A homomorphism between an equivariant SK ring and the Burnside ring for Z_{4}

(Dedicated to Professor Fuichi Uchida on his 60th birthday)

Tamio Hara and Hiroaki Koshikawa
(Received March 9, 1998)

Abstract

In this paper, we first determine a ring structure of Z_{4} equivariant cutting and pasting theory $S K_{*}^{Z_{4}}$. Using the result, we obtain a minimal set of generators of Ker ϕ, where $\phi: S K_{*}^{Z_{4}} \rightarrow A\left(Z_{4}\right)$ is the natural surjection to the Burnside ring for Z_{4}.

Key words: cutting and pasting, Burnside ring, slice types.

1. Introduction

Let G be a finite abelian group, $A(G)$ the Burnside ring and $S K_{*}^{G}$ the G-equivariant cutting and pasting ring in the sence of [4]. In [6] Kosniowski proposed that we have a natural homomorhism $S K_{*}^{G} \rightarrow A(G)$ and what we can say about this homomorhism. In [5] Koshikawa has studied it for the case $G=\mathbf{Z}_{2}$. In this note, we consider the case $G=\mathbf{Z}_{4}$.

In Section 2, we determine a ring structure of $S K_{*}^{\mathbf{Z}_{4}}$ (Theorem 2.13) by calculating the euler characteristic of manifold with some slice types. In Section 3, we obtain a relation between $S K_{*}^{\mathbf{Z}_{4}}$ and Burnside ring $A\left(\mathbf{Z}_{4}\right)$ (Theorem 3.9). Finally we mention a transfer map $S K_{*}^{\mathbf{Z}_{4}} \rightarrow S K_{*}^{\mathbf{Z}_{2}}$ (Proposition 3.11).

Throughout this paper, by a G manifold we mean an unoriented compact smooth manifold with smooth G action. Further it usually has no boundary.

2. A ring structure of $S K_{*}^{\mathbf{Z}_{4}}$

In this section, we first recall some basic facts about the theory $S K_{*}^{G}$, and we next determine a ring structure of $S K_{*}^{Z_{4}}$.

Let M^{n} be a closed n dimensional G manifold, and let $L \subset M$ satisfy the following properties,
(1) L is a G invariant codimension 1 smooth submanifold of M,

[^0](2) L has trivial normal bundle in M, and
(3) the normal bundle of L in M is G equivalent to $L \times \mathbf{R}$ with trivial action of G on the real numbers \mathbf{R}.

We assume that L separates M, that is $M=N_{1} \cup N_{2}$ (pasting along the common boundaries $L=\partial N_{i}$) for some G invariant submanifolds N_{i} of codimension zero. It is no gain in generality to drop this condition, because the union of L with a second copy of L, suitably embedded near L, will separate M.

Let M_{1} and M be n-dimensional G manifolds. We say that M and M_{1} are obtained from each other by a G equivariant cutting and pasting if M_{1} has been obtained from M by the step as mentioned above, that is, $M_{1}=N_{1} \cup_{\varphi} N_{2}$ and $M=N_{1} \cup_{\psi} N_{2}$ pasting along the common parts $L \subset M_{1}$ (or M) by some G diffeomorphisms $\varphi, \psi: L \rightarrow L$.

Definition 2.1 If M_{1}^{n} has been obtained from M^{n} by a finite sequence of G equivariant cuttings and pastings, then we say that M_{1} and M are $S K^{G}$ equivalent.

This is an equivalence relation on the set of n dimensional G manifolds. The set of equivalence classes forms an abelian semigroup if we use disjoint union as addition, and has a zero given by the empty set \emptyset. The Grothendieck group of this semigroup is then denoted by $S K_{n}^{G}$. If $G=\{1\}$, then $S K_{n}^{G}$ is denoted by $S K_{n}$. We denote by $[M]$ the equivalence class containing a G manifold M. Further we define $S K_{*}^{G}$ as $\sum_{n \geq 0} S K_{n}^{G}$. Then it is a graded module over $S K_{*}=\sum_{n \geq 0} S K_{n}$, where $S K_{*}$ is the integral polynomial ring over the integers \mathbf{Z} with a generator α represented by the real projective plane $\left[\mathbf{R} P^{2}\right]$ ([6], 2.5.1). The module operation is given by $\left[\mathbf{R} P^{2}\right]^{m}\left[M^{n}\right]=\left[\left(\mathbf{R} P^{2}\right)^{m} \times M^{n}\right]$, where we consider $\left(\mathbf{R} P^{2}\right)^{m}$ has the trivial G action and $\left(\mathbf{R} P^{2}\right)^{m} \times M^{n}$ has the diagonal G action. Moreover, $S K_{*}^{G}$ is a graded ring with multiplication by $\left[M^{m}\right]\left[N^{n}\right]=\left[M^{m} \times N^{n}\right]$ with unit $[p t]$, where $M^{m} \times N^{n}$ has also diagonal G action and $p t$ is the one-point space with trivial action.

If H is a subgroup of G, then H module is a finite dimensional real vector space together with a linear action of H on it. If M is a G manifold and $x \in M$, then there is a G_{x} module U_{x} which is equivariantly diffeomorphic to a G_{x} neighbourhood of x where $G_{x}=\{g \in G \mid g x=x\}$ is the isotropy subgroup at x. This module U_{x} decomposes as $U_{x}=\mathbf{R}^{p} \oplus V_{x}$ when G_{x} acts
trivially on \mathbf{R}^{p} and $V_{x}^{G_{x}}=\left\{v \in V_{x} \mid g v=v\right.$ for any $\left.g \in G_{x}\right\}=\{0\}$. We refer to the pair $\sigma_{x}=\left[G_{x} ; V_{x}\right]$ as the slice type of x. By a G slice type in general, we mean a pair $[H ; V]$ of a subgroup H and an H module V such that $V^{H}=\{0\}$.

There is a partial order on the set of all G slice types given by: $[H ; V] \leq$ $[K ; W]$ means $[K ; W]$ is a slice type of the G manifold $G \times_{H} V$ where $G \times_{H} V$ is $G \times V$ factored by the equivalence relation: $(g, x) \sim\left(g h, h^{-1} x\right)$ for $h \in H$. If M is a G manifold and $\sigma=[H ; V]$ is a slice type, define $M_{\sigma}=\left\{x \in M \mid \sigma_{x} \leq \sigma\right\}$. Then M_{σ} is a G invariant submanifold of M with $\operatorname{dim}\left(M_{\sigma}\right)=\operatorname{dim}(M)-\operatorname{dim}(V)($ cf. [4, p. 37]).

