Norm estimates for function starlike or convex of order alpha

Shinji Yamashita

(Received November 14, 1997)

Abstract

For holomorphic functions f with $\operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>\alpha$ and $\operatorname{Re}\left\{z f^{\prime \prime}(z) / f^{\prime}(z)\right\}$ $>\alpha-1,(0 \leq \alpha<1)$, respectively, in $\{|z|<1\}$, estimates of $\sup _{|z|<1}\left(1-|z|^{2}\right)\left|f^{\prime \prime}(z) / f^{\prime}(z)\right|$ are given. Functions Gelfer-close-to-convex of exponential order (α, β) will also be considered.

Key words: starlike and convex of order α; Gelfer-starlike, Gelfer-convex, and Gelfer-close-to-convex; Schwarz's and Schwarz-Pick's inequalities.

1. Introduction

Sharp upper estimates of the norm

$$
\|f\|=\sup _{|z|<1}\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|
$$

are given for f holomorphic in $D=\{z ;|z|<1\}$ under additional conditions.
Throughout the present paper, by f we always mean a function holomorphic in D with the Taylor expansion

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots . \tag{1.1}
\end{equation*}
$$

If f is univalent in D, then $\|f\| \leq 6$ and $\|k\|=6$ for the Koebe function $k(z)=z /(1-z)^{2}$. Conversely if $\|f\| \leq 1$, then f is univalent in D; see $[\mathrm{B}$, p. 36, Korollar 4.1]. A necessary and sufficient condition for $\|f\|<+\infty$ is that there exists a constant $\rho, 0<\rho \leq 1$, such that f is univalent in each Appolonius disk,

$$
\left\{w ;\left|\frac{w-z}{1-\bar{z} w}\right|<\rho\right\}, \quad z \in D ;
$$

see [Y1, Y2]. The set of all f with finite $\|f\|$ is a nonseparable Banach space with the norm $\|\cdot\|$ under the Hornich operation; see [Y1, Theorem 1].

For a constant $\alpha, 0 \leq \alpha<1$, the set $S^{*}(\alpha)$ consists of all f such that

[^0]$z f^{\prime}(z) / f(z)$ is pole-free and
$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\alpha
$$
in D, whereas, the set $C(\alpha)$ consists of all f such that $z f^{\prime \prime}(z) / f^{\prime}(z)$ is polefree and
$$
\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>\alpha-1
$$
in D. Each function of $S^{*}(\alpha)$ is called starlike of order α and that of $C(\alpha)$ is called convex of order α. Each $f \in S^{*}(\alpha)$ is univalent in D, and, in particular, the image $f(D)$ of D is starlike with respect to the origin 0 , whereas, each $f \in C(\alpha)$ is univalent in D, and, in particular, $f(D)$ is convex. As typical examples we consider
\[

$$
\begin{aligned}
& \Phi(z)=\frac{z}{(1-z)^{2(1-\alpha)}}, \quad \text { and }, \\
& \Psi(z)=\left\{\begin{array}{cl}
\frac{1-(1-z)^{2 \alpha-1}}{2 \alpha-1}, & \alpha \neq \frac{1}{2} \\
\log \frac{1}{1-z} & , \quad \alpha=\frac{1}{2}
\end{array}\right.
\end{aligned}
$$
\]

for which

$$
\frac{z \Phi^{\prime}(z)}{\Phi(z)}=\frac{z \Psi^{\prime \prime}(z)}{\Psi^{\prime}(z)}+1=\frac{1+(1-2 \alpha) z}{1-z}
$$

Then $\Phi \in S^{*}(\alpha)$ and $\Psi \in C(\alpha)$. An Alexander-type criterion can easily be proved: $f \in C(\alpha)$ if and only if $h(z) \equiv z f^{\prime}(z) \in S^{*}(\alpha)$. Consequently, $h^{\prime \prime}(0)=2 f^{\prime \prime}(0)$. In particular, $\Phi(z)=z \Psi^{\prime}(z)$ in D.

