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A p-adic property of the Taylor series of \exp(x+x^{p}/p)

Hiroyuki OCHIAI
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Abstract. The p-adic norms of the Taylor coefficients of the function \exp(x+x^{p}/p)

are expressed in terms of a p-adic analytic function for p\leq 23 .
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Introduction

Let us fix a prime p\geq 2 . Consider a series \{a(n)|n\in z_{\geq 0}\} defined by
the recursion:

a(n+1)=a(n)+n(n-1)\cdots(n-p+2)a(n-p+1) ,
a(0)=a(1)=\cdot . =a(p-1)=1 . (0.1)

In other words, \{a(n)\} is the coefficients of the Taylor series expansion of
the function \exp(x+x^{p}/p) ,

exp (x+ \frac{x^{p}}{p})=\sum_{n=0}^{\infty}a(n)\frac{x^{n}}{n!} .

As another interpretation, a_{n} is the number of group homomorphisms from
the cyclic group Z/pZ of order p to the symmetric group S_{n} of n letters [Y].
In this paper we discuss the p-adic valuation \nu_{p}(a(n)) of a(n) .

Throughout the paper, we assume that the prime p satisfies the fol-
lowing condition. The conditions concern with the p-adic behaviour of the
transfer matrix T(x) , which is defined in \S 1.

Condition A We defifine the following condition on the transfer matrix
T(x) .

(A1) T(x)\in M(p, Z[x]) .
(A2) If we denote the first row of T(x) by

t(x)^{T}:=(T(x)_{11}, . . , T(x)_{1p})\in M(1,p, Z[x]) ,

then T(x)\equiv e\cdot t(x)^{T} mod p .
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(A3) tr(T(x)) mod p is in (Z/pZ)^{\cross}

Here tr(\cdot) means the trace of a matrix. Under these conditions, we have
the main theorem of the paper.

Theorem B Suppose p to be a prime satisfying Condition A. Then there
exist p-adic analytic functions \lambda(x)\in Z\langle x\rangle and f_{i}(x)\in Z\langle x\rangle for i=
0,1 , . , p^{2}-1 convergent on \{x|\nu_{p}(x)\geq 0\} such that

a(p^{2}m+i)=f_{i}(m)p^{(p-1)m} \prod_{j=1}^{m}\lambda(j) for any m\in z_{\geq 0} .

In particular, the asymptotic behaviour of l\nearrow_{p}(a(p^{2}m+i)) for large m
is described by that of \nu_{p}(f_{i}(m)) .

Corollary C With the notation in Theorem B , we have the following re-
sults.
(i) \nu_{p}(a(p^{2}m+i))=(p-1)m+\nu_{p}(f_{i}(m)) for i=0,1 , \ldots , p^{2}-1 .
(ii) \nu_{p}(f_{i}(m))\geq[i/p] for i=0,1 , . . ’

p^{2}-1 .
(iii) \nu_{p}(f_{i}(m))=0 for i=0,1 , \ldots , p-1 .

The proof of Theorem B and Corollary C is given in Section 2. In
Section 3, we prove that Condition A holds for p\leq 23 . It seems true that
Condition A would hold for all p though we have not yet proved it. We also
give examples of f_{i}(x) .

The author would like to thank Professor T. Yoshida and a referee
for valuable comments. He also thanks Professor K. Conrad for helpful
suggestions on an earlier version of the paper.

Notation
We denote the ring of p-adic integers by Z_{p} . The cyclic group of order

p is denoted by Z/pZ . Let \nu_{p} : Z_{p}arrow Z\cup\{\infty\} be the p-adic valuation. If
p^{b}||a , then we define \nu_{p}(a):=b . Here p^{b}||a means that p^{b}|a and p^{b+1} ( a .
Namely, \nu_{p}(a) is the highest power of p dividing a .

We denote the polynomial ring over Z with the variable x by Z[x] , the
ring of formal power series with coefficients in Z_{p} by Z_{p}[[x]] . The Tate
algebra Z\langle x\rangle is defined by (see [BGR])

Z\langle x\rangle=\{\sum_{n=0}^{\infty}b_{n}x^{n}|\lim_{narrow\infty}lJ_{p}(b_{n})=+\infty\}
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For f(x)= \sum b_{n}x^{n}\in Z[x] , Z_{p}[x] , or Z_{p}[[x]] , we define

\nu_{p}(f(x)):=\min_{n}\{\nu_{p}(b_{n})\}

and

f(x)\equiv g(x) mod p^{k}\Leftrightarrow\nu_{p}(f(x)-g(x))def\geq k .

