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A p-adic property of the Taylor series of exp(x + =P /p)

Hiroyuki OCHIAI
(Received October 22, 1997)

Abstract. The p-adic norms of the Taylor coefficients of the function exp(x + =P /p)
are expressed in terms of a p-adic analytic function for p < 23.
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Introduction

Let us fix a prime p > 2. Consider a series {a(n) | n € Z>¢} defined by
the recursion:

a(n+1) =a(n)+n(n—1)---(n—p+2a(n—-p+1)
a(0)=a(l)=---=a(p-1)=1. (0.1)

In other words, {a(n)} is the coeflicients of the Taylor series expansion of
the function exp(z + zP/p),

exp (w + %) = i a(n)x—n

— n!’

As another interpretation, a,, is the number of group homomorphisms from
the cyclic group Z/pZ of order p to the symmetric group S, of n letters [Y].
In this paper we discuss the p-adic valuation v,(a(n)) of a(n).

Throughout the paper, we assume that the prime p satisfies the fol-
lowing condition. The conditions concern with the p-adic behaviour of the
transfer matrix 7'(z), which is defined in §1.

Condition A We define the following condition on the transfer matriz
T(x).
(Al) T(z) € M(p,Z[x]).
(A2) If we denote the first row of T'(z) by
t(m)T : (T(w)lla”'vT(w)lp) € M(l,p,Z[JJ]),
then T(z) = e - t(z)T mod p.
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(A3) tr(T(z)) mod p is in (Z/pZ)*.

Here tr(-) means the trace of a matrix. Under these conditions, we have
the main theorem of the paper.

Theorem B  Suppose p to be a prime satisfying Condition A. Then there
exist p-adic analytic functions A(z) € Z(z) and fi(x) € Z{x) for i =
0,1,...,p* — 1 convergent on {z | v,(z) > 0} such that

m

a(p*m +1i) = plp—1m H 1) for any m € Z>.

In particular, the asymptotic behaviour of v,(a(p*m + 1)) for large m
is described by that of v,(fi(m)).

Corollary C With the notation in Theorem B, we have the following re-
sults.

(1) wvp(alp*m +1)) = (p— V)m + vp(fi(m)) fori=0,1,...,p* - L.

(ll) (.fZ(m)) {/p] fOTZZO,l,,pz-—l

(ili) vp(fi(m)) =0 fori=0,1,...,p— 1.

The proof of Theorem B and Corollary C is given in Section 2. In
Section 3, we prove that Condition A holds for p < 23. It seems true that
Condition A would hold for all p though we have not yet proved it. We also
give examples of f;(x).

The author would like to thank Professor T. Yoshida and a referee
for valuable comments. He also thanks Professor K. Conrad for helpful
suggestions on an earlier version of the paper.

Notation

We denote the ring of p-adic integers by Z,. The cyclic group of order
p is denoted by Z/pZ. Let v, : Z, — Z U {oo} be the p-adic valuation. If
p°||a, then we define v,(a) := b. Here p°||a means that p°la and p®*! { a.
Namely, v,(a) is the highest power of p dividing a.

We denote the polynomial ring over Z with the variable z by Z[z], the
ring of formal power series with coefficients in Z, by Z,[[z]]. The Tate

algebra Z(z) is defined by (see [BGR])
Z{x {Z bpz™ | nll)rr;o vp(bn) = +oo}.

n=0
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For f(z) = Y by € Zz], Zplx), or Z,[[z]], we define
vp(f () = min{v,(bn)}

and
f@)=g(z) mod p* &L vy(f(x) - g(x)) > k.

Remark that f(z) = 0 mod p* is equivalent to f(z + 1) = 0 mod p*. For a
vector or a matrix, this means that all entries satisfy the condition.
We denote the set of all m x n matrices with coefficients in R by

M(m,n, R).
1. Transfer matrix T'(x)
Define a p x p matrix C(z) € M(p, Z[z]) by

(z+1)(z+2)---(x+p—1) fori=p,j=1,
C(z)i; =4 1 forj=t¢4+1,0ri=j=p,

0 otherwise.