It is well known that both Φ and Ψ are extremal in the following estimate of a_{2}. For each $f \in S^{*}(\alpha)$ we have $\left|a_{2}\right| \leq 2(1-\alpha)$ and the equality $\left|a_{2}\right|=2(1-\alpha)$ holds if and only if

$$
\begin{equation*}
f(z) \equiv \bar{\mu} \Phi(\mu z) \tag{1.2}
\end{equation*}
$$

where μ is a unimodular constant, that is, μ is complex with $|\mu|^{2}=\mu \bar{\mu}=1$. On the other hand, for each $f \in C(\alpha)$ we have $\left|a_{2}\right| \leq 1-\alpha$ and the equality $\left|a_{2}\right|=1-\alpha$ holds if and only if

$$
\begin{equation*}
f(z) \equiv \bar{\mu} \Psi(\mu z) \tag{1.3}
\end{equation*}
$$

for a unimodular constant μ. The Alexander-type criterion shows that the $C(\alpha)$ case follows from the $S^{*}(\alpha)$ case and vice versa. See, for example, [Go, I, p. 138 et seq.] for reference of these facts, where $S^{*}(\alpha)=S T(\alpha)$ and $C(\alpha)=C V(\alpha)$. These familiar estimates of $\left|a_{2}\right|$ for $S^{*}(\alpha)$ and $C(\alpha)$ will be observed again in the proofs of the following Theorems 1 and 2.

We begin with the $C(\alpha)$ case.
Theorem 1 The following two propositions hold for $0 \leq \alpha<1$.
(I) Suppose that $f \in C(\alpha)$. Then, $\|f\|=4(1-\alpha)$ if and only if f is of the form (1.3).
(II) If $f \in C(\alpha)$ is not of the form (1.3), then

$$
\begin{equation*}
\|f\| \leq 4(1-\alpha) \frac{B+A+1}{B-A+3} \tag{1.4}
\end{equation*}
$$

which reflects personality of f, where

$$
\begin{align*}
& 0 \leq A=\frac{\left|a_{2}\right|}{1-\alpha}<1, \quad \text { and } \tag{1.5}\\
& 0 \leq B=\frac{\left|(3-3 \alpha) a_{3}+(2 \alpha-3) a_{2}^{2}\right|}{(1-\alpha)\left(1-\alpha-\left|a_{2}\right|\right)} \leq 1+A<2 \tag{1.6}
\end{align*}
$$

so that

$$
\frac{1}{3} \leq \frac{B+A+1}{B-A+3} \leq \frac{1+A}{2}<1
$$

The $S^{*}(\alpha)$ case is not an immediate consequence of Theorem 1.
Theorem 2 The following two propositions hold for $0 \leq \alpha<1$.
(III) Suppose that $f \in S^{*}(\alpha)$. Then,

$$
\|f\|=4(1-\alpha)+2=6-4 \alpha
$$

if and only if f is of the form (1.2).
(IV) If $f \in S^{*}(\alpha)$ is not of the form (1.2), then

$$
\begin{equation*}
\|f\| \leq 4(1-\alpha) \frac{B^{\prime}+A^{\prime}+1}{B^{\prime}-A^{\prime}+3}+2 \tag{1.7}
\end{equation*}
$$

which reflects personality of f, where

$$
\begin{equation*}
0 \leq A^{\prime}=\frac{\left|a_{2}\right|}{2(1-\alpha)}<1, \quad \text { and } \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
0 \leq B^{\prime}=\frac{\left|(4-4 \alpha) a_{3}+(2 \alpha-3) a_{2}^{2}\right|}{2(1-\alpha)\left(2(1-\alpha)-\left|a_{2}\right|\right)} \leq 1+A^{\prime}<2 \tag{1.9}
\end{equation*}
$$

so that

$$
\frac{1}{3} \leq \frac{B^{\prime}+A^{\prime}+1}{B^{\prime}-A^{\prime}+3} \leq \frac{1+A^{\prime}}{2}<1
$$

Theorems 1 and 2 claim roughly that $\|f\| \leq 4(1-\alpha)$ for $f \in C(\alpha)$ and $\|f\| \leq 6-4 \alpha$ for $f \in S^{*}(\alpha)$, respectively. These norm inequalities themselves are actually obtained under far general settings which will be clarified in Theorem 3 in Section 3 in terms of Gelfer functions. See Remark (ii) in Section 3.
S. Yamashita expresses his sincere thanks to Nobuyuki Suita and Toshiyuki Sugawa for nice conversation.

2. Proof of Theorem 1

The function

$$
\begin{equation*}
F(z) \equiv F_{\alpha}(z)=\frac{1+(1-2 \alpha) z}{1-z} \tag{2.1}
\end{equation*}
$$

is univalent in D satisfying the identities

$$
\begin{aligned}
& F^{\prime}(0)=2(1-\alpha), \quad F^{\prime \prime}(0)=4(1-\alpha), \quad \text { and } \\
& F(D)=\{z ; \operatorname{Re} z>\alpha\}
\end{aligned}
$$

For $f \in C(\alpha)$ we set

$$
g(z)=\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1, \quad z \in D
$$

