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Singularities of RP?-valued Gauss maps
of surfaces in Minkowski 3-space

Donghe PEI*
(Received November 21, 1997; Revised April 28, 1998)

Abstract. We define the notion of RP2-valued Gauss maps of surfaces in Minkowski
3-space and study the singularities of the these maps.

Key words: Minkowski 3-space, RP2-valued Gauss map, parabolic locus, light-like locus.

1. Introduction

In [1], D. Bleecker and L. Wilson studied the classification of singular-
ities and the stability of the Gauss map of a closed surface in Euclidean
3-space. In this paper, we study the same theme as in [1] for a closed sur-
face in Minkowski 3-space. Classically, for an oriented surface in Euclidean
3-space, the Gauss map sends each point on the surface to the unit normal,
so the value of Gauss map is in the unit sphere S2. In Minkowski 3-space,
there are three kinds of vectors named space-like, time-like and light-like.
In particular, the norm of a light-like vector is zero.

On the other hand, we can always determine the pseudo-normal vector
of the surface associated with the Minkowski metric. When the pseudo-
normal vector of the surface is light-like, we can not consider the unit vec-
tor along it. Because of this reason, the notion which is analogous to the
Euclidean Gauss map can only be defined at the points where the pseudo-
normal direction is not light-like. In order to avoid the above difficulty, we
consider RP?-valued Gauss maps.

Let R® = {(z1,29,73) | x1, 22,23 € R} be a 3-dimensional vector space,
x = (r1,22,23) and y = (y1,y2, y3) be two vectors in R3, the pseudo scalar
product of x and y is defined by (x,y) = —z1y1 + zoy2 + z3y3. (R3,(,)) is
called a 3-dimensional pseudo Euclidean space, or Minkowski 3-space. We
denote R;® as (R3,(, ). For any & = (z1,x9,73), y = (y1,92,y3) € R;®,
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the pseudo vector product of  and y is defined by

—€; €2 €3
TAYy = | Ty T2 I3
Y1 Y2 Y3

= (—(932313 - 333y2),-’1€3y1 — T1Y3,T1Y2 — $2y1)-

We say that x is pseudo perpendicular to y if (x,y) = 0. Clearly, we get
(xAy,z) = (xAy,y) =0, so that = A y is pseudo perpendicular to both of
x and y. Moreover,  in R, is called a space-like vector, a light-like vector
or a time-like vector if (x,x) > 0, (x,z) = 0or (x,x) < 0respectively. Let
a = (ay,a2,a3) be a point and n = (ny,n2,n3) a vector in R;3. Then the
equation (n,z—a) = 0 (i.e. —n1(z1 —a1)+n2(z2 —ag2) +ns3(x3—as) =0) of
the plane which passes through the point @ and is pseudo perpendicular to
the vector n is called an equation of the plane, where x = (z1, x9,z3) € R;3,
and m is called a pseudo normal vector of the plane. We also say that the
plane is time-like, light-like or space-like if the pseudo normal vector m
is space-like, light-like or time-like respectively. Let M be a compact 2-
dimensional manifold and f : M — R;3 be an immersion. We now define
amap N(f): M — RP? by

M 3z +— (Xy(z) A X ()R-

We call N(f) the RP?-valued Gauss map associated with the immersion
f. Here, X = X(u,v) is a local parametrization of f(M). By the previous
argument, X, (z) A X,(x) is the pseudo normal vector of the tangent plane
Tf(z)f(M). We can separate M into three parts as follows:

M7 = {z € M | Xu(z) A Xy(z) is time-like};
M) = {z € M| Xu(z) A Xo(z) is light-like};
M7 = {x € M| Xu(z) A X,(z) is space-like}.

We respectively call M,”, M,/ or M, a space-like part, a light-like part or
a time-like part. It is clear that M,”, M,/ are open submanifolds. We now
formulate the main result in this paper as follows:

Let M be a compact 2-dimensional manifold and I(M,R;?) the space of
C* immersions f : M — R;3 equipped with the Whitney C*°-topology.
For any f € I(M,R;3), the singular set of RP2-valued Gauss map N(f)
is called a parabolic set of f. Moreover, when g : N — P is a C*° map
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between two 2-dimensional manifolds, a point z € N is called a fold point
of g if there exist local coordinates (z1,x3) and (y1,¥s) in neighbourhoods
of z and g(z) respectively, such that y; 0 g = z; and ys 0 g = z5%. A point
x € N is called a cusp point of g if there exist local coordinates (z1,x9) and
(y1,y2) such that y; 0o g = z; and y, 0g = x93 + 2;29. Our main theorem is
as follows.

