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Complete affine flows with nilpotent holonomy group

Hiroshi TSUNODA
(Received June 4, 1998; Revised August 10, 1998)

Abstract. S. Matsumoto proved that every complete affine flow on a 3-dimensi0nal
closed manifold is virtually algebraic, that is, a lift of the flow by a finite covering map
is isomorphic to a flow which is constructed by an algebraic way. In this paper, we shall
show that, in the general dimension, a complete affine flow on a closed manifold with
additional conditions is virtually algebraic.
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1. Introduction and Preliminaries

When a flow is given a transverse geometric structure as a one-dimen-
sional foliation, we can understand more detailed behavior of the flow. For
instance, flows with transverse hyperbolic structures are classified by Ep-
stein [4]. The flows with a transverse similarity structure are also classified
in dimension 3 and classified in the general dimension with additional con-
ditions (Ghys [6], Nishimori [12], Asuke [1]).

Turning to flows with a general transverse affine structure, we have
a classification of the complete affine flows in dimension 3 given by Mat-
sumoto [9]. However, in the general dimension, almost nothing is known so
far. The purpose of this paper is a detailed study of flows with transverse
affine structure.

Let G be a Lie group acting on a q-dimensional manifold X by left. A
(G, X) foliation (M, \mathcal{F}) of codimension q is a foliation which has a foliation
chart \{(U_{\alpha}, f_{\alpha}), g_{\alpha\beta}\} , where

(1) f_{\alpha} : U_{\alpha}arrow X is a submersion which defines \mathcal{F}|_{U_{\alpha}} ,
(2) g\alpha\beta\in G and f_{\alpha}(x)=g_{\alpha\beta}f_{\beta}(x) for x\in U_{\alpha}\cap U_{\beta} .

The (G, X)-foliation is developable. It means that there exists a submersion
D:\tilde{M}

- X and a homomorphism h:\pi_{1}(M) – G such that
(a) D(\gamma(x))=h(\gamma)D(x) for any x\in\tilde{M} and \gamma\in\pi_{1}(M) ,
(b) each leaf of \pi^{*}\mathcal{F} is a connected component of the inverse image

of a point by the submersion D,
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where \pi : \tilde{M}
-arrow M is the universal covering map. We call D a developing

map and h a holonomy homomorphism of \mathcal{F} . The image \Gamma of h is called
holonomy group of \mathcal{F} . A (G, X)-foliation is said to be complete if its devel-
oping map is a fiber bundle projection.

In the case X is also G, a (G, G)-foliation is called Lie G-foliation.
It is known that a Lie G-foliation is always complete. In the case X is
a homogeneous space of G, a (G, X)-foliation is called transversely homO-
geneous foliation. The following are typical examples of (G, X) flows or
one-dimensional (G, X)-foliations.

Example 1.1 Let H be a simply connected Lie group and H_{0} a closed
one-dimensional subgroup of H . Suppose H has a uniform lattice \triangle . Let
\theta : Harrow H/H_{0} be the natural projection and \iota : \trianglearrow H the inclusion. Since
\theta is a fiber bundle projection to H/H_{0} , the pair of maps (\iota, \theta) : (\triangle, H) -arrow

(H, H/H_{0}) defines a complete transversely homogeneous flow on \triangle\backslash H .

Example 1.2 In the example above, if H_{0} is also normal, then H/H_{0} is
a Lie group. Hence the pair of maps (\theta\circ\iota, \theta) : (\triangle, H) -arrow(H/H_{0}, H/H_{0})

defines a Lie H/H_{0} flow on \triangle\backslash H .

One way to classify the (G, X)-flows is to find such flows as in the above
examples which are conjugate to the given (G, X) flow.

We denote Aff(n) the group of affine transformations of R^{n} . We say
an (Aff(n), R^{n} )-flow simply an affiffiffine flflow. An affine flow is algebraic if it
is conjugate to one of the flow in Example 1.1 and 1.2. An affine flow is
virtually algebraic if it is finitely covered by an algebraic affine flow.

Theorem 1.3 (S. Matsumoto [9]) Every complete affiffiffine flflow on a closed
3-manifold is virtually algebraic.

We are interested in a natural question whether Theorem 1.3 holds in
the general dimension or not. To investigate the complete affine flows in
the general dimension, we can not apply the proof of Theorem 1.3. Indeed
Matsumoto’s proof depends on the 3-manifold theories which are well de-
veloped. For example, he uses the classification of the 3-dimensional simply
connected solvable Lie groups.

On the other hand, we have to find a way to construct a suitable simply
connected Lie group N and a homomorphism \theta : Narrow Aff(n) which define a
given complete affine flow. We shall use “syndetic hulls” for a linear group.
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Our main result is the following:

Theorem 1.4 A complete affiffiffine flflow is virtually algebraic if its holonomy
homomorphism is injective and its holonomy group is nilpotent.

Throughout this paper, the underlying manifold is assumed to have a
solvable fundamental group.

This paper is organized as follows. In \S 2, we shall recall manifolds which
have a solvable fundamental group. In \S 3, we shall introduce the notion of
syndetic hulls for a linear group. The contents of this section are mostly
algebraic. In \S 4, we shall argue about the syndetic hulls for the holonomy
group of a complete affine flow. In \S 5, we shall forget the transverse geomet-
ric structure of flows for a moment and turn our attention to flows which
are tangent to the fibers of a fiber bundle structure of the manifold. In \S 6,
we shall take up a classification theorem of nilpotent Lie G-flow given by
E. Ghys. In \S 7, we shall state when a transversely homogeneous flow has a
cross section in terms of the holonomy group and syndetic hulls. In \S 8, we
shall prove our main theorem.

2. Polycyclic groups

In this section, we shall recall manifolds with solvable fundamental
group.