Remark that f(x)\equiv 0 mod p^{k} is equivalent to f(x+1)\equiv 0 mod p^{k} . For a
vector or a matrix, this means that all entries satisfy the condition.

We denote the set of all m\cross n matrices with coefficients in R by
M(m, n, R) .

1. Transfer matrix T(x)

Define a p\cross p matrix C(x)\in M(p, Z[x]) by

C(x)_{ij}:=\{

(x+1)(x+2) \cdot(x+p-1) for i=p, j=1 ,

1 for j=i+1 , or i=j=p,
0 otherwise.

Namely,

C(x)=(\begin{array}{llll}0 1 0 00 0 1 00 0 0 1* 0 0 1\end{array}) ,

where the lower-left entry is (p-1)! (\begin{array}{l}x+p-1p-1\end{array})=(x+1)(x+2)\cdots(x+p-1) .
From the series (0.1), we define a column vector a(n)\in M(p, 1, Z) by

a(n)=(a(n), a(n+1) , \ldots , a(n+p-1))^{T}.
,

here T means the transpose. The initial condition is given by

a(0)=e

where

e:= ( 1, 1, . , 1)^{T}\in M(p, 1, Z) .

The recursion relation is written as

a(n+1)=C(n)a(n) n\in z_{\geq 0} .
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We define a transfer matrix T(x) by

T(x):=C(p^{2}x+p^{2}-1) . C(p^{2}x+1)C(p^{2}x)/p^{p-1} .

Then we have

a(p^{2}m+p^{2})=p^{p-1}T(m)a(p^{2}m) . (1.1)

Lemma 1.1 All row vectors of T(-1) are identical; that is, T(-1)=
e\tau (*, *, \ldots, *) .

Proof Since C(-1)=C(-2)= =C(-p+1) and the lower left-most
entry of C(-1) is zero, we have

C(-1)C(-2)\cdots C(-p+1)=C(-1)^{p-1}=e\cdot(0 , . . ’ 0, 1 ) .

This proves the lemma. \square

The condition (A1) is equivalent to the condition that every entry T(x)_{ij}

belongs to Z[x] . The condition (A2) is equivalent to the condition that

T(x)_{ij}-T(x)_{i’j}

can be divided by p . The condition (A3) is equivalent to the equality
t(x)^{T}e=\sum_{j=1}^{p}T(x)_{1j}\in(Z/pZ)^{\cross}

2. Main theorem

The following proposition is a key to the main theorem, Theorem B.

Proposition 2.1 (i) Suppose p satisfifies Condition A. Fix a positive in-
teger k . Then there exist polynomials

f^{(k)}(x)=(f_{0}^{(k)}(x), f_{1}^{(k)}(x),
\ldots , f_{p-1}^{(k)}(x))^{T}\in M(p, 1, Z[x]) ,

and \lambda^{(k)}(x)\in Z[x]

satisfying the following condition:

(1) f_{0}^{(k)}(x)=1 .
(2) f^{(k)}(0)=e .
(3) f^{(k)}\equiv emod p .
(4) \lambda^{(k)}(x) mod p is in (Z/pZ)^{\cross}

(5) T(x-1)f^{(k)}(x-1)\equiv\lambda^{(k)}(x)f^{(k)}(x) mod p^{k} .
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(ii) Such f^{(k)}(x) and \lambda^{(k)}(x) are unique modulo p^{k} .

Proof. (i) This is proved by induction on k . In particular, we construct
f^{(k)}(x) and \lambda^{(k)}(x) inductively. The argument is similar to that used in the
Hensel lemma.

For k=1 , we can take

f^{(1)}(x):=e and \lambda^{(1)}(x):=tr(T(x-1)) .

The conditions (1), (2), (3) are clear. The condition (4) is equivalent to the
condition (A3). The condition (5) follows from the condition (A2).

Now we assume that Proposition 2.1 (i) holds for a k\geq 1 . We will
prove Proposition 2.1 (i) for k+1 . By the induction assumption (4), there
exists an element (\lambda^{(k)}(x))^{-1}\in Z[x] such that

\lambda^{(k)}(x)(\lambda^{(k)}(x))^{-1}\equiv 1 mod p^{k+1}

Although such an element is not unique, we pick up such an element in
what follows.

Let us define

g(x):=(\lambda^{(k)}(x))^{-1}T(x-1)f^{(k)}(x-1)-f^{(k)}(x)\in M(p, 1, Z[x]) .