Theorem A There exists a dense set O C I(M,Ry3) such that the fol-

lowing conditions hold for any f € O.

(1) The parabolic set of f consists of reqular curves (called a parabolic
locus in M).

(2) The set of cusp points on parabolic locus of f is a finite set and other
points are fold points.

(3) The light-like part M’ is a union of reqular curves (called a light-like
locus in M).

(4)  The light-like locus and the parabolic locus in M intersect transversally,
the intersections consist of fold points of N(f).

(5) The set of points in M’ consisting of the points where the tangent line
of M/ is light-like is a set of isolated points.

(6) The set of points in the parabolic locus consisting of the points where
the tangent line of the parabolic locus is light-like is a set of isolated
points.

Remark. We can show that there exists an open dense set O C I(M, R,3)
such that N(f) is stable for any f € O. Nevertheless, we omit the proof.

In §2 we give the proof of [Theorem Al. The proof of the assertions (1)
(2) of Theorem A is given in [Proposition 2.3 which is exactly the same
arguments as that of Theorem 1.1 in Bleecker and Wilson [1]. Nevertheless,
we give the proof of these in this paper, because we need these arguments
for the proof of other parts of the theorem. The geometric meanings and
properties of the RP2-valued Gauss map will be discussed in §3. Especially,
Theorem A will be interpreted geometrically (cf., [Theorem 3.5). Some
examples will be given in §4.

All the manifolds and maps we consider in this paper are of class C™
unless otherwise specified.




100 D. Pei

2. Proof of Theorem A

Let M be a compact 2-dimensional manifold. For any f € I(M, R,%), we
have the RP%-valued Gauss map N(f) : M —s RP?. This correspondence

induces a map N : I(M,R;?) — C*°(M, RP?). Then we have the following
lemma.

Lemma 2.1 The map N : I(M, R;3) — C>®(M,RP?) is continuous,
where we also consider the Whitney C*-topology on C*°(M, RP?).

Proof.  Define I'(2,3) = {j*f(0) € J'(2,3) | rankJglo = 2}. For an
open set U C M, we also define INU,R?) = {jif(z) € J(U,R?) |
rank Jp(;) = 2}. Let up denote the partial derivative of a function u :
U —> R with respect to a coordinate z. We can choose (fz, fy)(0) =
(Ug, Ve, We, Uy, Uy, Wy )(0) as coordinates of jLF(0) € JY(2,3), where f =
(u,v,w). If j1£(0) € I*(2,3), then

v = (Ug, Ve, Wz) A (Uy, Vy, wy) 7 0

and 7 is pseudo normal to the image of f.
We now define a map p : I'(2,3) — RP? by

p(5£(0)) = (-
Then we can extend the map to the C> map on I'(M, R;3). In fact
I'(M,Ri%p,q) = I'(U,V3p,q)
= I'(p(U),$(V);0,0) = I' (R, Ry 0,0).

l.e.

& : INU,V;p,q = f(p)) — I'(o(U),%(V);0,0)
(' f(p)) = j* (o Fop 1)(0)

is an isomorphism, where (U, ¢) is a coordinate neighbourhood of M and
(V,%) a coordinate neighbourhood of R;%. The map

jl : I(M7R13) — COO(M,Il(M’R13))

is continuous by II 3.4 of [3], p« is continuous by II 3.5 of [3]. Thus px o
j1(f) = N(f) is also continuous. Therefore N(f) is continuous. O]

Since f : M — R,3 is an immersion, f(M) can be at least locally
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written as the graph of a function on a neighbourhood of each point. We can
distinguish three cases for the local representation as the graph of functions.

Case 1): When f(M) = {(z,y,F(z,y)) | (z,y) € R?}, we may write
f(z,y) = (z,y, F(z,y)). Let [x;n;¢] denote homogeneous coordinates on
RP?, then we have N(f)(x,y) = [Fy; —Fy;1]. Hence N(f)(z,y) = (Fy, —F)
in the affine coordinate neighbourhood (U, (X,Y")), where U; = {[x;n;¢] |

¢ # 0}, X = fand Y = ¢. If we consider the linear transformation

(X, Y) — (X, Y) then Ao N(f)(x,y) = (F, Fy) = grad F(z,y).

Case 2): When f(M) = {(z,F(z,2),2) | (z,2) € R?}, we may also write
f(z,2) = (z,F(x,2),z), so we have N(f)(z,2) = [~Fp;—1;F,]. By the
same arguments as in the Case 1), we have N(f)(z,z) = (F,,—F,) in
the affine coordinate neighbourhood (U, (X, Z)). Hence A o N (f)z,2) =

(Fi, F,) = grad F'(z, z) by the linear transformation (X, Z) -2 (X -7).

