
Hokkaido Mathematical Journal Vol. 28 (1999) p. 175-210

Dynamics of self-replicating patterns in the
one-dimensional Gray-Scott model
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Abstract. We study the self-replicating pattern (SRP) that is observed in the one-
dimensional Gray-Scott model from aglobal bifurcational view point. It is shown that
the existence of the hierarchy structure of the limiting points of stationary Turing patterns
causes SRP of static type as an aftereffect. The main difficulty lies in the fact that SRP is
areal transient phenomenon and it can not be captured as an invariant set in afunction
space. The aftereffect is the reflection of the fact that each element of hierarchy structure
is connected by unstable manifolds.

Key words: self-replicating pattern, reaction diffusion system, pulse solution, Turing
pattern, wave splitting, Bogdanov-Takens point.

1. Introduction

The following Gray-Scott model attracts much attention recently by its
variety of dynamics [1-8].

$\{$

$\frac{\partial u}{\partial t}=D_{u}\nabla^{2}u-uv^{2}+F(1-u)$

$\frac{\partial v}{\partial t}=D_{v}\nabla^{2}v+uv^{2}-(F+k)v$ .

(1)

Especially the self-replicating pattern depicted as in Figure 1.1 is one of
the intriguing dynamics. It starts from alocalized pulse and continues
to split until the domain is filled by them completely. Asimilar type of
replicating patterns has also been observed in adifferent model [12]. The
main difficulty lies in the fact that SRP is areal transient phenomenon
and it can not be captured as an invariant set in afunction space. A
new framework to understand such atransient behavior was proposed in
[12] called the aftereffect of hierarchy structure of limiting points (AHL),
however it is tough to show the existence of such aglobal structure even by
numerics. The goal of this paper is to show that firstly the mechanism AHL
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Fig. 1.1. Aself-replicating pattern in the 1-dimensional Gray-Scott
model (1) at $F=0.04,$ $k=0.06075$ . The diffusion coef-
ficients are $D_{u}=2\cross 10^{-5}$ and $D_{v}=10^{-5}$ respectively
and the system size is 1.6. The boundary conditions is of
Neumann type. The spatial mesh consisted of 1500 grid
points. The figure displays the space-time profile of $v$ .

proposed in [12] is really built in the Gray-Scott model, secondly there are
two different types of self-replicating pattern, namely SRP of propagating
type and of static type. In [12] the propagating type was discussed. We

mainly focus on SRP of static type in this paper, since the existence of the

hierarchy structure and the connection of unstable manifolds are clearly

demonstrated numerically for this case.
It is instructive to explain the simplest case of $AHL$ here as in Figure 1.2

where there exist only one limiting point of aTuring branch of 2-mode. Here

‘2-mode type’ means the Fourier-mode number of the associated eigenfunc-
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Fig. 1.2. Abasic mechanism for self-replication of static type.

tion at the bifurcation point. Suppose one takes aparameter value at $k=k1$

which is right after the saddle-node bifurcation where aTuring branch of
2-mode already disappear there, and starts with an initial data of pulse
shape which is close to astable 2-mode Taring pattern at $k=k2$ near the
limiting point. The pulse behaves like stationary solution for awhile, and
then jumps to aTuring branch of 4-mode(Figure 1.3). The replication oc-
curs exactly when the orbit leaves the area close to the limiting point in the
phase space. At $k=k2$ , there are three stationary solutions in Figure 1.2.
The unstable 2-mode Turing pattern $‘ k2-$

, has one unstable eigenvalue and
the associated unstable manifold is connected to the stable Turing branch
of 4-mode. At $k=k1$ the Turing patterns of 2-mode disappear through
the limiting point at $k=k*$ , however the vector field nearby change con-
tinuously, and hence the orbit is strongly influenced by the connection of
stable and unstable manifold mentioned above. Namely the 2-mode pattern
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Fig. 1.3. Splitting of l-pulse.