Definition 2.1 A group G is called polycyclic if G admit a sequence G=
G_{0}\supset G_{1}\supset \supset G_{k}=\{e\} of subgroups such that each G_{i} is normal in
G_{i-1} and G_{i-1}/G_{i} is cyclic. A group G is called strongly polycyclic if each
G_{i-1}/G_{i} is infinite cyclic.

By the definition, a polycyclic group is solvable and every subgroup of
polycyclic group is again polycyclic and finitely generated. It is known that
any polycyclic group has a finite index strongly polycyclic subgroup.

Theorem 2.2 (R. Bieri [2]) Let II be a solvable group. If there exists a
closed manifold M which is a K(\square , 1) -space, then \Pi is polycyclic.

Let \Pi and M be as in Theorem 2.2. It is known that every strongly
polycyclic group has a finite index normal subgroup which is isomorphic to
a uniform lattice of some simply connected solvable Lie group. Let \Pi’ be
a finite index strongly polycyclic subgroup of II isomorphic to a uniform
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lattice of a simply connected solvable Lie group G. Then, there exists
a K(\Pi’, 1)-space N which covers M by the finitely many sheets and is
homotopy equivalent to G/\Pi’ . This, together with the fact that rank(\Pi ’) is
equal to dim G, implies the following.

Corollary 2.3 Let II be a solvable group. If M is a closed manifold which
is a K(\square , 1) -space, then rank \Pi=\dim M .

3. Syndetic hulls of a linear group

In this section, we are going to recall syndetic hulls of a linear group.
The contents of this section are mostly algebraic.

An algebraic hull of a subgroup G of GL(m;R) is a Lie group containing
G . A syndetic hull is also a Lie group containing G . However, it does not
always exist and is not always unique even if it exists. But it could be
smaller than the algebraic hull.

Before defining a syndetic hull, we shall recall some notions of the al-
gebraic groups.

Definition 3.1 We shall say that G is R-algebraic if there exists an alge-
braic group G of GL(m;C) such that G=G\cap GL(m;R) .

We shall say R-algebraic simply algebraic in the following. In gen-
eral, an algebraic group G\subset GL(m;R) is closed in Lie group topology of
GL(m;R) . So, G is a Lie subgroup of GL(m;R) .

Definition 3.2 The Algebraic hull A(G) of G is the closure of G in Zariski
topology of GL(m;R) .

The algebraic hull is the smallest algebraic group containing G .

Definition 3.3 An element g\in GL(m;R) is called unipotent if (g-I)^{m}=
0 , where I denotes the unit matrix. A subgroup G of GL(m;R) is called
unipotent if it consists only of unipotent elements.

Note that a unipotent subgroup is nilpotent. A unipotent algebraic
group is connected. Conversely, a connected unipotent group is algebraic.
We refer the reader to the books [3] and [13].

Definition 3.4 Let G be a subgroup of a solvable Lie group H . We denote
\overline{G} the closure of G and \overline{G}^{0} the identity component of \overline{G} . The rank in H of
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G is defined by the equation

rank_{H}(G)=rank(\overline{G}/\overline{G}^{0})+\dim(\overline{G}^{0}) ,

where rank(\overline{G}/\overline{G}^{0}) is the rank of the solvable group \overline{G}/\overline{G}^{0} as an abstract
group.

Now we can state a theorem, according to which a syndetic hull is
defined.

Theorem 3.5 (Fried-Goldman [5]) Let G\subset GL(m;R) be a solvable
group. There exists a closed solvable subgroup H\subset GL(m;R) satisfying
the following conditions:
(1) H has finitely many components and each component intersects G,
(2) G and H has the same algebraic hull,
(3) {Syndetic condition) there exists a compact set K of H such that H=

KG,
(4) dim H\leq rank G .
Moreover, if all eigenvalues of the elements of G are real, then H is uniquely
determined.

Such a group H is called a syndetic hull of G . Roughly speaking,
a syndetic hull for G is a Lie group spanned by G, as a vector space is
spanned by its bases. To see this, we shall sketch the proof of the theorem.

Sketch of the proof of Theorem 3.5. Since A(G) is algebraic, it has
finitely many connected components. Thus, it is enough to prove the case
where A(G) is connected.

Step 1. Suppose G is abelian. Then A(G) is a connected abelian Lie
group. If A(G) is a vector group, then the R-span H of G is a unique
syndetic hull. Suppose A(G) is isomorphic to R^{q}/\Lambda , where \Lambda is a discrete
subgroup of R^{q} . Let \pi : R^{q}arrow R^{q}/\Lambda be the natural projection. Since \overline{G}/\overline{G}^{0}

is finitely generated abelian group, we can see that there exists a subgroup
G’ such that \pi(G’)=G and rank G’=rank G . Set H’ be the it-span
of G’ . Then H=\pi(H’) is a syndetic hull for G .

Step 2. If G is unipotent, then A(G) is the unique syndetic hull.
Since G is solvable, [G, G] is a unipotent subgroup. Let p : A(G) -

A(G)/[A(G), A(G)] be the natural projection. Since A(G)/[A(G), A(G)]
is abelian, there exists a syndetic hull Q of p(G) by Step 1. This, together
with the fact that A([G, G])=[A(G), A(G)] , implies that H=p^{-1}(Q) is a
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syndetic hull for G. \square

Note that if G is unipotent then its syndetic hull is unique and equal
to the algebraic hull of G.

Definition 3.6 (Jordan decomposition) An element g\in G\subset GL(m;R)

has a unique decomposition g=g_{u}g_{s}=gsgu , where g_{u} , g_{s}\in A(G) , g_{u} is
unipotent and g_{s} is semisimple. We call g_{u} the unipotent part of g .

Now we shall again recall some notions of the algebraic group theory.
Let G\subset GL(m;R) be an algebraic group. Then G has a maximum con-
nected normal solvable subgroup N . We call N the radical of G . Let U
be the set of the unipotent elements of N . Then U is an algebraic group
and G decomposes as a semi-direct product U , R . We call U the unipotent
radical and R the maximal reductive group of G . Note that R is abelian
and isomorphic to a product of copies of R^{\cross} and SO(2) if G is connected
solvable.

