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Norm estimates for function starlike or convex
of order alpha

Shinji YAMASHITA
(Received November 14, 1997)

Abstract. For holomorphic functions f with {\rm Re}\{zf’(z)/f(z)\}>\alpha and {\rm Re}\{zf’(z)/f’(z)\}

>\alpha-1 , (0\leq\alpha<1) , respectively, in \{|z|<1\} , estimates of \sup_{|z|<1}(1-|z|^{2})|f’(z)/f’(z)|

are given. Functions Gelfer-close-t0-convex of exponential order (\alpha, \beta) will also be con-
sidered.

Key words: starlike and convex of order \alpha ; Gelfer-starlike, Gelfer-convex, and Gelfer-
close-t0-convex; Schwarz’s and Schwarz-Pick’s inequalities.

1. Introduction

Sharp upper estimates of the norm

||f||= \sup_{z||<1}(1-|z|^{2})|\frac{f’(z)}{f’(z)}|

are given for f holomorphic in D=\{z;|z|<1\} under additional conditions.
Throughout the present paper, by f we always mean a function hol0-

morphic in D with the Taylor expansion

f(z)=z+a_{2}z^{2}+a_{3}z^{3}+\cdot (1.1)

If f is univalent in D , then ||f||\leq 6 and ||k||=6 for the Koebe function
k(z)=z/(1-z)^{2} . Conversely if ||f||\leq 1 , then f is univalent in D ; see [B ,
p. 36, Korollar 4.1]. A necessary and sufficient condition for ||f||<+\infty is
that there exists a constant \rho , 0<\rho\leq 1 , such that f is univalent in each
Appolonius disk,

\{w;|\frac{w-z}{1-\overline{z}w}|<\rho\} , z\in D ;

see [Yl, Y2]. The set of all f with finite ||f|| is a nonseparable Banach space
with the norm || || under the Hornich operation; see [Yl, Theorem 1].

For a constant \alpha , 0\leq\alpha<1 , the set S^{*}(\alpha) consists of all f such that
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zf’(z)/f(z) is pole-free and

{\rm Re} \frac{zf’(z)}{f(z)}>\alpha

in D , whereas, the set C(\alpha) consists of all f such that zf’(z)/f’(z) is pole-
free and

{\rm Re} \frac{zf’(z)}{f(z)},>\alpha-1

in D . Each function of S^{*}(\alpha) is called starlike of order \alpha and that of
C(\alpha) is called convex of order \alpha . Each f\in S^{*}(\alpha) is univalent in D , and,
in particular, the image f(D) of D is starlike with respect to the origin
0, whereas, each f\in C(\alpha) is univalent in D , and, in particular, f(D) is
convex. As typical examples we consider

\Phi(z)=\frac{z}{(1-z)^{2(1-\alpha)}} , and,

\Psi(z)=\{

\frac{1-(1-z)^{2\alpha-1}}{2\alpha-1} , \alpha\neq\frac{1}{2} ,

\log\frac{1}{1-z} , \alpha=\frac{1}{2} ,

for which

\frac{z\Phi’(z)}{\Phi(z)}=\frac{z\Psi’(z)}{\Psi(z)},+1=\frac{1+(1-2\alpha)z}{1-z} .

Then \Phi\in S^{*}(\alpha) and \Psi\in C(\alpha) . An Alexander-type criterion can easily
be proved: f\in C(\alpha) if and only if h(z)\equiv zf’(z)\in S^{*}(\alpha) . Consequently,
h’(0)=2f’(0) . In particular, \Phi(z)=z\Psi’(z) in D .

It is well known that both \Phi and \Psi are extremal in the following esti-
mate of a_{2} . For each f\in S^{*}(\alpha) we have |a_{2}|\leq 2(1-\alpha) and the equality
|a_{2}|=2(1-\alpha) holds if and only if

f(z)\equiv\overline{\mu}\Phi(\mu z) , (1.2)

where \mu is a unimodular constant, that is, \mu is complex with |\mu|^{2}=\mu\overline{\mu}=1 .
On the other hand, for each f\in C(\alpha) we have |a_{2}|\leq 1-\alpha and the equality
|a_{2}|=1-\alpha holds if and only if

f(z)\equiv\overline{\mu}\Psi(\mu z) (1.3)
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for a unimodular constant \mu . The Alexander-type criterion shows that the
C(\alpha) case follows from the S^{*}(\alpha) case and vice versa. See, for example,
[Go, I , p. 138 et seq.} for reference of these facts, where S^{*}(\alpha)=ST(\alpha) and
C(\alpha)=CV(\alpha) . These familiar estimates of |a_{2}| for S^{*}(\alpha) and C(\alpha) will be
observed again in the proofs of the following Theorems 1 and 2.