must split to 4-mode in this situation, if the initial profile is appropriately
chosen. Nevertheless the magnitude of the vector field near the limiting
point is very small, so the pattern stays there like astationary pattern for a
while. We call this phenomenon “aftereffect of alimiting point.” When the
system size becomes larger, many limiting points line up like Figure 3.2 with
similar connections above. We will show numerically that the Gray-Scott
model has such ahigh hierarchy structure when the system size is large.
We conclude therefore that the SRP is caused by AHL. The SRP of propa-
gating type is also observed in the Gray-Scott model when the parameter $F$

becomes smaller. We discuss about the relation between two kinds of SRP
in the last section.

All bifurcation diagrams in this paper were produced by AUTO [9].
AUTO is originally designed to $trace$ bifurcating branches of ordinary dif-
ferential equations. We discretized the PDE system (1) to finite, but large-
dimensional ODE system with fourth order discretization for diffusion
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terms. Then we apply AUTO to this finite dimensional ODE system. The
number of grid points in spatial direction is denoted by $N$ . Applying the
spatial discretization to the PDE system (1) with $N$ grid points, we have a
$2N$ dimensional ODE system. The horizontal axis of abifurcation diagram
(see, for instance, Figure 2.4) is the bifurcation parameter $k$ (see (3) for the
meaning of $k$ ) and the vertical axis represents anorm of the solution. We
use $l_{2}$ -norm, i.e. for $u\equiv$ $(u_{1}, . , u_{N})$ we let

$||u||=( \sum_{i=1}^{N}u_{i}^{2})\frac{1}{2}$

(2)

2. The Gray-Scott model

The chemical reaction $U+2Varrow 3V$ and $Varrow P$ in agel reactor can
be described by the following Gray-Scott model:

$\{$

$\frac{\partial u}{\partial t}=D_{u}\nabla^{2}u-uv^{2}+F(1-u)$

$\frac{\partial v}{\partial t}=D_{v}\nabla^{2}v+uv^{2}-(F+k)v$ ,
(3)

where $D_{u}$ and $D_{v}$ are diffusion constant for the chemical materials $U$ and
$V$ respectively. And $F$ represent the suppling rate of $U$ from outer reservoir
and $F+k$ represent the removal rate of $V$ from reaction field, and $P$ is an
inert product.

The corresponding kinetics of the Gray-Scott model is given

$\{$

$\frac{du}{dt}=-uv^{2}+F(1-u)$

$\frac{dv}{dt}=uv^{2}-(F+k)v$ .
(4)

The nullclines and the typical flows are drawn in Figure 2.1. The solid
curve represents the nullcline for $u$ and the dotted curve as well as horizontal
line constitutes that of $v$ . Intersections of those nullclines are equilibrium
points and they are represented by small disks. The black disk is astable
equilibrium, and white disk is an unstable one.

The trivial state $(u, v)=(1,0)$ always exists and is stable for all $k$ and
$F$ The phase diagram with respect to $(k, F)$ is drawn in Figure 2.2. When
$k$ is large, the system is mon0-stable (Figure 2.1 $O1$ ). All orbits approach



180 D. Ueyama

Fig. 2.1. The dynamics near the $BT$ point.

the trivial state $(1, 0)$ . The solid (resp. dotted) curve in Figure 2.2 shows
saddle-node (resp. Hopf) bifurcation points. These two curves collide each
other at $(k_{c}, F_{c})=( \frac{1}{16}, \frac{1}{16})$ , which is acodimension 2point called Bogdanov-
Takens type. Inside the region bounded by the solid line, there are three
equilibrium points. Above the dotted line and below the upper solid line,
the system is bi-stable.