Now let $G=\mathbf{Z}_{4}$, the cyclic group of order 4 with a generator $i=\sqrt{-1}$. Let $\tilde{\mathbf{R}}$ denote the real numbers with \mathbf{Z}_{4} (and \mathbf{Z}_{2}) acting by multiplication by -1 , while let $\tilde{\mathbf{C}}$ denote the complex numbers with \mathbf{Z}_{4} acting by multiplication by i. Then, the \mathbf{Z}_{4} slice types are $\sigma_{-1}=[1 ;\{0\}], \sigma_{j}=\left[\mathbf{Z}_{2} ; \tilde{\mathbf{R}}^{j}\right],(j \geq 0)$ and $\sigma_{j, k}=\left[\mathbf{Z}_{4} ; \tilde{\mathbf{R}}^{j} \times \tilde{\mathbf{C}}^{k}\right],(j, k \geq 0)$. Concerning the partial order, we note that $\sigma_{j, k} \leq \sigma_{2 k} \leq \sigma_{-1}$ and $\sigma_{2 k+1} \leq \sigma_{-1}$. We can therefore define an invariant submanifold of \mathbf{Z}_{4} manifold of M as follows: $M_{\sigma_{2 k}}=\left\{x \in M \mid \sigma_{x}=\sigma_{2 k}\right.$ or $\left.\sigma_{j, k}(j \geq 0)\right\}, M_{\sigma_{2 k+1}}=\left\{x \in M \mid \sigma_{x}=\sigma_{2 k+1}\right\}$ or $M_{\sigma_{j, k}}=\left\{x \in M \mid \sigma_{x}=\right.$ $\left.\sigma_{j, k}\right\}$. We see that $\operatorname{dim}\left(M_{\sigma_{j}}\right)=m-j$ and $\operatorname{dim}\left(M_{\sigma_{j, k}}\right)=m-(j+2 k)$ as mentioned above, where $m=\operatorname{dim}(M)$ (cf. [6, p. 121 and p. 211]). Notice that $M_{\sigma_{-1}}=M$.

Let

$$
M_{i}=\mathbf{Z}_{4} \times_{\mathbf{Z}_{2}} \mathbf{R} P\left(\mathbf{R} \times \tilde{\mathbf{R}}^{i}\right), \quad M_{j, k}=\mathbf{R} P\left(\mathbf{R} \times \tilde{\mathbf{R}}^{j}\right) \times \mathbf{R} P\left(\mathbf{R} \times \tilde{\mathbf{C}}^{k}\right),
$$

and let $x=\left[\mathbf{Z}_{4}\right], x_{i}=\left[M_{i}\right], x_{j, k}=\left[M_{j, k}\right]$.
Then the $S K_{*}$ module structure of $S K_{*}^{\mathrm{Z}_{4}}$ is as follows.
Proposition 2.2 ([6], 5.4.1) $S K_{*}^{\mathbf{Z}_{4}}$ is a free $S K_{*}$ module with basis $\mathcal{B}=$ $\left\{x, x_{i}, x_{j, k}(i, j, k \geq 0)\right\}$.

Proposition 2.3 ([6], 5.4.7) Two n dimensional \mathbf{Z}_{4} manifolds M, M^{\prime} are $S K^{\mathbf{Z}_{4}}$ equivalent if and only if
(1) $\chi(M)=\chi\left(M^{\prime}\right)$
(2) $\chi_{i}(M)=\chi_{i}\left(M^{\prime}\right) \quad i=0,1, \ldots, n$
(3) $\chi_{j, k}(M)=\chi_{j, k}\left(M^{\prime}\right) \quad j, k \geq 0, j+2 k \leq n$ where $\chi_{i}(M)=\chi\left(M_{\sigma_{i}}\right)$ and $\chi_{j, k}(M)=\chi\left(M_{\sigma_{j, k}}\right)$.

Remark 2.4 Let M be \mathbf{Z}_{4}, M_{i} or $M_{j, k}$. Then the values $\chi_{i^{\prime}}(M)$ and $\chi_{j^{\prime}, k^{\prime}}(M)$ which do not vanish are as follows.
$\chi=4$ on $\mathbf{Z}_{4}, \chi=\chi_{2 i}=2$ on $M_{2 i}, \chi_{1}=\chi_{2 i+1}=2$ on $M_{2 i+1}, \chi=\chi_{2 k}=$ $\chi_{2 j, k}=1$ on $M_{2 j, k}$, and $\chi_{1, k}=\chi_{2 j+1, k}=1$ on $M_{2 j+1, k}$.

For each M, the manifolds $M_{\sigma_{i}}$ and $M_{\sigma_{j, k}}$ are obvious. We therefore obtain the above data.

Proposition 2.5 Let $\mathbf{K}=\mathbf{C}$ or the field \mathbf{H} of quaternions and let $\mathbf{K} P\left(\mathbf{K} \times \widetilde{\mathbf{K}}^{n}\right)$ be the projective space associated to $\mathbf{K} \times \widetilde{\mathbf{K}}^{n}$ with $\mathbf{Z}_{\mathbf{4}}$ action $i d \times i(n \geq 0)$. Then we have
(i) $\left[\mathbf{C} P\left(\mathbf{C} \times \widetilde{\mathbf{C}}^{n}\right)\right]=x_{0, n}+n \alpha^{n-1} x_{0,1}, \quad$ and
(ii) $\left[\mathbf{H} P\left(\mathbf{H} \times \widetilde{\mathbf{H}}^{n}\right)\right]=x_{0,2 n}+n \alpha^{2 n-2} x_{0,2}$.

Proof. Note that $\mathbf{C} P\left(\mathbf{C} \times \widetilde{\mathbf{C}}^{n}\right)$ (or $\mathbf{H} P\left(\mathbf{H} \times \widetilde{\mathbf{H}}^{n}\right)$) has the data on slice types as $\chi=n+1, \chi_{0, n}=1, \chi_{0,1}=n\left(\right.$ or $\left.\chi=n+1, \chi_{0,2 n}=1, \chi_{0,2}=n\right)$ respectively ([3], p. 106). Hence the relation (i) or (ii) follows by comparing the data of both sides (cf. Remark 2.4).