Proposition 3.7 (Fried-Goldman [5]) Let G be a connected solvable lin-
ear group. Then the set of the unipotent parts of the elements of G coincides
with the unipotent radical of A(G) .

4. Action of holonomy group

In this section, we are going to show that a complete affine flow with
solvable fundamental group is actually a Lie G-flow or transversely homoge-
neous flow with respect to a Lie group smaller than the affine transformation
group.

Let (M^{n+1}, \varphi) be a complete affine flow. The completeness gives some
restriction of the action of the holonomy group as follows.

Lemma 4.1 There does not exist a subspace of R^{n} homeomorphic to R^{m}

for m<n invariant under the action of the holonomy group.

Proof. Suppose there exists a subspace L of R^{n} homeomorphic to R^{m}

and \Gamma(L)=L , where m<n . Then D^{-1}(L) is invariant under the action of
\pi_{1}(M) . Since D:\tilde{M}

– R^{n} is a trivial R-bundle, D^{-1}(L) is isomorphic to
R^{m+1} . Hence N=D^{-1}(L)/\pi_{1}(M) is a K(\pi_{1}(M), 1)-space. Since M is a
K(\pi_{1}(M), 1) -space, M and N are homotopy equivalent. Thus, we have

H_{n+1}(N;Z)=H_{n+1}(M;Z)\cong Z .
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However H_{n+1}(N;Z) is trivial since dim N=m+1<n+1 . This contradicts
the fact that M and N are homotopy equivalent. \square

Applying Fried-Goldman’s theorem to the holonomy group \Gamma of a com-
plete affine flow (M^{n+1}, \varphi) , we have a syndetic hull H of \Gamma contained in
Aff(n) since Aff(n) is an algebraic group.

Lemma 4.2 Every syndetic hull of the holonomy group of a complete
affiffiffine flflow (M^{n+1}, \varphi) acts on R^{n} transitively.

Proof. Let H be a syndetic hull of the holonomy group \Gamma and A(H)=U\cdot R

the algebraic hull of H, where U is the unipotent radical and R is a maximal
reductive subgroup of A(H) . We may assume H is connected.

Since R is reductive, there exists a fixed point x_{0}\in R^{n} . We may
assume x_{0} is the origin of R^{n} . Then the isotropy group of U at x_{0} is
U\cap GL(n;R) , where GL(n;R) is considered as a subgroup of GL(n+1;R)
in usual way. Hence the isotropy group of U at x_{0} is unipotent algebraic
and thus connected. Since U is diffeomorphic to some Euclidean space, the
orbit U(x_{0}) of x_{0} is diffeomorphic to R^{k} . Since U is a normal subgroup of
A(H) , the orbit U(x_{0}) is invariant under the action of A(H) . Hence U(x_{0}) is
invariant under the action of \Gamma Then Lemma 4.1 implies that U(x_{0})=R^{n} .

By Proposition 3.7, for any u\in U there exists h\in H and r\in R

such that h=ur . Hence we have H(x_{0})=U(x_{0}) . Thus H acts on R^{n}

transitively. \square

This implies that (M, \varphi) is actually a Lie G-flow or a transversely h0-
mogeneous flow with respect to a Lie group smaller than Aff(n).

Corollary 4.3 If H is simply connected, then \dim H is equal to either
dim M or dim M-1 .

Proof. Let p : H - [H, H]\backslash H be the natural projection. Since H is
simply connected solvable and [H, H] is unipotent, [H, H]\backslash H is a simply
connected abelian group. Hence [H, H]\backslash H is isomorphic to R^{q} for some q .

By the condition (3) of Theorem 3.5, \Gamma is a cocompact subgroup of
H\iota Thus p(\Gamma) is a cocompact subgroup of [H, H]\backslash Ht Since [H, H]\backslash H

is isomorphic to R^{q} , we have rank p(\Gamma)\geq q . Since [H, H] is connected
unipotent, rank \Gamma\cap[H, H]\geq\dim[H, H] . Thus we have

dim H=\dim[H, H]+\dim([H, H]\backslash H)
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\leq rank\Gamma\cap[H, H]+rankp(\Gamma)

=rank\Gamma=\dim M .

On the other hand, since H acts on R^{n} transitively, dim H\geq n . Thus
dim H is equal to either dim M or dim M-1 . \square

5. Flows on fiber bundles

In this section, we shall consider flows which are tangent to the fibers of
a fiber bundle. The aim of this section is to show a condition which implies
that these two flows are diffeomorphic.

In preceding sections, we considered flows with a transverse geometric
structure. However, in this section, we shall forget the transverse geometric
structures and turn our attention to their topological situation.

Theorem 5.1 Let \varphi and \psi be nonsingular flflows on closed manifolds M
and N which fibers over closed manifolds. Suppose the dimension of M
and N are the same and the dimension of the fibers are the same and\geq 2 .
Assume that \varphi (resp. \psi ) is tangent to the fibers of M (resp. N) and each
fiber of M (resp. N) is a minimal set of \varphi (resp. \psi ). If there exists a smooth
map f : M - N such that
(1) f is transverse to \psi and f^{*}\psi=\varphi as foliations,
(2) f(x)\neq f(y) if y\not\in O_{\varphi}(x)

Then, there exists a diffeomorphism f_{0} : Marrow N sending \varphi to \psi .

Let \varphi : M\cross R -arrow M be a non-singular flow on a manifold M . We
denote \varphi((x, t)) by \varphi_{t}(x) . An orbit \varphi(\{x\}\cross R) through a point x\in M is
denoted by O_{\varphi}(x) . A part of the orbit \varphi(\{x\}\cross J) is denoted by O_{\varphi}(x;J) ,
where J is a subset of R.