Most interesting case occurs when $F$ is smaller than $F_{c}$ . When $k$ de-
creases for afixed $F(<F_{c})$ , two unstable equilibria appears via saddle-node
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Fig. 2.2. Aphase diagram of kinetics of Gray-Scott model (4).

bifurcation, then one of them changes from an unstable node to unstable
focus (Figure 2.1 $O2$ ), and eventually recovers its stability via Hopf bifurca-
tion. The Hopf bifurcation is of subcritical (resp. supercritical) type when
$F>(resp. <)F^{*}\approx 0.0116$ and the resulting periodic orbits are unstable
(Figure. 2.1 $O3$). For $F>F^{*}$ , the unstable periodic solution becomes larger
and larger when $k$ decreases, and becomes ahomoclinic orbit to the saddle
point at $k=k_{homo}$ (see the curve $‘ P$ ’in Figure 2.3), then disappears after
that (Figure 2.1 \copyright ).

Amagnified phase diagram around the BT bifurcation point is Fig-
ure 2.3. Dotted curve denoted as $‘ H$ ’represents Hopf bifurcation points
and solid curve denoted as $‘ L_{+}’$ and $‘ L_{-}’$ represent saddle-node bifurcation
points. The Hopf bifurcation points in this parameter range are subcritical,
so the unstable limit cycle exists in $O3$ region. The curve denoted as $‘ P$ ’

represents saddle-homoclinic bifurcation points. The bifurcation diagram
at $F=0.04$ with respect to $k$ is depicted Figure 2.4. The filled square
represents aHopf bifurcation point and white circles represent the unstable
periodic solutions and $‘ L_{-}’$ represents asaddle-node bifurcation point and
$‘ P$ ’represents asaddle-homoclinic bifurcation respectively.
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Fig. 2.3. Aphase diagram near the Bogdanov-Takens (BT) bifurcation
point. The numbers correspond to the flows in Figure 2.1. The
curve $‘ P$ ’represents the saddle-homoclinic bifurcation points.

Fig. 2.4. Abifurcation diagram of ODE kinetics (4) for at $F=0.04$ .
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3. Self-replicating patterns in the one dimensional Gray-Scott
model

3.1. Self-replicating patterns
In the previous paper [12], we presented ahidden structure for the SRP

of propagating type with different model. The hierarchy structure of the
limiting points of oscillatory branches (i.e., time periodic solutions of pulse
type) played aimportant role for self-replication dynamics. In this paper,
we focus on aSRP of static type that is caused by hierarchy structure
of limiting points of stationary branches. The advantage of this case is
that it is much more easier to $trace$ the stationary solution branches than
oscillatory ones as in [12].

The aim in this section is to show that the Gray-Scott model has the
following properties:

$\circ$ The limiting points of the stationary Turing branches line up at almost
the same parameter value.

$\circ$ The self-replicating pattern of static type occurs at the parameter value
near the limiting points where stable and unstable Turing branches
disappear through the saddle-node bifurcation.

$\circ$ An unstable Turing pattern near the limiting point has only one un-
stable real eigenvalue and the associated unstable manifold of lower
mode is connected to the stable Turing pattern of higher mode.

The third one is quite important in the sence that such aconnection between
alower mode Turing branch and ahigher mode constitutes the backbone
of the self-replication phenomenon, that is, if the connection does not exist,
the self-replication never occurs. In the next subsection, we will see the
details of the hierarchy structure and how it causes the SRP of static type.

3.2. Self-replication of static type
Various patterns were observed by direct numerical simulations of the

Gray-Scott model (3) in the 2dimensional domain where the diffusive pa-
rameters $D_{u}$ and $D_{v}$ are chosen as $D_{u}=2\cross 10^{-5}$ and $D_{v}=10^{-5}$ with
periodic boundary conditions [1]. In this paper, we study (3) on afinite
interval under Neumann boundary conditions with the same diflusive pa-
rameters as $D_{u}=2\cross 10^{-5}$ and $D_{v}=10^{-5}$ . Also we specify the value of
$F$ as $F=0.04$ . Then, there are two control parameters $k$ and $L$ where $L$
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Fig. 3.1. Aself-replicating pattern in the l-dimensional
Gray-Scott model $(F=0.04,$ $k=0.06075$ ,
$L=0.5,$ $N=500)$ . The graph is aspace-time
plot of $v$ .