Example 2.6 We show (i) by an $S K^{\mathbf{Z}_{4}}$ process as follows.
Put $N_{i}=A_{i}+B_{i}(i=1,2)$ where $A_{1}=D\left(\widetilde{\mathbf{C}}^{n}\right), A_{2}=D(\mathbf{C}) \times_{S^{1}} S\left(\widetilde{\mathbf{C}}^{n}\right)$, $B_{1}=[-1,1] \times{ }_{Z_{2}} S\left(\widetilde{\mathbf{C}}^{n}\right)$ and $B_{2}=[-1,1]^{\prime} \times{ }_{Z_{2}} S\left(\widetilde{\mathbf{C}}^{n}\right)$. Further, consider $L=$ $L^{\prime}+L^{\prime \prime}$ where $L^{\prime}=L^{\prime \prime}=S\left(\widetilde{\mathbf{C}}^{n}\right)$ with natural embeddings $L^{\prime}=\partial A_{i} \subset A_{i}$ and $L^{\prime \prime}=\{-1,1\} \times_{Z_{2}} S\left(\widetilde{\mathbf{C}}^{n}\right) \subset B_{i}$. Now let $\varphi, \psi: L=\partial N_{1} \rightarrow L=\partial N_{2}$ be identifications:

$$
\begin{array}{ll}
\varphi: A_{1} \supset L^{\prime} \rightarrow L^{\prime} \subset A_{2}, & B_{1} \supset L^{\prime \prime} \rightarrow L^{\prime \prime} \subset B_{2}, \\
\psi: A_{1} \supset L^{\prime} \rightarrow L^{\prime \prime} \subset B_{2}, & B_{1} \supset L^{\prime \prime} \rightarrow L^{\prime} \subset A_{2} .
\end{array}
$$

Then

$$
\begin{aligned}
& N_{1} \cup_{\varphi} N_{2}=\mathbf{C} P\left(\mathbf{C} \times \widetilde{\mathbf{C}}^{n}\right)+S^{1} \times{ }_{Z_{2}} S\left(\widetilde{\mathbf{C}}^{n}\right) \text { and } \\
& N_{1} \cup_{\psi} N_{2}=\mathbf{R} P\left(\mathbf{R} \times \widetilde{\mathbf{C}}^{n}\right)+P,
\end{aligned}
$$

where

$$
\begin{aligned}
P & =D(\mathbf{C}) \times_{S^{1}} S\left(\widetilde{\mathbf{C}}^{n}\right) \cup[-1,1] \times_{Z_{2}} S\left(\widetilde{\mathbf{C}}^{n}\right) \\
& \cong D(\mathbf{C}) \times_{S^{1}} S\left(\widetilde{\mathbf{C}}^{n}\right) \cup\left([-1,1] \times_{Z_{2}} S^{1}\right) \times_{S^{1}} S\left(\widetilde{\mathbf{C}}^{n}\right) \\
& \cong \mathbf{R} P(\mathbf{R} \times \mathbf{C}) \times_{S^{1}} S\left(\widetilde{\mathbf{C}}^{n}\right)
\end{aligned}
$$

with obvious identifications. Observe P fibers equivariantly over $\mathbf{C} P^{n-1}=$ $S\left(\widetilde{\mathbf{C}}^{n}\right) / S^{1}$ with fiber $\mathbf{R} P(\mathbf{R} \times \widetilde{\mathbf{C}})$. Hence $[P]=\left[\mathbf{C} P^{n-1}\right] \cdot[\mathbf{R} P(\mathbf{R} \times \widetilde{\mathbf{C}})]$ by [6 , Theorem 2.4.1] or [4, Lemma (1.5)]. Since $\mathbf{C} P^{n-1}$ is cobordant to
$\left(\mathbf{R} P^{n-1}\right)^{2}$ in the unoriented cobordism ring $N_{*}(\mathrm{cf} .[7]$, Lemma 7$)$,

$$
\begin{aligned}
{\left[\mathbf{C} P^{n-1}\right] } & =\left[\mathbf{R} P^{n-1}\right]^{2}+\frac{1}{2}\left(\chi\left(\mathbf{C} P^{n-1}\right)-\chi\left(\left(\mathbf{R} P^{n-1}\right)^{2}\right)\right)\left[S^{2 n-2}\right] \\
& =n\left[\mathbf{R} P^{2 n-2}\right] \\
& =n \alpha^{n-1}
\end{aligned}
$$

by $\left[S^{2 n-2}\right]=2\left[\mathbf{R} P^{2 n-2}\right]$ and $\left[\mathbf{R} P^{2 m}\right]=\left[\mathbf{R} P^{2}\right]^{m}$ in general (cf. [6 Corollary 2.3.4 and p. 62]). On the other hand, $S^{1} \times{ }_{Z_{2}} S\left(\widetilde{\mathbf{C}}^{n}\right)$ fibers equivariantly over $\mathbf{R} P^{1}=S^{1} / Z_{2}$ with fiber $S\left(\widetilde{\mathbf{C}}^{n}\right)$, which implies that $\left[S^{1} \times{ }_{Z_{2}} S\left(\widetilde{\mathbf{C}}^{n}\right)\right]=\left[\mathbf{R} P^{1}\right]$. $\left[S\left(\widetilde{\mathbf{C}}^{n}\right)\right]=0$ since $\left[\mathbf{R} P^{1}\right]=0$ in $S K_{*}([6]$, Theorem 2.4.1 (i)). Therefore we have the relation for $\mathbf{C} P\left(\mathbf{C} \times \widetilde{\mathbf{C}}^{n}\right)$.

Since $\left[\mathbf{C} P\left(\mathbf{C} \times \widetilde{\mathbf{C}}^{n}\right)\right]=x_{0, n}$ or $\left[\mathbf{H} P\left(\mathbf{H} \times \widetilde{\mathbf{H}}^{n}\right)\right]=x_{0,2 n}\left(\bmod S K_{*}\right.$ decomposable), we have the following result.

Corollary 2.7 The element $x_{0, n}\left(\right.$ or $\left.x_{0,2 n}\right)$ in the basis \mathcal{B} is replaced by $\left[\mathbf{C} P\left(\mathbf{C} \times \widetilde{\mathbf{C}}^{n}\right)\right]\left(\right.$ or $\left.\left[\mathbf{H} P\left(\mathbf{H} \times \widetilde{\mathbf{H}}^{n}\right)\right]\right)$ respectively.

Now we go back to G slice types. Let $\sigma=[H ; V]$ be a slice type of $x=[g, w] \in G \times{ }_{K} W$. Since $G_{w}=H(\subset K), W$ decomposes as $W=\langle w\rangle \oplus W^{\prime}$ as an H module, where $\langle w\rangle$ is a submodule generated by w and W^{\prime} is its complement. We therefore $V=N T\left(W^{\prime}\right)=N T(W)$, where $N T(-)$ is the non-trivial part of H module. Let M be a G manifold, and let $\sigma=[H ; V]$ and $\sigma^{\prime}=\left[H ; V^{\prime}\right]$ be H slice types. If $x \in M_{\sigma} \cap M_{\sigma^{\prime}}$, then both σ and σ^{\prime} be H slice types of $G \times{ }_{G_{x}} V_{x}$. Hence $\sigma=\sigma^{\prime}$ because $V=V^{\prime}=N T\left(V_{x}\right)$ as H modules. We therefore $M^{H}=\coprod_{\sigma} M_{\sigma}$ (disjoint union), where the sum is taken over all H slice types $\sigma=[H ; V]$.