* O O O
S O O
S O = O
— -0 O

where the lower-left entry is (p — 1)!(”:;’_’;1) =(z+1)(z+2) - (z+p-1).
From the series [0.1), we define a column vector a(n) € M(p,1,Z) by

a(n) = (a(n),a(n+1),...,a(n+p—1)7,

here T' means the transpose. The initial condition is given by
a(0)=e

where

e:

I

(1,1,...,0)T e M(p,1,2).
The recursion relation is written as

a(n+ 1) = C(n)a(n) n € Z>o.
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We define a transfer matriz T'(z) by
T(z) := C(p’x +p* = 1)---C(p’z + 1)C(p’x) /pP ™.
Then we have
a(p’m+ p’) = "' T(m)a(p’m). (1.1)
Lemma 1.1 All row vectors of T(—1) are identical; that is, T(—-1) =
e (%, %, ..., %).

Proof.  Since C(—1) =C(-2) =--- = C(—p+ 1) and the lower left-most
entry of C'(—1) is zero, we have

C(-1)C(=2)---C(-p+1)=C(-1)P"1 =e-(0,...,0,1).
This proves the lemma. U

The condition (A1) is equivalent to the condition that every entry T'(x);;
belongs to Z[z]. The condition (A2) is equivalent to the condition that

T(z)ij — T(x)w;

can be divided by p. The condition (A3) is equivalent to the equality
t(z)Te=3Y"_,T(x); € (Z/pZ)*.

j=1
2. Main theorem

The following proposition is a key to the main theorem, Theorem B.

Proposition 2.1 (i) Suppose p satisfies Condition A. Fiz a positive in-
teger k. Then there exist polynomials

t9 (@) = (@), P (@),..., fP )T € M(p,1,Z[z)),
and A (z) € Zz]

satisfying the following condition:

(1) ) =1.

(2) £*)(0) =e.

(3) f*) = e mod p.

(4) X*)(z) mod p is in (Z/pZ)*.

(5) T(z— 1)f®(z—1) = A*)(z)f*)(z) mod p*.
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(ii) Such f*®)(z) and A*)(z) are unique modulo p.

Proof. (i) This is proved by induction on k. In particular, we construct
f*)(z) and A*)(z) inductively. The argument is similar to that used in the
Hensel lemma.

For k = 1, we can take

fU(z):=e and AV(z):= tr(T(z - 1)).

The conditions (1), (2), (3) are clear. The condition (4) is equivalent to the
condition (A3). The condition (5) follows from the condition (A2).

Now we assume that [Proposition 2.1 (i) holds for a k& > 1. We will
prove [Proposition 2.1 (i) for k£ + 1. By the induction assumption (4), there
exists an element (A*)(z))~! € Z[z] such that

AR () A® ()" =1 mod pFtl.

Although such an element is not unique, we pick up such an element in
what follows.
Let us define

g(z) = AP (@) Tz - DEF (2 - 1) - £ (2) € M(p, 1,Z[z)).

Although this should be denoted by g*)(z), we use g(z) for brevity. By
the induction assumption (5),

g(z) =0 mod pr. (2.1)

By the induction assumption (2) together with Lemma 1.1, we see that g(0)
is a multiple of e. In other words,

g(0) = go(0)e. (2.2)
We define
D (2) = £9) () + g(e) — go(a)e,
AEFD(2) == A (2)(1 + go(2)) + t(z — )T (g(z — 1) — go(x — 1)e).

By definition, we have

k k
(@) = ().

By (2.2), we have
£+ (0) = £(5)(0).
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By (2.1), we have

f(k_H)(:E)
)\(k+1)(x)

£)(z)  mod p*,
A®) () mod p*.

