
Hokkaido Mathematical Journal Vol. 28 (1999) p. 475-506

On viscosity solutions of the Hamilton-Jacobi equation
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Abstract. Comparison and uniqueness results are obtained for viscosity solutions of
Hamilton-Jacobi equations. The main objective is the characterization of the value func-
tion associated with a variational problem of the Bolza type This is accomplished, in
particular, in the presence of certain conditions reminiscent of the classical Tonelli con-
ditions.
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1. Introduction and preliminaries

The concept of a viscosity solution of a partial differential equation has
been intensively studied since it was introduced by M.G . Crandall and P.-
L. Lions in [14, 15] , and the efforts have proved immensely successful. The
voluminous body of results attests the significance, for a variety of problems,
of this notion of a generalized solution.

We will here be concerned with the Hamilton-Jacobi equation which
has been one of the main targets of the theory of viscosity solutions since
its infancy (see e.g. [4, 5, 6, 9, 12, 15, 16, 17, 22, 24] and the review article
[13] ) . Having its historical roots in the calculus of variations and closely al-
lied fields, the Cauchy problem for the Hamilton-Jacobi equation admits in
regular cases a variational solution which is termed the value function or, in
the context of classical mechanics, the action function. In favorable circum-
stances the value function is by the current state of the uniqueness theory
necessarily the sole viscosity solution. While the collection of uniqueness
theorems is indisputably substantial, it is not yet complete. To the best of
the author’s knowledge, the vast majority of the available theorems, by now
numerous, either fail to cover or do not give satisfactory information about
certain natural problems in the calculus of variations (cf. [27]). There are
however exceptions: in the article [4] uniqueness among locally Lipschitz
continuous solutions that are bounded below is demonstrated for a rich
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class of finite horizon optimal control problems with unbounded control
space. Despite the recent progress in [4], it still seems that the theory of
viscosity solutions for problems in the category alluded to is not mature.
(Incidentally, Theorem 4 below contains an analogue of the uniqueness re-
sult obtained in [4]. In Theorem 4 local Lipschitz continuity is however not
a premise.)

The purpose of this paper is, accordingly, to examine the partial differ-
ential equation

(HJ) u_{t}(t, x)+H(x, u_{x}(t, x))=0 , (t,x)\in(0,T] \cross \mathbb{R}^{n} .

from the perspective of the calculus of variations. The Cauchy problem, in
the sequel referred to as (CP), consists in finding solutions u that satisfy
the initial condition

(IC) \lim_{t\downarrow 0}u(t, x)=\varphi(x) for all x\in \mathbb{R}^{n} .

where \varphi is a prescribed function which may assume the value \infty . The main
topic here is the delicate uniqueness problem for (CP). In contrast to the
framework in most papers devoted to viscosity solutions of Hamilton-Jacobi
equations in unbounded domains, the solutions will neither be assumed to
be uniformly continuous nor bounded, nor will the Hamiltonian function
H(x, p) be restricted to enjoy uniform continuity in any of its arguments.
The initial incitement for this work comes to a great extent from the ar-
ticles [22, 17] in which comparison theorems were derived under certain
constraints on the considered subsolutions. In the first main theorem of the
present paper this idea is systematically investigated, see Theorem 3. To
be more specific, Theorem 3 states a comparison result for subsolutions u
and w such that H_{p}(x, w_{x}(t, x)) is subject to a certain growth limitation.
Theorem 3 shows to advantage also when the Lagrangian does not aut0-
matically yield a well-behaved variational problem. As a matter of fact,
the supplementary growth restriction turns out to be superfluous for the
uniqueness problem when (CP) corresponds to a decent problem in the cal-
culus of variations. In this important case a characterization of the value
function is furnished in Theorem 4. Theorem 4 is however not the ulti-
mate result since it employs the assumption that the considered candidate
solution be bounded from below by a function of linear growth and it still
remains an open problem, as far as the author knows, whether that hy-



On the Hamilton-Jacobi equation 477

pothesis is redundant or not. Nevertheless, the case H(x,p)\equiv H(p) with
\lim_{|p|arrow\infty}H(p)/|p|=\infty is fully understood [28]; see also Theorem 4 (iii).
Analogous results for bounded below solutions of stationary problems ap-
pear in [1].

As noted above, the value function associated with \varphi and the La-
grangian function L plays a distinguished role.

Definition 1 (Value function) The value function V is the function on
(0, T] \cross \mathbb{R}^{n} that assigns to (t, x)\in(0, T]\cross \mathbb{R}^{n} the infimum of

\varphi(X(0))+\int_{0}^{t}L(X(\tau),\dot{X}(\tau))d\tau

as X ranges over all Lipschitz continuous curves X:[0, t] – \mathbb{R}^{n} with X(t)=
x .

Let us recall the definition of a viscosity solution of (HJ) which involves
the following generalized differentials.

Definition 2 (Regular sub- and supergradients) Let u be a real-valued
function on (0, T]\cross \mathbb{R}^{n} . The subdifferential ofu at a point (t, x)\in(0, T]\cross \mathbb{R}^{n} .
symbolized by \partial^{-}u(t, x) , is the set consisting of all (\omega,p)\in \mathbb{R}\cross \mathbb{R}^{n} such
that

u(t’, x’)\geq u(t, x)+\omega(t’-t)+\langle p, x’-x\rangle+o(t’-t, x’-x)

as (0, T] \cross \mathbb{R}^{n}\ni(t’, x’)arrow(t, x) .

Similarly, the superdifferential of u at (t, x) , denoted by \partial^{+}u(t, x) , is the set
of all (\omega,p)\in \mathbb{R}\cross \mathbb{R}^{n} such that the reverse inequality holds; put differently,
\partial^{+}u(t, x)=-\partial^{-}(-u)(t, x) .

We will often tacitly appeal to the following tractable characterization
of sub- and supergradients: (\omega,p)\in\partial^{\pm}u(t, x) if and only if there exists
a C^{1} function \psi such that \pm(u-\psi) attains a local maximum relative to
(0, T] \cross \mathbb{R}^{n} at (t, x) and (\omega,p)=d\psi(t, x) . In fact, the local extremum may
be assumed strict.

Definition 3 (Viscosity solution) A viscosity subsolution of (HJ) is an
upper semicontinuous function u:(0, T]\cross \mathbb{R}^{n}arrow \mathbb{R} such that

\omega+H(x,p)\leq 0 whenever (\omega,p)\in\partial^{+}u(t, x) ,

whereas a viscosity supersolution of (HJ) is a lower semicontinuous function
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u on (0, T] \cross \mathbb{R}^{n} such that

\omega+H(x,p)\geq 0 whenever (\omega,p)\in\partial^{-}u(t, x) .

By a viscosity solution it is understood a function that is simultaneously a
viscosity subsolution and a viscosity supersolution.

For the sake of brevity we will frequently use “subsolution” synony-
mously with “viscosity subsolution,” etc.

Our methodology and presentation rely heavily on nonsmooth and vari-
ational analysis. As a general reference in that branch of mathematics we
recommend the recent comprehensive book [26] by R.T . Rockafellar and
R. J-B Wets. Of course we also draw on many of the techniques that have
evolved since the seminal contributions on viscosity solutions and in partic-
ular on those developed for convex problems in the fundamental monograph
[24], which treats various aspects of Hamilton-Jacobi equations thoroughly.
(For an account of the developments prior to the concept of a viscosity
solution refer to [8], and for connections to classical mechanics consult [2].)

The organization of the rest of the paper is as follows. In Section 2 we
add further prerequisites and list technical conditions on L , H . Section 3
exhibits basic properties of the value function; it is in particular recalled
that the value function solves (CP) in regular cases.

Section 4 is devoted to our main concern, namely to the comparison
principle and the uniqueness problem, and contains our main results: The-
orems 3 and 4. The proof of Theorem 3 borrows ideas from [17]: comparison
on a compact domain in combination with restriction at infinity. The proof
of Theorem 4 utilizes techniques developed in [24].

Finally, Section 5 presents briefly an application of the results of Sec-
tion 4 to an initial-value problem that one encounters in optimal control
theory.

We have aimed at a self-contained presentation. Accordingly, the results
in Sections 2 and 3 are not of a genuinely novel nature but rather tailor-
made versions of basic facts designed to support our study of uniqueness in
Section 4. They should nevertheless be of independent interest.

2. Basic assumptions and further preparations

Throughout we confine our attention to autonomous convex problems.
Specifically, we assume that the Hamiltonian function H is derivable from
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a Lagrangian function L through the Legendre-Fenchel transformation,

H(x,p)= \sup\{\langle p, v\rangle-L(x, v);v\in \mathbb{R}^{n}\} for all (x,p)\in \mathbb{R}^{n}\cross \mathbb{R}^{n} .

The Lagrangian L(x, v) is in its turn assumed convex and lower semicon-
tinuous in v . Thus, reciprocally,

L(x, v)= \sup\{\langle p, v\rangle-H(x,p);p\in \mathbb{R}^{n}\} for all (x, v)\in \mathbb{R}^{n}\cross \mathbb{R}^{n} .

for the Legendre-Fenchel transformation acts as an involution on the set
of lower semicontinuous convex functions; [25] is the standard reference for
convex analysis.

We will furthermore usually impose the following mild regularity con-
dition.
(HO) H is finite and continuous on \mathbb{R}^{n}\cross \mathbb{R}^{n} .