Lemma 2.8 Let M and N be Z_{4} manifolds, then

$$
\begin{aligned}
& \chi_{i}(M \times N)=\sum_{p+q=i} \chi_{p}(M) \chi_{q}(N) \quad \text { and } \\
& \chi_{j, k}(M \times N)=\sum_{p+q=j, r+s=k} \chi_{p, r}(M) \chi_{q, s}(N) .
\end{aligned}
$$

Proof. We first prove that

$$
\begin{equation*}
(M \times N)_{\sigma_{i}}=\coprod_{p+q=i}\left(M_{\sigma_{p}} \times N_{\sigma_{q}}\right) \quad \text { and } \tag{2.8.1}
\end{equation*}
$$

$$
(M \times N)_{\sigma_{j, k}}=\coprod_{p+q=j, r+s=k}\left(M_{\sigma_{p, r}} \times N_{\sigma_{q, s}}\right)
$$

Suppose that $H=\mathbf{Z}_{2}$. Since $(M \times N)_{\sigma_{i}}=\coprod_{p+q=i}\left(M_{\sigma_{p}} \times N_{\sigma_{q}}\right)$, it sufficies to show that $M_{\sigma_{p}} \times M_{\sigma_{q}} \subset(M \times N)_{\sigma_{j}}$, where $j=p+q$. Let $p=2 k$, $q=2 l+1$ and put $(x, y) \in M_{\sigma_{p}} \times N_{\sigma_{q}}$. There are two cases for the slice type of x, that is, one: $\sigma_{x}=\left[\mathbf{Z}_{2} ; \tilde{\mathbf{R}}^{2 k}\right]$ and the other: $\sigma_{x}=\left[\mathbf{Z}_{4} ; \tilde{\mathbf{R}}^{j} \times \tilde{\mathbf{C}}^{k}\right]$ for some $j \geq 0$. On the other hand, $\sigma_{y}=\left[\mathbf{Z}_{2} ; \tilde{\mathbf{R}}^{2 l+1}\right]$. Then a \mathbf{Z}_{2} neighbourhood of (x, y) in $M \times N$ is equivariantly diffeomorhic to $\tilde{\mathbf{R}}^{2 k} \times \tilde{\mathbf{R}}^{2 l+1}$ in the first case and $\mathbf{R}^{j} \times \tilde{\mathbf{R}}^{2 k} \times \tilde{\mathbf{R}}^{2 l+1}$ in the second one. Therfore $\sigma_{(x, y)}=\left[\mathbf{Z}_{2} ; \tilde{\mathbf{R}}^{2 k+2 l+1}\right]$ in both cases, and $(x, y) \in(M \times N)_{\sigma_{j}}$ with $j=p+q$. Similarly we have the same results in another cases, from which the first part of (2.8.1) follows. In a same way, we have the second part. Taking χ for both sides of (2.8.1), we obtain the lemma.

Proposition 2.9

(1) $x^{2}=4 x$
(2) $\quad x x_{2 j+1}=0, x x_{2 j}=2 \alpha^{j} x$
(3) $\quad x x_{2 j+1, l}=0, x x_{2 j, l}=\alpha^{j+l} x$
(4) $\quad x_{2 k} x_{2 l}=2 x_{2(k+l)}$
$x_{2 k} x_{2 l+1}=2 x_{2 k+2 l+1}+2 \alpha^{l} x_{2 k+1}-2 \alpha^{k+l} x_{1}$
$x_{2 k+1} x_{2 l+1}=-4 \alpha^{k+l+1} x+2 x_{2 k+2 l+2}+2 \alpha^{l} x_{2 k+2}+2 \alpha^{k} x_{2 l+2}+2 \alpha^{k+l} x_{2}$
$x_{2 m} x_{2 n, l}=\alpha^{n} x_{2(m+l)} \quad$ (8) $\quad x_{i} x_{2 n+1, l}=0$
$x_{2 m+1} x_{2 n, l}=\alpha^{n} x_{2 m+2 l+1}+\alpha^{m+n} x_{2 l+1}-\alpha^{m+n+l} x_{1}$
$x_{2 m, j} x_{2 n, l}=x_{2(m+n), j+l}$
$x_{2 m, j} x_{2 n+1, l}=x_{2 m+2 n+1, j+l}+\alpha^{n} x_{2 m+1, j+l}-\alpha^{m+n} x_{1, j+l}$
$x_{2 m+1, j} x_{2 n+1, l}=-2 \alpha^{m+n+1} x_{2 j+2 l}+\alpha^{n} x_{2 m+2, j+l}+\alpha^{m} x_{2 n+2, j+l}$ $+\alpha^{m+n} x_{2, j+l}+x_{2 m+2 n+2, j+l}$

Proof. We prove (12) by Proposition 2.3. Let

$$
\begin{aligned}
{\left[M_{2 m+1, j}\right]\left[M_{2 n+1, l}\right]=} & a\left[\mathbf{R} P^{2}\right]^{2 t}\left[\mathbf{Z}_{4}\right]+\sum_{i} b_{i}\left[\mathbf{R} P^{2}\right]^{i}\left[M_{2(t-i)}\right] \\
& +\sum_{q, r} c_{q, r}\left[\mathbf{R} P^{2}\right]^{q}\left[M_{2(t-q-r), r}\right]
\end{aligned}
$$

where $a, b_{i}, c_{q, r} \in \mathbf{Z}, t=m+n+1+j+l$ and $0 \leq i \leq t, 0 \leq q+r \leq t$.
The euler characteristics of the left side are $\chi=0, \chi_{2 m+2 n+2, j+l}=$ $\chi_{2 m+2, j+l}=\chi_{2 n+2, j+l}=\chi_{2, j+l}=1$ and the others $\chi_{h, k}=0$. On the other hand, those of the right side are $\chi=4 a+2 \sum_{i} b_{i}+\sum_{q, r} c_{q, r}, \chi_{2 m+2 n+2, j+l}=$ $c_{0, j+l}, \chi_{2 m+2, j+l}=c_{n, j+l}, \chi_{2 n+2, j+l}=c_{m, j+l}, \chi_{2, j+l}=c_{m+n, j+l}, \chi_{2 j+2 l}=$
$2 b_{m+n+1}+4, \chi_{2(m+n+1+j+l-i)}=2 b_{i}(0 \leq i \leq t)$ and the others $\chi_{h, k}=0$. (cf. Remark 2.4 and Lemma 2.8).

