushi Nakajima

(Received January 20, 1997; Revised July 11, 1997)

Abstract. The notion of P-Galois extensions was introduced by K. Kishimoto [K1] and [K2]. We determine all cubic P-Galois extensions over a field except that P is a cyclic group.

Key words: Galois extension, σ -derivation.

Introduction

Let A/R be a ring extension with common identity 1 and Hom (A_R, A_R) the set of all right *R*-module endmorphisms of *A*. Let *P* be a subset of Hom (A_R, A_R) . In [K2], Kishimoto gave a fundamental properties of *P*-Galois extensions and in [K1], he determined the structure of cyclic *P*-Galois extensions under the assumption $\sigma D = D\sigma$ and char(R) = p, where $P = \{1, D, D^2, \ldots, D^{p-1}, D^p = 0\}, \sigma$ is an automorphism of *A* and *D* is a σ -derivation.

In this note, we determine all cubic P-Galois extensions over a field except P is a cyclic group. A *cubic* P-Galois extension means that the cardinality of P is three. The notion of P-Galois extension is not familiar to the reader, so we will begin at the definition of a P-Galois extension.

1. Preliminary results

Let A/R and P be as above. We assume that P is a partially ordered set with respect to the order \leq . In the following, we denote the elements of P by *Capital Greek Letters*. A *chain* of Λ means a descending chain $\Lambda = \Lambda_0 >> \Lambda_1 >> \cdots >> \Lambda_m$, where Λ_m is a minimal element and $\Lambda_t >> \Lambda_s$ means that there is no $\Lambda_t > \Lambda_u > \Lambda_s$. P is said to be a *relative* sequence of homomorphisms if it satisfies the following conditions (A.1)– (A.4) and (B.1)–(B.4).

(A.1) $\Lambda \neq 0$ for all $\Lambda \in P$ and $P(\min)$, the set of all minimal elements in P, coincides with all $\Lambda \in P$ such that Λ is a ring automorphism.

¹⁹⁹¹ Mathematics Subject Classification: 16A78.

- (A.2) Any two chain of Λ have the same length.
- (A.3) If $\Lambda \Gamma \neq 0$, then $\Lambda \Gamma \in P$ and if $\Lambda \Gamma = 0$, then $\Gamma \Lambda = 0$.
- (A.4) Assume that $\Lambda\Gamma$, $\Lambda\Omega \in P$. Then
 - (i) $\Lambda \Gamma \ge \Lambda \Omega$ (resp. $\Gamma \Lambda \ge \Omega \Lambda$) if and only if $\Gamma \ge \Omega$.
 - (ii) If $\Lambda \Gamma \geq \Omega$, then $\Omega = \Lambda_1 \Gamma_1$ for some $\Lambda \geq \Lambda_1$ and $\Gamma \geq \Gamma_1$.
- Let $x, y \in A$.
- (B.1) $\Lambda(1) = 0$ for any $\Lambda \in P P(\min)$.
- (B.2) For any $\Lambda \geq \Gamma$, there exists $g(\Lambda, \Gamma) \in \operatorname{Hom}(A_R, A_R)$ such that

$$\Lambda(xy) = \sum_{\Lambda \ge \Omega} g(\Lambda, \Omega)(x) \Omega(y).$$

(If $\Lambda \geq \Gamma$, then we set $g(\Lambda, \Gamma) = 0$.)

(B.3) (i) For the above $g(\Lambda, \Gamma)$, there holds

$$g(\Lambda,\Gamma)(xy) = \sum_{\Lambda \ge \Omega \ge \Gamma} g(\Lambda,\Omega)(x)g(\Omega,\Gamma)(y).$$

(ii) If $\Lambda \Gamma \geq \Omega$, then

$$g(\Lambda\Gamma,\Omega)(x) = \sum_{\Lambda \ge \Lambda', \Gamma \ge \Gamma', \Lambda'\Gamma' = \Omega} g(\Lambda,\Lambda')g(\Gamma,\Gamma')(x).$$

- (B.4) (i) $g(\Lambda, \Lambda)$ is a ring automorphism.
 - (ii) $g(\Lambda, \Omega) = \Lambda$ for any $\Omega \in P(min)$.
 - (iii) If $\Lambda > \Gamma$, then $g(\Lambda, \Gamma)(1) = 0$.