Case 3):  When f(M) = {(F(y,2),y,2) | (y,2) € R?}, we may also write
f(ya Z) = (F(ya Z)7y) Z)? then N(f)(y’ Z) - [_1;"’Fy;-FZ]‘ Hence
N(f)(y,2) = (Fy,F,) = grad F(y,z) in the affine coordinate neighbour-
hood (Uy, (Y, 2).

For each pair of manifolds M, N and nonincreasing, finite sequence
w = (41,%2,...,%) of nonnegative integers there is a fiber subbundle S*
of J*(M,N) called a Thom-Boardman singularity. Let S(f) = {z €
M | dim(ker T, f) = 41}, S"2(f) = {x € M | dim(ker T; f|gi1 () = i2}
(S“(f) = {z € M | j*f(z) € S*}), etc. then J3(R3 R2?) = S°|JS|JS2.
Here, S? = SOy Sbl gLl — §LLOJGLLL  Let J. denote (1,1,...,1)
k-times, then we have codim §? = 4; codim S% = k (c.f, [3], IL.5.4).

We define a map I' : JY(R?,R) — J3(R?, ]RQ) by T'(j 4F( ) =
j3(grad F)(z). Let T¥ = I'"1S“ for each w. Then we have the following
lemma.

Lemma 2.2 (Bleecker-Wilson [1], the proof of Proposition 2.2)
(1) 7T° T, T? are submanifolds of J4HR% R) with codimT?® = 0,
codimT?* = k and codimT? = 4.

(2) j'F is transversal to T™ if and only if j3 (grad F) is transversal to
Stk

We say that a map g € C®(R? R?) is excellent (respectively, good) if
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j3g M S? (respectively, jlg h S?), and j3g h STk (respectively, jlg h STx).
Where M denotes the transversal intersection. When g is excellent, it is

well-known that S 1',0 is the fold points set, S1'1'0 is the cusp points set (c.f.,
[3]). Since codim S*1! > 2 and codim §? > 2, SLL(f) = S%(f) = ¢.

Proposition 2.3 Let M be a compact 2-dimensional manifold. We de-
note that

Q. = {f € I(M,R?) | N(f) is excellent},

then Q. is an open and dense subset of I(M,R;®).

Proof.  Since S0 = (S! — §b1) is the set of fold points and S110 =
(811 — §LL1Y i5 the set of cusp points, Q. is the set of f € I(M,R1%) which
satisfies j3N(f) N (S? U SHHL) = ¢. Since §2, SH1! are closed sets and N
is continuous by [Lemma 2.1, Q. is an open set. Define

I(M,Ry’) = {j*f(z) € J*(M,Ry’) | rank df (z) = 2},
then it is an open subset of J4(M,R;®). We also define

01 = {z = j*(f1, fo, f3)(x) | H1 = (f2, f3) is nonsingular at z},

then O is also an open subset of I*(M,R;3), and Oy, O3 are defined anal-
ogously. In this case, the map m; : O; — J4(R?,R!) defined by

m(2) = j*(fi o Hi)(y)
is a submersion, where z € O; and y = H;(z). We define a map
Hy : JYU,RY) — J4U,RY);
by
Hy(j*g(z)) = j*g 0 Hi ' (y)
(U is an open subset of R?), then the differential map
dH* : T,J4R% RY) —s T, J4(R?,R")
is an isomorphism. And the map P : O; — J*(R?,R?!) defined by

P(Z) = j4fl($)’
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Then the differential map
dP : T,0; — T,J*(R% RY)

is onto. Thus dm; is surjective by the following commutative diagram, so
71 is a submersion.

dP
T,0,  —% . T,JYR%RY
dﬂ'll ldifﬁ
T.J*URY) ——— T, J*URY)

Similarly
m 0 — JHRERY) (i =2,3)
is also a submersion. Moreover, for each w,
(milosn0,) TH(T™) = (mjloino;) H(T*) (4,5 =1,2,3)

holds. In fact, without the loss of generality, we consider the case that ¢ = 2,
j =3, For any j*f(z) € (m2|0,n05) *T%, we denote that

f: (f17f2>f3)
g = (f1, 3, f2) = (91,92, 93)
Gy = (f1, f2) = H3; G3 = (f1, f3) = Ha

Then we have
(51 f(2)) = §*(f2 0 Ha ) (y) C ma(my ™ T¥) C T¥
for z € M, y = Hy(z). Since j%ga(z) = j*f3(x) € Oy N O3, we have
m3(5* f()) = j*(fao H3 ') (y) = j*(g2 0 G2 ") (y) € T*.