Definition 5.2 A subset W of M is said to be invariant under \varphi if \varphi(W\cross

R)\subset W A closed invariant subset W is said to be minimal if there does
not exist a proper closed invariant subset of W A flow \varphi is said to be
minimal if M is the minimal set.

Note that if W is a minimal set then each orbit of \varphi through a point of
W is dense in W

Let (N, \psi) be a non-singular flow on a manifold and f : M – N a
smooth map.
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Definition 5.3 The map f is said to be transverse to \psi if T_{f(x)}N=

f_{*}(T_{x}M)\oplus T_{f(x)}X_{\psi} for each point x of M, where T_{y}X_{\psi} is the tangent space
to the orbit of \psi through y . In this case, f induces a one-dimensional
foliation f^{*}\psi on M .

Let (M, \varphi) , (N, \psi) and f : M -arrow N as in Theorem 5.1. Note that,
since the dimension of the fibers are \geq 2 , the flows \varphi and \psi have no closed
orbits. The conditions of f in the theorem and the compactness of M and
N implies that f is surjective and induces a diffeomorphism among the base
spaces.

We define a function u : M\cross R -arrow R by f(\varphi(x;t))=\psi(f(x);u(x, t)) .
The map f not being a diffeomorphism means that u is not a monotone
function if we fix a point of M So, our task is to exchange u for a function
lJ : Marrow R which is monotone on each orbit of \varphi . To do this, we use an
averaging technique. In short, for any x\in M , the point f(\varphi(x;t)) moves
as t increase toward the positive (negative) direction on O_{\psi}(f(x)) in the
average.

The function u is differentiate and satisfies

u(x, t+s)=u(\varphi(x;s), t)+u(x, s) . (5.1)

This implies the following.

Lemma 5.4 The differential of the function u:M\cross R - R is bounded.

Proof By the equation (5.1), we have \frac{\partial}{\partial t}u(x, t)=\frac{\partial}{\partial t}u(\varphi(x;t), 0) . Thus
the compactness of M implies that there exists a constant C such that

| \frac{\partial}{\partial t}u(x, t)|<C for all x\in M and t\in R . (5.2)

\square

We denote the bundle projection \xi : M – Q and F the fiber of the
bundle. Let \{U_{1}, \ldots, U_{k}\} be an open covering of Q such that the bundle \xi :
Marrow Q is trivial on each U_{j} and \{V_{1}, . . , V_{k}\} a refinement of \{U_{1}, . . ’ U_{k}\}

such that C1V_{j}\subset U_{j} . We identify M|_{U_{i}} by U_{i}\cross F We may assume that

f sends open transverse sections U_{i}\cross B_{i} of \varphi diffeomorphically to open
transverse sections f(U_{i}\cross B_{i}) of \psi . In this setting, we have the following.

Lemma 5.5 There exists a constant T>0 such that O_{\varphi}(x;(0, T)) inler-
sends \{\xi(x)\}\cross B_{i} if x\in C1V_{i} .
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Proof. Define a function r_{i} : U_{i}\cross F - R for i=1 , \ldots , k by

r_{i}(x)= \inf\{t>0|\varphi(x;t)\in U_{i}\cross B_{i}\} .

By the assumption that each fiber F_{q} over q\in Q is a minimal set of \varphi ,
the orbit through x intersects \{\xi(x)\}\cross B_{i}\subset U_{i}\cross B_{i} at positive times if
\xi(x)\in U_{i} . So, each r_{i} is well-defined and upper semi-continuous. Hence
each r_{i} has an upper bound T_{i} on C1V_{i}\cross F Since \{V_{1}, \cdots V_{k}\} is an open
cover of Q , we get the lemma by taking T= \max\{T_{i}|i=1, . , k\}+1 .

\square

The following is a key lemma to prove Theorem 5.1.

Lemma 5.6 There exists T_{0}>0 such that u(x, T_{0})>0 for any x\in M .

Proof. For any z\in f(V_{i}\cross B_{i}) , we define s(z) as the number of times
that O_{\psi}(z;(-2CT-\delta, 2CT+\delta)) intersects f(V_{i}\cross B_{i}) . Here C and T are
the constants in (5.2) and Lemma 5.5 respectively and \delta is a small positive
number. Since f(V_{i}\cross B_{i}) is transverse to \psi , the function s : f(V_{i}\cross B_{i}) – Z
is bounded. Fix q\in V_{i}\subset Q . Let m_{q} be the maximum value of the function
s on f(\{q\}\cross B_{i}) and z_{q}\in f(\{q\}\cross B_{i}) a point such that s(z_{q})=m_{q} .
Since m_{q} is maximum on f(\{q\}\cross B_{i}) , there exists a neighborhood O_{q}^{i} of
z_{q}\in f(V_{i}\cross B) such that s(z)\leq m_{q}+2 for any z\in C1O_{q}^{i} .

Let x_{q}\in\{q\}\cross B_{i} be the point such that f(x_{q})=z_{q} . For any y\in
(f|_{V_{i}\cross B_{i}})^{-1}(O_{q}^{i})\subset V_{i}\cross B_{i} , we define

T(y):=\{t\in R|\varphi(y;t)\in V_{i}\cross B_{i}, |u(y, t)|<2CT+\delta\} .

We claim that \# T(y) is finite. In fact, if the equality u(y, t)=u(y, t’) holds
for t and t’ in T(y) , then f(\varphi(y;t)) and f(\varphi(y;t’)) is the same point of
f(V_{i}\cross B_{i}) . Since f|_{V_{i}\cross B_{i}} : V_{i}\cross B_{i} – f(V_{i}\cross B_{i}) is a diffeomorphism, we
have \varphi(y;t)=\varphi(y;t’) . Since \varphi has no closed orbits, we have t=t’ Hence
if t and t’ are distinct values in T(y) , then u(y, t) and u(y, t’) are distinct
values. Thus we have \# T(y)\leq s(f(y)) .