For future reference we also formulate two conditions on L .
(LO) L is finite, bounded from below, and continuous on \mathbb{R}^{n}\cross \mathbb{R}^{n} .
(LO) L is H\"older continuous on each compact subset of \mathbb{R}^{n}\cross \mathbb{R}^{n} ; L(x, v)\geq

M(|v|) for all (x, v)\in \mathbb{R}^{n}\cross \mathbb{R}^{n} where M:[0, \infty) –
\mathbb{R} is convex

and nondecreasing with M(s)/s – \infty as s – \infty ; and L obeys the
following strong convexity condition in the velocity: for each compact
subset K of \mathbb{R}^{n}\cross \mathbb{R}^{n} there exists a \mu>0 such that

L(x, v’)-L(x, v)\geq\langle p, v’-v\rangle+\mu|v’-v|^{2}

for every (x, v’)\in K , (x, v)\in K , and every subgradient p\in\partial_{v}L(x, v) .

Here \partial_{v}L(x, v) signifies the subdifferential of convex analysis of v -

L(x, v) .
Condition (LI), akin to the classical Tonelli hypotheses, implies condi-

tions (LO), (HO) and also that H(x,p) is a smooth function of p . Several
sets of hypotheses that assure well-behaved variational problems have been
identified in the literature. These developments involve refinements and
extensions of classical results to nonsmooth or even extended-real-valued
Lagrangians. Our choice, (LI), was used in [29] and is but one among sev-
eral elaborate alternatives, see e.g. [10, 11, 27]. Let us just observe for the
time being that when (LO) is in force and inf \varphi is finite, then the value func-
tion V is a well-defined real-valued bounded below function. When (LI) is
fulfilled and \varphi is lower semicontinuous and such that \varphi(x)\geq-C(1+|x|) ,
for some constant C and all x\in \mathbb{R}^{n} . then the infimum defining V(t, x) is
attained for every (t, x)\in(0, T]\cross \mathbb{R}^{n} and there exists a constant C’ such
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that V(t, x)\geq-C’(1+|x|) for all (t, x)\in(0, T]\cross \mathbb{R}^{n} .
Let us now turn to a certain notion of variational convergence pertinent

to our methodology.

Definition 4 (Epi-convergence) In generic terms, if f and f_{j} are lower
semicontinuous extended-real-valued functions defined on \mathbb{R}^{N} . f_{j} is declared
epi convergent to f if the following two conditions are met:
(E1) f(x) \leq\lim\inf_{jarrow\infty}f_{j}(x_{j}) whenever x_{j}

- x .
(E2) To each x\in \mathbb{R}^{N} there corresponds a convergent sequence y_{j}

- x
with f(x)= \lim_{jarrow\infty}f_{j}(y_{j}) .

Epi-convergence is alternatively called \Gamma-convergence in the literature
[18]. Its basic relevance in optimization theory is due to its magical vari-
ational properties [3, 18] . A key role in the present paper will however be
played by a stronger mode of convergence, namely the conjunction of point-
wise convergence and epi-convergence, which amounts to requiring (E1) and
\lim_{jarrow\infty}f_{j}(x)=f(x) for any x\in \mathbb{R}^{N}

Lemma 1 Let f, f_{j} : \mathbb{R}^{N}
-arrow \mathbb{R}\cup\{\infty\} be lower semicontinuous extended-

real-valued functions. Then conditions (a) and (b) below are equivalent,
and either of them entails condition (c):
(a) f_{j} – f in the sense of both pointwise convergence and epi-convergence

as jarrow\infty .
(b) For any nonempty compact subset K\subset \mathbb{R}^{N} ,

\min_{K}f_{j} - \min_{K}f as j - \infty .

(c) If K\subset \mathbb{R}^{N} is compact, x_{j} minimizes f_{j} over K, and \overline{x} is a cluster
point of (x_{j}) , them \overline{x} minimizes f over K .

Proof. (a)\Rightarrow(b) : Assume (a) and let K be a nonempty compact subset
of \mathbb{R}^{N} Let x_{j} minimize f_{j} over K and extract a subsequence (x_{j_{k}}) such
that

\lim_{karrow\infty}f_{j_{k}}(x_{j_{k}})=\lim_{jarrow}\inf_{\infty}f_{j}(x_{j})

and x_{j_{k}}
– \overline{x} . Then by (E1),

f( \overline{x})\leq\lim_{karrow}\inf_{\infty}f_{j_{k}}(x_{j_{k}})=\lim_{jarrow}\inf_{\infty}f_{j}(x_{j})
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and so

\min_{K}f\leq\lim_{jarrow}\inf_{\infty}\min_{K}f_{j} . (1)

Choose a point \tilde{x} minimizing f over K Then

\min_{K}f=f(\tilde{x})=\lim_{jarrow\infty}f_{j}(\tilde{x})\geq\lim_{jarrow}\sup_{\infty} \min_{K}f_{j} , (2)

and the conjunction of (1) and (2) yields (b).
(b)\Rightarrow(a) : Assume (b). One learns that f_{j} -arrow f pointwise by taking

K=\{x\} , an arbitrary singleton subset of \mathbb{R}^{N} Let x_{j}arrow x and put K_{m}=

so\{x_{j} ; ^{j}\geq m\}\cup\{x\}
. Then K_{m} is compact, \min_{K_{m}} f_{j}\leq f_{j}(x_{j}) if j\geq m , and

\lim_{jarrow}\inf_{\infty}f_{j}(x_{j})\geq\lim_{jarrow}\inf_{\infty}\min_{K_{m}}f_{j}=\min_{K_{m}}f .

Sending m -arrow\infty , one obtains (E1).
Assuming (a), (b), if x_{j} minimizes f_{j} over K, and \overline{x} is a cluster point

of (x_{j}) , then, arguing similarly as above, f( \overline{x})\leq\min_{K}f follows. \square

In connection with this notion of convergence the following simple result
is noteworthy. We will in what follows denote by B_{\rho} the open ball centered
at the origin and of radius \rho .

Proposition 1 Let the number

\inf\{H(x,p);(x,p)\in B_{\rho}\cross \mathbb{R}^{n}\}=-\sup\{L(x, 0);x\in B_{\rho}\}

be fifinite for any \rho>0 . Let u be a viscosity subsolution of (HJ) which is
continuous on (0, T] \cross \mathbb{R}^{n} .

(i) Then the epi-limil and the pointwise limit of u(t, \cdot) as t\downarrow 0 both
exist and are in fact equal. The common limit is a lower semicontinuous
extended-real-valued function u_{0} which does not attain the value -\infty .

(ii) Let u be extended to [0, T] \cross \mathbb{R}^{n} through u(0, \cdot)=u_{0} . Then u
becomes lower semicontinuous on [0, T]\cross \mathbb{R}^{n} . Moreover, if u_{0} is continuous
at a point x , then u is continuous at (0, x) .

Proof. We choose \rho>0 and let the premise on H furnish a finite number

c:= \inf\{H(x,p);(x,p)\in B_{\rho}\cross \mathbb{R}^{n}\} .
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Then u is a viscosity subsolution of

u_{t}(t, x)+c=0 for (t, x)\in(0, T)\cross B_{\rho} .

Thus t – u(t, x)+ct is nonincreasing for any x\in B_{\rho} hy virtue of the
calculus presented in [24, App. 2]. We have hereby reduced our problem to
the monotone case in which it is well-known that epi-limits and pointwise
limits always exist and agree. Of course the monotonicity also implies that
the limit function u_{0} is lower semicontinuous and assumes values in \mathbb{R}\cup\{\infty\}

exclusively.
The asserted lower semicontinuity of u follows immediately from the

fact that (E1) is fulfilled. In order to prove the continuity statement, let
u_{0} be continuous at x and let (t_{j}, x_{j})arrow(0, x) where \rho is so large that x
belongs to B_{\rho} . In order to establish u(t_{j}, x_{j}) -arrow u_{0}(x) we need only show
u_{0}(x) \geq\lim\sup_{jarrow\infty}u(t_{j}, x_{j}) in view of condition (E1). But this inequality
follows immediately from

u(t_{j}, x_{j})+ct_{j}\leq u_{0}(x_{j}) .

\square

Remark 1. The natural role of epi-convergence in the formulation of the
initial condition (or terminal condition), indicated by the proposition, has
been observed in [5, 6] .

Notation 1 (i) The diagonal \{(x, y)\in \mathbb{R}^{n}\cross \mathbb{R}^{n}; x=y\} will be denoted
by \triangle . (ii) The indicator function of a subset A\subseteq \mathbb{R}^{N} will be signified by
iI_{A} . Thus 3_{A}(x)=0 if x\in A while \tilde{J}_{A}(x)=\infty if x\in \mathbb{R}^{N}\backslash A .

Lemma 2 Let \theta_{j} : \mathbb{R}^{n}\cross \mathbb{R}^{n}arrow \mathbb{R}\cup\{\infty\} be lower semicontinuous functions
converging pointwise as well as epi-converging to the indicator function of
\triangle . Let g:[0, T]\cross \mathbb{R}^{n}\cross \mathbb{R}^{n}arrow \mathbb{R} be lower semicontinuous, K be a nonempty
compact subset of [0, T]\cross \mathbb{R}^{n} . and let (t_{j}, x_{j}, y_{j}) minimize g(t, x, y)+\theta_{j}(x, y)

ou r (t, x)\in K , (t, y)\in K If (\overline{t},\overline{x}, \overline{y}) is a cluster point of (t_{j}, x_{j}, y_{j}) as j -

\infty , then \overline{x}=\overline{y} and (\overline{t},\overline{x}) minimizes K\ni(t, x)\vdasharrow g(t, x, x) . Furthermore,

\lim_{jarrow\infty}\min\{g(t, x, y)+\theta_{j}(x, y);(t, x)\in K, (t, y)\in K\}

= \min\{g(t, x, x);(t, x)\in K\} (3)

and \theta_{j}(x_{j}, y_{j})arrow 0 as j -arrow\infty .
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Such functions \theta_{j} will serve as penalty functions in certain auxiliary
maximization problems in the proof of Theorem 3.