Then the composed function

$$
\phi \equiv F^{-1} \circ g: D \rightarrow D
$$

first g and then the inverse of F, is holomorphic with $\phi(0)=0$ and $g=F \circ \phi$ in D; in short, g is subordinate to F. Since

$$
g^{\prime}(0)=2 a_{2} \quad \text { and } \quad g^{\prime \prime}(0)=12 a_{3}-8 a_{2}^{2}
$$

it follows that

$$
\begin{align*}
\phi^{\prime}(0) & =\frac{a_{2}}{1-\alpha} \text { and } \\
\phi^{\prime \prime}(0) & =\frac{2}{(1-\alpha)^{2}}\left((3-3 \alpha) a_{3}+(2 \alpha-3) a_{2}^{2}\right) . \tag{2.2}
\end{align*}
$$

In particular, the Schwarz lemma for ϕ shows that

$$
A=\frac{\left|a_{2}\right|}{1-\alpha}=\left|\phi^{\prime}(0)\right| \leq 1
$$

and further $A=1$ if and only if

$$
\begin{equation*}
\phi(z) \equiv \mu z \tag{2.3}
\end{equation*}
$$

for a unimodular constant μ, or f is of the form (1.3). On the other hand, it follows from $g=F \circ \phi$ that

$$
\begin{equation*}
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{2(1-\alpha) \phi(z)}{z(1-\phi(z))} \tag{2.4}
\end{equation*}
$$

in D.
For the proof of (II), we remark that ϕ is not of the form (2.3). It then follows from [Y5, p. 313, (6.8**a)] that

$$
\begin{equation*}
|\phi(z)| \leq|z| Q(|z|), \quad z \in D \tag{2.5}
\end{equation*}
$$

where

$$
Q(x)=\frac{x^{2}+B x+A}{A x^{2}+B x+1}, \quad 0 \leq x \leq 1 .
$$

Here,

$$
B=\frac{\left|\phi^{\prime \prime}(0)\right|}{2\left(1-\left|\phi^{\prime}(0)\right|\right)}
$$

which, together with (2.2), yields the expression of B in terms of a_{2} and a_{3}. With the aid of the Schwarz-Pick inequality at 0 applied to $\chi(z)=\phi(z) / z$, where $|\chi|<1$, we furthermore observe that

$$
\frac{B}{1+\left|\phi^{\prime}(0)\right|}=\frac{\left|\chi^{\prime}(0)\right|}{1-|\chi(0)|^{2}} \leq 1 .
$$

Hence

$$
B \leq 1+A=1+\frac{\left|a_{2}\right|}{1-\alpha}<2
$$

by $\left|\phi^{\prime}(0)\right|=A<1$. Combining (2.4) and (2.5) one now has

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 2(1-\alpha) \frac{\left(1-|z|^{2}\right) Q(|z|)}{1-|z| Q(|z|)}=2(1-\alpha) G(|z|) \tag{2.6}
\end{equation*}
$$

where

$$
G(x)=\frac{(x+1)\left(x^{2}+B x+A\right)}{x^{2}+(B-A+1) x+1}, \quad 0 \leq x \leq 1
$$

To prove that

$$
\begin{equation*}
G(x) \leq G(1)=\frac{2(B+A+1)}{B-A+3}, \quad 0 \leq x \leq 1 \tag{2.7}
\end{equation*}
$$

we let $H(x)$ be the numerator of the derivative $G^{\prime}(x)$. Then,

$$
\begin{aligned}
& H(0)=(1-A) B+A^{2} \geq 0, \quad H^{\prime}(0)=2(B-A+1)>0 \\
& H^{\prime \prime}(0)=2\left(B^{2}+(1-A) B+2(2-A)\right)>0
\end{aligned}
$$

and, furthermore,

$$
H^{\prime \prime \prime}(x)=12(2 x+B-A+1)>0 \quad \text { for } \quad 0 \leq x \leq 1
$$

Hence $H(x) \geq 0$ or $G(x)$ is nondecreasing in $0 \leq x \leq 1$, which shows (2.7). Combining (2.6) with (2.7) one finally has (1.4).

Since (II) has been proved, we have only to prove that

$$
\begin{equation*}
\|f\|=4(1-\alpha) \tag{2.8}
\end{equation*}
$$

for f of the form (1.3). Since

$$
z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+1=\mu z \frac{\Psi^{\prime \prime}(\mu z)}{\Psi^{\prime}(\mu z)}+1=F(\mu z)
$$

it follows that

$$
\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=2(1-\alpha) \frac{1-|z|^{2}}{|1-\mu z|} \leq 4(1-\alpha)
$$

Since $\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=2(1-\alpha)(1+x)$ for $z=\bar{\mu} x, 0<x<1$, tends to $4(1-\alpha)$ as $x \rightarrow 1-0$ we finally have (2.8).