Choose a small neighborhood A_{q}^{i}=E_{q}^{i}\cross D_{q}^{i} of x_{q}\in(f|_{V_{i}\cross B_{i}})^{-1}(O_{q}^{i})

such that the sets T(y)\subset R for y\in C1(A_{q}^{i}) have same upper bounds. In
other words, there exist \tau_{q}^{i}>0 such that t<\tau_{q}^{i} for any t\in T(y) and
y\in C1(A_{q}^{i}) . Then, we have

|u(y, t)|\geq 2CT+\delta>2CT, if \varphi(y;t)\in V_{i}\cross B_{i} for t>\tau_{q}^{i}

and y\in C1(A_{q}^{i}) . (5.3)
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Let \{W_{1}, . . ’ W_{k}\} be a refinement of \{V_{1}, \ldots, V_{l}\} such that C1W_{j}\subset V_{j} .
Since C1W_{i} is compact, C1W_{i} is covered by finite number of E_{q}^{i} , namely
\{E_{q_{1}}^{i}, \ldots, E_{qk_{i}}^{i}\} . Take \tau_{0}>\max\{\tau_{q_{j}}^{i}|i=1, \ldots, k,j=1, . . ’ ^{k_{i}}\} . Then by
(5.3) we have

|u(x, t)|\geq 2CT+\delta>2CT for any x\in A_{q_{j}}^{i}

and for any t>\tau_{0} . (5.4)

Now we shall show that, for any x in some A_{qk}^{i} , either of the following
holds,

(1) u(x, t)>CT for t>\tau_{0} ,
(2) u(x, t)<-CT for t>\tau_{0} .

Let \tau_{0}<t_{1}< \cdot 1 be the maximal sequence such that \varphi(x, t_{j})\in U_{i}\cross

B_{i} for j>0 . Since x\in A_{qk}^{i} and t_{j}>\tau_{0} , we have u(x, t_{j})>2CT or
u(x, t_{j})<-2CT for each j by (5.4). Since t_{j+1}-t_{j}<T , Lemma 5.4
implies |u(x, t_{j+1})-u(x, t_{j})|<CT Thus, we have either u(x, t_{j})>2CT
for all j or u(x, t_{j})<-2CT for all j .

For any t >\tau_{0} , there exists j such that t_{j}\leq t\leq t_{j+1} . Thus we have
either t-t_{j}\leq T/2 or t_{j+1}-t\leq T/2 . Hence we have either |u(x, t) -

u(x, t_{j})|\leq CT/2 or |u(x, t_{j+1})-u(x, t)|<CT/2 by Lemma 5.4. So, we
have either u(x, t)>CT for any t>\tau_{0} or u(x, t)<-CT for any t>
\tau_{0} . Changing the orientation of the parameterization if necessary, we have
u(x, t)>CT for t>\tau_{0} .

Finally, we shall show that there exists T_{0}>0 such that u(x, T_{0})>0 for
any x\in M . As we define T, there exists S>0 such that O_{\varphi}(x;(0, S)) meets
\{\xi(x)\}\cross D_{qk}^{i} if \xi(x)\in E_{qk}^{i} for any x\in M . Let \beta=\sup\{-u(M\cross[0, S]), 0\} .
Take an integer m and a positive number T_{0} such that

mCT>\beta (5.5)

T_{0}>m(\tau_{0}+S) . (5.6)

Fix x\in Mr Since \{E_{q_{j}}^{i}\} is a covering of Q , there exists E_{ql}^{i} such that
\xi(x)\in E_{ql}^{i} . We define a sequence v_{1}<v_{2}< <v_{m} as follows. Let v_{1}

be the first arrival time at \{\xi(x)\}\cross D_{qt}^{i} of the orbit starting at x . If v_{j} is
defined, let v_{j+1} be the the first arrival time at \{\xi(x)\}\cross D_{ql}^{i} of the orbit
starting at x after v_{j}+\tau_{0} . Hence we have \varphi(x;v_{j})\in\{\xi(x)\}\cross D_{ql}^{i} for all
1\leq j\leq m-1 and v_{j}+\tau_{0}\leq v_{j+1}\leq v_{j}+\tau_{0}+S for all j>1 . Thus, we have

v_{m}\leq v_{m-1}+\tau_{0}+S
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\leq v_{1}+(m-1)(\tau_{0}+S)

<S+(m-1)(\tau_{0}+S)

<T_{0}-\tau_{0} .

Since \varphi(x;v_{j})\in\{\xi(x)\}\cross D_{qk}^{i} for all j and u(x, t)>CT for t >\tau_{0} , we have

u(\varphi(x;v_{j}), v_{j+1}-v_{j})>CT and u(\varphi(x;v_{m}), T_{0}-v_{m})>CT

(5.7)

By the equation (5.1), (5.7) and the setting (4), (5), we have

u(x, T_{0})=u(x, v_{1})+ \sum_{j=1}^{m-1}u(\varphi(x;v_{j}), v_{j+1}-v_{j})

+u(\varphi(x;v_{m}), T_{0}-v_{m})

>-\beta+mCT

>0 .

\square

Proof of Theorem 5.1. Define a function lJ : Marrow R by

\nu(x)=\frac{1}{T_{0}}\int_{0}^{T_{0}}u(x, t)dt

and a map f_{0} : M - N by f_{0}(x)=\psi(f(x);\nu(x)) . On each orbit of \varphi , we
have

f_{0}(\varphi(x;s))=\psi(f(\varphi(x;s));\nu(\varphi(x;s)))

=\psi(f(x);\nu(\varphi(x;s))+u(x, s)) .

Here,

\nu(\varphi(x;s))+u(x, s)=\frac{1}{T_{0}}\int_{0}^{T_{0}}\{u(\varphi(x;s), t)+u(x, s)\}dt

= \frac{1}{T_{0}}\int_{0}^{T_{0}}u(x, s+t)dt .