Proof. Let

f_{j}(t, x, y)=g(t, x, y)+\theta_{j}(x, y) if (t, x, y)\in[0, T]\cross \mathbb{R}^{n}\cross \mathbb{R}^{n} ,

and let f_{j} be equal to \infty at all other points in \mathbb{R}\cross \mathbb{R}^{n}\cross \mathbb{R}^{n} . It is easy
to verify that f_{j} converges pointwise and epi-converges to the function f
that agrees with g in \{(t, x, y);t\in[0, T], x=y\} and takes the value \infty

elsewhere. According to Lemma 1, (\overline{t},\overline{x},\overline{y}) solves the constrained problem
of minimizing f(t, x, y) with (t, x)\in K , (t, y)\in K But this means that
\overline{x}=\overline{y} and that (\overline{t},\overline{x}) minimizes g(t, x, x) over (t, x)\in K , as asserted.

The stated equation (3) follows easily from Lemma 1, so we concentrate
on the limit of \theta_{j}(x_{j}, y_{j}) . It is readily seen, in view of (E1), that 0\leq

lim \inf_{jarrow\infty}\theta_{j}(x_{j}, y_{j}) . Extract a convergent subsequence (t_{j_{k}}, x_{j_{k}}, y_{j_{k}}) -

(\tilde{t},\tilde{x}, \tilde{x}) such that

lim sup \theta_{j}(x_{j}, y_{j})=\lim_{karrow\infty}\theta_{j_{k}}(x_{j_{k}}, y_{j_{k}}) .
jarrow\infty

Then by virtue of equation (3) and the lower semicontinuity of g we learn

\lim_{karrow\infty}\theta_{j_{k}}(x_{j_{k}}, y_{j_{k}})=\mu-\lim_{karrow\infty}g(t_{j_{k}}, x_{j_{k}}, y_{j_{k}})\leq\mu-g(\tilde{t},\tilde{x},\tilde{x})\leq 0

where \mu=\min\{g(t, x, x);(t, x)\in K\} . \square

3. Some properties of the value function

We shall in this section acquaint ourselves with the object that this pa-
per revolves around, namely the value function. To facilitate the discussion
we will start by considering the fixed endpoint problem.

Definition 5 For (t, x, y)\in(0, T]\cross \mathbb{R}^{n}\cross \mathbb{R}^{n} , \Theta(t, x, y) is defined as the
infimum of the values of the integral

\int_{0}^{t}L(X(\tau),\dot{X}(\tau))d\tau

as X runs through all Lipschitz continuous arcs connecting (0, y) with (t, x) ,
X(O)=y and X(t)=x .

O- may be regarded as a fundamental solution in view of the fact that
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the value function associated with \varphi and L is given by

V(t, x)= \inf\{\varphi(y)+O-(t, x, y);y\in \mathbb{R}^{n}\} , (t, x)\in(0, T]\cross \mathbb{R}^{n} . (4)

Lemma 3 (i) Under (LO), \Theta is upper semicontinuous on (0, T]\cross \mathbb{R}^{n}\cross \mathbb{R}^{n} .
(ii) Let (LI) be fulfifilled and let (t, x, y)\in(0, T]\cross \mathbb{R}^{n}\cross \mathbb{R}^{n} . Then the

infifimum

\inf_{X}\int_{0}^{t}L(X(\tau),\dot{X}(\tau))d\tau

extended over all absolutely continuous arcs X joining (0, y) with (t, x) is
achieved and every minimizing arc is actually C^{1} .

(iii) If (LI) holds, then \Theta is locally Lipschitz continuous in (0, T] \cross

\mathbb{R}^{n}\cross \mathbb{R}^{n} and, moreover, O-(t, \cdot, \cdot) both converges pointwise and epi-converges
to the indicator function of \triangle as t \downarrow 0 .

In the presence of (LI), therefore,

\Theta(t, x, y)=\min_{X\in C^{1}}\int_{0}^{t}L(X(\tau),\dot{X}(\tau))d\tau

= \min_{X\in W^{1,1}}\int_{0}^{t}L(X(\tau),\dot{X}(\tau))d\tau ,

where in each case X(0)=y, X(t)=x . In particular, (LI) excludes the
s0-called Lavrentiev phenomenon.

Proof (i) Let (t_{j}, x_{j}, y_{j}) -arrow(t, x, y) in (0, T]\cross \mathbb{R}^{n}\cross \mathbb{R}^{n} , let X:[0, t] -arrow \mathbb{R}^{n}

be a Lipschitz continuous path joining (0, y) with (t, x) , and define

X_{j}(\tau)=X(t\tau/t_{j})+\eta_{j}+(\tau/t_{j})(\xi_{j}-\eta_{j}) if \tau\in[0, t_{j}] ,

where \xi_{j}=x_{j}-x , \eta_{j}=y_{j}-y . The admissibility of the curve X_{j} for the
optimization problem defining O-(t_{j}, x_{j}, y_{j}) yields

\Theta(t_{j}, x_{j}, y_{j})\leq\int_{0}^{t_{j}}L(X_{j}(\tau),\dot{X}_{j}(\tau))d\tau

= \frac{t_{j}}{t}\int_{0}^{t}L(X(s)+\eta_{j}+(s/t)(\xi_{j}-\eta_{j}), (t/t_{j})\dot{X}(s)+(\xi_{j}-\eta_{j})/t_{j})ds ,

where a change of the variable of integration has been performed. It is ele-
mentary, utilizing the Lipschitz continuity of X and the continuity of L , to
deduce that the second integrand is bounded over s\in[0, t](a.e.) uniformly
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over j . Therefore, by Lebesgue’s dominated convergence theorem,

\lim_{jarrow}\sup_{\infty}\Theta(t_{j}, x_{j}, y_{j})\leq\int_{0}^{t}L(X(s),\dot{X}(s))ds .

But this inequality is retained for every feasible curve X and so

lim sup O-(t_{j}, x_{j}, y_{j})\leq\Theta(t, x, y) .
jarrow\infty

Concerning (ii) and (iii), the smoothness of minimizing arcs and the
Lipschitz continuity of \Theta (and much more) were proved in the recent article
[29], see also [8, Chap. II] for related questions.

Thus we may turn to the asserted convergence of O-(t, \cdot, \cdot) as t\downarrow 0 . The
convexity of v\vdash+M(|v|) implies the lower bound \Theta(t, x, y)\geq tM(|x-y|/t) ,
where M is the function participating in (LI). Hence if t_{j}\downarrow 0 and (x_{j}, y_{j}) -arrow

(x, y) , then

O-(t_{j}, x_{j}, y_{j})\geq\{

t_{j}M(|x_{j}-y_{j}|/t_{j}) – \infty if x\neq y ,
t_{j} inf Larrow 0 if x=y.

Furthermore,

t inf L \leq\Theta(t, x, x)\leq\int_{0}^{t}L(x, 0)d\tau=tL(x, 0)

and \lim_{t\downarrow 0}\Theta(t, x, x)=0 ensues. \square

In well-behaved instances V is a solution of (CP) and so existence is
manifest.

Theorem 1 Let the Lagrangian L satisfy (LO) and let \varphi:\mathbb{R}^{n}arrow \mathbb{R}\cup\{\infty\}

be fifinite somewhere. Then the following two statements are true.
(i) If V is everywhere fifinite, then V is a viscosity subsolution of (HJ). If

in addition \varphi happens to be upper semicontinuous and V is extended
to [0, T] \cross \mathbb{R}^{n} by V(0, \cdot)=\varphi , then V becomes upper semicontinuous
on [0, T] \cross \mathbb{R}^{n} .

(ii) Let (LI) be fulfifilled. Assume that \varphi is lower semicontinuous and that
\varphi possesses a minorant of linear growth. Then V is a locally Lipschitz
continuous viscosity solution of (CP). The initial condition (IC) holds
in the sense that

V(t, \cdot)- \varphi as t\downarrow 0
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with respect to both pointwise convergence and epi convergence If V
is extended to [0, T] \cross \mathbb{R}^{n} by V(0, \cdot)=\varphi , then V becomes lower semi-
continuous on [0, T] \cross \mathbb{R}^{n} .

Thus when L enjoys (LI) we may view V(t, \cdot) as the initial function
V(0, \cdot)=\varphi propagated from time 0 to time t in a manner dictated by L .
This process furnishes a regularization of \varphi .

Proof. (i) We start by observing that V is upper semicontinuous on
(0, T]\cross \mathbb{R}^{n} as an immediate consequence of (4) and Lemma 3. Let V(0, \cdot)=

\varphi and let (t_{j}, x_{j}) – (0, x) . Then

V(t_{j}, x_{j})\leq\varphi(x_{j})+t_{j}L(x_{j}, 0)

and lim \sup_{jarrow\infty}V(t_{j}, x_{j})\leq V(0, x) follows provided \varphi is upper semi-
continuous.

Fix (t, x)\in(0, T]\cross \mathbb{R}^{n} and assume (\omega,p)\in\partial^{+}V(t, x) . Let v\in \mathbb{R}^{n} be
arbitrary and choose an admissible arc X with \dot{X}=v near t . Then

V(t- \epsilon, X(t-\epsilon))+\int_{t-\epsilon}^{t}L(X(\tau),\dot{X}(\tau))d\tau\geq V(t, x) (5)

where in fact for sufficiently small \epsilon>0

X(\tau)=x-(t-\tau)v and \dot{X}(\tau)=v when \tau\in[t-\epsilon, t] .

