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On the number of crossed homomorphisms

Tsunenobu ASAI and Yugen TAKEGAHARA
(Received July 8, 1998; Revised September 25, 1998)

Abstract. In this paper, we study congruences about the number of crossed homomor-
phisms from a finite abelian p-group to a finite p-group.
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1. Introduction

The purpose of this paper is to study the following conjectures con-
cerning with congruences about the number of group homomorphisms and
crossed homomorphisms between finite groups.

Let A and G be finite groups, and denote the set of group homomor-
phisms from A to G as Hom(A, G) . Let C and H be finite groups such that
C acts on H., and denote by ch this action of c\in C on h\in H . We denote
Z^{1}(C, H) for the set of crossed homomorphisms from C to H ; i.e.

Z^{1}(C, H):= { \eta : C – H|\eta(cc’)=\eta(c)c\eta(c’) for c , c’\in C}.

Conjecture H. Let A and G be finite groups, then

|Hom(A, G)|\equiv 0 mod gcd(|A/A’|, |G|) ,

where A’ is the commutator subgroup of A .

Conjecture I. Let C be a finite abelian p-group and H a finite p-group
such that C acts on H . Then

|Z^{1}(C, H)|\equiv 0 mod gcd(|C|, |H|) .

First, the number of group homomorphisms is studied in Yoshida [3]
and, as a generalization of Frobenius Theorem ([2]), the following theorem
is proved.

Main Theorem (Yoshida [3]) Let A be a finite abelian group and Ga
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finite group, then

|Hom(A, G)|\equiv 0 mod gcd(|A|, |G|) .

As a generalization of the above theorem, Conjectures H and I are
introduced in Asai-Yoshida [1] and they have the following relation.

Theorem 2.1 (Asai-Yoshida [1]) If Conjecture I is true, then so is Con-
jecture H.

Conjecture H and I have not been proved yet in general, but they seem
to be natural and hold in some special cases.

Here, we list some results concerning with Conjecture H and I which
are proved in Asai-Yoshida [1] and this paper.

Proposition 1.1 (i) If C is a cyclic p-group, then Conjecture I is true.
(ii) If C is an elementary abelian p-group, then Conjecture I is true.
(iii) If C is a direct product of a cyclic p-group and an elementary

abelian p-group, then Conjecture I is true.
(iv) If H is an abelian p-group, then Conjecture I is true.
(v) Suppose that the action of C on H is defined by a homomorphism

from C to H, that is, there exists some f\in Hom(C, H) such that ch:=
f(c)hf(c)^{-1} . Then Conjecture I is true.

Theorem 1.2 (i) If A/A’ is a cyclic group, then Conjecture H is true.
(ii)

|Hom(A, G)|\equiv 0 mod gcd(((A/A’) : \Phi(A/A’)), |G|) ,

where A’ is the commutator subgroup of A and \Phi(A/A’) is the Frattini
subgroup of A/A’ . Especially, if every Sylow subgroup of A/A’ is an ele-
mentary abelian group, then Conjecture H is true.

(iii) If every Sylow subgroup of A/A’ is a direct product of a cyclic
group and an elementary abelian group, then Conjecture H is true.

The statements (i), (ii) of Proposition 1.1 and (i), (ii) of Theorem 1.2 are
in Asai-Yoshida [1]. We prove (iii) of Proposition 1.1 and (iii) of Theorem 1.2
in Section 2 and (iv), (v) of Proposition 1.1 in Section 3.
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2. On Conjecture I

First we extend Conjecture I as follows.

Notation Let C be a finite abelian p-group and H a finite p-group such
that C acts on H . Let D be a subgroup of C . For \mu\in Z^{1}(D, H) , we denote
\mu(D):=\{\mu(d)d|d\in D\}\leq HC . Here HC\underline{\triangleright}H is the semidirect product
of H by C .

Conjecture II. Under the above notation, for any \mu\in Z^{1}(D,H),

|Z^{1}(C, H;D, \mu)|\equiv 0 mod gcd (|C/D|, |C_{H}(\mu(D))|) ,

where Z^{1}(C, H;D, \mu):=\{\lambda\in Z^{1}(C, H)|\lambda_{|D}=\mu\} and C_{H}(\mu(D))=

C_{HC}(\mu(D))\cap H .

Lemma 2.1 Conjecture II is true if and only if Conjecture I is true.