Since

\frac{d}{ds}(\frac{1}{T_{0}}\int_{0}^{T_{0}}u(x, s+t)dt)=\frac{1}{T_{0}}u(x, T_{0})>0 ,

the map f_{0} is a diffeomorphism sending \varphi to \psi . \square
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6. Lie G-flows

In this section, we shall state the classification theorem of Lie G-flows
proved by E. Ghys.

In Section 4, we proved that the dimension of the syndetic hulls for
the holonomy group of a complete affine flow on M with solvable holonomy
group is equal to either dim M-1 or dim M . If it is equal to dim M-1 ,
then the flow is actually a Lie G-flow.

Definition 6.1 Let (N, \mathcal{F}) be a Lie G-foliation with holonomy group \Gamma

We say that (N, \mathcal{F}) is a classifying space for the pair (G, \Gamma) , if for any Lie G-
foliation \mathcal{F}’ with holonomy group \Gamma on a compact manifold N’ there exists
a smooth map f : N’arrow N such that f^{*}\mathcal{F}=\mathcal{F}’ .

The following theorem implies that two Lie G-flows without closed or-
bits are homotopy equivalent if they have a same holonomy group.

Theorem 6.2 (Haefliger [8]) Let \mathcal{F} be a Lie G-foliation with holonomy
group \Gamma on a compact manifold N. Then (N, \mathcal{F}) is a classifying space for
the pair (G, \Gamma) if and only if all the leaves of \mathcal{F} are contractible.

Let (M, \varphi) be a Lie G-flow on a compact manifold M without closed
orbits. Suppose there exists an algebraic Lie G flow (\triangle\backslash H, \psi) as in Exam-
ple 1.2 with the same holonomy group \Gamma of \varphi . Then there exists a homotopy
equivalence of M to \triangle\backslash H sending \varphi to \psi since they are classifying spaces
for the pair (G, \Gamma) . Since the minimal sets of the Lie G-flow gives a fiber
bundle structure on the manifold (according to Molino’s structure theorem
[11] ) , Theorem 5.1 shows that these two flows are conjugate.

However, in general, the existence of an algebraic Lie G-flow for the
given pair (G, \Gamma) is not known. In the case G is nilpotent, we can construct
an algebraic Lie G-flow for the given pair (G, \Gamma) by Malcev’s theorem.

Theorem 6.3 (E. Ghys [7]) Let \varphi be a Lie G-flflow. If G is simply con-
nected and nilpotent, then \varphi is conjugate to an algebraic flflow.

7. Criterion for cross section

In this section, we are going to explain when a (G, X)-flow has a cross
section in terms of the holonomy group and syndetic hull.

Let \varphi be a non-singular flow on a manifold of dimension q . Recall that
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a cross section of \varphi is a (q-1)-dimensional submanifold \Sigma such that \Sigma is
transverse to \varphi and every orbit of \varphi intersects \Sigma .

Definition 7.1 An immersed cross section \Sigma of the flow (M^{n+1}, \varphi) is an
immersed copy of a connected closed n-dimensional manifold such that \Sigma

is transverse to \varphi and every orbit of \varphi intersects \Sigma .

It was shown by S. Matsumoto that the existence of immersed cross
section is equivalent to that of cross section. The reader refer to S. Mat-
sumoto [9] and [10] for detailed arguments.

Proposition 7.2 (S. Matsumoto [9]) If the flflow has an immersed cross
section, then it has a cross section.

Now let us show the necessary condition for a (G, X)-flow to admit a
cross section in terms of the holonomy group.

Proposition 7.3 Let (M, \varphi) be a complete (G, X)- flflow. Suppose X is
contractible. Then \varphi has a cross section if there exists a subgroup \Gamma_{0} of the
holonomy group \Gamma such that \Gamma_{0} acts freely and properly discontinuously on
X and the quotient space \Gamma_{0}\backslash X is a compact manifold.
Proof. Let \Pi_{0} be the inverse image of \Gamma_{0} by the holonomy homomorphism
h . The developing map D:\tilde{M}

- X induces a trivial R-bundle projection
\xi : \tilde{M}/\Pi_{0} – \Gamma_{0}\backslash X . Let s : \Gamma_{0}\backslash X -arrow\tilde{M}/\Pi_{0} be a section of the R-bundle
and \pi_{0} : \tilde{M}/\Pi_{0}arrow M the covering map. Then the map \pi_{0}\circ s : \Gamma_{0}\backslash X -arrow M

is an immersion. It gives birth to an immersed cross section of the flow.
Thus the fiow has a cross section. \square

In the case where \varphi is a (H, H/H_{0})-flow, we can say Proposition 7.3 as
follows.

Lemma 7.4 Let (M, \varphi) be a complete (H, H/H_{0})- flflow . Suppose H is
simply connected solvable and the holonomy group \Gamma is a uniform lattice of
H. If the commutator subgroup N of H acts freely on H/H_{0} , then the flflow
has a cross section.

Proof. Let p : H -arrow H/N be the natural projection. Since N is simply
connected and nilpotent, N\cap\Gamma is a uniform lattice of Nt Thus we have
rank(iV\cap \Gamma )=dim N and rank p(\Gamma)=\dim p(H) .

Since N\cap H_{0}=\{e\} , the image p(H_{0}) is a subgroup of p(H)\cong R^{k}
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isomorphic to R. Let \overline{\gamma}_{1} , \ldots , \overline{\gamma}_{k} be generators of p(\Gamma) . If k\neq 1 , then there
exists k-1 generators \overline{\gamma}_{i_{1}} , \ldots , \overline{\gamma}_{i_{k-1}} such that L\cap p(H_{0})=\{e\} , where L is
the subgroup spanned by \overline{\gamma}_{i_{1}} , . . , \overline{\gamma}_{i_{k-1}} . Let H_{1}=p^{-1}(L) and \Gamma_{1}=\Gamma\cap H_{1} .
Then H_{1} acts on H/H_{0} freely and transitively and \Gamma_{1} is a uniform lattice
of H_{1} . Hence \varphi has a cross section.