But since (\omega,p)\in\partial^{+}V(t, x) ,

V(t-\epsilon, X(t-\epsilon))=V(t-\epsilon, x-\epsilon v)

\leq V(t, x)-\omega\epsilon-\epsilon\langle p, v\rangle+o(\epsilon) . (6)

On combining (5) and (6), dividing by \epsilon , and then sending \epsilon\downarrow 0 , one finds

\omega+\langle p, v\rangle-\lim_{\epsilon\downarrow}\inf_{0}\frac{1}{\epsilon}\int_{t-\epsilon}^{t}L(x-(t-\tau)v, v)d\tau\leq 0 ,

which becomes, in view of (LO),

\omega+\langle p, v\rangle-L(x, v)\leq 0 .

By taking the supremum over v one arrives at the inequality \omega+H(x,p)\leq 0 .
(ii) According to Lemma 3, O- is locally Lipschitz continuous. Like-

wise, V is locally Lipschitz continuous. Indeed, given (t_{0}, x_{0})\in(0, T]\cross \mathbb{R}^{n} .
the lower bound \Theta(t, x, y)\geq tM(|x-y|/t) and the assumption \varphi(y)\geq
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-C(1+|y|) together imply the existence of a compact neighborhood N of
(t_{0}, x_{0}) , N \subset(0, T]\cross \mathbb{R}^{n} , and a compact set K\subset \mathbb{R}^{n} such that

V(t, x)= \min\{\varphi(y)+O-(t, x, y);y\in K\} , (t, x)\in N .

It follows that V is Lipschitzian in N
Suppose (\omega,p)\in\partial^{-}V(t, x) . Let X be an optimal arc-choose first y so

as to give the minimum in (4) and then choose an arc X that is optimal for
\Theta(t, x, y) . Then

V(t, x)= \varphi(X(0))+\int_{0}^{t-\epsilon}L(X(\tau),\dot{X}(\tau))d\tau+\int_{t-\epsilon}^{t}L(X(\tau),\dot{X}(\tau))d\tau

and so

V(t, x) \geq V(t-\epsilon, X(t-\epsilon))+\int_{t-\epsilon}^{t}L(X(\tau),\dot{X}(\tau))d\tau . (7)

But

V(t- \epsilon, X(t-\epsilon))\geq V(t, x)-\omega\epsilon-\int_{t-\epsilon}^{t}\langle p,\dot{X}(\tau)\rangle d\tau+o(\epsilon) . (8)

(The Lipschitz continuity of X ensures that the remainder is indeed of order
o(\epsilon).) The conjunction of the last two inequalities, (7) and (8), yields

\omega+\frac{1}{\epsilon}\int_{t-\epsilon}^{t}\{\langle p,\dot{X}(\tau)\rangle-L(X(\tau),\dot{X}(\tau))\}d\tau\geq o(1) (9)

and so

\omega+\frac{1}{\epsilon}\int_{t-\epsilon}^{t}H(X(\tau),p)d\tau\geq o(1) .

By letting \epsilon approach zero one infers \omega+H(x,p)\geq 0 .
We omit a proof of the stated convergence of V(t, \cdot) to \varphi as t\downarrow 0 for

that is a straightforward matter. \square

Proposition 2 Under (LI), let (t_{0}, x_{0}) be an arbitrary point in (0, T]\cross \mathbb{R}^{n}

and let X:[0, t_{0}] - \mathbb{R}^{n} be a minimizing arc for the optimization problem
defifining V(t_{0}, x_{0}) . Then X is C^{1} and

\dot{X}(t)=H_{p}(X(t),p) whenever t\in(0, t_{0}] and (\omega,p)\in\partial^{-}V(t, X(t)) .

Proof We begin by recalling that for a locally Lipschitz continuous func-
tion u to be a viscosity solution of (HJ) it is actually necessary that the
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equation \omega+H(x,p)=0 holds for any (\omega,p)\in\partial^{-}u(t, x) ; study [20].
By the principle of optimality, the restriction of X to [0, t] is optimal for
V(t, X(t)) for any t\in(0, t_{0}] . Therefore, inequality (9) holds as long as
(\omega,p)\in\partial^{-}V(t, X(t)) which comes out as

\omega+\langle p,\dot{X}(t)\rangle-L(X(t),\dot{X}(t))\geq 0

in the limit for X is C^{1} . Since V is a locally Lipschitz continuous viscosity
solution, \omega+H(X(t),p)=0 and so

\langle p,\dot{X}(t)\rangle\geq L(X(t),\dot{X}(t))+H(X(t),p)

which means \dot{X}(t)=H_{p}(X(t),p) by convex analysis. \square

A fundamental property of the value function is its maximality among
subsolutions of (CP).

Theorem 2 Assume (LO) and let u be a viscosity subsolution of (HJ)
which is continuous on (0, T] \cross \mathbb{R}^{n} .
(i) If 0<s<t\leq T and X:[s, t] – \mathbb{R}^{n} is Lipschitz continuous, then

u(t, X(t))-u(s, X(s)) \leq\int_{s}^{t}L(X(\tau),\dot{X}(\tau))d\tau .

(ii) Suppose \lim_{t\downarrow 0}u(t, x)\leq\varphi(x) /or every x\in \mathbb{R}^{n} . then u\leq V

Proof. (i) Assume first X is piecewise affine, i.e., \dot{X} is constant say
equal to v_{i} on subintervals (t_{i-1}, t_{i}) , i=1,2 , . . , I , where s=t_{0}<t_{1}<

<t_{I}=t . The hypothesis that u be a subsolution of (HJ) is equivalent
to the inequality

u_{t}(t, x)+\langle u_{x}(t, x), v\rangle\leq L(x, v) , (t, x)\in(0, T]\cross \mathbb{R}^{n} ,

holding in the viscosity sense for any v\in \mathbb{R}^{n} . Taking v=v_{i} and invoking
the result on directional derivatives obtained in [15, Thm. 1.14] one deduces

u(t_{i}, X(t_{i}))-u(t_{i-1}, X(t_{i-1})) \leq\int_{t_{i-1}}^{t_{i}}L(X(\tau), v_{i})d\tau .

Through summation of these inequalities, one infers the desired conclusion.
In the general case one approximates X by piecewise affine equi-

Lipschitzian functions X_{j}. such that X_{j}(s)=X(s) , X_{j}(t)=X(t) , and
X_{j} - X uniformly while X_{j} -

arrow\dot{X}a.e . as j – \infty (consult e.g. [19, Chap. X] ).
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The first part of the proof applied to X_{j} yields

u(t, X(t))-u(s, X(s)) \leq\int_{s}^{t}L(X_{j}(\tau),\dot{X}_{j}(\tau))d\tau .

One completes the proof by passing to the limit as j – \infty .
(ii) Let (t_{0}, x_{0})\in(0, T)\cross \mathbb{R}^{n} and let X:[0, t_{0}] – \mathbb{R}^{n} be a Lipschitz

continuous curve with X(t_{0})=x_{0} . Consider the function u^{\epsilon} defined on
[0, T-\epsilon] by u^{\epsilon}(t, x)=u(t+\epsilon, x);u^{\epsilon} is clearly a viscosity subsolution of the
Hamilton-Jacobi equation in (0, T-\epsilon] \cross \mathbb{R}^{n} . Applying the result obtained
in (i) to u^{\epsilon} , assuming also \epsilon\in(0, T-t_{0}) , one finds

u^{\epsilon}(t_{0}, x_{0}) \leq u^{\epsilon}(s, X(s))+\int_{s}^{t_{0}}L(X(\tau),\dot{X}(\tau))d\tau

when 0<s<t_{0}<T-\epsilon . Sending, in order, s\downarrow 0 and \epsilon\downarrow 0 leads to

u(t_{0}, x_{0}) \leq\varphi(X(0))+\int_{0}^{t_{0}}L(X(\tau),\dot{X}(\tau))d\tau .

Thus u(t_{0}, x_{0})\leq V(t_{0}, x_{0}) . \square

4. Uniqueness and comparison results

The intricate and subtle uniqueness problem is addressed in this section.
First we attempt to handle the situation where among (HO), (LO), (LO),
merely (HO) is assumed. Thus, in the possible absence of (LI), the problem
defining V(t, x) need not have an optimal solution or for that matter be
a natural problem. Nevertheless, we will exhibit sufficient conditions for
the comparison principle. This will be achieved under certain additional
structure conditions on the Hamiltonian function as well as certain growth
limitations on the gradients of the considered subsolutions.

Second we prove a uniqueness theorem in the presence of (LI). That
condition guarantees, as we have seen, a well-behaved problem inasmuch as
it entails the existence of minimizing Lipschitz (even C^{1} ) arcs in the defi-
nition of the value function and, moreover, ensures that the value function
does solve (CP). It turns out that it also ensures a characterization of the
value function as the unique viscosity solution of (CP) that is bounded from
below by a function of linear growth.

Definition 6 (Comparison principle) Let u , w:[0, T]\cross \mathbb{R}^{n} - \mathbb{R} be, re-
spectively, a viscosity subsolution and a viscosity supersolution of (HJ). Let
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also u and w be upper and lower semicontinuous on [0, T]\cross \mathbb{R}^{n} , respectively.
We say that the comparison principle holds for (u, w) if

sup (u-w)^{+}= \sup_{\mathbb{R}^{n}}(u(0, \cdot)-w(0, \cdot))^{+}

[0,T]\cross \mathbb{R}^{n}

Here \alpha^{+}=\max\{0, \alpha\} .