Then the induction assumption (1), (2), (3), (4) implies the corresponding
required condition for k + 1.
Finally, we prove the condition (5). For the quantity in question,

T(z - DEF V(@ -1)
= A8 (z)(f*)(z) + g(x)) + T(z — 1)(g(z — 1) — go(z — 1)e)
= XB () (£**H) (z) + go(x)e)
+T(z —1)(g(z — 1) — go(x — 1)e) mod p***.

In order to prove the condition (5)
T(z — Df**D(z - 1) = FEAD(OAEFD () mod p*T,
it is enough to prove that

A®) (z)go(z)e = A*) (z)go(z)f* ) (z),  and

— f(k+1) o)t(z — )T (g(z — 1) — go(z — 1)e)

modulo p*t!. The first equality follows from (2.1) and the condition (3).
Similarly, the right hand side of the second equality is equivalent to

=e-t(z—1)T(g(z — 1) — go(z — 1)e) mod p*+1.

Then the second equality is guaranteed by (2.1) and (A2). This proves (i).

(i) This is also proved by induction on k. For k = 1, we see that f (1) is
uniquely determined by the condition (3) modulo p*'. Then the condition (5)
and the assumption (A2) imply that tr(T(z — 1)) = A0 (z) modulo p'.
Hence we have (ii) for k = 1.

Now we suppose that [Proposition 2.1 (ii) holds for ¥ > 1 and prove
that it also holds for k + 1. Suppose that £f(**1(z) and AF+1)(z) satisfy
the conditions (1) to (5). By the uniqueness for k, which is the induction
assumption, we have

£6+0(2) = £9) (), A6 (2) = AP (2)  mod p*. (23)
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Now let us suppose that f*+1)(z) and A*+1(z) also satisfy the condi-
tions (1) to (5) for k 4+ 1. We define

F(z) := (% (z) - 1% (2)) /",
Az) = A (z) = A&V () /pF.

Note that these are in Z[z].
The condition (5),

T(z—D)fED(z - 1) = AEED () kD () mod pFtl,

T(z — DEED (2 — 1) = AEHD(2)fF+D () mod pt!,
implies

T(zx — D)F(z —1) = Az)f** D (2) + \¢*D(2)F(z) mod p.
By the assumption (A2) and the condition (3), we have

AV @)F(z) = e-t(z— 1) F(z - 1) — A(z)e

= (t(z — 1)TF(z - 1) — A(z))e mod p.

In particular, each entry of A(V)(z)F(z) satisfies

AD(@)Fy(z) = --- = XD (2)F,_,(z)

= (t(z - 1)TF(z — 1) — A(z))e mod p.
The condition (1), |
F @ =1, f @) =1

implies Fy(z) = 0. Together with the condition (4), we see that F(z) and
A(z) are zero modulo p. This proves the uniqueness for k + 1. [

As a limit “k — 00”, we have the following theorem.

Theorem 2.2  Suppose p satisfies Condition A. Then there exist unique
p-adic analytic functions

f(z) = (fo(z),..., f-1(2))" € M(p,1,Z(z)), and A(z) € Z(z)

defined on Z, such that

(1) fo(z) =
(2) £(0)=e.
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(3) f(z) =e mod p.
(4) Az) € (Z(z))".
(6) T(z - Df(z - 1) = A=z)f(2).

Proof.  From the proof of [Proposition 2.1, we can take

£k (z) =£®)(2) mod pF
AR+ () = AR () mod p*.
)

This implies that {f*)(2)}22, and {A(¥)(z)}2, are Cauchy sequences in
Z(z), that is, v,(A®)(z) — A*)(z)) > min(k, k') — oo as k,k' — co. As
limits, we obtain the required functions. For example, the value at n € Z
is given by a convergent series in Zy:
A(n) == lim A®)(n).
k—o0

The properties (1)-(5) follow from the corresponding conditions in Propo-
sition 2.1. The uniqueness follows from [Proposition 2.1 (ii). U

As a corollary, we obtain an expression of the general term a(p?m).