If k=1 , then N acts on H/H_{0} freely and transitively and N\cap\Gamma is a
uniform lattice of N . Hence \varphi has a cross section. \square

8. Transversely homogeneous flows

In this section, we shall prove our main theorem.
We already proved, in Section 4, that a complete affine flow with solv-

able holonomy group is actually a Lie G-flow or transversely homogeneous
flow with respect to a syndetic hull. In the following, we first examine
transversely homogeneous flows.

Let (M^{n+1}, \varphi) be a (H, H/H_{0})-fiow.
Suppose H is a simply connected solvable group of dimension n+1

contained in some GL(m;R) and H/H_{0} is diffeomorphic to R^{n} . We also
assume the holonomy homomorphism is injective and the holonomy group
\Gamma is a uniform lattice of Hr Note that \Gamma is a strongly polycyclic group.

Lemma 8.1 There exists a bundle structure over S^{1} on M such that \varphi is
either tangent or transverse to the fibers.
Proof. It is enough to check the case H_{0}\subset N by Proposition 7.4. Let
p : H - H/N be the natural projection, where N is the commutator
subgroup of H . Then p(H) is isomorphic to R^{k} for some k and p(\Gamma) is a
free abelian group of the rank k as in the proof of Lemma 7.4. Take k-1
generators of p(\Gamma) and let L be a subgroup of p(H) spanned by these k-1
generators. Then H_{1}=p^{-1}(L) is a normal subgroup of H containing H_{0}

and H/H_{1} is isomorphic to R. Moreover the image of \Gamma by the natural
projection H -arrow H/H_{1} is a cyclic group. Since H_{0}\subset H_{1} , we can decompose
H/H_{0} as \bigcup_{t\in R}H_{1}(\delta_{t}(H_{0})) , where we denote R=\{\delta_{t}|t\in R\} .

Define D_{1} : \tilde{M}
-arrow R by D_{1}(\tilde{x})=q(D(\tilde{x})) , where q : H/H_{0} – R

is a projection defined by q(h_{1}\delta_{t}(0))=t . The map D_{1} is a fiber bundle
projection and equivariant with respect to the action of \pi_{1}(M) . Thus D_{1}

give birth to a bundle structure over S^{1} such that the flow is tangent to the
fibers. \square
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Since \Gamma is a uniform lattice of H, we have an algebraic transversely
homogeneous flow \psi on \Gamma\backslash H defined by the fiber bundle projection H to
H/H_{0} . We shall show that the two flows (M, \varphi) and (\Gamma\backslash H, \psi) are diffe0-
morphic if H is unipotent.

Proposition 8.2 Let (M^{n+1}, \varphi) be a(H, H/H_{0})- flflow . Suppose H is a
connected unipotent linear group of dimension n+1 and \Gamma=h(\pi_{1}(M)) is
a uniform lattice of H ‘ Then (M, \varphi) is diffeomorphic to the homogeneous
flflow on \Gamma\backslash H defined by H_{0} .

To prove this, we need the following.

Lemma 8.3 If (M, \varphi) has a cross section, then the flflow is diffeomorphic
to (\Gamma\backslash H, \psi) .

Proof Let \Sigma be a cross section of \varphi and \Gamma_{1}=h(\pi_{1}(\Sigma)) . Let H_{1} be a
syndetic hull of \Gamma Since H is unipotent, H_{1} is a subgroup of H .

Let \delta be an element of \Gamma such that \overline{\delta}\in\Gamma/\Gamma_{1}\cong Z is a generator. We
have a decomposition H_{1} , J of H such that \Gamma_{1} and \langle\delta\rangle are uniform lattices
of H_{1} and J respectively. Hence \Sigma is diffeomorphic to \Gamma_{1}\backslash H_{1} . Therefore
M is a \Gamma_{1}\backslash H_{1} bundle over S^{1} whose monodromy map is induced by the
action of \delta on H_{1} . On the other hand, \Gamma\backslash H is also a \Gamma_{1}\backslash H_{1} bundle over S^{1}

whose monodromy map is induced by the action of \delta on H_{1} . Hence
(M, \varphi)\square

is isomorphic to (\Gamma\backslash H, \psi) .

Proof of Proposition 8.2. We shall prove this by induction of n . Suppose
n=1 . Then M is diffeomorphic to 2-torus and \varphi has a cross section. Thus
the statement is true. We suppose the statement is true for q<n+1 .

By Lemma 8.3, we may assume \varphi dose not have a cross section. By
Lemma 8.1, M is the total space of a bundle over circle \xi : M -arrow S^{1} with
respect to short exact sequences

1 arrow \Gamma_{1} arrow \Gamma arrow Z arrow 0
\cap \cap \cap

1 arrow H_{1} arrow H arrow R arrow 0

and \varphi is tangent to each fiber F_{t} . Note that H_{1} contains H_{0} .
Let

1arrow\pi_{1}(F)arrow\pi_{1}(M)arrow\pi_{1}(S^{1})\xi_{\#}arrow 0
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be a short exact sequence of fundamental groups and Let \hat{\delta}\in\pi_{1}(M) be
an element such that \xi_{\#}(\hat{\delta})=1 and \delta=h(\hat{\delta})\in\Gamma We can identify \tilde{M}

with H_{1}\cross R by a trivialization such that D((h_{1}, t))=h_{1}\delta_{t}(0) . Write the
deck transformation \hat{\delta}(h_{1}, t)=(\tilde{f}_{t}(h_{1}), t+1) . Then the diffeomorphism
\tilde{f}_{t} : H_{1}arrow H_{1} induces a diffeomorphism f_{t} : \Gamma_{1}\backslash H_{1} – \Gamma_{1}\backslash H_{1} which gives a
monodromy map of the bundle \xi : M -arrow S^{1} .