The following hypothesis on H has via precursors emerged as vital
and crucial for the comparison principle. This version is invariant under a
transformation of the independent variables.
(HI) For every r>0 there exists a sequence of lower semicontinuous

functions \theta_{j} : \mathbb{R}^{n}\cross \mathbb{R}^{n} -arrow \mathbb{R}\cup\{\infty\} such that (i) \theta_{j} both converges
pointwise and epi-converges to the indicator function of \triangle (or \triangle\cap

(\overline{B}_{r}\cross\overline{B}_{r})) as j – \infty ; and (ii) each point (\overline{x},\overline{x})\in\triangle,\overline{x}\in B_{r} , has
a neighborhood N\subset B_{r}\cross B_{r} throughout which \theta_{j} is finite and
differentiable eventually as j becomes large and

H(x, \nabla_{x}\theta_{j}(x, y))-H(y, -\nabla_{y}\theta_{j}(x, y))\geq-\Lambda(\theta_{j}(x, y), x , y) (10)

holds when (x, y)\in N and j is sufficiently large, with \Lambda(\theta, x, y) -arrow 0

as (\theta, x, y)-arrow(0,\overline{x},\overline{x}) .
A prototype for \theta_{j} is \theta_{j}(x, y)=j|x-y|^{2}/2 .

Remark 2. For ease of presentation we refrain from the extra generality
that would be gained from choosing a sequence of functions \theta_{j}(t, x, y) de-
pending also on t . The counterpart of (10) should then read

\partial\theta_{j}(t, x, y)/\partial t+H(x, \nabla_{x}\theta_{j}(t, x, y))-H(y, -\nabla_{y}\theta_{j}(t, x, y))

\geq-\Lambda(\theta_{j}(t, x, y), x, y) .

Example 1. When H(x,p) is separable in accordance with

H(x,p)=\Phi(x)+\Psi(p) ,

and \Phi is continuous, then (HI) holds trivially because

H(x,j(x-y))-H(y,j(x-y))=\Phi(x)-\Phi(y) .

Hence, \theta_{j}(x, y)=j|x-y|^{2}/2 together with \Lambda(\theta, x, y)=\Phi(y)-\Phi(x) will
serve.

The following conditions on a vector field a should be familiar from the
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uniqueness theory for ordinary differential equations.

Example 2. (Cf. [12]) Let H(x,p)=\langle a(x),p\rangle be a linear Hamiltonian.
Then (HI) holds with \theta_{j}(x, y)=j|x-y|^{2}/2 if for each r>0 there exists a
constant C_{r}\geq 0 such that

\langle a(x)-a(y), x-y\rangle\geq-C_{r}|x-y|^{2}

when x\in B_{r} , y\in B_{r} . (HI) remains true if a satisfies the condition that
results from replacing “C_{r}|x-y|^{2} ” by “ |x-y|\chi_{r}(|x-y|) ,” where \chi=

\chi_{r} : [0, \infty) -arrow[0, \infty) is any continuous function such that \rho\vdash\Rightarrow\rho\chi(\rho) is
nondecreasing, \chi(\rho)>0 if \rho>0 , and

\int_{0}^{1}\frac{d\rho}{\chi(\rho)}=\infty .

Proof. Let

f(s)= \int_{s}^{1}\frac{d\rho}{\chi(\rho)} , s>0 ,

fix a sequence \epsilon_{j}\downarrow 0 , and let

\theta_{j}(x, y)=\exp\{f(\epsilon_{j})-2f((\epsilon_{j}^{2}+|x-y|^{2})^{1/2})\}

Then \theta_{j}\in C^{1}(\mathbb{R}^{n}\cross \mathbb{R}^{n}) and a calculation yields

H(x, \nabla_{x}\theta_{j}(x, y))-H(y, -\nabla_{y}\theta_{j}(x, y))\geq-2\theta_{j}(x, y) , x , y\in B_{r} ,

so one may take \Lambda(\theta, x, y)=2\theta . The elementary verification that \theta_{j} con-
verges as required is left to the reader. \square

A problem intimately related to the uniqueness problem for (CP) is to
find sufficient conditions for a solution of (CP) to equal the value function in
circumstances where it is a priori unknown whether the latter solves (HJ). It
is, we emphasize, possible that the Cauchy problem has a solution distinct
from the value function.

Example 3. Let a:\mathbb{R}arrow \mathbb{R} be continuous, a\geq 1 , and

\int_{-\infty}^{0}\frac{dx}{a(x)}<\infty .

Let \varphi=0 , H(x,p)=p^{2}/2+a(x)p and so L(x, v)=(v-a(x))^{2}/2 . Then
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(CP) has the solution w=0 which does not coincide with the value function
V since

V(t, x) \geq\frac{1}{2t}(t-b(x))^{2}>0 when t>b(x):= \int_{-\infty}^{x}\frac{d\xi}{a(\xi)} .

Proof. Let (t, x) be a point such that t>b(x) . Let X be an admissible
arc, i.e. a Lipschitz continuous function on [0, t] with X(t)=x, and set
Y(\tau)=b(X(\tau)) . Then

\int_{0}^{t}L(X(\tau),\dot{X}(\tau))d\tau

= \frac{1}{2}\int_{0}^{t}a(X(\tau))^{2}(\dot{Y}(\tau)-1)^{2}d\tau

\geq\frac{t}{2}\int_{0}^{t}(\dot{Y}(\tau)-1)^{2}d\tau/t\geq\frac{t}{2}(\int_{0}^{t}(\dot{Y}(\tau)-1)d\tau/t)^{2}

= \frac{1}{2t}(b(x)-Y(0)-t)^{2}\geq\frac{1}{2t}(t-b(x))^{2} .

In this string of inequalities we have used, in succession, a\geq 1 , Jensen’s
integral inequality, and Y(0)\geq 0 . \square

The significance of conditions analogous to (HI) has been pointed out
in many papers. However, (HI) accompanied by (HO) is insufficient for the
comparison principle. (Nevertheless, if L obeys (LI) we may dispense with
(HI) as we shall see later.)

Example 4. In Example 3 the comparison principle evidently fails for the
pair (V, w) , V being a subsolution of (HJ) according to Theorem 1. In that
instance,

H_{p}(x, w_{x}(t, x))=a(x) and \int_{-\infty}^{0}\frac{dx}{a(x)}<\infty .

If we take a(x)=1+x^{2} we find that (HI) holds. In fact, (HI) is fulfilled
whenever a satisfies that condition which is formulated in Example 2.

Our next example exploits [7, 28] . In particular, it illustrates the fact
that failure of the comparison principle does not rule out uniqueness.

Example 5. Let H(p)=|p|^{\alpha} with \alpha>1 . If 1<\beta<\gamma are appropriately
chosen, the function w(t, x)= \min\{0, |x|^{\beta}-t|x|^{\gamma}\} becomes a supersolution
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of (HJ) having w(0, x)=0 and w(t, x) - -\infty as |x| - \infty if t>0 ; refer to
[7]. The comparison principle fails consequently for (u, w) if u equals the
constant 0. However, solutions of (CP) are unique in this case [28].

Our first theorem below implies that in the presence of (HO) and (HI),
the comparison principle is true when w is such that the function

(t, x)\vdash\Rightarrow\langle H_{p}(x, w_{x}(t, x)), x\rangle

admits some minorant that is a summable function of t times a quadratic
function of x . To be exact we have the following condition in mind.
(G) There exist continuous functions \gamma:(0, T] - [0, \infty) and a:[0, \infty)arrow

(0, \infty) with \rho-rho a(\rho) nondecreasing such that

\int_{0}^{T}\gamma(t)dt<\infty , \int_{1}^{\infty}\frac{d\rho}{a(\rho)}=\infty ,

and

\sup\{\langle v, x\rangle;v\in\partial_{p}H(x,p)\}\geq-\gamma(t)|x|a(|x|)

if (t, x)\in(0, T]\cross \mathbb{R}^{n} , p\in\partial_{x}^{-}w(t, x) .
In one version of our results u or w will be subject to a Lipschitz con-

dition under which, it turns out, (HI) is redundant.
(LC) For every compact K\subset(0, T]\cross \mathbb{R}^{n} there exists a constant C\geq 0

such that

|w(t, x)-w(t, y)|\leq C|x-y| when (t, x)\in K , (t, y)\in K .

Before stating our first theorem in this section, we present a preparatory
result which is the analogue in the setting of semicontinuous functions of a
lemma used already in early papers on viscosity solutions [16, Lemma 2].

Lemma 4 Assume (HO). Let u and w be a subsolution and a supersO-

lution of (HJ), respectively, and let U:(0, T]\cross \mathbb{R}^{n}\cross \mathbb{R}^{n} -
\mathbb{R} be defifined

by

U(t, x, y)=u(t, x)-w(t, y) for all (t, x, y)\in(0, T]\cross \mathbb{R}^{n}\cross \mathbb{R}^{n} .

Then U is a subsolution of
U_{t}+H(x, U_{x})-H(y, -U_{y})=0 , (t, x, y)\in(0, T]\cross \mathbb{R}^{n}\cross \mathbb{R}^{n} .

Proof Let \Psi\in C^{1} and suppose U-\Psi has a strict local maximum relative
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to (0, T] \cross \mathbb{R}^{n}\cross \mathbb{R}^{n} at (\overline{t},\overline{x},\overline{y}) . Choose N\subset(0, T]\cross \mathbb{R}^{n}\cross \mathbb{R}^{n} , a compact
neighborhood of (\overline{t},\overline{x},\overline{y}) , in such a manner that

(U-\Psi)(t, x, y)<(U-\Psi)(\overline{t},\overline{x},\overline{y}) when (t, x, y)\in N\backslash \{(\overline{t},\overline{x},\overline{y})\} .