Therefore $c_{0, j+l}=c_{n, j+l}=c_{m, j+l}=c_{m+n, j+l}=1, b_{m+n+1}=-2, a=0$ and the other coefficients are 0 . Hence we can obtain (12). In the similar way we have the rest equalities.
Lemma 2.10 Let $c_{n}=\left[\mathbf{C} P\left(\mathbf{C} \times \widetilde{\mathbf{C}}^{n}\right)\right]$ and $h_{n}=\left[\mathbf{H} P\left(\mathbf{H} \times \widetilde{\mathbf{H}}^{n}\right)\right]$ in $S K_{*}^{Z_{4}}$, then the following relations hold.
(1) $c_{m} \cdot c_{n}=c_{m+n}+m \alpha^{m-1} c_{n+1}+n \alpha^{n-1} c_{m+1}+m n \alpha^{m+n-2} c_{2}-(2 m n+$ $m+n) \alpha^{m+n-1} c_{1} \quad(m+n \geq 2)$,
(2) $h_{m} \cdot h_{n}=h_{m+n}+m \alpha^{2(m-1)} h_{n+1}+n \alpha^{2(n-1)} h_{m+1}+m n \alpha^{2(m+n-2)} h_{2}-$ $(2 m n+m+n) \alpha^{2(m+n-1)} h_{1} \quad(m+n \geq 2)$,
(3) $c_{2 m+1}^{2}=h_{2 m+1}+2(2 m+1) \alpha^{2 m} h_{m+1}-(2 m+1) \alpha^{4 m} h_{1} \quad(m \geq 0)$,
(4) $h_{m}=c_{2 m}+m \alpha^{2 m-2} c_{2}-2 m \alpha^{2 m-1} c_{1} \quad(m \geq 1)$,
and $c_{0}=h_{0}=1$.
The proofs are obtained from Proposition 2.5 and 2.9 (10) straightforwardly, so we omit them here. From this, we have the following proposition.

Proposition 2.11 Let $\mathcal{C}($ or $\mathcal{H})$ be an $S K_{*}$ submodule generated by the class $\left\{c_{n} \mid n \geq 0\right\}$ (or $\left\{h_{n} \mid n \geq 0\right\}$) respectively, then it is an $S K_{*}$ subalgebra of $S K_{*}^{Z_{4}}$ and $\mathcal{H} \subset \mathcal{C}$.

Next we consider an $S K_{*}$ algebra structure of $S K_{*}^{\mathrm{Z}_{4}}$. We first reduce the following equalities.

Lemma 2.12

(i) $\quad x_{2 m}=x_{0}\left(x_{0,1}\right)^{m}, \quad m \geq 1$
(ii) $x_{2 m+3}=x_{3}\left(x_{0,1}\right)^{m}-\left(x_{3}-\alpha x_{1}\right) \sum_{i=1}^{m} \alpha^{i}\left(x_{0,1}\right)^{m-i}, \quad m \geq 1$
(iii) $x_{2 m, j}=\left(x_{2,0}\right)^{m}\left(x_{0,1}\right)^{j}, \quad m \geq 0, j \geq 0$
(iv) $x_{2 m+3, j}=\left(x_{0,1}\right)^{j}\left\{\left(x_{2,0}\right)^{m} x_{3,0}-\left(x_{3,0}-\alpha x_{1,0}\right) \sum_{i=1}^{m} \alpha^{i}\left(x_{2,0}\right)^{m-i}\right\}, \quad m \geq 1$, $j \geq 0$

Proof. We use the equalities in Proposition 2.9. From (7) we obtain (i) by induction on m, while from (10) we obtain (iii) by induction on j and m. Next let us put $(n, l)=(0,1)$ on (9), then we have $x_{2 m+3}=$ $x_{2 m+1} x_{0,1}-\left(x_{3}-\alpha x_{1}\right) \alpha^{m}$. From this, (ii) follows by induction on m. Finally,
$x_{2 m+3, j}=x_{0, j} x_{2 m+3,0}$ from (11). Moreover, from (12) we have $x_{2 m+3,0}=$ $\left(x_{2,0}\right)^{m} x_{3,0}-\left(x_{3,0}-\alpha x_{1,0}\right) \sum_{i=1}^{m} \alpha^{i}\left(x_{2,0}\right)^{m-i}$ as (ii). These imply (iv).

Since $S K_{*}^{Z_{4}}$ is freely generated over $S K_{*}$ by these $x, x_{i}, x_{j, k}(i, j, k \geq 0)$, we have the following.

Theorem 2.13 As an $S K_{*}$-algebra $S K_{*}^{\mathrm{Z}_{4}} \cong \mathcal{P} / \mathcal{I}$, where \mathcal{P} is an $S K_{*}$ polynomial ring with indeterminates $x, x_{0}, x_{1}, x_{3}, x_{0,1}, x_{1,0}, x_{2,0}$ and $x_{3,0}$, and \mathcal{I} is an ideal generated by the relations induced from Proposition 2.9 (or Lemma 2.12).

Let $p=x_{2,0}^{3}$ and $q=x_{3,0}^{2}-2 \alpha x_{2,0}^{2}-\alpha^{2} x_{2,0}+2 \alpha^{3} x_{0}$ for example, then $p=q=x_{6,0}$ in $S K_{*}^{Z_{4}}$ from Proposition 2.9 (10) and (12). Hence $p-q \in \mathcal{I}$. Further it is easy to see that the above eight indeterminates supply a minimal set of generators.

3. The relation between $S K_{*}^{Z_{4}}$ and $A\left(\mathrm{Z}_{4}\right)$.

We define another equivalence relation as follows. Let M and N be closed smooth G manifolds, then $M \sim N$ if and only if the H fixed point sets M^{H} and N^{H} for all subgroups H of G have the same euler characteristics $\chi\left(M^{H}\right)$ and $\chi\left(N^{H}\right)$. Denote by $A(G)$ the set of equivalence classes under this equivalence relation, and denote by $[M] \in A(G)$ the class of M (we use conveniently same notation as the element of $S K_{*}^{G}$). The disjoint union and the cartesian product of G manifolds induce an addition and multiplication on $A(G)$. Then $A(G)$ becomes a commutative ring with identity $[p t]$.

Definition 3.1 We call $A(G)$ the Burnside ring of G.
Let M be a G manifold and H be a subgroup of G. Then we define $M_{H}=\left\{x \in M \mid G_{x}=H\right\}$. Now we note that we consider only G a finite abelian group. So the next formula is the special case of tom Dieck's one ([2], 5.5.1).

Proposition 3.2 $A(G)$ is the free abelian group with basis $\{[G / H] \mid H \subset$ $G\}$ and any element $[M] \in A(G)$ have the relation $[M]=\sum_{H \subset G} \chi\left(M_{H} / G\right)$ $[G / H]$.

By this fomula, $A\left(\mathbf{Z}_{p}\right) \cong \mathbf{Z}[x] /\left(x^{2}-p x\right)$ for any prime integer p ([5], Lemma 6). On the other hand, we have the following.