is the system size of the PDE system, namely, it is equivalent to change
the diffusivity. In this parameter setting, we can observe the 1dimensional
SRP for asuitable $L$ and $k$ (Figure 3.1). Under the same parameter set-
ting, the bifurcation diagram of stationary solutions is given by Figure 3.2,
which contains the information of their stabilities. The dark lines are stable
stationary solutions and the light gray lines are unstable ones. We omit the
labels of the bifurcation points in Figure 3.2 for simplicity. Apparently the
existence of the hierarchy structure of limiting points of stationary branches
is observed, which lines up near the parameter value $k=0.0608$ . Alim-
iting point on the top of the diagram is alimiting point of 1-mode Turing
branch. Asecond one is alimiting point of 2-mode Turing branch and third
one is of 3-mode branch, etc. Here ‘1-mode type’ means the Fourier-mode
number of the associated eigenfunction at the bifurcation point. The value
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Fig. 3.2. Abifurcation diagram for $F=0.04,$ $L=0.5,$ $N=100$ .

of $k=0.06075$ that is used in the previous simulation (Figure 3.1) is very
close to the value where the limiting points of 1,2,3 and 4-mode Turing
branches line up. Notice that, there are no stable 1,2,3 and 4-mode Turing
branches in the solution space at $k=0.06075$ . For simplicity, we present
aschematic bifurcation diagram Figure 3.3. Suppose one take aparameter
value at $k=0.06075$ which is right after the limiting point where the 1,2,3
and 4-mode stationary solutions already disappear there, and starts with
an initial data of 2-mode Turing pattern which is taken from the stable Tur-
ing branch at $k=0.0609$ near the limiting point. It behave like a2-m0de
stationary pattern for awhile, and then jumps (splits) to a4-mode pattern.
The 4-mode pattern also behave like astationary pattern for awhile, and
then jumps (splits) to a6-mode pattern. The 6-mode Turing branch lies
bottom of the diagram and it is stable at this value of $k$ .
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Fig. 3.3. Aschematic bifurcation diagram at $L=0.5$ . Only the 2, 4
and 6-mode Turing branches are drawn here.

The different expression of this simulation result gives us aclear ex-
planation of the fact (Figure 3.4). The value of the norm where the first
plateau region denoted as $AE2$ , namely the aftereffect of the limiting point
of the 2-mode Turing branch, is about 8.8. This value coincides the value
of the limiting point of the 2-mode Turing branch in Figure 3.2 (see also
Figure 3.3). The value of the norm where the second plateau region, namely
the aftereffect of the limiting point of the 4-mode Turing branch denoted
as $AE4$ , is about 7.6. This value also coincides the value where the limiting
point of the 4-mode Turing branch exists. The norm value at $t=7500$

is 6.7, which perfectly coincides the value of the intersection point of the
stable 6-mode Turing branch at $k=0.06075$ in Figure 3.2.
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Fig. 3.4. Time-plot of the $l_{2}$-norm of the self-replicating orbit of
Figure 3.1. Avertical axis is ascaled $l_{2}$ norm.

The backbone structure for the SRP is the unstable manifold connect-
ing the lower mode Turing branch to the higher mode one. The unstable
Turing pattern at $‘ U$ ’in Figure 3.3 has the form like Figure 3.5 (a). It has
one unstable eigenvalue and the associated eigenfunction has aform like
Figure 3.5 (b). Namely the unstable manifold that connects to the stable 2-
mode Turing pattern and the stable 4-mode Turing pattern exists there (the
arrows denoted as $(\alpha)$ and $(\beta)$ in Figure 3.3). To confirm the existence of
such unstable manifold, we make asimulation experiment like Figure 3.6.
Along this unstable manifold in the direction of $(\beta)$ , the 2-mode pattern
must split to the 4-mode pattern. Namely the aftereffect of the limiting
point is the aftereffect of the unstable manifold that have been connected
to the higher mode Turing pattern before the limiting point.
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Fig. 3.5. (a): The unstable Turing pattern of 2-mode at $‘ U$’in Figure 3.3.
The dotted line represents the profile of $u$ and the solid line repre-
sents that of $v$ respectively.
(b): The form of the unstable eigenfunction corresponds to the un-
stable eigenvalue (black filled disk) in (c).
(c): The distribution of the eigenvalues. There is only one unstable
eigenvalue represented by black disk.