For a relative sequence of homomorphisms P, we set

$$R_0 = \{ a \in A \mid \Lambda(a) = a \text{ for all } \Lambda \in P(\min) \}.$$

$$R_1 = \{ a \in A \mid \Lambda(a) = 0 \text{ for all } \Lambda \in P - P(\min) \}.$$

Then R_0 and R_1 are subrings of A. $A^P = R_0 \cap R_1$ is called the *invariant* subring of P. Next, we compose an algebra from A and P. Let $D(A, P) = \sum_{\Lambda \in P} \oplus Au_{\Lambda}$ be a free left A-module with A-basis $\{u_{\Lambda} \mid \Lambda \in P\}$. Define the multiplication on D(A, P) by

$$(au_\Lambda)(bu_\Gamma) = \sum_{\Lambda \geq \Omega} ag(\Lambda,\Omega)(b) u_{\Omega\Gamma},$$

where $u_{\Omega\Gamma} = 0$ if $\Omega\Gamma = 0$. Then we can check that D(A, P) is an algebra, which is called the *trivial crossed product* ([K2, Theorem 2.2.]). Under these circumstances, we define the following **Definition 1.1** A/R is called a *P*-Galois extension if it satisfies the following three conditins:

 $(\mathbf{P.1}) \quad A^P = R.$

(P.2) A is a finitely generated projective right R-module.

(P.3) The map $j: D(A, P) \to \text{Hom}(A_R, A_R)$ defined by $j(au_\Lambda)(x) = a\Lambda(x)$ is an isomorphism.

We denote the cardinality of P by |P|. We mean a *n*-th *P*-Galois extension is |P| = n. Then by (P.3), if R is a field, a *n*-th *P*-Galois extension A of R is a free R-module of rank n. So to determine all cubic *P*-Galois extensions, we have to classify P of |P| = 3.

Lemma 1.2 ([N1, Lemma 3.1]) Let P be a relative sequence of homomorphisms with |P| = 3. Then P is one of the following:

(1) P is a cyclic group of order 3.

(2) $P = \{1, \Lambda, \Lambda^2 \mid \Lambda^3 = 0; 1 < \Lambda < \Lambda^2\}$ and Λ is a $(1, \sigma)$ -derivation, that is, $\Lambda(ab) = \Lambda(a)b + \sigma(a)\Lambda(b)$ $(a, b \in \Lambda)$ and σ is an automorphism.

(3) $P = \{1, \Lambda, \Gamma \mid \Lambda\Gamma = \Gamma\Lambda = \Lambda^2 = \Gamma^2 = 0; 1 < \Lambda < \Gamma\}$ and Λ is a $(1, \sigma)$ -derivation.

(4) $P = \{1, \Lambda, \Gamma \mid \Lambda\Gamma = \Gamma\Lambda = \Lambda^2 = \Gamma^2 = 0; 1 < \Lambda, 1 < \Gamma\}$ and Λ is a $(1, \sigma)$ -derivation, Γ is a $(1, \tau)$ -derivation and τ is an automorphism.

If P is a cyclic group, then a P-Galois extension A/R is a usual cyclic Galois extension and so the essential part of P-Galois extension is the cases (2), (3) and (4). If P is of type (2), then it is discussed in [K1] under the assumptions $\sigma \Lambda = \Lambda \sigma$ and char(R) = 3. We will discuss this case later without these conditions. First, we have the following

Theorem 1.3 Let R be an integral domain which is contained in the center of A and let P be a relative sequence of homomorphisms in $\text{Hom}(A_R, A_R)$ with |P| = 3. Assume that A has an R-free basis $\{1, x, y\}$. If P is of type (3) or (4) in the above Lemma 1.2, then $A^P \neq R$.

Proof. Assume that $A^P = R$. We note that $R = \{a \in A \mid \Lambda(a) = \Gamma(a) = 0\}$ and $\Lambda(a)$, $\Gamma(a) \in R$ for any $a \in A$. By $\Lambda(xy) = \Lambda(x)y + \sigma(x)\Lambda(y)$ and $\Lambda(x^2) = \Lambda(x)x + \sigma(x)\Lambda(x)$, we see

$$\Lambda(x)\Lambda(xy) - \Lambda(y)\Lambda(x^2) + \Lambda(x)\Lambda(y)x - \Lambda(x)^2y = 0.$$

Since $\{1, x, y\}$ is an *R*-basis of *A* and *R* is an integral domain, we have

 $\Lambda(x) = 0$ and so $\Gamma(x) \neq 0$. Similarly we also get $\Lambda(y) = 0$ and $\Gamma(y) \neq 0$. Therefore

$$\Gamma(x)\Gamma(xy) - \Gamma(y)\Gamma(x^2) + \Gamma(x)\Gamma(y)x - \Gamma(x)^2y = 0,$$

which is a contradiction.