Proof. It is obvious that Conjecture II implies Conjecture I , so we show
that Conjecture I implies Conjecture II . We may assume |Z^{1}(C, H;D, \mu)|\neq

0 . Take any \lambda\in Z^{1}(C, H;D, \mu) , then C/D acts on C_{H}(\mu(D)) by cDh:=
\lambda(c) ch \lambda(c)^{-1} for c\in C and h\in C_{H}(\mu(D)) . We consider Z^{1}(C/D ,
C_{H}(\mu(D))) with respect to this action, and show that there is a one to one
correspondence between Z^{1}(C, H;D, \mu) and Z^{1}(C/D, C_{H}(\mu(D))) .

Here note that \lambda(c)c\in C_{HC}(\mu(D))\cap Hc for any c\in C and so

C_{HC}(\mu(D))\cap Hc=C_{HC}(\mu(D))\lambda(c)c\cap H\lambda(c)c

=(C_{HC}(\mu(D))\cap H)\lambda(c)c

=C_{H}(\mu(D))\lambda(c)c .

Hence we have that for any \eta\in Z^{1}(C, H;D, \mu) and c\in C ,

\eta(c)c\in C_{HC}(\mu(D))\cap Hc

=C_{H}(\mu(D))\lambda(c)c .

So there is some \tilde{\eta} : Carrow C_{H}(\mu(D)) such that \eta(c)=\tilde{\eta}(c)\lambda(c) . For c_{1} , c_{2} ,
c\in C and d\in D ,

\tilde{\eta}(c_{1}c_{2})\lambda(c_{1}c_{2})=\eta(c_{1}c_{2})

=\eta(c_{1})^{c1}\eta(c_{2})

=\tilde{\eta}(c_{1})\lambda(c_{1})^{c_{1}}(\tilde{\eta}(c_{2})\lambda(c_{2}))

=\tilde{\eta}(c_{1})\lambda(c_{1})^{c_{1}}\tilde{\eta}(c_{2})^{c_{1}}\lambda(c_{2})
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=\tilde{\eta}(c_{1})\lambda(c_{1})^{c_{1}}\tilde{\eta}(c_{2})\lambda(c_{1})^{-1}\lambda(c_{1})^{c_{1}}\lambda(c_{2})

=\tilde{\eta}(c_{1})\lambda(c_{1})^{c_{1}}\tilde{\eta}(c_{2})\lambda(c_{1})^{-1}\lambda(c_{1}c_{2}) ,
\tilde{\eta}(cd)\lambda(cd)=\eta(cd)

=\eta(c)^{c}\eta(d)

=\eta(c)^{c}\mu(d)

=\eta(c)^{c}\lambda(d)

=\tilde{\eta}(c)\lambda(c)^{c}\lambda(d)

=\tilde{\eta}(c)\lambda(cd) .

So \tilde{\eta}\in Z^{1}(C/D, C_{H}(\mu(D))) . Conversely, for any \tilde{\eta}\in Z^{1}(C/D, C_{H}(\mu(D))) ,
we define \eta : Carrow H by \eta(c):=\tilde{\eta}(cD)\lambda(c) for c\in C . Then for c_{1} , c_{2}\in C

and d\in D ,

\eta(c_{1}c_{2})=\tilde{\eta}(c_{1}c_{2}D)\lambda(c_{1}c_{2})

=\tilde{\eta}(c_{1}D)\lambda(c_{1})^{c_{1}}\tilde{\eta}(c_{2}D)\lambda(c_{1})^{-1}\lambda(c_{1})^{c_{1}}\lambda(c_{2})

=\tilde{\eta}(c_{1}D)\lambda(c_{1})^{c_{1}}(\tilde{\eta}(c_{2}D)\lambda(c_{2}))

=\eta(c_{1})^{c_{1}}\eta(c_{2}) ,
\eta(d)=\tilde{\eta}(dD)\lambda(d)

=\tilde{\eta}(D)\lambda(d)

=\lambda(d)

=\mu(d) .

So \eta\in Z^{1}(C, H;D, \mu) .
Thus we have that Conjecture II is true if and only if

|Z^{1}(C/D, C_{H}(\mu(D)))|\equiv 0 mod gcd (|C/D|, |C_{H}(\mu(D))|) .

Hence Conjecture I implies Conjecture II . \square

Proposition 2.2 If C (resp. C/D) is a cyclic p-group or an elementary
abelian p-group, then Conjecture I (resp. Conjecture II) is true.