Note that if we choose the value of $k$ smaller than previous one, namely
alittle bit far away from limiting point, the aftereffect of the limiting points
becomes weak. Then, the 2-mode pattern split faster than before (Figure
3.7). Also note that the stable 6-mode Turing pattern and the stable 8-
mode Turing pattern coexist at both parameter settings (see Figure 3.2),
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$(\alpha)$ $(\beta)$

Fig. 3.6. Asimulation starting from the perturbed unstable 2-m0de
Turing pattern of Figure 3.5 (a) ($F=0.04,$ $k=$ 0.0609,
$L=0.5,$ $N=100)$ .
$(\alpha)$ :An addition of small negative multiple of unstable eigen-
form (Figure 3.5 (b)) to this unstable Turing pattern leads to
the stable 2-mode Turing pattern.
$(\beta)$ :The positive perturbation leads to the stable 4-mode Tur-
ing pattern. (see also Figure 3.3)
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Fig. 3.7. Aself-replicating pattern in
the 1-dimensional Gray-Scott
model $(F=0.04,$ $k=0.0605$ ,
$L=0.5,$ $N=500)$ .

therefore the slight difference of the initial data causes the different final
state generally. In fact, the final state was 6-mode Turing pattern in former
case and in latter case the orbit settles down to the 8-mode Turing pattern.
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Fig. 3.8. Abifurcation diagram for $F=0.04,$ $L=0.8,$ $N=150$ .

It is easy to imagine that the hierarchy structure becomes deeper with
the increase of the system size, and the duration of SRP process becomes
longer. In fact, the bifurcation diagram for $L=0.8$ is more complicated
than the previous one, but the hierarchy structure of the limiting points
becomes clear and deeper than before (Figure 3.8). The orbit starting from
the 2-mode pattern feels the aftereffect of the limiting point of the 2-m0de
branch for awhile, and jumps (splits) to nearby the limiting point of the 4-
mode branch. Finally, it touches down on the stable 8-mode Turing branch
(Figure 3.8 and 3.9). The detailed mechanism how the limiting points are
piled up will be discussed in the next section.
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Fig. 3.9. Aself-replicating pattern in the l-dimensional
Gray-Scott model $(F=0.04,$ $k=0.06075$ ,
$L=0.8,$ $N=750)$ .

4. The origin of ahierarchy structure of limiting points

In this section, we discuss about the origin of ahierarchy structure
of limiting points that causes the SRP dynamics. It turns out that global
bifurcational view point is quite useful to see how such astructure is formed.

–Stable stationary solutio $n$
$\square$ Bifurcation point $o$ Limiting point

Unstable stationary solution $\blacksquare$ Hopf bifurcation point

Fig. 4.1. Notation for bifurcation diagrams.
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We draw the bifurcation diagrams with respect to the parameter $kv.s$ .
solution space for agiven $L$ , and see how they deform when $L$ increases.
The notation in the bifurcation diagrams is as follows (Figure 4.1).

All the Figures 4.2\sim 4.5 contain two bifurcation diagrams; the left one
is an original bifurcation diagram produced by AUTO and the right one is
asimplified schematic picture. The value of norm and the value of $k$ are
accurate on the left one. The number of unstable eigenvalues of each branch
is indicated in schematic diagrams.