It follows that j*f(z) € (73|0,n05) "1 (T*). Hence, we have
)~

(7T2|02003 ( ) (7"3'02003)‘1(1—‘“))-

Similarly, we have

(m2l0sn05) "1 (T) D (m3]0,n05) " (TY).

By the same arguments as the above, we also have the inclusion of the
converse direction. Then we have (m2|0,n0,) " (T*) = (73]l0,n05) "1 (T¥).
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Therefore we have a submanifold
3
Ww — U ,n_i—lTw
i=1

for each w. Since m; M T¢, then codim W% = codimT“. For i = 1, the
following diagram is commutative:

m 42 w1 I 3.2 .2
wYc0, —— JYR:ERYH) —— JP(R5,R%) D SY
|45 [ | #grad
M p— M — M,

where j4f1(z) = j4(f1 0 H"Y)(y) and T is the mapping defined by Lemma
2.2. Since

F—I(Sw) — Tw, leol — 7(’1_1Tw,

j4f h W« if and only if j4f; h T%. When w = Iy, j*fi & T¢ if and
only if j3(grad(f; o H;™!)) M S¥ by Lemma 2.2. For ¢ = 2,3 the same
assertion as in case ¢ = 1 holds. By Thom’s Transversality theorem, the
set of the immersions f such that j4f M W* is dense in I(M,R;%). If we
choose coordinate neighbourhood at every point of M and RP?, N(f) can
be written in the form grad(f; o H;™!) with respect to ¢ = 1,2,3. This
means that N(f) is excellent for such f. ]

We consider the light-like part as follows.

Proposition 2.4 Let I(M,R%®) > Q = {f | M)/ is a regular curve},
then Q, is a residual set.

Proof. We define an open subset O; C I*(M ,]R13) exactly the same
way as O7 in [Proposition 2.3 For any p € M fl, we consider the local
parametrization X (u,v) = (Xi(u,v), X2(u,v), X3(u,v)) of f(M) around
f(p) € fF(M).

Since (X4 (p) A Xu(p), Xu(p) A Xo(p)) = 0, we have
Xou(p) Xsu(p)
Xow(p) Xs30(p)

It follows that j2f(Mfl) C O;. We also have the submersion m; : O —
J? (R2,R1).

£0
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On the other hand, we denote a = (y, z,w, a;, as,a11,a12, azs) the co-
ordinates of J2(R2 R!), where, w = f(y,2), a1 = fyr a2 = f2, a11 = fyy,
@12 = fyz, @22 = f,. We now define a map p : J2(R?,R!') — R by

pla) = a;? +ay? — 1.

On the graph {(g(y, 2), v, 2) | (y, 2) € R?} of function g(y, z), the light-like
part is the set satisfying g, + g, = 1. Thus we have

()~ Hm ™ (p™H(0)) = My

Since m; is a submersion, 717 1(p71(0)) is a submanifold of O; with codi-
mension 1. Hence, Q; is residual set by Thom’s Transversality theorem.

O

Moreover, we have the following proposition.

Proposition 2.5 There ezists a residual subset Q) C I(M,R;®) such that
the condition (5) in Theorem A holds for any f € Q.

Proof.  Here, we use the same notation as those of the proof of Proposition
2.4. Since j2f(M;’) C O, we may consider that f(M) is the graph of a
function. If f(M) is the graph {(g9(y,2),y,2) | (y,2) € R?} and M/ is a
regular curve, then the tangent line of the light-like locus Ty, M,;” is the set

¢
of vectors of the form (§ € Ty, R? such that ¢ = gy &+ g, -n and

n
(gy "Gyy T 92 ’gzy)§ + (Qy "Gyz T G2 *922)n = 0.
If the direction of the line Twole is light-like, then we have
(99 - €+ 9:m)° =€ +n,
so we have
{gy(gy ‘Gyz + 9z - gzz) - gz(gy “Gyy T 9z gzy)}2
= (9y Gyz + 9=+ 922)" + (9y * Gyy + 92 - 9z)*

We also denote o = (y, z, w, a1, ag, a11, a12, az2) the coordinates of J?(R?,R).
Thus we have the following equations:

ail+a’—1=0
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and

{a1(a; - a12 + a2 - ag) — az(ay - a11 + ag '0:12)}2

= (a; - a2 +asz - (122)2 + (a1 - a11 + az -a12)2.