Select for each j\in \mathbb{N} a point (s_{j}, t_{j}, x_{j}, y_{j}) maximizing

(s, t, x, y)\vdash\Rightarrow u(t, x)-w(s, y)-\Psi(t, x, y)-j(t-s)^{2}/2

over (t, x, y)\in N . (s, x, y)\in N Then (s_{j}, t_{j}, x_{j}, y_{j}) converges to (\overline{t},\overline{t},\overline{x}, \overline{y})

as j -arrow\infty . Thus for large j
(\Psi_{t}(t_{j}, x_{j}, y_{j})+j(t_{j}-s_{j}), \Psi_{x}(t_{j}, x_{j}, y_{j}))\in\partial^{+}u(t_{j}, x_{j}) ,

(j(t_{j}-s_{j}), -\Psi_{y}(t_{j}, x_{j}, y_{j}))\in\partial^{-}w(s_{j}, y_{j}) ,

and so

\Psi_{t}(t_{j}, x_{j}, y_{j})+j(t_{j}-s_{j})+H(x_{j}, \Psi_{x}(t_{j}, x_{j}, y_{j}))\leq 0 ,
j(t_{j}-s_{j})+H(y_{j}, -\Psi_{y}(t_{j}, x_{j}, y_{j}))\geq 0 .

Subtraction of the preceding inequalities leads to

\Psi_{t}(t_{j}, x_{j}, y_{j})+H(x_{j}, \Psi_{x}(t_{j}, x_{j}, y_{j}))-H(y_{j}, -\Psi_{y}(t_{j}, x_{j}, y_{j}))\leq 0

and hence

\Psi_{t}(\overline{t},\overline{x},\overline{y})+H(\overline{x}, \Psi_{x}(\overline{t},\overline{x},\overline{y}))-H(\overline{y}, -\Psi_{y}(\overline{t},\overline{x},\overline{y}))\leq 0 ,

and we may conclude. \square

Theorem 3 Assume (HO). Let u and w be upper semicontinuous and
lower semicontinuous on [0, T] \cross \mathbb{R}^{n} , respectively, and assume also u and
w are a viscosity subsolution and a viscosity supersolution of (HJ), respec-
tively. Assume moreover that w satisfifies (G) and that either (HI) holds or
one of u and w satisfifies the Lipschitz condition (LC). Then the comparison
principle holds true for the pair (u, w) ,

sup (u-w)^{+}= \sup_{\mathbb{R}^{n}}(u(0, \cdot)-w(0, \cdot))^{+}

[0,T]\cross \mathbb{R}^{n}

Proof. We will adopt a local approach by means of a family of nested
compact sets S_{\beta} exhausting [0, T] \cross \mathbb{R}^{n} . So we start by introducing the
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auxiliary function

f(t, x)= \int_{0}^{t}\gamma(\tau)d\tau+\int_{1}^{(1+|x|^{2})^{1/2}}\frac{d\rho}{a(\rho)} , (t, x)\in[0, T]\cross \mathbb{R}^{n} ,

and its sublevel sets

S_{\beta}=\{(t, x)\in[0, T]\cross \mathbb{R}^{n}; f(t, x)\leq\beta\} , \beta>0 ,

which are compact because \int_{1}^{\infty}1/a=\infty . We next let g:(0, \infty) -arrow(0, \infty)

be nondecreasing and such that

exp g( \beta)>\max\{u(t, x)-w(t, x);(t, x)\in S_{\beta}\} , \beta>0 , (11)

and put

\psi_{\beta}(t, x)=\exp\{g(\beta)(1+f(t, x)-\beta)\} .

The smooth functions \psi_{\beta} are chosen so as to solve the differential inequality

\psi_{t}(t, x)-\gamma(t)a(|x|)|\psi_{x}(t, x)|\geq 0 , (t, x)\in(0, T]\cross \mathbb{R}^{n} . (12)

and to satisfy

\lim_{\betaarrow\infty}\psi_{\beta}(t, x)=0 for all (t, x)\in[0, T]\cross \mathbb{R}^{n} . (13)

It will suffice to prove that

u(t, x)-w(t, x)- \psi_{\beta}(t, x)\leq\sup_{\mathbb{R}^{n}}(u(0, \cdot)-w(0, \cdot))^{+}

for any \beta>0 , (t, x)\in S_{\beta} . (14)

Indeed, if (14) were true and (t, x)\in[0, T]\cross \mathbb{R}^{n} , then one would arrive at
the desired inequality

u(t, x)-w(t, x) \leq\sup_{\mathbb{R}^{n}}(u(0, \cdot)-w(0, \cdot))^{+}

by sending \betaarrow\infty and utilizing (13). In order to establish statement (14)
we argue by contradiction and assume that it is false so that for a certain
\beta , fixed hereafter, there exists a c>0 such that

A:= max (u(t, x)-w(t, x)-\psi(t, x) – ct )
(t,x)\in S

> \sup_{\mathbb{R}^{n}}(u(0, \cdot)-w(0, \cdot))^{+}=:B (15)
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and B is finite. The subscripts \beta have been suppressed in order to simplify
the notation, i.e., S and \psi are used in place of S_{\beta} and \psi_{\beta} , respectively.
As has become standard, let us approximate the left-hand maximization
problem in (15) and in doing so we consider

\Phi_{j}(t, x, y)=u(t, x)-w(t, y)-\psi(t, y)-ct-\theta_{j}(x, y) ,

where the \theta_{j} ’s serve as penalty functions. Condition (HI), when assumed,
furnishes the choice of \theta_{j} (let first r>0 be so large that (t, x)\in S implies
x\in B_{r} and then let (HI) supply \theta_{j} ), while \theta_{j}(x, y)=j|x-y|^{2}/2 if (HI) is
not a premise. Select a point (t_{j}, x_{j}, y_{j}) maximizing \Phi_{j} over the compact
set \{(t, x, y);(t, x)\in S, (t, y)\in S\} . If necessary by extracting a convergent
subsequence, we may assume that (t_{j}, x_{j}, y_{j}) tends to a limit necessarily of
the form (\overline{t},\overline{x},\overline{x}) (see Lemma 2). We claim moreover that \overline{t}\in(0, T] and
f(\overline{t},\overline{x})<\beta . In the remaining part of the proof we may therefore assume,
without loss of generality, that t_{j}\in(0, T] , f(t_{j}, x_{j})<\beta , f(t_{j}, y_{j})<\beta , and
that \theta_{j} is differentiate at (x_{j}, y_{j}) .

To avoid obscuring the idea of the proof we will accept this as true for
the moment and proceed by taking advantage of Lemma 4 to find that

c+\psi_{t}(t_{j}, y_{j})+H(x_{j}, \theta_{jx}(x_{j}, y_{j}))

-H(y_{j}, -\theta_{jy}(x_{j}, y_{j})-\psi_{y}(t_{j}, y_{j}))\leq 0 . (16)

(A clarifying comment about the notation might be in order: \theta_{jx}(x_{j}, y_{j})

stands for the partial gradient \nabla_{x}\theta_{j}(x_{j}, y_{j}) , etc.) Let us break up (16) as

\psi_{t}(t_{j}, y_{j})+H(y_{j}, -\theta_{jy}(x_{j}, y_{j}))-H(y_{j}, -\theta_{jy}(x_{j}, y_{j})-\psi_{y}(t_{j}, y_{j}))

+c+H(x_{j}, \theta_{jx}(x_{j}, y_{j}))-H(y_{j}, -\theta_{jy}(x_{j}, y_{j}))\leq 0 . (17)

To treat the terms on the first line of the preceding inequality, notice that

y\vdasharrow w(t_{j}, y)+\theta_{j}(x_{j}, y)+\psi(t_{j}, y)

attains a local minimum at y_{j} so that

p_{j}:=-\theta_{jy}(x_{j}, y_{j})-\psi_{y}(t_{j}, y_{j})\in\partial_{y}^{-}w(t_{j}, y_{j}) . (18)

Therefore, by (G) and the differential inequality (12),

\psi_{t}(t_{j}, y_{j})+H(y_{j}, -\theta_{jy}(x_{j}, y_{j}))-H(y_{j}, -\theta_{jy}(x_{j}, y_{j})-\psi_{y}(t_{j}, y_{j}))

=\psi_{t}(t_{j}, y_{j})+H(y_{j},p_{j}+\psi_{y}(t_{j}, y_{j}))-H(y_{j},p_{j})

\geq\psi_{t}(t_{j}, y_{j})-\gamma(t_{j})a(|y_{j}|)|\psi_{y}(t_{j}, y_{j})|\geq 0 . (18)
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(We have taken into account that the gradient \psi_{y}(t, y) is of the form \mu(t, y)y

with \mu(t, y)\geq 0 , which was required to invoke (G).) The inequalities (17)
and (19) jointly imply

c+H(x_{j}, \theta_{jx}(x_{j}, y_{j}))-H(y_{j}, -\theta_{jy}(x_{j}, y_{j}))\leq 0 . (20)

In the event (HI) is assumed, therefore,

0\geq c-\Lambda(\theta_{j}(x_{j}, y_{j}) , x_{j} , y_{j})arrow c , jarrow\infty ,

since (\theta_{j}(x_{j}, y_{j}) , x_{j} , y_{j}) – (0, \overline{x},\overline{x}) as j – \infty according to Lemma 2. (Here
of course \Lambda denotes the function furnished by (HI).) Hence c\leq 0 , in
violation with our choice of c .