Fig. 4.2. Abifurcation diagram for $F=0.04,$ $L=0.03$ .
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4.1. Emergence of alimiting point of a1-mode Turing branch
For small $L$ , say $L=0.03$ , the bifurcation diagram is the same as that

of the ODE kinetics (Figure 4.2). That is, there appear limiting point $‘ LO$ ’

of equilibria and Hopf bifurcation point $‘ HO$ ’on the lower branch which
ends up with ahomoclinic orbit. The right figure also shows the number of
unstable eigenvalues for each branches. The ‘ $SO+$ ’branch has one unstable
eigenvalue for small $k$ and it loses astability through the limiting point ‘ $LO$ ’

Therefore, the $‘ SO-$
, branch has two unstable eigenvalues near the limiting

Fig. 4.3. Abifurcation diagram for $F=0.04,$ $L=0.038$ .
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Fig. 4.4. Abifurcation diagram for $F=0.04,$ $L=0.04$ .

point. When $k$ decreases, the $‘ SO-$
, branch recovers its stability through

the Hopf bifurcation $‘ HO$ ’.
When $L$ increases, aTuring branch of 1-mode type $‘ T1$ ’appears on the

upper branch ‘ $SO+$ ’(Figure 4.3). The Turing bifurcation points are labeled
as $‘ k1$ ’and $‘ k2$ ’respectively. At $L=0.038$ , $‘ T1$ ’has one positive eigenvalue
as in Figure 4.3, and the region on $‘ SO+$ ’between $‘ k1$ ’and $‘ k2$ ’has two
unstable eigenvalues. We are going to follow how $‘ T1$ ’recovers the stability
and how it will make alimiting point that forms apart of the structure for
alarge value of $L$ .
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Fig. 4.5. Abifurcation diagram for $F=0.04,$ $L=0.045$ .

When $L$ increases, the Turing branch $‘ T1$ ’overhangs and has alimiting
point $‘ L1$ ’on it (Figure 4.4). The region between $‘ L1$ ’and ‘ $k2$ ’on $‘ T1$ ’has
two unstable eigenvalues.

At the critical value of $L(L\approx 0.041)$ , $‘ k2$ ’passes the limiting point
$‘ LO$ ’and it moves down to the lower branch of equilibria ‘ $SO-$

, (Figure
4.5). Note that the Turing branch $‘ T1$ ’overhangs the limiting point $‘ LO’$ ,
therefore it persists over the parameter region where there are no nontrivial
constant states except the trivial state $(u, v)=(1,0)$ , namely mon0-stable
region.
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Fig. 4.6. Abifurcation diagram for $F=0.04,$ $L=0.0495$ .

Fig. 4.7. Abifurcation diagram for $F=0.04,$ $L=0.05$ .
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Fig. 4.8. Abifurcation diagram for $F=0.04,$ $L=0.06$ .

Fig. 4.9. Aftereffect of the limiting point $L2$ at $F=0.04,$ $L=0.06$ .
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Fig. 4.10. The aftereffect of limiting point of l-mode
Turing branch $(F=0.04,$ $k=0.0581,$ $L=$

$0.06$ , $N=250)$ .

At $L=0.0495$ , the Turing branch $‘ T1$ ’starts to deform and anew
limiting point $‘ L2$ ’appears on it. Therefore, $‘ T1$ ’has two limiting points at
this time (Figure 4.6).

At $L=0.05$ , apair of Hopf bifurcation points $‘ H1$ ’and $‘ H2$ ’appears on
$‘ T1$ ’. Due to the emergence of these two Hopf points, the branch between
$‘ H1$ ’and $‘ H2$ ’gains its stability as in Figure 4.7.

For further increase of $L$ , the Hopf bifurcation point $‘ H2$ ’moves toward
the limiting point $‘ L2$ ’and passes it depicted in Figure 4.8. At $L=0.06$ ,
the Hopf bifurcation point $‘ H2$ ’had gone over $‘ L2$ ’already. As aresult, one
of the components of the hierarchy structure of the limiting points, namely
the limiting point of the stable Turing pattern of 1-mode and the unstable
Turing pattern of 1-mode is constructed.
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Fig. 4.11. Time-plot of the $l_{2}$ -norm of the self-replicating orbit of
Figure 4.10. Avertical axis is ascaled $l_{2}$ norm.