Proof. By Proposition 1.1 (i), (ii) and Lemma 2.1, this statement holds.
\square

Proposition 2.3 If C (resp. C/D) is a direct product of a cyclic p-group
and an elementary abelian p-group, then Conjecture I (resp. Conjecture II)
is true.
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Proof. By Lemma 2.1, we need only to show that Conjecture I holds in
this case. Let C=C_{1}\cross C_{2} where C_{1} is cyclic and C_{2} is elementary abelian.
Then

|Z^{1}(C, H)|= \sum_{\mu\in Z^{1}(C_{2},H)}|Z^{1}(C, H;C_{2}, \mu)|

= \sum_{\mu\in \mathcal{X}_{1}}|Z^{1}(C, H;C_{2}, \mu)|+\sum_{\mu\in \mathcal{X}_{2}}|Z^{1}(C, H;C_{2}, \mu)|
,

where

\mathcal{X}_{1}:=\{\mu\in Z^{1}(C_{2}, H)||C_{H}(\mu(C_{2}))|\leq|C_{1}|\} ,
\mathcal{X}_{2}:=\{\mu\in Z^{1}(C_{2}, H)||C_{1}|<|C_{H}(\mu(C_{2}))|\} .

Step 1.

\sum_{\mu\in \mathcal{X}_{1}}|Z^{1}(C, H;C_{2}, \mu)|\equiv 0
mod |H| .

Proof of Step 1. We define an action of H on \mathcal{X}_{1} by conjugation, i.e.

H\cross \mathcal{X}_{1} arrow \mathcal{X}_{1}

(h, \mu) \mapsto (^{h}\mu : c\vdasharrow h\cdot\mu(c)Ch^{-1}) .

Thus

\sum_{\mu\in \mathcal{X}_{1}}|Z^{1}(C, H;C_{2}, \mu)|

= \sum_{\mu\in \mathcal{X}_{1/\sim_{H}}}(H ^{:} ^{c_{H}(\mu(C_{2})))}

|Z^{1}(C, H;C_{2}, \mu)| ,

where in the last summation \mu runs over a set of complete representatives
of the above action. Here C/C_{2} is cyclic and |C_{H}(\mu(C_{2}))| divides |C_{1}|=

|C/C_{2}| , so we have that

(H : C_{H}(\mu(C_{2}))) |Z^{1}(C, H;C_{2}, \mu)|

\equiv 0 mod (H : C_{H}(\mu(C_{2}))) . gcd (|C/C_{2}|, |C_{H}(\mu(C_{2}))|)

\equiv 0 mod |H| .

Thus we have Step 1.
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Step 2.

\sum_{\mu\in \mathcal{X}_{2}}|Z^{1}(C, H;C_{2}, \mu)|\equiv 0
mod |C| .

Proof of Step 2. We may assume that H is a nontrivial p-group. Let Z:=
\Omega_{1}(Z(HC)\cap H) , where HC is the semidirect product of H by C . Here
note that Z\neq 1 , because H is a normal subgroup of HC. Now the group
Hom(C_{2}, Z) acts on \mathcal{X}_{2} by multiplication, i.e.

Hom(C_{2}, Z)\cross \mathcal{X}_{2} arrow \mathcal{X}_{2}

(f, \mu) – (f\mu : c-+f(c)\mu(c)) .

Since this action is semi-regular and

|Z^{1}(C, H;C_{2}, \mu)|=|Z^{1}(C, H;C_{2}, f\mu)|

for any f\in Hom(C_{2}, Z) and \mu\in \mathcal{X}_{2} , we have

\sum_{\mu\in \mathcal{X}_{2}}|Z^{1}(C, H;C_{2}, \mu)|

= \sum_{\mu\in \mathcal{X}_{2}/\sim_{Hom(C_{2},Z)}}|Hom(C_{2}, Z)|

|Z^{1}(C, H;C_{2}, \mu)| ,

where in the last summation \mu runs over a set of complete representatives
of the above action. Since C_{2} is elementary abelian and Z\neq 1 ,

|Hom(C_{2}, Z)|\equiv 0 mod |C_{2}| .

Here C/C_{2} is cyclic and |C_{1}|=|C/C_{2}| divides |C_{H}(\mu(C_{2}))| , so we have that

|Hom(C_{2}, Z)| |Z^{1}(C, H;C_{2}, \mu)|

\equiv 0 mod |C_{2}| gcd (|C/C_{2}|, |C_{H}(\mu(C_{2}))|)

\equiv 0 mod |C| .

Thus we have Step 2.

By Steps 1 and 2, we have

|Z^{1}(C, H)|\equiv 0 mod gcd(|C|, |H|) .

\square
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Theorem 2.4 If every Sylow subgroup of A/A’ is a direct product of a

cyclic group and an elementary abelian group, then Conjecture H is true.