Proposition 2.3 Suppose there are p-adic analytic functions f(x) and
A(z) on Zy, satisfying the conditions (1) to (5) in Theorem 2.2. Let us regard
the vector a(p*m) € M(p,1,Z) defined in §1 as an element of M(p,1,Z,).
Then we have the equality

a(p’m) = £(m)p? V" [[ A(j) for any m € Zxo.
j=1

Proof. By (1.1), we have

a(p’m)/p?~ "™ = T(m —1)---T(1)T(0)a(0)
= T(m—1)---T(1)T(0)e

On the other hand, [[’heorem 2.2 tells us

T(m—-1)T(m—2)---T(1)T(0)e
T(m — 1)T(m — 2)-

I
=
§,
=
é
=

3

|
==
P
>

>~
=
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Now we are ready to prove the main theorem.

Proof of Theorem B. For ¢ =0,1,...,p— 1, it has already been proved in
[Proposition 2.3. Recall the relation

a(n+ 1) = C(n)a(n).

Then, for example, we have

a@%r+nZCM%MMfmJZC@%mﬁmmm”mfiMﬁ-
j=1

The last entry of this equality means that it is enough to take

fo(z) = (0,0,...,0,1)C(p*z)f(z).
In general, we can take

filx) = (0,0,...,0,1)C(P*z +1i —p)...C(p*m + 1)C(p*m)f(x).
for p < i < p?. [
Proof of Corollary C.  Assertion (i) is immediate from [Theorem Bl. Asser-

tion (ii) is proved in [Y]. Assertion (iii) follows from the property (3) in
[(Theorem 2.2 ]

In particular, the asymptotic behaviour of v,(a(p?m + i)) for large m
is described by that of v, (fi(m)). In practical applications, we can expect
that v,(fi(m)) has a simpler behaviour.

The following is a special case of the Weierstrass preparation theorem

[BGR], [G].

Lemma 2.4 Any element h(z) € Z(z) is a unique product of a power of
p, a monic polynomial k(x) € Zy[z], and a unit u(z) € (Z(z))* :

h(z) = p°k(x)u(z).

Here, the order N of the polynomial k(zx) is given by

N = max{n € Zy | vp(hy) = min up(hn/)} for h(z) = Z hpz™.
n=0

n'>0
Also, for any x € Z,,
vp(h(z)) = € + vp(k()).
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Lemma 2.5 Let h(z) € Z(z).
(i) If
e+1

h(z) = c¢p® mod p“",

with some e € Z and ¢ € (Z/pZ)*, then vy(h(m)) = e. In particular, if
h(z) = fi(z), then

vp(a(p*m +14)) = (p— 1)m +e.
(i) If
h(z) = ep®(x — b)) mod p?t?,

with some e € Z, c € (Z/pZ)*, and bV) € Z/pZ, then the equation h(z) = 0
has a unique solution * = b € Z, such that b = b mod p. Using this
solution, vy(h(m)) = e + vp(m —b). In particular, if h(x) = fi(z), then

vp(a(p’m +14)) = (p— 1)m + e+ vp(m — b).

Proof. We use the notation in Lemma 2.4.
For (i), we see that N = 0, and that k(z) = 1.

For (ii), we see that N = 1, and that k(z) = = — b. O]
may not apply to all situations, but its assumptions are

satisfied in most cases. In fact, covers all cases for p < 11, as is
seen in §3.
3. Example

In this section, we deal with the case for a small p.

3.1. On Condition A
We will see that Condition A is true for p = 2,3,5,7,11,13,17,19, 23.

Proposition 3.1 For p < 23, every entry of the matrix
Cp’z +p* ~1)--Cp’z +1)C(p°x)
can be divided by pP~1.
In other words, T'(z) € M(p, Z[z]). Let us define
T(z) = (T(z) mod p) € M(p,(Z/pZ)[z)).
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Proposition 3.2 For p < 23, we have
(a) The matriz T(z) does not contain the variable z.
(b)  All row vectors of T(z) are identical.
(¢) tr(T(z)) = -1 mod p.