We begin with the C(\alpha) case.

Theorem 1 The following two propositions hold for 0\leq\alpha<1 .
(I) Suppose that f\in C(\alpha) . Then, ||f||=4(1-\alpha) if and only if f is

of the form (1.3).
(II) If f\in C(\alpha) is not of the form (1.3), then

||f|| \leq 4(1-\alpha)\frac{B+A+1}{B-A+3} , (1.4)

which reflects personality of f, where

0 \leq A=\frac{|a_{2}|}{1-\alpha}<1 , and (1.8)

0 \leq B=\frac{|(3-3\alpha)a_{3}+(2\alpha-3)a_{2}^{2}|}{(1-\alpha)(1-\alpha-|a_{2}|)}\leq 1+A<2 , (1.6)

so that

\frac{1}{3}\leq\frac{B+A+1}{B-A+3}\leq\frac{1+A}{2}<1 .

The S^{*}(\alpha) case is not an immediate consequence of Theorem 1.

Theorem 2 The following two propositions hold for 0\leq\alpha<1 .
(III) Suppose that f\in S^{*}(\alpha) . Then,

||f||=4(1-\alpha)+2=6-4\alpha

if and only if f is of the form (1.2).
(IV) If f\in S^{*}(\alpha) is not of the form (1.2), t/ien

||f|| \leq 4(1-\alpha),\frac{B’+A’+1}{B-A’+3}+2 , (1.7)

which reflects personality of f, where

0 \leq A’=\frac{|a_{2}|}{2(1-\alpha)}<1 , and (1.8)
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0 \leq B’=\frac{|(4-4\alpha)a_{3}+(2\alpha-3)a_{2}^{2}|}{2(1-\alpha)(2(1-\alpha)-|a_{2}|)}\leq 1+A’<2 , (1.9)

so that

\frac{1}{3}\leq,\frac{B’+A’+1}{B-A’+3}\leq\frac{1+A’}{2}<1 .

Theorems 1 and 2 claim roughly that ||f||\leq 4(1-\alpha) for f\in C(\alpha) and
||f||\leq 6-4\alpha for f\in S^{*}(\alpha) , respectively. These norm inequalities themselves
are actually obtained under far general settings which will be clarified in
Theorem 3 in Section 3 in terms of Gelfer functions. See Remark (ii) in
Section 3.

S. Yamashita expresses his sincere thanks to Nobuyuki Suita and
Toshiyuki Sugawa for nice conversation.

2. Proof of Theorem 1

The function

F(z) \equiv F_{\alpha}(z)=\frac{1+(1-2\alpha)z}{1-z} (2.1)

is univalent in D satisfying the identities

F’(0)=2(1-\alpha) , F’(0)=4(1-\alpha) , and

F(D)=\{z;{\rm Re} z>\alpha\} .

For f\in C(\alpha) we set

g(z)= \frac{zf’(z)}{f(z)},+1 , z\in D .

Then the composed function

\phi\equiv F^{-1}\circ g : D-arrow D ,

first g and then the inverse of F, is holomorphic with \phi(0)=0 and g=Fo\phi

in D ; in short, g is subordinate to F . Since

g’(0)=2a_{2} and g’(0)=12a_{3}-8a_{2}^{2} ,
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it follows that

\phi’(0)=\frac{a_{2}}{1-\alpha} and

\phi’(0)=\frac{2}{(1-\alpha)^{2}}((3-3\alpha)a_{3}+(2\alpha-3)a_{2}^{2}) (2.2)

In particular, the Schwarz lemma for \phi shows that

A= \frac{|a_{2}|}{1-\alpha}=|\phi’(0)|\leq 1

and further A=1 if and only if

\phi(z)\equiv\mu z (2.3)

for a unimodular constant \mu , or f is of the form (1.3). On the other hand,
it follows from g=Fo\phi that

\frac{f’(z)}{f’(z)}=\frac{2(1-\alpha)\phi(z)}{z(1-\phi(z))} (2.4)

in D .
For the proof of (II), we remark that \phi is not of the form (2.3). It then

follows from [Y5, p. 313, (6.8^{**}a) ] that

|\phi(z)|\leq|z|Q(|z|) , z\in D , (2.5)

where

Q(x)= \frac{x^{2}+Bx+A}{Ax^{2}+Bx+1} , 0\leq x\leq 1 .