These equations give an algebraic subset V of J2(R? R) and the codimen-
sion of V is two. By Thom’s Transversality theorem, there exists a residual
set @' C I(M,R;®) such that (j2f)~1(m;~1(V)) is the set of isolated points.
If we put Q; = QN Q' it is also a residual set in I(M, R;3) and the condi-
tion (5) in Theorem A holds for any f € Q,'. O

Similarly, we have the following proposition.

Proposition 2.6 There ezists a residual subset Q.' C I(M,R{3) such
that the condition (6) in Theorem A holds for any f € Q.'.

Proof.  We adopt the residual set Q. which is given in [Proposition 2.3,
For any f € Q., the parabolic set is a union of regular curves. As in the
previous arguments, it suffices to consider the case, when f(M) is the graph
{(9(y,2),y,2) | (y,2) € R?}. In this case the parabolic locus P is given by
the equation gy, - g,, — ggz = 0. So the tangent line of the parabolic locus

¢
Txo Py is the set of vectors (g € Tx,R3 such that ¢ = gy €+ 9, -nand

n

(gyyy *Gzz + Gyy * Gzzy — 2gyz : gyzy)g
+ (Gyyz * G2z + Gyy * 9222 — 29y2 * Gyz2)n = 0.

If the direction of the line T, Py is light-like, then we have
(9y-€E+9--m)° =€ +7".

In this case, we also denote a = (y, z,w, a1, a2, a11,a12,a22) the coordinates
of J2(R% R). It follows that the condition that the parabolic locus is light-
like is given by the equations

2
aii1-az —ap” =0
and

(a1 - (a112 - @9 + a1 - agee — 2419 - 4122)

—ay - (@111 - @22 + a11 - G199 — 2012 - A119))?
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2
= (a112 - @22 + a1 - agg2 — 2ay2 - ayg;)

2
+ (@222 - ag2 + a11 - a122 — 2a12 - a112)%.

This condition gives an algebraic subset of J3(R? R) with the codimension
2. It also follows from Thom’s Transversality theorem that there exists a
residual set Q.” and the condition (6) in Theorem A holds for any f € Q..

O]

Proof of Theorem Al By Propositions 2.5 and 2.6, Q.’ and Q,’ are residual
sets, then the intersection Q.'NQ;’ is also a residual set. By definition of Q,’
and Q/', f € Q.'NQ,’ satisfies the condition (1), (2), (3), (5), (6) of Theorem
A. Thus, we only need to prove that the immersion f € Q. NQ, has the
property (4). Since we study the property (4) on the light-like locus le ,
we may only consider the property on the open subset O; C I?(M, R;%) by
the similar reason as that of [Proposition 2.4 Since the Gauss map is locally
given by N(f)(y,2) = [~1; ~gy; —g.] on graph{(g(y, 2),y,2) | (y,2) € R%}
of function g(y, z), it’s parabolic locus satisfies the equation Gyy Gz — Gy’ =
0.

On the other hand, since the point in le satisfies the equation g, +

9.2 = 1, the intersection of le and the parabolic locus is given by the
equations

{gyy "9zz — gyz2 =0
2 2 _
9y t+9.” = 1.
We define functions
oi : JA(RER) — R (i =1,2)
by

o1(e@) = a11 - agy — a1y
oa(a) = a1? 4 ap? — 1.
The Jacobian matrix of the map (01, 09) is calculated as follows:

0 0 azg —2a19 all)

J(o1, =
(01,02) (2a1 2a9 0 0 0

Since (a1,az) # (0,0) on a1? + a2® = 1, rank J(0y,07) = 2 if and only if
(a11,a12,a22) # 0. It follows that the singular set > (01,02) of o171(0) N
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o271(0) is given by the equations

{a12+a22:1
a1 =ajp =azp =0

and codim 3 (01,03) = 3. Since m : O — J?(R?,R) is a submersion,
the pull-back 71 (a1 71(0) Noa71(0)) is a submanifold with codimension 2,
except the singular set m;71(Y (01,02)). And w17 1(3 (01,09)) is a sub-
manifold with codimension 3. If j2f t w7 1(o171(0) N o271(0)), then
(32f)"Y(m1 (o171 (0) N7 1(0))) is an isolated point of M, which is a both
of parabolic point and light-like point of f.