Correction: There is a misprint in the line 3 of [Y5, p. 313]; the quotient

$$
\frac{\left|f^{\prime \prime}(0)\right|}{2\left(1-\left|f^{\prime}(0)\right|\right)}
$$

in $\min [\cdot, \cdot]$ there should be

$$
\frac{\left|f^{\prime \prime}(0)\right|}{2\left(1-\left|f^{\prime}(0)\right|^{2}\right)}
$$

3. Gelfer function

A function g holomorphic in D is called a Gelfer (or Gel'fer) function if $g(0)=1$ and $g(z)+g(w) \neq 0$ for all $z, w \in D$, possibly, $z=w$. Let \mathcal{G} be the set of all Gelfer functions. Thus, if $g(0)=1$, then $g \in \mathcal{G}$ if and only if the image $g(D) \subset \mathbf{C}$ of D by g in the complex plane \mathbf{C} and the set

$$
-g(D)=\{-w ; w \in g(D)\}
$$

are mutually disjoint: $g(D) \cap(-g(D))=\emptyset$. For example, F_{α} of (2.1), $0 \leq \alpha<1$, is in \mathcal{G}; in particular, $\lambda \equiv F_{0} \in \mathcal{G}$ plays important roles in the study of \mathcal{G}. Note that $F_{\alpha}=(1-\alpha) \lambda+\alpha$. See [Ge] and [Go, II, p. 73 et seq.] for reference of Gelfer functions.

Among many properties of Gelfer functions we shall make use of the following (3.1) and (3.2) for $g \in \mathcal{G}$. The first is the estimate

$$
\begin{equation*}
\left|\frac{g^{\prime}(z)}{g(z)}\right| \leq \frac{\lambda^{\prime}(|z|)}{\lambda(|z|)}=\frac{2}{1-|z|^{2}}, \quad z \in D \tag{3.1}
\end{equation*}
$$

see [Y3, p. 247, (G6)]. Actually, for each Bieberbach-Eilenberg function h [Go, II, p. 73] one has

$$
\left|h^{\prime}(z)\right| \leq \frac{\left|1-h(z)^{2}\right|}{1-|z|^{2}}
$$

for all $z \in D$; see [Go, II, p. 82, Exercise 49] and [Ge, p. 35, Theorem 2]. Since $h=(g-1) /(g+1)$ is a Bieberbach-Eilenberg function, one immediately has (3.1). Since each $g \in \mathcal{G}$ is zero-free, the function $g^{\alpha}(\alpha \geq 0)$ which assumes 1 at 0 is single-valued and holomorphic in D. With the aid of (3.1)
one can prove that

$$
\begin{equation*}
\left|g(z)^{\alpha}-1\right| \leq \lambda(|z|)^{\alpha}-1 \tag{3.2}
\end{equation*}
$$

for $g \in \mathcal{G}, \alpha \geq 0$, and $z \in D$; see [Y3, p. 255, Lemma 5.1]. For real α, $-\infty<\alpha<+\infty$, and for $\beta \geq 0$ we let $C_{G}(\alpha, \beta)$ be the set of all f such that there exists a function $g \in \mathcal{G}$ depending on f with

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1=(1-\alpha) g(z)^{\beta}+\alpha
$$

in D. For real α and for $\beta \geq 0$ we let $S_{G}^{*}(\alpha, \beta)$ be the set of all f such that there exists a function $g \in \mathcal{G}$ depending on f with

$$
\frac{z f^{\prime}(z)}{f(z)}=(1-\alpha) g(z)^{\beta}+\alpha
$$

in D. An Alexander-type criterion is valid: $f \in C_{G}(\alpha, \beta)$ if and only if $z f^{\prime}(z) \in S_{G}^{*}(\alpha, \beta)$. Furthermore,

$$
C_{G}(1, \beta)=C_{G}(\alpha, 0)=S_{G}^{*}(1, \beta)=S_{G}^{*}(\alpha, 0)=\{z\} .
$$

An exercise is to prove that, for $0 \leq \alpha<1$,

$$
S^{*}(\alpha) \subset S_{G}^{*}(\alpha, 1) \quad \text { and } \quad C(\alpha) \subset C_{G}(\alpha, 1)
$$

For three real parameters, α, β, and γ with $\beta \geq 0$ and $\gamma \geq 0$ we let $K_{G}(\alpha, \beta, \gamma)$ be the set of all f such that there exist $h \in C_{G}(\alpha, \beta)$ and $g \in \mathcal{G}$ both depending on f and satisfying

$$
\begin{equation*}
\frac{f^{\prime}}{h^{\prime}}=g^{\gamma} \tag{3.3}
\end{equation*}
$$

in D. It is obvious that $C_{G}(\alpha, \beta) \subset K_{G}(\alpha, \beta, 0)$. Hence $C(\alpha) \subset K_{G}(\alpha, 1,0)$. One can further prove that

$$
\begin{equation*}
S^{*}(\alpha) \subset K_{G}(\alpha, 1,1) \quad(0 \leq \alpha<1) \tag{3.4}
\end{equation*}
$$