Here,

B= \frac{|\phi’(0)|}{2(1-|\phi(0)|)},

which, together with (2.2), yields the expression of B in terms of a_{2} and a3.
With the aid of the Schwarz-Pick inequality at 0 applied to \chi(z)=\phi(z)/z ,
where |\chi|<1 , we furthermore observe that

\frac{B}{1+|\phi’(0)|}=\frac{|\chi’(0)|}{1-|\chi(0)|^{2}}\leq 1 .
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Hence

B \leq 1+A=1+\frac{|a_{2}|}{1-\alpha}<2

by |\phi’(0)|=A<1 . Combining (2.4) and (2.5) one now has

(1-|z|^{2})| \frac{f’(z)}{f’(z)}|\leq 2(1-\alpha)\frac{(1-|z|^{2})Q(|z|)}{1-|z|Q(|z|)}=2(1-\alpha)G(|z|) ,

(2.6)

where

G(x)= \frac{(x+1)(x^{2}+Bx+A)}{x^{2}+(B-A+1)x+1} , 0\leq x\leq 1 .

To prove that

G(x) \leq G(1)=\frac{2(B+A+1)}{B-A+3} , 0\leq x\leq 1 , (2.7)

we let H(x) be the numerator of the derivative G’(x) . Then,

H(0)=(1-A)B+A^{2}\geq 0 , H’(0)=2(B-A+1)>0 ,

H’(0)=2(B^{2}+(1-A)B+2(2-A))>0 ,

and, furthermore,

H’(x)=12(2x+B-A+1)>0 for 0\leq x\leq 1 .

Hence H(x)\geq 0 or G(x) is nondecreasing in 0\leq x\leq 1 , which shows (2.7).
Combining (2.6) with (2.7) one finally has (1.4).

Since (II) has been proved, we have only to prove that

||f||=4(1-\alpha) (2.8)

for f of the form (1.3). Since

z \frac{f’(z)}{f’(z)}+1=\mu z\frac{\Psi’(\mu z)}{\Psi’(\mu z)}+1=F(\mu z) ,

it follows that

(1-|z|^{2})| \frac{f’(z)}{f(z)},|=2(1-\alpha)\frac{1-|z|^{2}}{|1-\mu z|}\leq 4(1-\alpha) .
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Since (1-|z|^{2})| \frac{f’(z)}{f(z)},|=2(1-\alpha)(1+x) for z=\overline{\mu}x , 0<x<1 , tends to
4(1-\alpha) as xarrow 1-0 we finally have (2.8).

Correction: There is a misprint in the line 3 of [Y5, p. 313]; the qu0-
then

\frac{|f’(0)|}{2(1-|f(0)|)},

in min [ , ] there should be

\frac{|f’(0)|}{2(\acute{1}-|f(0)|^{2})}, .

3. Gelfer function

A function g holomorphic in D is called a Gelfer (or Gel’fer) function
if g(0)=1 and g(z)+g(w)\neq 0 for all z , w\in D , possibly, z=w. Let \mathcal{G} be
the set of all Gelfer functions. Thus, if g(0)=1 , then g\in \mathcal{G} if and only if
the image g(D)\subset C of D by g in the complex plane C and the set

-g(D)=\{-w;w\in g(D)\}

are mutually disjoint: g(D)\cap(-g(D))=\emptyset . For example, F_{\alpha} of (2.1),
0\leq\alpha<1 , is in \mathcal{G} ; in particular, \lambda\equiv F_{0}\in \mathcal{G} plays important roles in the
study of \mathcal{G} . Note that F_{\alpha}=(1-\alpha)\lambda+\alpha . See [Ge] and [Go, II , p. 73 et
seq.] for reference of Gelfer functions.