Corollary 1.4 Let |P| = 3 and A an algebra over a field k. If P is of type (3) or (4) in Lemma 1.2, then A/k is not a P-Galois extension.

By corollary, the essential part of *P*-Galois extensions with |P| = 3 is the case (2) in Lemma 1.2. In [K1], Kishimoto considered the cyclic *P*-Galois extension A/R, that is, $P = \{1, \Lambda, \ldots, \Lambda^{p-1} \mid \Lambda^p = 0, 1 < \Lambda < \Lambda^2 < \cdots < \Lambda^{p-1}\}$ under the assumptions $\Lambda \sigma = \sigma \Lambda$ and char(R) = p, where Λ is a $(1, \sigma)$ -derivation. These assumptions are essential in his paper [K1].

2. Cubic *P*-Galois extensions

In the following we assume that A is an algebra over a field k of $\dim_k A = 3$, $A^P = k$, $P = \{1, \Lambda, \Lambda^2 \mid \Lambda^3 = 0, 1 < \Lambda < \Lambda^2\}$ and Λ is a $(1, \sigma)$ -derivation. We do not assume $\Lambda \sigma = \sigma \Lambda$ and $\operatorname{char}(k) = 3$.

First, we have the following key lemma for cubic *P*-Galois extensions.

Lemma 2.1 There exists k-basis $\{1, x, x^2\}$ of A which satisfies the following properties.

- (1) $\Lambda(x) = 1.$
- (2) $\sigma(x) = r_0 + r_1 x \ (r_0, r_1 \in k).$

Proof. First, we note that $k = \{a \in A \mid \Lambda(a) = 0\}$. Since the maximal element of P is Λ^2 , there exists an element $a \in A$ such that $\Lambda^2(a) = 1$ [K1, Theorem 3.4]. We set $x = \Lambda(a)$ and we can take a k-basis $\{1, x, y\}$ of A. If $\Lambda(y) \in k$, then $\Lambda(y)x - y \in k$ and so $\Lambda(y) \notin k$. We denote $\sigma(x) = r_0 + r_1 x + r_2 y$ ($r_i \in k$). Then by $\Lambda^2(x^2) = 1 + r_1 + r_2 \Lambda(y)$, $\Lambda^2(x^2) \in k$ and $\Lambda(y) \notin k$, we get $r_2 = 0$.

Now, for the above k-basis $\{1, x, y\}$, we set $x^2 = s_0 + s_1 x + s_2 y$ $(s_i \in k)$. Since $\sigma(x) = r_0 + r_1 x$, we have

$$\Lambda(x^2) = r_0 + (1 + r_1)x = s_1 + s_2\Lambda(y).$$

If $s_2 = 0$, then $\sigma(x) = r_0 - x$ and we get $\Lambda^2(xy) = x\Lambda^2(y)$. Since $\Lambda^2(xy)$ and $\Lambda^2(y)$ are contained in k, we have $\Lambda^2(y) = 0$ and so $\Lambda(y) \in k$: contradiction.

Thus $s_2 \neq 0$ and $\{1, x, x^2\}$ is a k-basis of A.

Lemma 2.2 Let $\{1, x, x^2\}$ be a k-basis of A in Lemma 2.1. Then the following holds.

(1) If
$$r_1 = 1$$
, then char $(k) = 3$. In this case, $\sigma(x) = r_0 + x$ and
 $x^3 = s_0 + r_0^2 x$ for some $s_0 \in k$

(2) If $r_1 \neq 1$, then char(k) $\neq 3$ and k containes the primitive 3rd root ω of 1. In this case $\sigma(x) = r_0 + \omega x$ and

$$x^{3} = t_{0} + r_{0}^{2}\omega^{-1}x + r_{0}(\omega - 1)\omega^{-1}x^{2}$$
 for some $t_{0} \in k$.