Fig. 4.12. Emergence of aTuring branch of 2-m0de
$(F=0.04, L=0.077)$ .
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Here we check that the aftereffect of limiting point really occurs near
$‘ L2$ ’ Let $k=0.0581$ where all non-uniform stationary solutions already
disappear there, and take 1-mode Turing pattern at $k=0.0585$ as ainitial
data (Figure 4.9). In this case, the 1-mode pattern lasts about 2000 time
step, then jumps to the uniform trivial state (Figures 4.10 and 4.11).

4.2. Formation of the limiting points of Turing branch of higher
mode

At $L=0.077$ , the Turing branch of 2-mode $‘ T2$ ’appears (Figure 4.12).
It looks similar when the Turing branch of 1-mode $‘ T1$ ’appears at $L=0.038$

before (Figure 4.3). However, the number of unstable eigenvalues is different
each other, namely $‘ T2$ ’branch has one more unstable eigenvalue than $‘ T1$ ’

branch. Hence $‘ T2$ ’branch has to recover twice to get stability. It turns
out that the first recovery occurs due to the interaction between $‘ T1$ ’and
‘ $T2$ ’ branches.

At $L=0.09$ , the bifurcation point $‘ k4$ ’of $‘ T2$ ’passes the limiting point
$‘ LO$ ’like $‘ k2$ ’at $L=0.045$ (Figures 4.5 and 4.13).

Fig. 4.13. Abifurcation diagram for $F=0.04,$ $L=0.09$ .
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(a)

(b)

Fig. 4.14. Abifurcation diagram for $F=0.04,$ $L=0.11$ .
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When $L$ increases, the bifurcation points of $‘ T1$ ’and $‘ T2$ ’on $‘ SO-$
,

crosses each other and start to make arearrangement of branches. So far,
we ignore the difference of apair of solution of $‘ T2$ ’depicted in Figure 4.14,
which makes aloop in asolution space, although they are projected on the
same branch in Figure 4.14 (recall that there are no difference in $l_{2}$-norm).
However rearrangement of branches is not symmetric on these branches,
in fact $‘ T1$ ’is split into two parts and its upper part ends at $‘ P1$ ’which
is responsible for the first recovery of $‘ T2$ ’branch of type (a) (see Figure
4.14 (a) $)$ . The next recovery of stability on type (a) branch occurs exactly
the same way as $‘ T1$ ’branch as before as in Figure 4.14 (a). On the other
hand, the lower part of $‘ T1$ ’branch also becomes asecondary bifurcation
point at $‘ P3$ ’of $‘ T2$’of type (b) (Figure 4.14 (b)), however $‘ T2$ ’loses its
stability at $‘ P3$ ’and the number of unstable eigenvalues becomes 4this
time. Nevertheless $‘ T2$ ’recovers its stability completely by two times Hopf
bifurcations as in Figure 4.14 (b).

Fig. 4.15. Adetailed bifurcation diagram for $F=0.04,$ $L=0.11$ .
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Fig. 4.16. Replication from 1-mode to 2-m0de
$(F=0.04,$ $k=0.0605$ , $L=0.11$ ,
$N=375)$ .

The original bifurcation diagram for Figure 4.14 (a) is given by Figure
4.15. It can be observed that the splitting from 1-mode to 2-mode in this
diagram. Let us take $k=0.0605$ and an initial data from the stable part
of $‘ T1$ ’at $k=0.061$ . The orbit behaves as in Figures 4.16 and 4.17. The
unstable 1-mode Turing pattern at ‘ $U$ ’in Figure 4.15 has one positive eigen-
value and the corresponding eigenfunction has aform like Figure 4.18 (b).
It is confirmed numerically that the associated unstable manifold of $U$ is
connected to the stable $‘ T2$ ’pattern, which implies that the 1-mode patten
must split to the 2-mode pattern.
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Fig. 4.17. Time-plot of the $l_{2}$ -norm of the self-replicating orbit of
Figure 4.16. Avertical axis is ascaled $l_{2}$ norm.