Among many properties of Gelfer functions we shall make use of the
following (3.1) and (3.2) for g\in \mathcal{G} . The first is the estimate

| \frac{g’(z)}{g(z)}|\leq\frac{\lambda’(|z|)}{\lambda(|z|)}=\frac{2}{1-|z|^{2}} , z\in D ; (3.1)

see [Y3, p. 247, (G6)]. Actually, for each Bieberbach-Eilenberg function h
[Go, II , p. 73] one has

|h’(z)| \leq\frac{|1-h(z)^{2}|}{1-|z|^{2}}

for all z\in D ; see [Go, II , p. 82, Exercise 49] and [Ge, p. 35, Theorem 2].
Since h=(g-1)/(g+1) is a Bieberbach-Eilenberg function, one immediately
has (3.1). Since each g\in \mathcal{G} is zer0-free, the function g^{\alpha}(\alpha\geq 0) which
assumes 1 at 0 is single-valued and holomorphic in D . With the aid of (3.1)
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one can prove that

|g(z)^{\alpha}-1|\leq\lambda(|z|)^{\alpha}-1 (3.2)

for g\in \mathcal{G} , \alpha\geq 0 , and z\in D ; see [Y3, p. 255, Lemma 5.1]. For real \alpha ,
-\infty<\alpha<+\infty , and for \beta\geq 0 we let C_{G}(\alpha, \beta) be the set of all f such that
there exists a function g\in \mathcal{G} depending on f with

\frac{zf’(z)}{f(z)},+1=(1-\alpha)g(z)^{\beta}+\alpha

in D . For real \alpha and for \beta\geq 0 we let S_{G}^{*}(\alpha, \beta) be the set of all f such that
there exists a function g\in \mathcal{G} depending on f with

\frac{zf’(z)}{f(z)}=(1-\alpha)g(z)^{\beta}+\alpha

in D . An Alexander-type criterion is valid: f\in C_{G}(\alpha, \beta) if and only if
zf’(z)\in S_{G}^{*}(\alpha, \beta) . Furthermore,

C_{G}(1, \beta)=C_{G}(\alpha, 0)=S_{G}^{*}(1, \beta)=S_{G}^{*}(\alpha, 0)=\{z\} .

An exercise is to prove that, for 0\leq\alpha<1 ,

S^{*}(\alpha)\subset S_{G}^{*}(\alpha, 1) and C(\alpha)\subset C_{G}(\alpha, 1) .

For three real parameters, \alpha , \beta , and \gamma with \beta\geq 0 and \gamma\geq 0 we let
K_{G}(\alpha, \beta, \gamma) be the set of all f such that there exist h\in C_{G}(\alpha, \beta) and g\in \mathcal{G}

both depending on f and satisfying

\frac{f’}{h’}=g^{\gamma} (3.3)

in D . It is obvious that C_{G}(\alpha, \beta)\subset K_{G}(\alpha, \beta, 0) . Hence C(\alpha)\subset K_{G}(\alpha, 1,0) .
One can further prove that

S^{*}(\alpha)\subset K_{G}(\alpha, 1,1) (0\leq\alpha<1) . (3.4)

For f\in S^{*}(\alpha) one can find a holomorphic \phi : Darrow D with \phi(0)=0 such
that zf’(z)/f(z)=F_{\alpha}(\phi(z)) in D . On the other hand, we have h\in C(\alpha)\subset

C_{G}(\alpha, 1) satisfying f(z)=zh’(z) in D . Since F_{\alpha}o\phi=f’/h’ is Gelfer we now
observe that f\in K_{G}(\alpha, 1,1) . It is easy to prove that S_{G}^{*}(0,1)\subset K_{G}(0,1,1) .
However, it is open to prove whether or not S_{G}^{*}(\alpha, 1)\subset K_{G}(\alpha, 1,1) for
0<\alpha<1 ; see Remark (i) at the end of the present Section.
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For 0\leq\alpha\leq 1 , let \nu(\alpha)=0 for 0\leq\alpha<1 and \nu(1)=4 . Then for
0\leq\alpha\leq 1 , the function

\Lambda(x)\equiv\Lambda_{\alpha}(x)=\{

2\alpha , x=0,

\frac{1-x^{2}}{x}[(\frac{1+x}{1-x})^{\alpha}-1] , 0<x<1 ,

\nu(\alpha) x=1 ,

is continuous for 0\leq x\leq 1 , so that

0 \leq x\leq 1\max\Lambda(x)=M(\alpha)\geq 0

exists; M(0)=0, M(1)=4, and M(\alpha)>0 for 0<\alpha<1 . Further property
of M(\alpha) will be given in Section 5.