For $f \in S^{*}(\alpha)$ one can find a holomorphic $\phi: D \rightarrow D$ with $\phi(0)=0$ such that $z f^{\prime}(z) / f(z)=F_{\alpha}(\phi(z))$ in D. On the other hand, we have $h \in C(\alpha) \subset$ $C_{G}(\alpha, 1)$ satisfying $f(z)=z h^{\prime}(z)$ in D. Since $F_{\alpha} \circ \phi=f^{\prime} / h^{\prime}$ is Gelfer we now observe that $f \in K_{G}(\alpha, 1,1)$. It is easy to prove that $S_{G}^{*}(0,1) \subset K_{G}(0,1,1)$. However, it is open to prove whether or not $S_{G}^{*}(\alpha, 1) \subset K_{G}(\alpha, 1,1)$ for $0<\alpha<1$; see Remark (i) at the end of the present Section.

For $0 \leq \alpha \leq 1$, let $\nu(\alpha)=0$ for $0 \leq \alpha<1$ and $\nu(1)=4$. Then for $0 \leq \alpha \leq 1$, the function

$$
\Lambda(x) \equiv \Lambda_{\alpha}(x)=\left\{\begin{array}{cl}
2 \alpha & x=0 \\
\frac{1-x^{2}}{x}\left[\left(\frac{1+x}{1-x}\right)^{\alpha}-1\right], & 0<x<1 \\
\nu(\alpha) & x=1
\end{array}\right.
$$

is continuous for $0 \leq x \leq 1$, so that

$$
\max _{0 \leq x \leq 1} \Lambda(x)=M(\alpha) \geq 0
$$

exists; $M(0)=0, M(1)=4$, and $M(\alpha)>0$ for $0<\alpha<1$. Further property of $M(\alpha)$ will be given in Section 5 .

Theorem 3 Let $-\infty<\alpha<+\infty, 0 \leq \beta \leq 1$, and $\gamma \geq 0$. Then for $f \in K_{G}(\alpha, \beta, \gamma)$ we have

$$
\begin{equation*}
\|f\| \leq|1-\alpha| M(\beta)+2 \gamma \tag{3.5}
\end{equation*}
$$

There exists an $f \in K_{G}(\alpha, \beta, \gamma)$ for which the equality holds in (3.5).
Proof. For f satisfying (3.3) one has

$$
\begin{equation*}
\frac{f^{\prime \prime}}{f^{\prime}}=\frac{h^{\prime \prime}}{h^{\prime}}+\gamma \frac{g^{\prime}}{g} . \tag{3.6}
\end{equation*}
$$

On the other hand, there exists $g_{o} \in \mathcal{G}$ such that

$$
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}+1=(1-\alpha) g_{o}(z)^{\beta}+\alpha
$$

in D. Recalling (3.2) for the present g_{o}, α being replaced with β, we now have

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq|1-\alpha| \Lambda_{\beta}(|z|) \tag{3.7}
\end{equation*}
$$

Recalling (3.1) for the present g and observing (3.1), (3.6), and (3.7) one now has (3.5).

For the equality, suppose first that $\alpha \leq 1$. Let $h \in C_{G}(\alpha, \beta)$ satisfy

$$
\begin{equation*}
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}+1=(1-\alpha) \lambda(z)^{\beta}+\alpha \tag{3.8}
\end{equation*}
$$

in D, and let $f \in K_{G}(\alpha, \beta, \gamma)$ satisfy the identity $f^{\prime} / h^{\prime}=\lambda^{\gamma}$ in D. Then

$$
\left(1-x^{2}\right) \frac{f^{\prime \prime}(x)}{f^{\prime}(x)}=(1-\alpha) \Lambda_{\beta}(x)+2 \gamma \quad(0 \leq x<1)
$$

so that $\|f\|=(1-\alpha) M(\beta)+2 \gamma$. In the case $\alpha>1$ we recall that $1 / \lambda \in \mathcal{G}$. Let $h \in C_{G}(\alpha, \beta)$ satisfy (3.8) and let $f \in K_{G}(\alpha, \beta, \gamma)$, this time, satisfy the identity $f^{\prime} / h^{\prime}=\lambda^{-\gamma}$ in D. Then

$$
\left(1-x^{2}\right)\left|\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\right|=(\alpha-1) \Lambda_{\beta}(x)+2 \gamma \quad(0 \leq x<1)
$$