On the other hand, under the above condition, (o1,09) o m 0 j2f is
submersion if and only if it is a local diffeomorphism. Hence, o1 o 7y 0 j2f
and o9 o m o j2f are submersion. It follows that (o o 71 o §2f)71(0) is
a parabolic locus and (o9 o 71 0 §2f)71(0) is a light-like locus. Then these
curves intersect transversally if and only if d(oy o7y 052 f) and d(og0m1 052 f)
are linearly independent if and only if d((o1,02) o 71 0 j2f) is a submersion
if and only if (01, 09) o 0 j2f is local-diffeomorphism. Thus, the light-like
locus and the parabolic locus in M intersect transversally.

Moreover, we can show that the intersection consists of fold points of
the Gauss map. In fact, if the intersection is a cusp point, then it satisfies
Oyy * G2z — gyz2 = 0, and can be expressed as an algebraic condition of 3rd-
order partial derivative of g at (y, z). In this case, S1'10 is a submanifold
with codimension 2. Since the equations of S110 are described in terms of
2rd and 3rd order derivatives of 3-jets, these equations and gy2 +g,%2 =1are
linearly independent except at the points which satisfy gyy = g.. = gy= = 0.
So the set of 3-jets which correspond to cusp points of N(f) on le is an
algebraic set in O; whose codimension is greater than three. Thus, the set
of immersions which satisfy the conditions (1)-(6) in Theorem A is a dense
set by Thom’s Transversality Theorem. [

3. Gauss maps on non-light like surfaces

In this section we consider the geometric meaning of singularities of the
RP2-valued Gauss map restricted on the space-like part or the time-like
part.

Define

Hi?> = {peR?| (p,p) = —1};
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S12 = {pe R | (p,p) = 1}.

We respectively call H,2, S;2 a hyperbolic-plane, a pseudo sphere. And for
x € R;®, the norm of x is defined by |x| = \/e(x){x, x), and x is called unit
vector if || = 1, where e(x) = sign(x) denotes the signature of  which is
given by

1 x is space-like

sign(z) =¢ 0 =z is light-like

—1 =z is time-like.
So we can distinguish two cases for the local representation of the Gauss
map at a nonlight-like point on the surface.

For convenience we identify (at least locally) M and f(M) for any
f e I(MR3).

Case 1): When p € M,/ since (X,(p) A Xo(p), Xu(p) A Xo(p)) < 0, we
have
Xu(p) A Xy(p)
| Xu(p) A Xo(p)]
Here, X = X (u,v) ((u,v) € Us) is a local parametrization of f(M) and U,
is an open neighbourhood of p in M./, and the subscripts v and v indicate
partial differentiation. So N(f)|y, can be considered as a map from U; to

Hy%. We call N(f)|y, the space-like Gauss map or S-Gauss map associated
with the immersion f, and denoted by N®y, (f). That is

_ Xu(p) A Xu(p)
| Xu(p) A Xo(p)|

In this case, the derivative of N°y, (f) is denoted by

st(f)p : Tp(Msf) — TNS(f)(p) (H12).

S H12.

Noy,(f) : Us — Hi% N°(f)(p)

Under the identification of M’ = f(M,”), since T,(M,’) and TNs(f)(p)(H12)
are parallel planes at p, the map dN°y,(f), can be looked upon as a linear
map on T,(Ms'). And Kg := detdN*(f), is called a space-like Gauss
curvature or S-Gauss curvature at p € M ./ on the surface M.

Case 2): When p € M/, we also have

Xu(p) A Xo(p)

2
Xalp) A Xu(p)] <L
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Here, X = X (u,v) ((u,v) € Uy) is a local parametrization of f(M) and Uj
is an open neighbourhood of p in M;/, and the subscripts v and v indicate
partial differentiation. So N(f)|y, can be considered as a map from U; to
S1%. We call N(f)|y, the time-like Gauss map or T-Gauss map associated
with the immersion f, and denoted by N'y,(f). That is

_ Xu(p) A Xo(p)
[ Xu(p) A Xo(p)|

In this case, the derivative of Ny, (f) is denoted by
AN'y,(f)p : To(Me) — Tive()(p) (S12)-

N'u,(f) : Uy — Si%; N'(f)(p)

Under the identification of M/ = f(M;7), since T,(M,’) and Tne(f)(p)(S12)
are parallel planes at p, the map dN*(f), can also be looked upon as a
linear map on T,(My/). And K7 := det dN*(f), is called a time-like Gauss
curvature or T-Gauss curvature of the surface M,/ at pE M.