Theorem 3 Let -\infty<\alpha<+\infty , 0\leq\beta\leq 1 , and \gamma\geq 0 . Then for
f\in K_{G}(\alpha, \beta, \gamma) we have

||f||\leq|1-\alpha|M(\beta)+2\gamma . (3.5)

There exists an f\in K_{G}(\alpha, \beta, \gamma) /or which the equality holds in (3.5).

Proof. For f satisfying (3.3) one has

\frac{f’}{f’}=\frac{h’}{h’}+\gamma\frac{g’}{g} (3.6)

On the other hand, there exists g_{0}\in \mathcal{G} such that

\frac{zh’(z)}{h(z)},+1=(1-\alpha)g_{0}(z)^{\beta}+\alpha

in D . Recalling (3.2) for the present g_{0} , \alpha being replaced with \beta , we now
have

(1-|z|^{2})| \frac{h’(z)}{h’(z)}|\leq|1-\alpha|\Lambda_{\beta}(|z|) . (3.7)

Recalling (3.1) for the present g and observing (3.1), (3.6), and (3.7) one
now has (3.5).

For the equality, suppose first that \alpha\leq 1 . Let h\in C_{G}(\alpha, \beta) satisfy

\frac{zh’(z)}{h(z)},+1=(1-\alpha)\lambda(z)^{\beta}+\alpha (3.8)
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in D , and let f\in K_{G}(\alpha, \beta, \gamma) satisfy the identity f’/h’=\lambda^{\gamma} in D . Then

(1-x^{2}) \frac{f’(x)}{f(x)},=(1-\alpha)\Lambda_{\beta}(x)+2\gamma (0\leq x<1) ,

so that ||f||=(1-\alpha)M(\beta)+2\gamma . In the case \alpha>1 we recall that 1/\lambda\in \mathcal{G} .
Let h\in C_{G}(\alpha, \beta) satisfy (3.8) and let f\in K_{G}(\alpha, \beta, \gamma) , this time, satisfy the
identity f’/h’=\lambda^{-\gamma} in D . Then

(1-x^{2})| \frac{f’(x)}{f(x)},|=(\alpha-1)\Lambda_{\beta}(x)+2\gamma (0\leq x<1) ,

so that ||f||=(\alpha-1)M(\beta)+2\gamma . \square

Remark (i) One might suspect that (1-\alpha)g^{\beta}+\alpha\in \mathcal{G} for real \alpha , for \beta\geq 0 ,
and for g\in \mathcal{G} . This is not always true. First, for each fixed \beta>0 we observe
that h\equiv(1-\alpha)\lambda^{\beta}+\alpha\not\in \mathcal{G} for all \alpha>1 . Actually, there exists z_{o}\in D such
that

\lambda(z_{o})=(\frac{\alpha+1}{\alpha-1})^{1/\beta}

Hence h(z_{o})+h(0)=0 , so that h\not\in \mathcal{G} . Next, for each fixed \alpha\neq 1 , we have
h\equiv(1-\alpha)\lambda^{\beta}+\alpha\not\in \mathcal{G} for all \beta>1 . Actually, in case \alpha<0 or \alpha>1 , the
set h(D) contains 0. Hence h\not\in \mathcal{G} . In case 0\leq\alpha<1 we set \beta’=\min(\beta, \frac{3}{2}) .
The set h(D) then contains two points,

\pm(\epsilon-\alpha\tan\frac{\pi\beta’}{2})i (\epsilon>0) ,

so that h\not\in \mathcal{G} . It is plausible that (1-\alpha)g+\alpha\in \mathcal{G} if g\in \mathcal{G} and 0<\alpha<1 ,
but we have no answer for its validity.

Remark (ii) It follows from Theorem 3 that ||f||\leq 4(1-\alpha) for f\in
K_{G}(\alpha, 1,0) and ||f||\leq 6-4\alpha for f\in K_{G}(\alpha, 1,1) , assuming \alpha\leq 1 in
both cases. Hence it follows from the inclusion formula C(\alpha)\subset K_{G}(\alpha, 1,0)

that ||f||\leq 4(1-\alpha) for f\in C(\alpha) , 0\leq\alpha<1 . Furthermore, it follows from
(3.4) that ||f||\leq 6-4\alpha for f\in S^{*}(\alpha) , 0\leq\alpha<1 .