so that $\|f\|=(\alpha-1) M(\beta)+2 \gamma$.
Remark (i) One might suspect that $(1-\alpha) g^{\beta}+\alpha \in \mathcal{G}$ for real α, for $\beta \geq 0$, and for $g \in \mathcal{G}$. This is not always true. First, for each fixed $\beta>0$ we observe that $h \equiv(1-\alpha) \lambda^{\beta}+\alpha \notin \mathcal{G}$ for all $\alpha>1$. Actually, there exists $z_{o} \in D$ such that

$$
\lambda\left(z_{o}\right)=\left(\frac{\alpha+1}{\alpha-1}\right)^{1 / \beta}
$$

Hence $h\left(z_{o}\right)+h(0)=0$, so that $h \notin \mathcal{G}$. Next, for each fixed $\alpha \neq 1$, we have $h \equiv(1-\alpha) \lambda^{\beta}+\alpha \notin \mathcal{G}$ for all $\beta>1$. Actually, in case $\alpha<0$ or $\alpha>1$, the set $h(D)$ contains 0 . Hence $h \notin \mathcal{G}$. In case $0 \leq \alpha<1$ we set $\beta^{\prime}=\min \left(\beta, \frac{3}{2}\right)$. The set $h(D)$ then contains two points,

$$
\pm\left(\epsilon-\alpha \tan \frac{\pi \beta^{\prime}}{2}\right) i \quad(\epsilon>0)
$$

so that $h \notin \mathcal{G}$. It is plausible that $(1-\alpha) g+\alpha \in \mathcal{G}$ if $g \in \mathcal{G}$ and $0<\alpha<1$, but we have no answer for its validity.

Remark (ii) It follows from Theorem 3 that $\|f\| \leq 4(1-\alpha)$ for $f \in$ $K_{G}(\alpha, 1,0)$ and $\|f\| \leq 6-4 \alpha$ for $f \in K_{G}(\alpha, 1,1)$, assuming $\alpha \leq 1$ in both cases. Hence it follows from the inclusion formula $C(\alpha) \subset K_{G}(\alpha, 1,0)$ that $\|f\| \leq 4(1-\alpha)$ for $f \in C(\alpha), 0 \leq \alpha<1$. Furthermore, it follows from (3.4) that $\|f\| \leq 6-4 \alpha$ for $f \in S^{*}(\alpha), \quad 0 \leq \alpha<1$.

4. Proof of Theorem 2

For the proof of Theorem 2 we need much more analysis.
Proof of (IV). There exists $h \in C(\alpha)$ such that $f(z)=z h^{\prime}(z)$ in D.

Since f is not of the form (1.2), h is not of the form (1.3). There exists a holomorphic $\phi: D \rightarrow D$ with $\phi(0)=0$ such that

$$
g(z) \equiv F_{\alpha} \circ \phi(z)=\frac{z f^{\prime}(z)}{f(z)}=\frac{f^{\prime}(z)}{h^{\prime}(z)}
$$

in D. Hence, in view of

$$
\frac{f^{\prime \prime}}{f^{\prime}}=\frac{h^{\prime \prime}}{h^{\prime}}+\frac{g^{\prime}}{g}
$$

and (3.1), one now has

$$
\begin{equation*}
\|f\| \leq\|h\|+2 . \tag{4.1}
\end{equation*}
$$

We can now apply (II) of Theorem 1 to

$$
h(z)=z+\frac{a_{2}}{2} z^{2}+\frac{a_{3}}{3} z^{3}+\cdots .
$$

Then, A and B for h are A^{\prime} and B^{\prime} for f, respectively. Consequently, (1.4) for h, together with (4.1), shows (1.7).

We complete the proof of Theorem 2 by showing that $\|f\|=4(1-\alpha)+2$ for f of (1.2). Since

$$
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{2(1-\alpha) \mu}{1-\mu z}+\frac{g^{\prime}(z)}{g(z)},
$$

where $g(z) \equiv F_{\alpha}(\mu z)$ is in \mathcal{G}, it follows that $\|f\| \leq 4(1-\alpha)+2$. Furthermore, letting $x \rightarrow 1,0<x<1$, in

$$
\left(1-x^{2}\right)\left|\frac{f^{\prime \prime}(\bar{\mu} x)}{f^{\prime}(\bar{\mu} x)}\right|=2(1-\alpha)(1+x)\left(1+\frac{1}{1+(1-2 \alpha) x}\right),
$$

we have $\|f\|=4(1-\alpha)+2$.