Although this should be denoted by g^{(k)}(x) , we use g(x) for brevity. By
the induction assumption (5),

g(x)\equiv 0 mod p^{k}- (2.1)

By the induction assumption (2) together with Lemma 1.1, we see that g(0)
is a multiple of e . In other words,

g(0)=go(O)e . (2.2)

We define
f^{(k+1)}(x):=f^{(k)}(x)+g(x)-g_{0}(x)e ,
\lambda^{(k+1)}(x):=\lambda^{(k)}(x)(1+g0(x))+t(x-1)^{T}(g(x-1)-g0(x-1)e) .

By definition, we have

f_{0}^{(k+1)}(x)=f_{0}^{(k)}(x) .

By (2.2), we have

f^{(k+1)}(0)=f^{(k)}(0) .
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By (2.1), we have

f^{(k+1)}(x)\equiv f^{(k)}(x) mod p^{k}.
,

\lambda^{(k+1)}(x)\equiv\lambda^{(k)}(x) mod p^{k} .

Then the induction assumption (1), (2), (3), (4) implies the corresponding
required condition for k+1 .

Finally, we prove the condition (5). For the quantity in question,

T(x-1)f^{(k+1)} (x –1 )

\equiv\lambda^{(k)}(x)(f^{(k)}(x)+g(x))+T(x-1)(g(x-1)-g0(x-1)e)

=\lambda^{(k)}(x)(f^{(k+1)}(x)+g0(x)e)

+T(x-1)(g(x-1)-g_{0}(x-1)e) mod p^{k+1} .

In order to prove the condition (5)

T(x-1)f^{(k+1)}(x-1)\equiv f^{(k+1)}(x)\lambda^{(k+1)}(x) mod p^{k+1} .

it is enough to prove that

\lambda^{(k)}(x)g_{0}(x)e\equiv\lambda^{(k)}(x)g_{0}(x)f^{(k+1)}(x) , and

T(x-1)(g(x-1)-g_{0}(x-1)e)
\equiv f^{(k+1)}(x)t(x-1)^{T} (g (x–1) - g_{0}(x-1)e )

modulo p^{k+1} . The first equality follows from (2.1) and the condition (3).
Similarly, the right hand side of the second equality is equivalent to

\equiv et(x-1)^{T}(g(x-1)-g_{0}(x-1)e) mod p^{k+1} .

Then the second equality is guaranteed by (2.1) and (A2). This proves (i).
(ii) This is also proved by induction on k . For k=1 , we see that f^{(1)} is

uniquely determined by the condition (3) modulo p^{1} . Then the condition (5)
and the assumption (A2) imply that tr(T(x-1))=\lambda^{(1)}(x) modulo p^{1} .

Hence we have (ii) for k=1 .
Now we suppose that Proposition 2.1 (ii) holds for k\geq 1 and prove

that it also holds for k+1 . Suppose that f^{(k+1)}(x) and \lambda^{(k+1)}(x) satisfy
the conditions (1) to (5). By the uniqueness for k , which is the induction
assumption, we have

f^{(k+1)}(x)\equiv f^{(k)}(x) , \lambda^{(k+1)}(x)\equiv\lambda^{(k)}(x) mod p^{k} . (2.3)
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Now let us suppose that \tilde{f}^{(k+1)}(x) and \tilde{\lambda}^{(k+1)}(x) also satisfy the condi-
tions (1) to (5) for k+1 . We define

F(x):=(\tilde{f}^{(k+1)}(x)-f^{(k+1)}(x))/p^{k}\backslash

\Lambda(x):=(\tilde{\lambda}^{(k+1)}(x)-\lambda^{(k+1)}(x))/p^{k}

Note that these are in Z[x] .
The condition (5),

T(x-1)f^{(k+1)}(x-1)\equiv\lambda^{(k+1)}(x)f^{(k+1)}(x) mod p^{k+1} ,
T(x-1)\tilde{f}^{(k+1)}(x-1)\equiv\tilde{\lambda}^{(k+1)}(x)\tilde{f}^{(k+1)}(x) mod p_{7}^{k+1}

implies

T(x-1)F(x-1)\equiv\Lambda(x)f^{(k+1)}(x)+\tilde{\lambda}^{(k+1)}(x)F(x) mod p .

By the assumption (A2) and the condition (3), we have

\lambda^{(1)}(x)F(x)\equiv e\cdot t(x-1)^{T}F(x-1) -\Lambda(x)e

=(t(x-1)^{T}F(x-1)-\Lambda(x))e mod p.