4. Proof of Theorem 2

For the proof of Theorem 2 we need much more analysis.

Proof of (IV). There exists h\in C(\alpha) such that f(z)=zh’(z) in D .
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Since f is not of the form (1.2), h is not of the form (1.3). There exists a
holomorphic \phi : Darrow D with \phi(0)=0 such that

g(z) \equiv F_{\alpha}o\phi(z)=\frac{zf’(z)}{f(z)}=,\frac{f’(z)}{h(z)}

in D . Hence, in view of

\frac{f’}{f}, = \frac{h’}{h}, + \frac{g’}{g}

and (3.1), one now has

||f||\leq||h||+2 . (4.1)

We can now apply (II) of Theorem 1 to

h(z)=z+ \frac{a_{2}}{2}z^{2}+\frac{a_{3}}{3}z^{3}+ , . .

Then, A and B for h are A’ and B’ for f, respectively. Consequently, (1.4)
for h , together with (4.1), shows (1.7).

We complete the proof of Theorem 2 by showing that ||f||=4(1-\alpha)+2

for f of (1.2). Since

\frac{f’(z)}{f’(z)}=\frac{2(1-\alpha)\mu}{1-\mu z}+\frac{g’(z)}{g(z)} ,

where g(z)\equiv F_{\alpha}(\mu z) is in \mathcal{G} , it follows that ||f||\leq 4(1-\alpha)+2 . Furthermore,
letting x -1, 0<x<1 , in

(1-x^{2})| \frac{f’(\overline{\mu}x)}{f’(\overline{\mu}x)}|=2(1-\alpha)(1+x)(1+\frac{1}{1+(1-2\alpha)x})’.

we have ||f||=4(1-\alpha)+2 .

5. Gelfer-close-to-convex function

Elements of S_{G}^{*}(\alpha)\equiv S_{G}^{*}(0, \alpha) , C_{G}(\alpha)\equiv C_{G}(0, \alpha) , and K_{G}(\alpha, \beta)\equiv

K_{G}(0, \alpha, \beta) for \alpha\geq 0 and \beta\geq 0 , are called Gelfer-starlike of exponential
order \alpha , Gelfer-convex of exponential order \alpha , and Gelfer-close-t0-convex
of exponential order (\alpha, \beta) , respectively. These sets are introduced and
investigated in [Y3] and [Y4]. In particular,

S^{*}(0)\subset S_{G}^{*}(1) , C(0)\subset C_{G}(1) ,
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C_{G}(\alpha)=K_{G}(\alpha, 0) , and S_{G}^{*}(\alpha)\subset K_{G}(\alpha, \alpha) .

If zf’(z)/f(z) is zer0- and pole-free and

| \arg\frac{zf’(z)}{f(z)}|<\frac{\pi\alpha}{2} (\alpha>0) (5.1)

in D , then f\in S_{G}^{*}(\alpha) , whereas, if zf’(z)/f’(z)+1 is zer0- and pole-free
and

| \arg(\frac{zf’(z)}{f(z)},+1)|<\frac{\pi\alpha}{2} (\alpha>0) (5.2)

in D , then f\in C_{G}(\alpha) .
If f\in S_{G}^{*}(\alpha) for 0\leq\alpha\leq 1 , then f\in K_{G}(\alpha, \alpha) , so that Theorem 3

shows the estimate

||f||\leq M(\alpha)+2\alpha . (5.3)

The extremal function is obvious. In particular, if f satisfies (5.1) in D
for 0<\alpha\leq 1 , then (5.3) holds because f\in S_{G}^{*}(\alpha) . T. Sugawa [S , The-
orem 1.1] independently obtained (5.3) for the specified f satisfying (5.1)
in D . Although his description on M(\alpha) has some overlaps with ours, we
here include some detailed properties of M(\alpha) for the sake of the readers’
convenience, for example,

2\alpha<M(\alpha)<2\alpha(\alpha+1)(<4\alpha) (5.4)

for 0<\alpha<1 , the priority of which belongs to Sugawa [S].
It might be difficult to express M(\alpha) explicitly in terms of \alpha for 0<

\alpha<1 . However, we can prove that

M( \alpha)=\frac{4\alpha p}{(1-\alpha)p^{2}+1+\alpha} , (5.5)

where p=p(\alpha) is the unique real root of the equation:

(\alpha-1)y^{\alpha+2}-(\alpha+1)y^{\alpha}+y^{2}+1=0 for y>1 .