In particular, Condition A holds for p < 23. Both propositions are
proved with the help of Mathematica. The explicit form of T'(x) is given as
follows:

T(z) = <8 i) —e.(0,1) mod 2.

T(z)=e-(0,2,0) mod 3.

T(r)=e-(2,1,3,2,1) mod 5.

T(x)=e-(6,3,5,0,4,3,6) mod 7.
T(z)=e-(0,2,3,3,9,2,4,0,7,7,6) mod 11.
T(z)=e-(9,0,9,5,21,1,10,3,2,7,6,9) mod 13.

T(z) = e-(10,7,16,5,15,9,8,7,14,5,5,14,9,13,15,0,0) mod 17.
T(z) =e-(9,2,13,5,18,7,11,13,2,6,13,15,13, 13,7, 6, 12,5, 0)

mod 19.
T(zx)=e-(8,10,8,12,14,9,20,2,9,6,1,18,0,11,9, 21,10, 15, 19,
3,15,17,15) mod 23.

In what follows, we calculate f;(z) for p < 11. This enables us to
express the series v,(a(m)) explicitly.
3.2. p=2

We use the algorithm given in the proof of [Proposition 2.1. We easily
obtain, for example,

folz) =1 mod p°
fi(z) = 1+ 24z + 162> mod p°.

This, with the help of the proof of Theorem B, implies that

fa(z) = 2(1+14:c+8a:2) mod p°
f3(z) = 4(1+22%) mod p°.

Then it is summarized as

folz) =1, fi(z) =1, folx) = p(1+px), f3(z)=p* mod p.
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All of these are of the form in Lemma 2.5 (i). Hence, we have

vp(fo(m)) = vp(fr(m)) =0,

Vp(fa(m)) =1, 1p(fs(m)) =2, and
vo(a(4m)) =m, w(a(dm +1)) =

va(a(dm +2)) =m+1, wo(a(dm +3)) =m+ 2.

33. p=3
It is enough to calculate f(z) mod p°, although this fact cannot be
recognized before the calculation. The result is

fo(z) =1 mod p°
fi(z) = 14108z + 812> mod p°
fo(x) = 1+ 1172+ 81z mod p5
fa(z) = p(1 + 48z + 54z%) mod p°.
fa(z) = p?(1+12z) mod p°
fs(x) = p(7+ 39z + 54z®) mod p°
fe(x) = p*(1+2z) mod p°
fr(z) = p*(4 +3z) mod p°

(

fa(z) = p*(2+ 18z + 92%) mod p°.
Now we introduce the notation
f(@) ~cp* &

for short. Then the result above can be written

fo(z) ~ 1p°, fi(z) ~1p°%,  fo(z) ~ 1p°
fa(z) ~ 1pt, fa(z) ~ 1p%,  f5(z) ~ 1p!
fo(z) ~ (L +2)pt, fr(z) ~ 193, fs(z) ~ 2p°.

For v3(f;(m)) and v3(agm+i), we can apply Lemma 2.5. For example,

def d+1

S f(z) =cp® mod p

v3(a(9m)) = 2m, v3(a(9m + 1)) = 2m,
v3(a(9m + 2)) = 2m, v3(a(9m + 3)) = 2m + 1,
v3(a(9m +4)) =2m +2, wvz(a(9m +5)) =2m + 1,
vr3(a(9m +6)) > 2m+4, v3(a(Im+7)) =2m+3,
v3(a(9m + 8)) = 2m + 2.
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For fs(x), we can apply (ii). In particular, we have
v3(a(9m +6)) = 2m + 4 + v3(m — b)
with some b € Z3. Its approximation is