5. Gelfer-close-to-convex function

Elements of $S_{G}^{*}(\alpha) \equiv S_{G}^{*}(0, \alpha), C_{G}(\alpha) \equiv C_{G}(0, \alpha)$, and $K_{G}(\alpha, \beta) \equiv$ $K_{G}(0, \alpha, \beta)$ for $\alpha \geq 0$ and $\beta \geq 0$, are called Gelfer-starlike of exponential order α, Gelfer-convex of exponential order α, and Gelfer-close-to-convex of exponential order (α, β), respectively. These sets are introduced and investigated in [Y3] and [Y4]. In particular,

$$
S^{*}(0) \subset S_{G}^{*}(1), \quad C(0) \subset C_{G}(1)
$$

$$
C_{G}(\alpha)=K_{G}(\alpha, 0), \quad \text { and } \quad S_{G}^{*}(\alpha) \subset K_{G}(\alpha, \alpha) .
$$

If $z f^{\prime}(z) / f(z)$ is zero- and pole-free and

$$
\begin{equation*}
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi \alpha}{2} \quad(\alpha>0) \tag{5.1}
\end{equation*}
$$

in D, then $f \in S_{G}^{*}(\alpha)$, whereas, if $z f^{\prime \prime}(z) / f^{\prime}(z)+1$ is zero- and pole-free and

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right|<\frac{\pi \alpha}{2} \quad(\alpha>0) \tag{5.2}
\end{equation*}
$$

in D, then $f \in C_{G}(\alpha)$.
If $f \in S_{G}^{*}(\alpha)$ for $0 \leq \alpha \leq 1$, then $f \in K_{G}(\alpha, \alpha)$, so that Theorem 3 shows the estimate

$$
\begin{equation*}
\|f\| \leq M(\alpha)+2 \alpha \tag{5.3}
\end{equation*}
$$

The extremal function is obvious. In particular, if f satisfies (5.1) in D for $0<\alpha \leq 1$, then (5.3) holds because $f \in S_{G}^{*}(\alpha)$. T. Sugawa [S, Theorem 1.1] independently obtained (5.3) for the specified f satisfying (5.1) in D. Although his description on $M(\alpha)$ has some overlaps with ours, we here include some detailed properties of $M(\alpha)$ for the sake of the readers' convenience, for example,

$$
\begin{equation*}
2 \alpha<M(\alpha)<2 \alpha(\alpha+1)(<4 \alpha) \tag{5.4}
\end{equation*}
$$

for $0<\alpha<1$, the priority of which belongs to Sugawa [S].
It might be difficult to express $M(\alpha)$ explicitly in terms of α for $0<$ $\alpha<1$. However, we can prove that

$$
\begin{equation*}
M(\alpha)=\frac{4 \alpha p}{(1-\alpha) p^{2}+1+\alpha}, \tag{5.5}
\end{equation*}
$$

where $p=p(\alpha)$ is the unique real root of the equation:

$$
(\alpha-1) y^{\alpha+2}-(\alpha+1) y^{\alpha}+y^{2}+1=0 \quad \text { for } y>1 .
$$

Sugawa [S] independently obtained (5.5) and the priority is due to him. For the proof of (5.5) we set

$$
\Xi(y)=\left\{\begin{array}{cl}
2 \alpha, & y=1 \\
\frac{4 y\left(y^{\alpha}-1\right)}{y^{2}-1}, & 1<y<+\infty
\end{array}\right.
$$

Then

$$
\Lambda(x)=\Xi(y) \quad \text { for } \quad y=\frac{1+x}{1-x}, \quad 0 \leq x<1
$$

For $1 \leq y<+\infty$, we set

$$
T(y)=(\alpha-1) y^{\alpha+2}-(\alpha+1) y^{\alpha}+y^{2}+1 .
$$

Then the numerator of $\Xi^{\prime}(y) / 4$ is $T(y)$ for $1<y<+\infty$.
Since $T^{\prime \prime \prime}(y)<0$ for $1 \leq y<+\infty, T^{\prime \prime}(1)=2 \alpha^{2}$, and $T^{\prime \prime}(y) \rightarrow-\infty$ as $y \rightarrow+\infty$, there is only one $y_{1}>1$ such that $T^{\prime \prime}\left(y_{1}\right)=0$. Since $T^{\prime}(1)=0$ and $T^{\prime}(y) \rightarrow-\infty$ as $y \rightarrow+\infty$, there is only one $y_{2}>1$ such that $T^{\prime}\left(y_{2}\right)=0$. Finally, since $T(1)=0$ and $T(y) \rightarrow-\infty$ as $y \rightarrow+\infty$, there is only one $p>1$ such that $T(p)=0$. Note that $1<y_{1}<y_{2}<p$.