Sugawa [S] independently obtained (5.5) and the priority is due to him. For
the proof of (5.5) we set

\cup--(y)=\{

2\alpha , y=1 ,

\frac{4y(y^{\alpha}-1)}{y^{2}-1} , 1<y<+\infty .
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Then

\Lambda(x)=\cup--(y) for y= \frac{1+x}{1-x}, 0\leq x<1 .

For 1\leq y<+\infty , we set

T(y)=(\alpha-1)y^{\alpha+2}-(\alpha+1)y^{\alpha}+y^{2}+1 .

Then the numerator of_{-}^{-\prime}-(y)/4 is T(y) for 1<y<+\infty .
Since T’(y)<0 for 1\leq y<+\infty , T’(1)=2\alpha^{2} , and T’(y) -arrow-\infty as

y – +\infty , there is only one y_{1}>1 such that T’(y_{1})=0 . Since T’(1)=0
and T’(y) - -\infty as yarrow+\infty , there is only one y_{2}>1 such that T’(y_{2})=0 .
Finally, since T(1)=0 and T(y) -arrow-\infty as yarrow+\infty , there is only one p>1
such that T(p)=0 . Note that 1<y_{1}<y_{2}<p .

Consequently, \cup-- attains its maximum for 1\leq y<+\infty at the point
p>1 . By eliminating p^{\alpha} in M(\alpha)=--(-p) with the aid of T(p)=0 , one
now has (5.5).

For the proof of M(\alpha)<2\alpha(\alpha+1) in (5.4) for 0<\alpha<1 we observe
the original form—(p)=M(\alpha) . Set

V(y)=y^{\alpha+12}-ky-y+k

for 1\leq y<+\infty , where k= \frac{1}{2}\alpha(\alpha+1) for the present \alpha , 0<\alpha<1 . Since

V’(y)=\alpha(\alpha+1)y^{\alpha-1}-2k\leq V’(1)=0 ,

and since V’(1)=-\alpha^{2}<0 , it follows that V’(y)<0 . Hence V decreases
from V(1)=0 to -\infty as y increases from 1 to +\infty . Therefore V(y)<0
for 1<y<+\infty . In particular, V(p)<0 , and this shows that M(\alpha)<

2\alpha(\alpha+1) .
There is another set C(\alpha, \beta) of functions described below. For \alpha , \beta

with 0\leq\alpha<1 and 0\leq\beta<1 , we let C(\alpha, \beta) be the set of all f such that
there exist a real constant \gamma and a function h\in C(\beta) both depending on f
such that

{\rm Re} \frac{e^{i\gamma}f’}{h},>\alpha

in D. We actually have

C(\alpha, \beta)= \cup CC_{\delta}(\alpha, \beta)

\delta , real
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in the notation of [Go, II , p. 89]. Each f\in C(\alpha, \beta) is called close-t0-convex
of order (\alpha, \beta) and, in particular, each member of K\equiv C(0,0)(K=CC

in [Go, II , p. 2] ) is simply called close-t0-convex. Set H=e^{i\gamma}f’/h’ and
\phi=F_{\alpha}^{-1}\circ H . Then f’/h’=e^{-i\gamma}F_{\alpha}\circ\phi is in \mathcal{G} because f’(0)/h’(0)=1 .
Since h\in C(\beta)\subset C_{G}(\beta, 1) , it follows that C(\alpha, \beta)\subset K_{G}(\beta, 1,1) . Note that
the inclusion formula S^{*}(\alpha)\subset C(\alpha, \alpha) can be proved with the aid of the
Alexander-type criterion for S^{*}(\alpha) and C(\alpha) , 0\leq\alpha<1 . We again have
(3.4).

It is now an exercise to prove that ||f||\leq 4(1-\beta)+2 for f\in C(\alpha, \beta) ;
the equality is attained by f satisfying the equation

f’(z)= \frac{1+(1-2\alpha)z}{(1-z)^{3-2\beta}}

in D .
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