Lemma 3.3

$$
A\left(\mathbf{Z}_{2^{n}}\right) \cong \mathbf{Z}\left[z_{1}, z_{2}, \ldots, z_{n}\right] /\left(z_{i} z_{i+j}-2^{n-(i+j-1)} z_{i}\right)
$$

where $z_{i}=\left[\mathbf{Z}_{2^{n}} / \mathbf{Z}_{2^{i-1}}\right](i=1, \ldots, n+1)$.
Proof. From Proposition 3.2, $A\left(\mathbf{Z}_{2^{n}}\right)$ is a free abelian group generated by z_{i}, where $z_{n+1}=1$. Put $M=\left(\mathbf{Z}_{2^{n}} / \mathbf{Z}_{2^{i-1}}\right)$, then $\chi\left(M^{\mathbf{Z}_{2^{k-1}}}\right)=2^{n-k+1}$ for $1 \leq k \leq i$ or 0 for $i+1 \leq k \leq n+1$. Hence we obtain $z_{i} z_{i+j}=2^{n-(i+j-1)} z_{i}$ by comparing euler characteristics of both sides.

Definition 3.4 Let $[M] \in S K_{*}^{\mathbf{Z}_{4}}$, then $[M]$ can be naturally regarded as an element of $A\left(\mathbf{Z}_{4}\right)$. We denote this correspondence by $\phi: S K_{*}^{\mathbf{Z}_{4}} \rightarrow$ $A\left(\mathbf{Z}_{4}\right)$. Then ϕ is well-defined because $\chi\left(M^{\mathbf{Z}_{2}}\right)=\sum_{i} \chi_{i}(M)$ and $\chi\left(M^{\mathbf{Z}_{4}}\right)=$ $\sum_{j, k} \chi_{j, k}(M)$, and is a ring homomorphism.

The generators of $S K_{*}^{Z_{4}}$ are mapped by ϕ as follws.
Lemma 3.5 $\phi(x)=u, \phi\left(x_{2 i}\right)=v, \phi\left(x_{2 i+1}\right)=2 v-u, \phi\left(x_{2 i, j}\right)=1$ and, $\phi\left(x_{2 i+1, j}\right)=2-v$ for $i, j \geq 0$, where $u=\left[\mathbf{Z}_{4}\right], v=\left[\mathbf{Z}_{4} / \mathbf{Z}_{2}\right]$ and $1=\left[\mathbf{Z}_{4} / \mathbf{Z}_{4}\right]$.

Proof. $\quad \phi(x)=u$ is a trivial. Let $\phi\left(x_{2 i+1}\right)=a u+b v+c$ for $a, b, c \in \mathbf{Z}$. Since $\chi\left(M_{2 i+1}\right)=0, \chi\left(M_{2 i+1} \mathbf{Z}_{2}\right)=4$ and $\chi\left(M_{2 i+1} \mathbf{Z}_{4}\right)=0$ from Remark 2.4, we have $4 a+2 b+c=0,2 b+c=4$ and $c=0$. So we have $\phi\left(x_{2 i+1}\right)=2 v-u$. Similarly we ontain another equalities.

Next let us calculate $\operatorname{Ker} \phi$.
Lemma 3.6 Ker ϕ is freely generated by $P(l, i, j)=\alpha^{l} x_{2 i+1, j}-x_{1,0}$, $Q(p, h, k)=\alpha^{p} x_{2 h, k}-x_{0,0}, R(q, t)=\alpha^{q} x_{2 t+1}-x_{1}, S(r, w)=\alpha^{r} x_{2 w}+x_{1,0}-$ $2 x_{0,0}$ and, $T(s)=\alpha^{s} x+x_{1}+2 x_{1,0}-4 x_{0,0}$ where $i, j, k, l, p, q, r, s, t, w \geq 0$.

Proof. For any fixed $n \geq 0$, let [M] be in $\operatorname{Ker} \phi$ and let it be an $S K_{*}$ linear combination as follows.

$$
\begin{aligned}
{[M]=} & \sum_{i, j, l} a_{l}^{i, j} \alpha^{l} x_{2 i+1, j}+\sum_{h, k, p} b_{p}^{h, k} \alpha^{p} x_{2 h, k}+\sum_{q, t} c_{q}^{t} \alpha^{q} x_{2 t+1} \\
& +\sum_{r, w} d_{r}^{w} \alpha^{r} x_{2 w}+\sum_{s} e_{s} \alpha^{s} x, \quad \text { for } a_{l}^{i, j}, b_{p}^{h, k}, c_{q}^{t}, d_{r}^{w}, e_{s} \in \mathbf{Z}
\end{aligned}
$$

where the suffix are taken over $0 \leq i+j+l, h+k+p, q+t, r+w, s \leq n$.

Now $\phi(\alpha)=1$, so by Lemma 3.5,

$$
\begin{aligned}
\phi([M])= & \left(-\sum_{i, j, l} a_{l}^{i, j}+2 \sum_{q, t} c_{q}^{t}+\sum_{r, w} d_{r}^{w}\right) v \\
& +\left(2 \sum_{i, j, l} a_{l}^{i, j}+\sum_{h, k, p} b_{p}^{h, k}\right)+\left(-\sum_{q, t} c_{q}^{t}+\sum_{s} e_{s}\right) u .
\end{aligned}
$$

Then we have the following simultaneous equations with rank 3 :

$$
\left\{\begin{array}{llll}
\sum_{i, j, l} a_{l}^{i, j} & & -\sum_{r, w} d_{r}^{w} & -2 \sum_{s} e_{s}
\end{array}=0\right.
$$

Now let $\bar{a}_{l}^{i, j}$ be the vector whose (i, j, l)-the coordinate $a_{l}^{i, j}=1$ and the others are zero. Similary we define the vectors for another letters. Then the vectors $\bar{a}_{l}^{i, j}-\bar{a}_{0}^{0,0}, \bar{b}_{p}^{h, k}-\bar{b}_{0}^{0,0}, \bar{c}_{q}^{t}-\bar{c}_{0}^{0}, \bar{d}_{r}^{w}+\bar{a}_{0}^{0,0}-2 \bar{b}_{0}^{0,0}$ and $\bar{e}^{s}+2 \bar{a}_{0}^{0,0}-4 \bar{b}_{0}^{0,0}+\bar{c}_{0}^{0}$ are linearly independent solutions. This gives the result.

Since $S K_{*} \subset S K_{*}^{Z_{4}}$, we may consider $A\left(\mathrm{Z}_{4}\right)$ as $S K_{*}$ algebra via $\phi([1]$, Chapter 2). In this case, for $[M] \in S K_{*}$ and $[N] \in A\left(\mathrm{Z}_{4}\right),[M][N]=$ $\phi([M])[N]=[M \times N]$ and ϕ is algebra homomorphism.