Proof. We set $x^3 = t_0 + t_1 x + t_2 x^2$ $(t_i \in k)$. Then by Lemma 2.1, $\sigma(x) = r_0 + r_1 x$ and

$$\Lambda(x^3) = t_1 + r_0 t_2 + (1+r_1) t_2 x$$

= $r_0^2 + r_0 (1+2r_1) x + (1+r_1+r_1^2) x^2$.

Comparing coefficients, we have

(*)
$$t_1 + r_0 t_2 = r_0^2$$
, $(1 + r_1)t_2 = r_0(1 + 2r_1)$ and $0 = 1 + r_1 + r_1^2$.

If $r_1 = 1$, then char(k) = 3, $t_2 = 0$ and $t_1 = r_0^2$. If $r_1 \neq 1$, then r_1 is the primitive 3rd root of 1, char $(k) \neq 3$, $t_2 = r_0(\omega - 1)\omega^{-1}$ and $t_1 = r_0^2\omega^{-1}$.

Now we get the following characterization of P-Galois extensions.

Theorem 2.3 Let $P = \{1 < \Lambda < \Lambda^2 \mid \Lambda^3 = 0\}$ and Λ is a $(1, \sigma)$ derivation. Let A be an algebra over a field k such that $A^P = k$ and $\dim_k A = 3$. Then A/k is a P-Galois extension. Moreover there holds either

(1) $\operatorname{char}(k) = 3$ and $A \cong k[X]/(X^3 - r^2X - s) = k[x]$ for some $s \in k$, where $\Lambda(x) = 1$ and $\sigma(x) = r + x$, or

(2) $\operatorname{char}(k) \neq 3$ and $A \cong k[X]/(X^3 - t) = k[x]$ for some $t \in k$, where $\Lambda(x) = 1$ and $\sigma(x) = \omega x$, where ω is the primitive 3rd root of 1.

Proof. First, we show A/k is a *P*-Galois extension. Since k is a field, it is enough to show that the map $j: D(A, P) \to \text{Hom}(A_k, A_k)$ defined in (P.3) is a monomorphism. Let $\{1, x, x^2\}$ be a k-basis of A in Lemma 2.1.

 \square

For $\alpha = a_0 + a_1 u_\Lambda + a_2 u_{\Lambda^2} \in D(A, P)$, we assume $j(\alpha) = 0$. Then by $j(\alpha)(x^i) = 0$ (i = 0, 1, 2), we have $a_0 = a_1 = 0$ and $a_2(1 + r_1) = 0$, where $\sigma(x) = r_0 + r_1 x$ in Lemma 2.1. Since $1 + r_1 + r_1^2 = 0$ in the last equation of (*) in Lemma 2.2, we see $r_1 + 1 \neq 0$. Thus $a_2 = 0$, which means that j is a monomorphism.

Now by Lemma 2.2, we may assume

$$x^{3} = t_{0} + r_{0}^{2}\omega^{-1}x + r_{0}(\omega - 1)\omega^{-1}x^{2},$$

 $\Lambda(x) = 1$ and $\sigma(x) = r_{0} + \omega x.$

Since char(k) $\neq 3$, if we set $x = z + (\omega - 1)(3\omega)^{-1}r_0$ as usual, then $\{1, z, z^2\}$ is a free basis of A, where $z^3 = v$ for some $v \in k$, $\Lambda(z) = 1$ and $\sigma(z) = \omega z$. This show the second part of the theorem.

In the sequel, we denote the extensions of type (1) and (2) in the above theorem by $A = (x, r^2, s)$ and A = (x, t), respectively.

Now, we classify these *P*-Galois extensions. *P*-Galois extensions A_1 and A_2 are called *isomorphic* if there exists an isomorphism $\varphi : A_1 \to A_2$ such that $\varphi(\Omega a) = \Omega(\varphi(a))$ for any $a \in A$ and $\Omega \in P$.

Theorem 2.4 Let $A_i = (x_i, r_i^2, s_i)$ be *P*-Galois extensions (i = 1, 2). Then A_1 and A_2 are isomorphic as *P*-Galois extensions if and only if

$$r_1 = r_2$$
 and $u^3 = r_1^2 u + s_1 - s_2$ for some $u \in k$.

When this is the case, the isomorphism $\varphi : A_1 \to A_2$ is given by $\varphi(x_1) = u + x_2$.