=-1+3+3%-3"-3%+39_310
+3M - 317 - 316 £ 317 4 318 319 4 320 109 321,

34. p=5

It is enough to calculate f(x) mod p®. The result is

1p°  1p0 1p°  1p° 1p°

Jo(z) file) o fpea(a) 2 1 1 1 2

@) fa@) . b | B W

p\T pHINT) e Jop-1(@) ] 4P 22 1p? 1pP 3p3

. . . - W3S 4P 4 4

fpr_p(z) . oo fp2a(z) 3t 1t 3t 1t 2

This set of relations is read entry-wise, as in §3.3.
As is above, this completely determines vs(fi(m)) and vs(a(m)) by
(). Remark that no ‘exception’ arises for p = 5.

3.5. p=7
It is enough to calculate f(x) mod p°. We find
fo(z) h(z) o fooa(z)
fp(z) fp+1($) oo Jopa(x) -
Jp2—p(x) e v fp2q(2)
(1p° 1p° 1p° 1p° 1p° 10 10
5pl 4pl 4p2 2p1 5p2 4p1 5pl
4p2 3p2 3p2 4p2 4p2 lp2 4102
1p* 6p* 5p* 1p® 5pd 3pd 1p
* 4p4 1p4 2p4 4p4 3p4 4p5
4p5 5p5 6p5 5p5 3p6 4p5 4p5 )
\1p8 65 25 68 6pf 4p5 1,8
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Here the missing entry * = (6 + 6x)p®. Slightly more precisely,

fas(z) = p®(186476807 + 166348020z + 226514421z
1+ 1125022852° + 83692z + 2418743392°
19729572325 + 132590423z mod p'®.

By [Lemma 2.5, this completely determines u7(f;(m)) and
v7(a(49m + 1)), except for the case ¢ = 28. The approximation of the solu-
tion = b for the equation fog(z) = 0 is given by

b=—1—p+3p>+3p* —p° +2p° —p® mod p*.

3.6. p=11
folx)  filz) ... fra(z)
fol)  fprr() .. fop-a() -
fp2—p(T) - oo fproa(x)

/ 120 1p° 1p° 1p° 1p° 1p° 1p°  1p° 10 10 1p° \
1! 5p Bpl 1pt 9p! 2p2 9p!  1p! spl 3p2  1p!
1p2 1p? Tp* 10p% 9p® 6p° 8p® 3p? 10p® 10p* 1p?
8P 3pd 4pd  4p® 4P Tt 5pd 4p® 8pd  4p
gpt 9t 3pt Hpt 1p*  *x 10p° 5p? 3pt 8pt  8pt
4p°  3p° 1p° wxx  TPS TP Tp® 5p° 10p° 8p®  4p°
3p  7pb 4pb 4p8 10p® 6p° 10p° 1p% 10p% 1p%  3p
707 2p7 10p” 8p' 707 3p” 6p’ Bp’ 10p” 8p7 Tp”
opd  4p® 8p® 5p 2p8  6p° op®  8p® 9p® 8pd  9p
0p? 6p° 3p° 10p° 4p'® 9p° 1° 8 2° 5p° 9O

\lopll 6p10 2p10 9p10 9p10 2p10 4p10 2p10 5p10 8p10 10p10)

Here, #x = (3 + 32)p® ~ fio(x) and s+x = (10 + 9z)p” ~ fsg(x). More
precisely, modulo p'2, we have

f1o(z) = p°(338968 + 472706z + 807653z + 741730z
+ 7666562 + 263538z°)



A p-adic property of the Taylor series of exp(z + 2P /p) 85

fss(z) = p’ (66439 + 76074z + 39666x2 + 1984413
+ 35937z + 1171282°).

This table completely determines v11(f;(m)) and vy1(a(121m + 1)) for
i # 49,58 by (i). For i = 49,58, we can apply (ii).

An approximation of the solution is given by

b= —-1-2p—p3+5p*— 3p° mod p® for fag(b) =0
b' = 5+6p+4p® +5p° +4p* mod p® for fss(b') = 0.
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