Consequently, Ξ attains its maximum for $1 \leq y<+\infty$ at the point $p>1$. By eliminating p^{α} in $M(\alpha)=\Xi(p)$ with the aid of $T(p)=0$, one now has (5.5).

For the proof of $M(\alpha)<2 \alpha(\alpha+1)$ in (5.4) for $0<\alpha<1$ we observe the original form $\Xi(p)=M(\alpha)$. Set

$$
V(y)=y^{\alpha+1}-k y^{2}-y+k
$$

for $1 \leq y<+\infty$, where $k=\frac{1}{2} \alpha(\alpha+1)$ for the present $\alpha, 0<\alpha<1$. Since

$$
V^{\prime \prime}(y)=\alpha(\alpha+1) y^{\alpha-1}-2 k \leq V^{\prime \prime}(1)=0,
$$

and since $V^{\prime}(1)=-\alpha^{2}<0$, it follows that $V^{\prime}(y)<0$. Hence V decreases from $V(1)=0$ to $-\infty$ as y increases from 1 to $+\infty$. Therefore $V(y)<0$ for $1<y<+\infty$. In particular, $V(p)<0$, and this shows that $M(\alpha)<$ $2 \alpha(\alpha+1)$.

There is another set $C(\alpha, \beta)$ of functions described below. For α, β with $0 \leq \alpha<1$ and $0 \leq \beta<1$, we let $C(\alpha, \beta)$ be the set of all f such that there exist a real constant γ and a function $h \in C(\beta)$ both depending on f such that

$$
\operatorname{Re} \frac{e^{i \gamma} f^{\prime}}{h^{\prime}}>\alpha
$$

in D. We actually have

$$
C(\alpha, \beta)=\bigcup_{\delta, \text { real }} C C_{\delta}(\alpha, \beta)
$$

in the notation of [Go, II, p. 89]. Each $f \in C(\alpha, \beta)$ is called close-to-convex of order (α, β) and, in particular, each member of $K \equiv C(0,0)(K=C C$ in [Go, II, p. 2]) is simply called close-to-convex. Set $H=e^{i \gamma} f^{\prime} / h^{\prime}$ and $\phi=F_{\alpha}^{-1} \circ H$. Then $f^{\prime} / h^{\prime}=e^{-i \gamma} F_{\alpha} \circ \phi$ is in \mathcal{G} because $f^{\prime}(0) / h^{\prime}(0)=1$. Since $h \in C(\beta) \subset C_{G}(\beta, 1)$, it follows that $C(\alpha, \beta) \subset K_{G}(\beta, 1,1)$. Note that the inclusion formula $S^{*}(\alpha) \subset C(\alpha, \alpha)$ can be proved with the aid of the Alexander-type criterion for $S^{*}(\alpha)$ and $C(\alpha), 0 \leq \alpha<1$. We again have (3.4).

It is now an exercise to prove that $\|f\| \leq 4(1-\beta)+2$ for $f \in C(\alpha, \beta)$; the equality is attained by f satisfying the equation

$$
f^{\prime}(z)=\frac{1+(1-2 \alpha) z}{(1-z)^{3-2 \beta}}
$$

in D.

References

[B] J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen. J. Reine Angew. Math. 255 (1972), 23-43.
[Ge] S.A. Gelfer, On the class of regular functions, assuming no pair of values w and -w. (in Russian). Mat. Sbornik 19 (61) (1946), 33-46.
[Go] A.W. Goodman, Univalent Functions. I, II. Mariner Publ. Co., Tampa, Florida, 1983.
[S] T. Sugawa, On the norm of pre-Schwarzian derivatives of strongly starlike functions. Ann. Univ. Marie Curie-Sk. to appear.
[Y1] S. Yamashita, Banach spaces of locally schlicht functions with the Hornich operations. Manuscripta Math. 16 (1975), 261-275.
[Y2] S. Yamashita, Almost locally univalent functions. Monatsh. Math. 81 (1976), 235-240.
[Y3] S. Yamashita, Gelfer functions, integral means, bounded mean oscillation, and univalency. Trans. Amer. Math. Soc. 321 (1990), 245-259.
[Y4] S. Yamashita, Growth and coefficient estimates of functions relating to Gelfer functions. Math. Japonica 37 (1992), 213-219.
[Y5] S. Yamashita, The Pick version of the Schwarz lemma and comparison of the Poincaré densities. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 19 (1994), 291-322.

Department of Mathematics
Tokyo Metropolitan University Minami-Osawa, Hachioji
Tokyo 192-0397, Japan
E-mail: yamashin@comp.metro-u.ac.jp

[^0]: 1991 Mathematics Subject Classification : Primary 30C45; Secondary 30C80.