The manifold \Gamma\backslash H also has a structure of a bundle over circle with fiber
\Gamma_{1}\backslash H_{1} and \psi is tangent to the fibers as follows. Define \rho_{t} : H_{1} -arrow H_{1} by
\rho_{t}(h_{1})=\delta_{t}h_{1}\delta_{t}^{-1} . Then H is isomorphic to a semi-direct product H_{1}\cross_{\rho}R .
The monodromy map \overline{\rho} of the bundle \Gamma\backslash H - S^{1} is induced by \rho=\rho_{1} . In
the following, we shall show that f_{t} is isotopic to \overline{\rho} .

We can deform f_{t} by an isotopy to f’ such that f’(e)=e . We claim that
\tilde{f}_{t}|_{\Gamma_{1}}=\rho|_{\Gamma_{1}} . Indeed, for any \gamma_{1}\in\Gamma_{1} , we have \hat{\delta}\gamma_{1}(h_{1}, t)=(\tilde{f}_{t}(\gamma_{1}h_{1}), t+1) .
Since \Gamma_{1} is normal in \pi_{1}(M) , there exists \gamma_{1}’\in\Gamma_{1} such that \hat{\delta}\gamma_{1}=\gamma_{1}’\hat{\delta} .
Hence, we have \hat{\delta}\gamma_{1}(h_{1}, t)=\gamma_{1}’\hat{\delta}(h_{1}, t)=(\gamma_{1}’\tilde{f}_{t}(h_{1}), t+1) . It does not
depend on the choices of h_{1} and t . Especially if we choose h_{1}=e , then
\tilde{f}_{t}(\gamma_{1})=\gamma_{1}’\tilde{f}_{t}(e)=\rho(\gamma_{1}) .

For any h_{1}\in H_{1} , we have

D(\hat{\delta}(h_{1},0))=D((\tilde{f}_{0}(h_{1}), 1))

=\tilde{f}_{0}(h_{1})\delta(0)

and

\delta(D(h_{1},0))=\delta h_{1}(0) .

By the equivariance of V and h , we have

\delta h_{1}(0)=\tilde{f}_{0}(h_{1})\delta(0) .

Hence h_{1}^{-1}\delta^{-1}\tilde{f}_{0}(h_{1})\delta=h_{1}^{-1-1}\rho(\tilde{f}_{0}(h_{1}))\in H_{0} . Set r(h_{1}):=h_{1}^{-1-1}\rho(\tilde{f}_{0}(h_{1})) .
Since \tilde{f}_{0}|_{\Gamma_{1}}=\rho|_{\Gamma_{1}} , for any \gamma_{1}\in\Gamma_{1} , we have

r(\gamma_{1}h_{1})=(\gamma_{1}h_{1})^{-1}\rho^{-1}(\tilde{f}_{0}(\gamma_{1}h_{1}))

=\gamma_{1}^{-1-1-1}h_{1}\rho(\rho(\gamma_{1})\tilde{f}_{0}(h_{1}))

=h_{1}^{-1-1}\rho(\tilde{f}_{0}(h_{1}))

=r(h_{1}) .

Since r(h_{1})\in H_{0}\cong R , we can define r_{s} : H_{1} - H_{0} by r_{s}(h_{1})=sr(h_{1})

for any s\in[0,1] . Define a map \tilde{g}_{s} : H_{1} – H_{1} by \tilde{g}_{s}(h_{1})=\rho(h_{1})\rho(r_{s}(h_{1})) .
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For any s\in[0,1],\tilde{g}_{s} is a diffeomorphism and

\tilde{g}_{s}(\gamma_{1}h_{1})=\rho(\gamma_{1}h_{1})\rho(r_{s}(\gamma_{1}h_{1}))

=\rho(\gamma_{1})\rho(h_{1})\rho(r_{s}(h_{1}))

=\rho(\gamma_{1})\tilde{g}_{s}(h_{1}) .

Thus, for any s\in[0,1],\tilde{g}_{s} induce a diffeomorphism g_{s} : \Gamma_{1}\backslash H_{1} -arrow\Gamma_{1}\backslash H_{1} .
Since g_{0}=\overline{\rho} and g_{1}=f_{0} , the two difFeomorphisms \overline{\rho} and f_{0} are isotopic.
Hence (M, \varphi) is diffeomorphic to (\Gamma\backslash H, \psi) . \square

Finally, we shall prove our main theorem.

Theorem 8.4 A complete affiffiffine flflow is virtually algebraic if its holonomy
homomorphism is injective and its holonomy group is nilpotent.

Proof. Let (M^{n+1}, \varphi) be a complete affine flow as in the theorem and
\Gamma the holonomy group of \varphi . We may assume that a syndetic hull H for \Gamma

is connected. Suppose H is not unipotent. Then there exists an element
h of H such that h has the nontrivial semi-simple part. Let h=u_{0}s_{0} be
a Jordan decomposition. Since s_{0} is non-trivial, the fixed points set E of
s_{0} is a nonempty proper affine subspace of R^{n} . Since the algebraic hull
A(\Gamma) of \Gamma is nilpotent, s_{0} is in the center of A(\Gamma) . This implies that E is
kept invariant by the action of A(\Gamma) , hence by that of \Gamma This contradicts
Lemma 4.1. Thus \Gamma and H is unipotent.

By Corollary 4.3, dim H is equal to either n or n+1 . If dim H=n,
then (M, \varphi) is actually a Lie H-flow by Lemma 4.2. Hence Theorem 6.3
shows (M, \varphi) is virtually algebraic. If dim H=n+1 , then (M, \varphi) is a
(H, H/H_{0})-fiow by Lemma 4.2, where H_{0} is the stabilizer of 0\in R^{n} . Since
rank \Gamma=n+1=\dim H , the subgroup \Gamma is a uniform lattice of H\iota Hence
Proposition 8.2 implies that (M, \varphi) is virtually algebraic. \square
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