Now we will reduce the above generators in order to get the minimal set of generators of $\operatorname{Ker} \phi$ as $S K_{*}$ subalgebra.

Let for $i \geq 0 A_{i}=P(i, 0,0), B_{i}=P(0, i, 0)+S(0,0), C_{i}=Q(i, 0,0)$, $D_{i}=Q(0, i, 0), E_{i}=Q(0,0, i), F_{i}=R(i, 0), G_{i}=R(0, i)-2 S(0,0)+T(0)$, $H_{i}=S(i, 0)-S(0,0), I_{i}=S(0, i)$ and $J_{i}=T(i)$. Then we can reduce these relations as follows.

Lemma 3.7

$$
\begin{align*}
& A_{i}=A_{1} \sum_{s=1}^{i} \alpha^{i-s} \tag{3.1}\\
& B_{i}=B_{1}\left(D_{1}+1\right)^{i-1}+\left(2 D_{1}-H_{1}\right) \sum_{s=0}^{i-2}\left(D_{1}+1\right)^{s}, \quad i \geq 2 \tag{3.2}\\
& C_{i}=C_{1} \sum_{s=1}^{i} \alpha^{i-s} \tag{3.3}
\end{align*}
$$

$$
\begin{align*}
& D_{i}=\sum_{s=0}^{i-1}\binom{i}{s} D_{1}^{i-s}, \quad i \geq 1 \tag{3.4}\\
& E_{i}=\sum_{s=0}^{i-1}\binom{i}{s} E_{1}^{i-s}, \quad i \geq 1 \tag{3.5}\\
& F_{i}=F_{1} \sum_{s=1}^{i} \alpha^{i-s} \tag{3.6}\\
& G_{i}=\left(E_{1}+1\right)^{i} G_{0}+\left(2 I_{1}-J_{1}+G_{0}\right) \sum_{s=0}^{i-1}\left(E_{1}+1\right)^{i-1-s} \\
& -\left(G_{1}-2 H_{1}+J_{1}-2 I_{0}-G_{0}-\alpha G_{0}\right) \sum_{s=1}^{i-1}\left(E_{1}+1\right)^{i-1-s} \alpha^{s}, \\
& i \geq 1 \tag{3.7}\\
& H_{i}=H_{1} \sum_{s=1}^{i} \alpha^{i-s} \tag{3.8}\\
& I_{i}=I_{1}+\left(I_{1}-I_{0}\right) \sum_{s=1}^{i-1}\left(E_{1}+1\right)^{s}, \quad i \geq 1 \tag{3.9}\\
& J_{i}=\alpha^{i-1} J_{1}+\sum_{k=1}^{i-1} \alpha^{i-1-k}\left(4 C_{1}-2 A_{1}-F_{1}\right), \quad i \geq 1 \tag{3.10}
\end{align*}
$$

Proof. We can easily obtain (3.1), (3.2), (3.3), (3.6), (3.8) by induction on i. We have (3.4) by the relation

$$
D_{i+1}=D_{i} D_{1}+D_{i}+D_{1}
$$

Similarly we obtain (3.5). Next

$$
\begin{aligned}
G_{i+1} & =x_{2 i+3}-2 x_{0}+x \\
& =x_{3}\left(x_{0,1}\right)^{i}-\left(x_{3}-\alpha x_{1}\right) \sum_{s=1}^{i} \alpha^{s}\left(x_{0,1}\right)^{i-s}-2 x_{0}+x \\
& =x_{0,1} x_{2 i+1}-\left(x_{3}-\alpha x_{1}\right) \alpha^{i}-2 x_{0}+x \\
& =\left(x_{0,1}-x_{0,0}\right) G_{i}+G_{i}+2\left(x_{2}-x_{0}\right)-(\alpha x-x)-\left(x_{3}-\alpha x_{1}\right) \alpha^{i} \\
= & \left(E_{1}+1\right) G_{i}+\left(2 I_{1}-J_{1}+G_{0}\right) \\
& \quad-\left(G_{1}-2 H_{1}+J_{1}-2 I_{0}-G_{0}-\alpha G_{0}\right) \alpha^{i}
\end{aligned}
$$

Then we can obtain (3.7) by induction on i. By Lemma 2.9 and induction, we obtain

$$
\begin{aligned}
I_{i+1} & =x_{1,0}-2 x_{0,0}+x_{2(i+1)} \\
& =x_{1,0}-2 x_{0,0}+x_{0,1} x_{2 i} \\
& =x_{1,0}-2 x_{0,0}+x_{0,1}\left(I_{i}-x_{1,0}+2 x_{0,0}\right) \\
& =I_{0}+\left(E_{1}+1\right) I_{i}-\left(E_{1}+1\right) I_{0}+I_{1}-I_{0} \\
& =\left(I_{1}-I_{0}-I_{0} E_{1}\right)+\left(E_{1}+1\right) I_{i}
\end{aligned}
$$

So we obtain (3.9). Finally we deform J_{i+1} as follows by induction.

$$
\begin{aligned}
J_{i+1} & =2 x_{1,0}-4 x_{0,0}+x_{1}+\alpha^{i+1} x \\
& =2 x_{1,0}-4 x_{0,0}+x_{1}+\alpha\left(J_{i}-2 x_{1,0}+4 x_{0,0}-x_{1}\right) \\
& =2\left(x_{1,0}-\alpha x_{1,0}\right)-4\left(x_{0,0}-\alpha x_{0,0}\right)+\left(x_{1}-\alpha x_{1}\right)+\alpha J_{i} \\
& =\alpha J_{i}+\left(-2 A_{1}+4 C_{1}-F_{1}\right)
\end{aligned}
$$

Then we obtain (3.10).
Next we have the following lemma.

Lemma 3.8

(1) $\alpha^{l} x_{2 i+1, j}-x_{1,0}=\alpha^{l} B_{i}\left(E_{j}+1\right)+2 \alpha^{l} E_{j}+2 C_{l}-B_{0}-H_{l}$

$$
-\alpha^{l}\left(I_{1}-B_{0}\right) \sum_{s=0}^{j-1}\left(E_{1}+1\right)^{s}, \quad j \geq 1
$$

(2) $\alpha^{p} x_{2 h, k}-x_{0,0}=\alpha^{p}\left(D_{h} E_{k}+D_{h}+E_{k}\right)+C_{p}$
(3) $\alpha^{q} x_{2 t+1}-x_{1}=\alpha^{q}\left(G_{t}-G_{0}\right)+F_{q}$
(4) $x_{1,0}-2 x_{0,0}+\alpha^{r} x_{2 w}=\alpha^{r} I_{w}+2 C_{r}-A_{r}$
(5) $2 x_{1,0}-4 x_{0,0}+x_{1}+\alpha^{s} x=\alpha^{s-1} J_{1}-\left(2 A_{1}-4 C_{1}+F_{1}\right) \sum_{i=1}^{s-1} \alpha^{s-1-i}, \quad s \geq 1$