Proof By Proposition 2.3 and the almost same argument of the proof of
Theorem 3.4, 3.5 [1], we have the theorem. \square

3. Some special cases

Theorem 3.1 If H is an abelian p-group, then Conjectures I and II are
true.

Proof By Lemma 2.1, it is enough to show that Conjecture I holds in
this case. Let C=C_{1}\cross \cdot\cross C_{n} , C_{i}=\langle c_{i}\rangle , be a cyclic group decomposition
of C, and denote \hat{C}_{i}:=\langle c_{j}|j\neq i\rangle . Since H is abelian, Z^{1}(C_{i}, C_{H}(\hat{C}_{i})) has
the following group structure:

Z^{1}(C_{i}, C_{H}(\hat{C}_{i}))\cross Z^{1}(C_{i}, C_{H}(\hat{C}_{i}))arrow Z^{1}(C_{i}, C_{H}(\hat{C}_{i}))

(\lambda_{1}, \lambda_{2}) -(\lambda_{1}\lambda_{2} : c_{i}\vdash\Rightarrow\lambda_{1}(c_{i})\lambda_{2}(c_{i})) ,

for any i . So we let the group \prod_{i=1}^{n}Z^{1}(C_{i}, C_{H}(\hat{C}_{i})) act on Z^{1}(C, H) by the
rule

(\mu_{1}, \ldots, \mu_{n}) \lambda : C arrow H
c_{i} – \mu_{i}(c_{i})\lambda(c_{i}) ,

where ( \mu_{1} , . . ’
_{\mu_{n})} \in\prod_{i=1}^{n}Z^{1}(C_{i}, C_{H}(\hat{C}_{i})) and \lambda\in Z^{1}(C, H) . This action

is semi-regular and, by Proposition 2.2, we have that

|Z^{1}(C_{i}, C_{H}(\hat{C}_{i}))|\equiv 0 mod gcd(|C_{i}|, |C_{H}(\hat{C}_{i}))|) .

So if |C_{i}|\leq|C_{H}(\hat{C}_{i})| for any 1\leq i\leq n , then

|Z^{1}(C, H)|\equiv 0 mod \prod_{i=1}^{n}|C_{i}|=|C| .

If not, there exists some i such that |C_{H}(\hat{C}_{i})|<|C_{i}| , and thereby,

|Z^{1}(C, H)|= \sum_{\mu\in Z^{1}(\hat{C}_{i},H)}|Z^{1}(C, H;\hat{C}_{i}, \mu)|

= \sum_{\mu\in Z^{1}(\hat{C}_{i},H)/\sim_{H}}(H

: C_{H}(\mu(\hat{C}_{i})) |Z^{1}(C, H;\hat{C}_{i}, \mu)| ,
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where in the last summation \mu runs over a set of complete representatives
of orbits under the following conjugate action of H on Z^{1}(\hat{C}_{i}, H) :

H\cross Z^{1}(\hat{C}_{i}, H) arrow Z^{1}(\hat{C}_{i}, H)

(h, \mu) – (^{h}\mu : c\vdasharrow h\cdot\mu(c)Ch^{-1}) .

Since C/\hat{C}_{i} is cyclic, by Proposition 2.2,

|Z^{1}(C, H;\hat{C}_{i}, \mu)|\equiv 0 mod gcd(|C/\hat{C}_{i}|, |C_{H}(\mu(\hat{C}_{i}))|) .

Here H is abelian, so C_{H}(\mu(\hat{C}_{i}))=C_{H}(\hat{C}_{i}) for any \mu\in Z^{1}(\hat{C}_{i}, H) . Hence
we have that

(H : C_{H}(\mu(\hat{C}_{i})) |Z^{1}(C, H;\hat{C}_{i}, \mu)|

\equiv 0 mod (H : C_{H}(\hat{C}_{i}))|gcd(|C_{i}|, |C_{H}(\hat{C}_{i})|)

\equiv 0 mod |H| .

So in either case, we have

|Z^{1}(C, H)|\equiv 0 mod gcd(|C|, |H|) .

\square

Theorem 3.2 Suppose that the action of C on H is defined by a homO-
morphism from C to H, that is, there exists some f\in Hom(C, H) such that
ch:=f(c)hf(c)^{-1} . Then Conjectures I and II are true.

Proof. In this case, the semidirect product HC is isomorphic to the direct
product of H and C . This isomorphism is given by

HC \cong H\cross C

(h, c) \vdasharrow (hf(c), c^{-1}) .

So |Z^{1}(C, H)|=|Hom(C, H)| . By Theorem 2.1 [3], Conjecture I and II are
true. \square
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