By definition and the above local representation, a non-light like point
p is a parabolic point if and only if the space-like (or time-like) Gauss
curvature vanishes at p. Since the induced metric on the space-like part
M, is positive definite, the space-like Gauss map has almost the same
properties as those of Gauss maps of surfaces in Euclidean space. So we
only discuss the properties on the time-like Gauss map in R;? as follows:
For Vv € T,(M,/), the quadratic form II, defined by

ITy(v) = —(dN"(f)p(v), )

is called the second fundamental form of My at p. Let o : I — M,/
be a regular curve (i.e. &/(t) # 0, Vt € I) which passes through the point
p € M, , k a curvature and n a unit normal vector of the curve « at p,
and N a unit normal vector of the surface M;' at p. If k # 0 then we call
k, = k{n, N) the normal curvature of the curve o C M7 at p, where I is an
open interval of R. In this case, for the T-Gauss map N*(f), associated with
f € I(M,R;*) and v € T,M,/, we have I1,(v) = k,(p) by the Frenet-Serret
type formula (cf., [4]).

In order to consider the principal curvature, we consider the eigen-
vectors of dN*(f),. Let C? = {(u1,u2) | ui,us € C is complex} be a
2-dimensional complex vector space, u = (uj,u2) and v = (v1,v2) be two
vectors in C2, the pseudo Hermitian-scalar product of v and v is defined
by (u,v) = —u10; + ugte. (CZ%(,)) is called a 2-dimensional complex
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Minkowski space or 2-dimensional pseudo complex Hermitian space. We
denote C12 as (C?,(, )). Then we have the following simple lemma in linear

algebra [6].

Lemma 3.1 If N': U, — 812 is a T-Gauss map associated with f e
I(M,R,3) at p € My, then the differential dN*(f)p of N'(f) atp is a self-
adjoint linear map. The eigenvalues and corresponding eigenvectors are
real.

Proposition 3.2 Let Nt : U, — 5,2 be a T-Gauss map associated with
f € I(M,R,3), the numbers \; and Ay in C with ) # Ao (in this case
A1, A2 € R, by the Lemma 3.1). If the map dN*(f), : Tp(M') — T,(M,/)
satisfies AN*(f)p(e1) = —Aie1 and AN'(f)y(e2) = —Xgey, then e; and ey
are pseudo-orthogonal.

Proof.  Since dN*(f), is self-adjoint, we have
(AN (f)p(e1), e2) = (e1, AN*(£)p(e2)).
It follows that
(A1 - e1,e2) = Aafer, e2) = Ao(eq, e3),
thus we have
(A1 = A2)(e1, e2) = 0 (A1 # Ag).
[

[Proposition 3.2 implies that there exists a pseudo orthonormal basis

consisting of nonlight-like vectors associated with the pseudo scalar product
on M;' induced from R,3.

Proposition 3.3 If p € M/, and {e1,e2} is an orthogonal basis of the
tangent plane Tp(Mtf ), then the vectors e; and ey are nonlight-like.

Proof. ~ We may consider that Tthf is R? with the pseudo-inner product
(z,y) = —z1-y1 + 22 - y2. If one of the pseudo orthogonal basis is given by
e;1 = (1,1) and ey = (z,y) is another vector of the pseudo orthogonal basis
in R;2. Then we have z = y by (e1,e2) = 0. This means that e; and ey are
linear dependent. 0

Theorem 3.4 Let {e1,e2} be a pseudo-orthonormal basis of the tangent
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plane T,(My') at p € My, then for any v € Tp(M') which is given by
v=T-e1+Y-e,

IT,(v) = kn(p) = A1 - (er) - 2* + Ao - e(e2) - 4.
Here AN'(f)p(ei) = —Xi-e; (1 =1,2; At # Aa), and €(e;) = sign(ei)i=1,2.
Proof.

II,(v) = —({dN"(f)p(v),v)
= —(=A-T e1 =Xy ez e +y-e)
= A1 -e(er) - 3% + Ao - e(ea) -y’

Let

then
kn(p) = II(v) = ki x4 kg - y2.

We say that the numbers ki, ky are principal curvatures at p € M,f. The
corresponding directions that are given by the eigenvectors e;, ey are called
principal directions at p € M,f. Tt follows that K; = ki - ko as in the
Euclidean case.

Now suppos that f € I(M,R;3) satisfies the properties of Theorem A.
Let p € M/ be a parabolic point, {e1,es} be a pseudo orthonormal basis
of the Tp(Mtf ) and k1 and ks be eigenvalues of dN*(f), with eigenvectors
e; and ey respectively. Then e; and ep are nonlight-like by
3.3. Since K1 = 0 and dK7 # 0 at the parabolic point p € M;/, we have
k1 = 0 and ko # 0. In this case, both of e; and ey are not light-like vectors.
Moreover, the dimension of ker dN,, is one by Theorem Al The kernel of the
derivative of N'(f), is a line corresponding to the zero principal curvature
direction. This line is called a zero principal curvature line. So we have the
following theorem which describe the generic geometric properties of the
parabolic set on the nonlight-like part.