If instead w satisfies the partial Lipschitz condition (LC) (one argues
similarly if u satisfies (LC) ) , and (HI) is not a hypothesis, then \theta_{j}(x, y)=

j|x-y|^{2}/2 and p_{j} has a convergent subsequence since the p_{j} ’s form a
bounded sequence as a consequence of (18) and (LC). Then j(x_{j}-y_{j}) too
has a convergent subsequence as j -arrow\infty . By passing to the limit in (20),
i.e . in

c+H(x_{j},j(x_{j}-y_{j}))-H(y_{j},j(x_{j}-y_{j}))\leq 0 ,

we again reach the contradiction c\leq 0 .
It remains to establish the claim about the limit of (t_{j}, x_{j}, y_{j}) as jarrow\infty

whose proof was deferred. Toward this end, assume the contrary to the
claim, i.e., either \overline{t}=0 or f(\overline{t},\overline{x})=\beta . Lemma 2 tells us that

A=u(\overline{t},\overline{x})-w(\overline{t},\overline{x})-\psi(\overline{t},\overline{x})-c\overline{t}. (21)

If \overline{t}=0 , (21) implies

A=u(0,\overline{x})-w(0,\overline{x})-\psi(0,\overline{x}) and so A<B
which is in conflict with (15). On the other hand, f(\overline{t},\overline{x})=\beta implies
\psi(\overline{t},\overline{x})=\exp g(\beta) and hence, by (11),

A=u(\overline{t},\overline{x})-w(\overline{t},\overline{x})- exp g(\beta)-c\overline{t}<0

and we are once again confronted with an inconsistency. \square

Our ultimate goal is to identify the value function.

Corollary 1 In the presence of (LO), (HO), suppose w\in C([0, T]\cross \mathbb{R}^{n})

solves (CP) and satisfifies (G). If in addition either (HI) is fulfifilled or one
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of w and V satisfifies the Lipschitz condition (LC), then w=V

Proof. One has w\leq V in view of the maximality property of the value
function stated in Theorem 2. The reverse inequality follows from the com-
parison principle: apply Theorem 3 to the pair (V, w) , the value function V

being a subsolution according to Theorem 1. \square

Corollary 2 Assume (HO), (HI), and

H(x,p+\lambda x)-H(x,p)\geq-\lambda|x|a(|x|) for all x,p\in \mathbb{R}^{n} , \lambda\geq 0 ,

where a has the properties stated in (G). Let \varphi be continuous. Then the
initial-value problem (CP) has at most one viscosity solution u\in C([0, T]\cross

\mathbb{R}^{n}) .

We proceed to attend to the case where L enjoys (LI). First we give
a comparison result for bounded regions in which we do not insist, as an
exception from the general hypotheses of the paper, that H(x,p) be a convex
function of p .

Proposition 3 Assume (HO). Let B be a bounded open subset of \mathbb{R}^{n} . and
let u , w:[0, T]\cross\overline{B} -arrow \mathbb{R} be upper semicontinuous and lower semicontinuous,
respectively. Let also u and w be a viscosity subsolution and a viscosity
supersolution of u_{t}+H(x, u_{x})=0 in (0, T] \cross B , respectively. Assume
moreover either that (HI) holds or that one of u and w satisfifies a Lipschitz
condition on each compact subset of (0, T] \cross B. If furthermore u\leq w on
the lower boundary ”

{ (t , x ) ;(t, x)\in\{0\}\cross\overline{B} or (t, x)\in(0 , T]\cross\partial B },

then u\leq w everywhere in [0, T] \cross\overline{B} .

Proof. Assume on the contrary that u>w somewhere, which implies the
existence of a c>0 such that

\max\{u(t, x)-w(t, x)-ct;(t, x)\in[0, T]\cross\overline{B}\}>0 . (22)

Next introduce

\Phi_{j}(t, x, y)=u(t, x)-w(t, y)-ct-\theta_{j}(x, y) ,

and consider a point (t_{j}, x_{j}, y_{j}) that maximizes \Phi_{j}(t, x, y) over (t, x)\in
[0, T]\cross\overline{B} , (t, y)\in[0, T]\cross\overline{B} . (The functions \theta_{j} are either supplied by
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condition (HI) or are otherwise taken as \theta_{j}(x, y)=j|x-y|^{2}/2.) One may
assume (t_{j}, x_{j}, y_{j})arrow(\overline{t},\overline{x},\overline{x}) as jarrow\infty . It is straightforward to verify that
(\overline{t},\overline{x})\in(0, T]\cross B so that (t_{j}, x_{j}, y_{j})\in(0, T]\cross B\cross B eventually as j becomes
large. Indeed, similarly as above one sees that

u(\overline{t},\overline{x})-w(\overline{t},\overline{x})-c\overline{t}

= \max\{u(t, x)-w(t, x)-ct;(t, x)\in[0, T]\cross\overline{B}\} ,

which is inconsistent with the conjunction of (22) and the hypothesis that
u\leq w on the lower boundary unless (\overline{t},\overline{x})\in(0, T]\cross B . Thus, via Lemma
4,

c+H(x_{j}, \nabla_{x}\theta_{j}(x_{j}, y_{j}))-H(y_{j}, -\nabla_{y}\theta_{j}(x_{j}, y_{j}))\leq 0 . (23)

If u or w satisfies a Lipschitz condition, and \theta_{j}(x, y)=j|x-y|^{2}/2 , then
\nabla_{x}\theta_{j}(x_{j}, y_{j})=-\nabla_{y}\theta_{j}(x_{j}, y_{j})=j(x_{j}-y_{j}) remains bounded as j -arrow\infty , and
a passage to the limit along a convergent subsequence in (23) leads to c\leq 0 .
On the other hand, if (HI) holds then c\leq 0 follows similarly as in the proof
of Theorem 3. But c\leq 0 contradicts the choice of c above. \square

Remark 3. It is known that the Cauchy problem for the linear partial
differential equation determined by H(x,p)=\langle a(x),p\rangle may have multiple
compactly supported viscosity solutions when (HI) fails; see [15, 12] .

In order to avoid a cumbersome notation, let us adopt the abbreviation

J(X;s, t)= \int_{s}^{t}L(X(\tau),\dot{X}(\tau))d\tau .

Theorem 4 In the presence of (LI), let u be a viscosity solution of (CP),
with \varphi a lower semicontinuous extended-real-valued function. Then the fol-
lowing three assertions are true.
(i) Let \rho>0 . Then

u(t, x)= \inf\{u(s, y)+O-(t-s, x, y) ;
(s, y)\in(\{0\}\cross\overline{B}_{\rho})\cup((0, t)\cross\partial B_{\rho})\}

for all (t, x)\in(0, T]\cross B_{\rho} . Moreover, u is locally Lipschitz continuous.
(ii) Suppose furthermore u admits a minorant of linear growth, i.e. , there

exists a constant C such that u(t, x)\geq-C(1+|x|) for all (t, x)\in
(0, T]\cross \mathbb{R}^{n} . Then u=V



500 T. Str\"omberg

(iii) u=V if \Theta satisfifies the following condition: for every x\in \mathbb{R}^{n} and
every \epsilon\in(0, T)

lim \inf\{\Theta(t_{1}, x, y)-\Theta(t_{2}, x, y);t_{1}, t_{2}\in(0, T], t_{2}-t_{1}\geq\epsilon\}=\infty .
|y|arrow\infty

Proof Let us first also assume u is finite and continuous on [0, T] \cross \mathbb{R}^{n} .
Define for \rho>0 ,

w^{\rho}(t, x)= \inf\{u(s, X(s))+J(X;s, t);s\in[0, t) , X:[s, t]arrow \mathbb{R}^{n}

is Lipschitzian, (s, X(s))\in(\{0\}\cross\overline{B}_{\rho})\cup((0, t)\cross\partial B_{\rho}) , X(t)=x\}
= \inf\{u(s, y)+\Theta(t-s, x, y);(s, y)

\in(\{0\}\cross\overline{B}_{\rho})\cup((0, t)\cross\partial B_{\rho})\}

for all (t, x)\in(0, T]\cross B_{\rho} . (Note that, unlike the approach in [24, Chap. 11],
[9], no state constraint is incorporated into the definition of w^{\rho} .) By arguing
similarly as in the proof of Theorem 1, we deduce that w_{t}^{\rho}+H(x, w_{x}^{\rho})=0 is
fulfilled in (0, T] \cross B_{\rho} , and also that w^{\rho} is locally Lipschitz continuous. In
addition, w^{\rho} extends to a continuous function on [0, T] \cross\overline{B}_{\rho} which agrees
with u on (\{0\}\cross\overline{B}_{\rho})\cup((0, T]\cross\partial B_{\rho}) . In order to establish this claim, let
us first observe that the inequality

u(t, X(t))-u(s, X(s))\leq J(X;s, t) ,

which is imported from Theorem 2 (i), implies w^{\rho}\geq u in (0, T]\cross B_{\rho} (cf. the
“compatibility condition” in [8, 24]) . Let (t_{0}, x_{0})\in(0, T]\cross\partial B_{\rho} . Directly
from the definition of w^{\rho} we see that

w^{\rho}(t, x)\leq u(s, x_{0})+O-(t-s, x, x_{0}) , 0<s<t .