Proof. Let $\varphi : A_1 = (x_1, r_1^2, s_1) \to A_2 = (x_2, r_2^2, s_2)$ be an isomorphism of P-Galois extensions. Then by $\varphi(\Lambda(x_1^i)) = \Lambda(\varphi(x_1^i))$ (i = 1, 2) and $\varphi(x_1^3) = \varphi(x_1)^3$, there exists $u \in k$ such that

$$\varphi(x_1) = u + x_2, \quad u^3 = r_1^2 u + s_1 - s_2 \quad \text{and} \quad r_1 = r_2.$$

The converse is clear.

For a P-Galois extension A = (x, t), the following is easily seen.

Theorem 2.5 (1) *P*-Galois extensions $A_1 = (x_1, t_1)$ and $A_2 = (x_2, t_2)$ are isomorphic if and only if $t_1 = t_2$.

(2) A = (x,t) is a cyclic $\langle g \rangle$ -Galois extension with $g(x) = \omega x$, where ω is a primitive 3rd root of 1.

A *P*-Galois extension (x, t) in Theorem 2.5(2) is a strongly cyclic 3extension in the sense of [NN2], and a *P*-Galois extension (x, 0, s) is a modular extension in the sense of Kersten [Ker]. For $A = (x, r^2, s)$ with $r \neq 0$, if we take x = ry, then A is isomorphic to $k[Y]/(Y^3 - Y - sr^{-3}) = k[y]$ with group $\langle g \rangle$, where g(y) = 1 + y. This extension is called a cyclic 3-extension in [NN1]. Conversely, if $k[y] = k[Y]/(Y^3 - Y - s)$ ($s \in k$) is a cyclic 3extension, then it is a *P*-Galois extension with $\Lambda(y) = 1$ and $\sigma(y) = 1 + y$. If *P*-Galois extensions $A_1 = (x_1, r_1^2, s_1)$ and $A_2 = (x_2, r_2^2, s_2)$ are isomorphic, then the map

$$\psi: k[y_1] = k[Y_1]/(Y_1^3 - Y_1 - s_1r_1^{-3}) \to k[y_2]$$
$$= k[Y_2]/(Y_2^3 - Y_2 - s_2r_2^{-3})$$

defined by $\psi(y_1) = ur_1^{-1} + y_2$ is an isomorphism for the corresponding cyclic 3-extensions. The converse is not true.

We know that the set of isomorphism classes Gal(R, G) of Galois extensions of R with group G has a group structure (cf. [H], [CS]), and for several cases, we see the structure of Gal(R, G) (cf. [CS], [N2]). On the other hand it is not known that the set of isomorphism classes Gal(R, P) of P-Galois extensions of R has a group structure or not. But by theorems 2.4 and 2.5, we can compute the cardinality of Gal(k, P) in our case.

References

- [CS] Chase S.U. and Sweedler M.E., Hopf Algebras and Galois Theory. Lecture Note in Math. 97 (1969), Springer-Verlag, Berlin, 1969.
- [H] Harrison D.K., Abelian extension of commutative rings. Mem. Amer. Math. Soc. 52 (1965), 1–14.
- [Ker] Kersten I., Modulare Ringerweiterrungen, Abh. Math. Sem. Univ. Hamburg 51 (1981), 29–37
- [K1] Kishimoto K., On P-Galois extensions of rings of cyclic type. Hokkaido Math. J. 20 (1991), 123–133.
- [K2] Kishimoto K., Finite posets P and P-Galois extensions of rings. Math. J. Okayama Univ. 34 (1992), 21–47.
- [NN1] Nagahara T. and Nakajima A., On cyclic extensions of commutative rings. Math. J. Okayama Univ. 15 (1971), 81–90.
- [NN2] Nagahara T. and Nakajima A., On strongly cyclic extensions of commutative rings. Math. J. Okayama Univ. 15 (1971), 91–100.
- [N1] Nakajima A., Weak Hopf Galois extensions and P-Galois extensions of a ring. Comm. in Alg. 23 (1995), 2851–2862.

[N2] Nakajima A., P-polynomials and H-Galois extensions. J. Alg. 110 (1987), 124– 133.

> Department of Mathematical Science Faculty of Environmental Science and Technology Okayama University Tsushima, Okayama 700-8530, Japan E-mail: nakajima@math.ems.okayama-ac.jp