Theorem 3.5 Let f € I(M,R;®) be an immersion which has properties
(1)-(6) of Theorem A. Then
(1) p € My (respectively, p € M) is a fold point of the T-Gauss map
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N*(f) (respectively, S-Gauss map N*(f)) if and only if a zero principal
curvature line of f is transverse to the parabolic locus of f at p.

(2) p e M (respectively, p € M%) is a cusp point of the T-Gauss map
NY(f) (respectively, S-Gauss map N*(f)) if and only if a zero principal
curvature line of f is tangent to the parabolic locus of f at p.

Proof.  We only consider the case that p € M. Locally, f (M) can be
written as the graph of a function h € C*°(R? R'), and N*(f) = grad(h|y)
by §2. Let g = grad(h|y), so the smooth map N*(f) = g : U — R? is
good by Theorem A, where U is an open neighbourhood of p in R2. If p is
a singular point of the good map g, then we have

det Jy(p) =0, grad det J,(p) # 0.

In general, if g is a good map, the singular locus C of g is a regular curve in
M. Moreover, it has been known that a singular point of g is a fold point
if and only if the tangent line of the singular locus C of ¢ is transverse to
the direction of ker dg, (cf., §3 in [1]).

On the other hand, if g is the T-Gauss map, K1 = det Jg(p). A singular
point of g is a cusp point if and only if the zero principal direction line is
tangent to the direction of ker dg,. This completes the proof. (]

4. Examples
We now give some examples which are illustrating the main results:

Example 1. The shoe surface:

X(z,y) = (2,9, f(z,y)) = (y Lot g?f) |

The local representation of the Gauss mapping is N (f) = (f, fy) = (22, —y),
and the parabolic locus is obtained by solving A = f,, - Sy — fmy2 = -2 =
0. Since grad A = (—2,0) # 0 on the parabolic locus, N is good. The
light-like locus is obtained by equation — f,2 + fy2 +1 =0, so the light-like
locus is given by —z%+4? —1 = 0. The parabolic locus can be parametrized
by z(t) = 0, y(t) = t. So the Gauss mapping restricted to the parabolic
locus is N(t) = (0,—t), with N'(t) = (0,—1) # 0, hence N is excellent.
Moreover, N has no cusp points.
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Ezxample 2. The Menn’s surface:

X(ya Z) = (f(y’ Z), Y, Z) = ("%3]4 + yQZ — Z2,y, Z> .

The local representation of the Gauss mapping is N(f) = (fy, f.) =
(—2y3 + 2yz,y* — 22), and the parabolic locus is 8y> — 42z = 0. Since
grad A = (16y, —4) # 0 on the parabolic locus, N is good. The light-like
locus is (—2y® + 2yz)? + (y? — 22)2 — 1 = 0. The parabolic locus can be
parametrized by y(t) = t, z(t) = 2t2, so the Gauss mapping restricted to the
parabolic locus is N (¢) = (2t3, —-3t?), N'(t) = (6%, —6t), N"'(t) = (12t,—6),
hence N’(0) = (0,0), N"(0) = (0,—6) # 0. The Gauss map has a cusp
point (0,0), and N is excellent. Clearly (0,0) ¢ M.

Ezample 3. The saddle surface:
1 1
X(yv Z) = (f(y’ Z), Y, z) = (§y3 - yz2 + §(y2 + Z2)> .

The local representation of the Gauss mapping is N(f) = (y?—2%+y, —2yz+
z), and the parabolic locus is y2 + 2 = %. So grad A = 4(—2y, —2z) # 0 on
the parabolic locus, N is good. The light-like locus is (y?—22+y)?+(—2yz+
z)? — 1 = 0. The parabolic locus can be parametrized by y(t) = écos t,
z(t) = 5 L sint, so the Gauss mapping restricted to the parabolic locus is

1 1 1 1
N(t) = (Z cos 2t + §cost,—z sin 2t + ésint) ,

1 1 1 1
N'(t) = (—5 sin 2t — §sint,—§ cos 2t + 5cost> ,

1 1
N"(t) = (— cos 2t — 5 cost, sin2t — 5 sint) :

Hence t = 0, 4%, %X by N'(t) = 0. N'(t) = 0 implies N"(t) # 0. We

have cusp points (%,0), (-1, %) (—211— —¥2), and N is excellent. Clearly,

Cusp pomts (4)0)7 ( 1’ {)a ( 4»"‘T) ng .
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