When $L$ increases, Turing patterns of higher modes recover their stabil-
ities successively. Based on out careful dissection of the bifurcation diagram
at $L=0.5$ , we conjecture that general even mode Turing branch, say 2N-
mode, is able to recover the stabilities by $N$ times Hopf bifurcations like
Figure 4.19. Nevertheless, the origin of these Hopf bifurcation points has
been unknown.

5. Discussion

The Gray-Scott model displays avariety of dynamical patterns [1] and
aphase diagram starting from an initial data of one-pulse type is given by
Figure 5.1. Self-replicating patterns are observed in the region (c) which
is next to the standing (resp. oscillatory) pulse region (a) (resp. (c)). It
should be remarked that there are two types of SRP as in Figure 5.2: SRP
of static type, which is our main concern in this paper, is typically observed
near the boundary of the region (a), and SRP of oscillatory type similar to
the pattern in [12] is observed near that of (b). Notice that the asymptotic
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Fig. 4.18. (a): An unstable Turing pattern of 1-mode at $‘ U$’in Figure 4.15.
The dotted (resp. solid) line represents $u$ (resp. $v$ ).
(b): The form of the eigenfunction corresponds to the unstable
eigenvalue corresponding to the black disk in (c).
(c): The distribution of the eigenvalues.

state in (c) is astationary state if we run numerics for along time, since
SRP is atransient process from one-pulse to asteady state of Turing type.
The locations of $k$-values($k=0.06075$ and 0.0542) where the two types of
SRP are observed as in Figure 5.2 are very close to the boundary of (a) (or

(b) $)$ region. This strongly suggests that the limiting points of stationary (or
oscillatory) branches line up at those boundary points and there occurs an
aftereffect in the region (c) as well as the disappearance of stationary (or
oscillatory) branches.
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Fig. 4.19. Aschematic bifurcation diagram of Turing branch of $2N$-m0de.

The reasons why the limiting points of the stationary branches line up at
almost the same value of $k$ can be informally explained as follows. Suppose
that there exists astable 1-pulse stationary pattern with the interval $L$ ,
and the value of $k$ where the limiting point occurs is converge to the $k^{*}$

with increase of $Larrow\infty$ . Because of the boundary conditions are Neumann
type, there also exists astable $n$-pulses stationary pattern with the interval
$nL$ and astable 1-pulse one $co$-exists with the same interval. If the $L$ is
appropriately wide, the $n$-pulse pattern also has limiting point near the
$k=k^{*}$ , because one of the 1-pulse in the $n$-pulses sequence converges to the
single l-pulse shape with increase the interval $L$ . Hence it is plausible that
the $n$-pulses sequence also become unstable or ceases to exist near $k=k^{*}-$
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Fig. 5.1. Aphase diagram of the 1dimensional Gray-Scott model with the

diffusion coefficients $D_{u}=2\cross 10^{-5}$ and $D_{v}=10^{-5}$ respectively.
(a): Aregion where stable standing pulse solution exists.
(b): Aregion where stable oscillatory pulse solution exists.
(c): Aregion where the SRP is observed.
(d): Aregion where the other patterns are observed those include
the chaotic pattern.
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ta) $tb$ )

Fig. 5.2. Two types of self-replicating pattern in the l-dimensional
Gray-Scott model (3).
(a): Astatic type SRP at $F=0.04,$ $k=0.06075$ .
(b): Apropagating type SRP at $F=0.025,$ $k=0.0542$ .
Both simulations were done with the diffusion coefficients
$D_{u}=2\cross 10^{-5}$ and $D_{v}=10^{-5}$ respectively and the system
size was 0.5. The boundary conditions were Neumann.
The spatial mesh consisted of 500 grid points.
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