Hence

lim sup w^{\rho}(t, x)\leq u(s, x_{0})+\Theta(t_{0}-s, x_{0}, x_{0}) , 0<s<t_{0} ,
(t,x)arrow(t_{0},x_{0})

and sending s\uparrow t_{0} leads to

lim sup w^{\rho}(t, x)\leq u(t_{0}, x_{0}) .
(t,x)arrow(t_{0},x_{0})

If instead (t, x) - (0, x_{0}) , x_{0}\in\overline{B}_{\rho} , then

w^{\rho}(t, x)\leq u(0, x)+O-(t, x, x)\leq u(0, x)+tL(x, 0)
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and so

lim sup w^{\rho}(t, x)\leq u(0, x_{0}) .
(t,x)arrow(0,x_{0})

We conclude that

lim w^{\rho}(t, x)=u(t_{0}, x_{0})

(t,x)arrow(t_{0},x_{0})

if (t_{0}, x_{0})\in(\{0\}\cross\overline{B}_{\rho})\cup((0, T]\cross\partial B_{\rho}) ,

as claimed. Now the equation w^{\rho}=u in (0, T] \cross B_{\rho} follows by calling
upon Proposition 3. In particular, u is locally Lipschitz continuous which
completes the proof of (i).

As regards (ii), it suffices to prove u\geq V Let (t, x)\in(0, T]\cross \mathbb{R}^{n} . We
have demonstrated that u(t, x)=w^{\rho}(t, x) as long as \rho>|x| , i.e.,

u(t, x)= \inf\{u(0, y)+\Theta(t, x, y);y\in\overline{B}_{\rho}\}

\wedge\inf\{u(s, y)+\Theta(t-s, x, y);(s, y)\in(0, t)\cross\partial B_{\rho}\}

which we rewrite in short as u(t, x)=f^{\rho}(t, x)\Lambda g^{\rho}(t, x) . By utilizing the
assumption that u(s, y)\geq-C(1+|y|) , as well as the monotonicity of \lambda-+

\lambda(M(\tau/\lambda)-M(0)) and that of M. we easily derive the lower bound

g^{\rho}(t, x) \geq\inf\{u(s, y)+(t-s)M(|x-y|/(t-s));s\in(0, t), |y|=\rho\}

\geq-C’(1+\rho)+tM((\rho-|x|)/t) .

It is now clear that g^{\rho}(t, x) - \infty as \rho
- \infty and hence u(t, x)=f^{\rho}(t, x)

for large \rho . But f^{\rho}(t, x)\geq V(t, x) and so u(t, x)\geq V(t, x) which was to be
shown.

(iii) Let (t, x)\in(0, T)\cross \mathbb{R}^{n} . Theorem 2 (i) implies

u(T, x)-u(s, y)\leq\Theta(T-s, x, y)

and so

g^{\rho}(t, x)\geq u(T, x)

+ \inf\{\Theta(t-s, x, y)-\Theta(T-s, x, y);s\in(0, t), |y|=\rho\} .

Hence, by the additional assumption in (iii), \lim_{\rhoarrow\infty}g^{\rho}(t, x)=\infty and the
proof is completed similarly as in (ii).

We have now demonstrated the theorem under the assumption that u
belongs to C([0, T]\cross \mathbb{R}^{n}) . In the general case, we form translations in time:



502 T. Str\"omberg

for \epsilon\in(0, T) we put

u^{\epsilon}(t, x)=u(t+\epsilon, x) for all (t, x)\in[0, T-\epsilon]\cross \mathbb{R}^{n} .

Then u^{\epsilon} is continuous on [0, T-\epsilon] \cross \mathbb{R}^{n} , u^{\epsilon}(0, x)=u(\epsilon, x) , and

u_{t}^{\epsilon}(t, x)+H(x, u_{x}^{\epsilon}(t, x))=0 for (t, x)\in(0, T-\epsilon]\cross \mathbb{R}^{n}

in the viscosity sense. Let us focus on (ii). By the above considerations, u^{\epsilon}

is equal to the value function determined by the initial function u(\epsilon, \cdot) , i.e.

u^{\epsilon}(t, x)= \inf\{u(\epsilon, y)+\Theta(t, x, y);y\in \mathbb{R}^{n}\} ,
(t, x)\in(0, T-\epsilon]\cross \mathbb{R}^{n} .

For every (t, x)\in(0, T)\cross \mathbb{R}^{n} there exists a compact subset K\subset \mathbb{R}^{n} such
that

u^{\epsilon}(t, x)= \min\{u(\epsilon, y)+\Theta(t, x, y);y\in K\} , \epsilon\in(0, T-t] ,

for u(\epsilon, y)\geq-C(1+|y|) , \Theta(t, x, y)/|y| - \infty as |y|arrow\infty , and u^{\epsilon}(t, x) is a
bounded function of \epsilon . By virtue of Proposition 1, u(\epsilon, \cdot) -arrow\varphi in the sense
of both pointwise convergence and epi convergence as \epsilon\downarrow 0 and one finds,
via Lemma 1,

\lim_{\epsilon\downarrow 0}u^{\epsilon}(t, x)=\min\{\varphi(y)+\Theta(t, x, y);y\in K\}\geq V(t, x) ,

where also the continuity of \Theta has been taken into account. But u(t, x)=
\lim_{\epsilon\downarrow 0}u^{\xi j}(t, x) and one infers u=V in (0, T)\cross \mathbb{R}^{n} . Thus u=V in (0, T]\cross \mathbb{R}^{n}

through continuity. \square

Remark 4. The condition employed in (iii) (in conjunction with (LI)) en-
sures uniqueness. This condition might seem opaque but it is known to be
true when H(x,p)\equiv H(p) , consult [28]. It is not difficult to see that it
also holds when L(x, v) has a certain homogeneity property in v , but we
refrain from presenting such versions here. Note however the following easy
perturbation result: if the condition is satisfied for a certain Lagrangian L ,
then it remains true for \tilde{L}=L+B if B is a bounded function.

5. A concluding remark

Our results in the preceding section encompass of course not only prob-
lems from the calculus of variations. By way of illustration, let us con-
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sider the following Bolza problem arising in optimal control theory. Given
(t, x)\in(0, T]\cross \mathbb{R}^{n} we are to minimize

\varphi(X(0))+\int_{0}^{t}\mathcal{L}(X(\tau), Z(\tau))d\tau

over state-control pairs of functions X:[0, t] -
\mathbb{R}^{n} , Z:[0, t] -arrow \mathbb{R}^{m} , X abs0-

lutely continuous, Z measurable, obeying the ordinary differential equation
and the terminal condition

\dot{X}(\tau)=f(X(\tau), Z(\tau)) a.e . \tau\in[0, t] , X(t)=x ,

respectively, as well as the constraint Z(\tau)\in Z for a.e . \tau\in[0, t] . Let us
denote the value of this optimization problem by \mathcal{V}(t, x) . The Hamiltonian
for the problem at hand is, as opposed to previous sections,

H(x,p)= \sup\{\langle p, f(x, z)\rangle-\mathcal{L}(x, z);z\in Z\} .

We assume that Z , the control space, is a compact subset of \mathbb{R}^{m} . (This
simplifies the analysis considerably and in fact means a departure from
the type of problems that this paper has mainly endeavored to shed light
on.) The associated Hamilton-Jacobi equation is in sufficiently decent cases
satisfied by \mathcal{V} ,

\mathcal{V}_{t}(t, x)+H(x, \mathcal{V}_{x}(t, x))=0 , (t, x)\in(0, T]\cross \mathbb{R}^{n} ,
\mathcal{V}(0, x)=\varphi(x) , x\in \mathbb{R}^{n} ;

see e.g. [24, 23] . We claim now that uniqueness of viscosity solutions be-
longing to C([0, T]\cross \mathbb{R}^{n}) of this initial-value problem is assured under the
following additional hypotheses:
(CO) \varphi:\mathbb{R}^{n}arrow \mathbb{R} and f, \mathcal{L}:\mathbb{R}^{n}\cross Z - \mathbb{R} are all continuous.
(C1) For every r>0 there exists a constant C\geq 0 such that

\langle f(x, z)-f(y, z), x-y\rangle\geq-C|x-y|^{2}

for all x\in B_{r} , y\in B_{r} , and z\in Z .
(C2) There exists a function a whose properties are described in (G) such

that \langle f(x, z), x\rangle\geq-|x|a(|x|) for all (x, z)\in \mathbb{R}^{n}\cross Z .
We divide the proof into three steps. Firstly, \gamma\{(x,p) is convex in p,

being the supremum of a family of affine functions. Moreover, Z being
compact, it is clear that H is continuous in \mathbb{R}^{n}\cross \mathbb{R}^{n} in view of (CO).
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Secondly, we verify that (HI) too holds. Let r>0 , x\in B_{r} , y\in B_{r} ,
j\in \mathbb{N} , and choose \overline{z}\in Z so as to give the maximum in the problem defining
H(y,j(x-y)) . Then, in denoting by \mu a modulus of continuity for the
restriction of \mathcal{L} to the compact set \overline{B}_{r}\cross Z ,

\mathcal{H}(x, j(x-y))-H(y, j(x-y))

\geq\langle f(x,\overline{z})-f(y,\overline{z}), j(x-y)\rangle+\mathcal{L}(y,\overline{z})-\mathcal{L}(x,\overline{z})

\geq-Cj|x-y|^{2}-\mu(|x-y|) ,

so (HI) holds with \Lambda(\theta, x, y)=2C\theta+\mu(|x-y|) .
Thirdly, we find similarly, via (C2),

H(x,p+\lambda x)-H(x,p)\geq-\lambda|x|a(|x|) for all x,p\in \mathbb{R}^{n} , \lambda\geq 0 .

Finally, we conclude by calling upon Corollary 2.
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