Proof. By lemma $2.12 x_{2 i+1, j}=B_{i} E_{j}+B_{i}+2 x_{0, j}-x_{2 j}$. Let $D_{j}^{\prime}=x_{2 j}-x_{0}$, then $\alpha^{l} x_{2 i+1, j}-x_{1,0}=\alpha^{l} B_{i}\left(E_{j}+1\right)+2 \alpha^{l} E_{j}+2 C_{l}-B_{0}-H_{l}-\alpha^{l} D_{j}^{\prime}$. If $j \geq 1$, then $D_{j}^{\prime}=\left(I_{1}-B_{0}\right) \sum_{s=0}^{j-1}\left(E_{1}+1\right)^{s}$ by induction on j. So we have (1). Similarly we obtain (2) from $x_{2 h, k}=D_{h} E_{k}+D_{h}+E_{k}+x_{0,0}$. We can easily obtain (3) and (4). (5) is (3.10) of Lemma 3.7.

Therefore, by Lemma 3.7 and 3.8, we have the following.

Theorem 3.9 If \mathcal{S} is an $S K_{*}$-subalgebra of $S K_{*}^{\mathbf{Z}_{4}}$ generated by $P(1,0,0)$, $P(0,1,0), Q(1,0,0), Q(0,1,0), Q(0,0,1), R(1,0), R(0,1), S(1,0), S(0,1)$, $S(0,0), T(0), T(1)$, then the sequence

$$
0 \rightarrow \mathcal{S} \xrightarrow{\iota} S K_{*}^{\mathbf{Z}_{4}} \xrightarrow{中} A\left(\mathbf{Z}_{4}\right) \rightarrow 0
$$

is a short exact sequence and splits as ring, where ८ is an inclusion homomorphism. Further, the above class supply a minimal set of generators.

Proof. By the above argument $\mathcal{S}=\operatorname{Ker} \phi$, so the exactness is trivial. The split map $\psi: A\left(\mathbf{Z}_{4}\right) \rightarrow S K_{*}^{\mathbf{Z}_{4}}$ is give by $\psi(1)=x_{0,0}, \psi(u)=x$, and $\psi(v)=x_{0}$. By Proposition 2.9 (1), (2), (4) and Lemma 3.5, we see that ψ is a ring homomorphism.

Remark. The transfer homomorphism
Let $y=\left[\mathbf{Z}_{2}\right] \in S K_{0}^{\mathbf{Z}_{2}}, y_{i}=\left[\mathbf{R} P\left(\mathbf{R} \times \tilde{\mathbf{R}}^{i}\right)\right] \in S K_{i}^{\mathbf{Z}_{2}}$. Then $S K_{*}^{\mathbf{Z}_{2}}$ is a free $S K_{*}$ module with basis $\{y\} \cup\left\{y_{i} \mid i \geq 0\right\}$ (cf. [6, 5.3.1]). As a ring structure of $S K_{*}^{\mathbf{Z}_{2}}$, we have the following.
Proposition 3.10 ([5], Theorem 3) For any integers $m, n \geq 0$,
(1) $y^{2}=2 y$
(2) $y y_{2 m+1}=0$
(3) $y y_{2 m}=\alpha^{m} y$
(4) $y_{2 m}=y_{2}^{m}$
(5) $y_{2 m+1} y_{2 n}=y_{2 m+2 n+1}+\alpha^{m} y_{2 n+1}-\alpha^{m+n} y_{1}$
(6) $y_{2 m+1} y_{2 n+1}=\alpha^{m+n} y_{2}+\alpha^{m} y_{2}^{n+1}+\alpha^{n} y_{2}^{m+1}+y_{2}^{m+n+1}-2 \alpha^{m+n+1} y$.

Let $t: S K_{*}^{\mathbf{Z}_{4}} \longrightarrow S K_{*}^{\mathbf{Z}_{2}}$ be a transfer map (restriction map) and let $e: S K_{*}^{\mathbf{Z}_{2}} \longrightarrow S K_{*}^{\mathbf{Z}_{4}}$ be an extension map, that is $e([M])=\left[\mathbf{Z}_{4} \times \mathbf{Z}_{2} M\right]$, then we have the following result.

Proposition 3.11

(1) et $(x)=2 x, \operatorname{et}\left(x_{i}\right)=2 x_{i}, \operatorname{et}\left(x_{2 i, j}\right)=\alpha^{i} x_{2 j}$ and $\operatorname{et}\left(x_{2 i+1, j}\right)=0$.
(2) $t e(y)=2 y, t e\left(y_{i}\right)=2 y_{i}$.

Proof. By 5.3.7 in [6], $t(x)=2 y, t\left(x_{i}\right)=2 y_{i}$ and $t\left(x_{2 i, j}\right)=\alpha^{i} y_{2 j}$. On the other hand $\chi\left(M_{2 i+1, j}\right)=0$ and $\chi\left(M_{2 i+1, j}^{\mathbf{Z}_{2}}\right)=0$ so $x_{2 i+1, j}=\left[M_{2 i+1, j}\right]=0$ in $S K_{*}^{\mathbf{Z}_{2}}$. This implies that $t\left(x_{2 i+1, j}\right)=0$. On the extension map, $e(y)=x$ and $e\left(y_{i}\right)=x_{i}$ are trivial. Therefore we have (1) and (2).

References

[1] Atiyah M.F. and Macdonald I.G., Introducton to commutative algebra. AddisonWesley, London, 1969.
[2] Dieck T. tom, Transformation groups and representation theory. Springer Lec. Notes 766, Springer-Verlag, Berlin, 1979.
[3] Dold A., Lectures on Algebraic Topology. Springer, 1980.
[4] Karras U., Kreck M., Neumann W.D. and Ossa E., Cutting and Pasting of Manifolds; SK-Groups. Mathematics Lecture series 1, Publish or Perish, Inc., Boston, 1973.
[5] Koshikawa H., On the homomorphism between the equivariant SK ring and the Burnside ring for involution. Hokkaido Math. J. 14 (1985), 169-174.
[6] Kosniowski C., Actions of finite abelian groups. Research Notes in Mathematics 18, Pitman, London, 1978.
[7] Wall C.T.C., Determination of the cobordism ring. Annals of Math. 72 (1960), 292311.

Tamio Hara
Department of Mathematics
Faculty of Science and Technology
Science University of Tokyo
Noda, Chiba 278-0022, Japan
Hiroaki Koshikawa
Department of Mathematics
Faculty of Education
Chiba University
Chiba 263-0022, Japan
E-mail: koshikaw@math.e.chiba-u.ac.jp

[^0]: 1991 Mathematics Subject Classification : 57S17.