In particular, each entry of \lambda^{(1)}(x)F(x) satisfies

\lambda^{(1)}(x)F_{0}(x)\equiv \equiv\lambda^{(1)}(x)F_{p-1}(x)

\equiv (t(x-1)^{T}F (x–1)-\Lambda(x) ) e mod p.

The condition (1),

f_{0}^{(k+1)}(x)=1 , \tilde{f}_{0}^{(k+1)}(x)=1

implies F_{0}(x)=0 . Together with the condition (4), we see that F(x) and
\Lambda(x) are zero modulo p . This proves the uniqueness for k+1 . \square

As a limit “k - \infty”, we have the following theorem.

Theorem 2.2 Suppose p satisfifies Condition A. Then there exist unique
p-adic analytic functions

f(x)=(f_{0}(x), \ldots, f_{p-1}(x))^{T}\in M(p, 1, Z\langle x\rangle) , and \lambda(x)\in Z\langle x\rangle

defifined on Z_{p} such that
(1) f_{0}(x)=1 .
(2) f(0)=e .
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(3) f(x)\equiv e mod p .
(4) \lambda(x)\in(Z\langle x\rangle)^{\cross}

(5) T(x-1)f(x-1)=\lambda(x)f(x) .

Proof. From the proof of Proposition 2.1, we can take

f^{(k+1)}(x)\equiv f^{(k)}(x) mod p^{k}

\lambda^{(k+1)}(x)\equiv\lambda^{(k)}(x) mod p^{k} .

This implies that \{f^{(k)}(x)\}_{k=1}^{\infty} and \{\lambda^{(k)}(x)\}_{k=1}^{\infty} are Cauchy sequences in
Z\langle x\rangle , that is, \nu_{p}(\lambda^{(k)}(x)-\lambda^{(k’)}(x))\geq\min(k, k’) -arrow\infty as k , k’arrow\infty . As
limits, we obtain the required functions. For example, the value at n\in Z

is given by a convergent series in Z_{p} :

\lambda(n):=\lim_{karrow\infty}\lambda^{(k)}(n) .

The properties (1)-(5) follow from the corresponding conditions in PropO-
sition 2.1. The uniqueness follows from Proposition 2.1 (ii). \square

As a corollary, we obtain an expression of the general term a(p^{2}m) .

Proposition 2.3 Suppose there are p-adic analytic functions f(x) and
\lambda(x) on Z_{p} satisfying the conditions (1) to (5) in Theorem 2.2. Let us regard
the vector a(p^{2}m)\in M(p, 1, Z) defifined in \S 1 as an element of M(p, 1, Z_{p}) .
Then we have the equality

a(p^{2}m)=f(m)p^{(p-1)m}\prod_{j=1}^{m}\lambda(j) for any m\in z_{\geq 0} .

Proof. By (1. 1), we have

a(p^{2}m)/p^{(p-1)m}=T(m-1) . T(1)T(0)a(0)

=T(m-1) . T(1)T(0)e

On the other hand, Theorem 2.2 tells us

T(m-1)T(m-2)\cdots T(1)T(0)e

=T(m-1)T(m-2)\cdots T(1)T(0)f(0)

=f(m)\lambda(m)\lambda(m-1)\cdots\lambda(2)\lambda(1) .

\square
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Now we are ready to prove the main theorem.

Proof of Theorem B. For i=0,1 , \ldots , p-1 , it has already been proved in
Proposition 2.3. Recall the relation

a(n+1)=C(n)a(n) .

Then, for example, we have

a(p^{2}m+1)=C(p^{2}m)a(p^{2}m)=C(p^{2}m)f(m)p^{(p-1)n\tau}\prod_{j=1}^{m}\lambda(j) .

The last entry of this equality means that it is enough to take

f_{p}(x)=(0,0, \ldots, 0, 1)C(p^{2}x)f(x) .

In general, we can take

f_{i}(x)=(0,0, . . ’ 0, 1)C(p^{2}x+i-p) . C(p^{2}m+1)C(p^{2}m)f(x) .

for p\leq i<p^{2} . \square

Proof of Corollary C. Assertion (i) is immediate from Theorem B. Asser-
tion (ii) is proved in [Y]. Assertion (iii) follows from the property (3) in
Theorem 2.2. \square

In particular, the asymptotic behaviour of \nu_{p}(a(p^{2}m+i)) for large m
is described by that of \nu_{p}(f_{i}(m)) . In practical applications, we can expect
that \nu_{p}(f_{i}(m)) has a simpler behaviour.

The following is a special case of the Weierstrass preparation theorem
[BGR], [G].

Lemma 2.4 Any element h(x)\in Z\langle x\rangle is a unique product of a power of
p, a monic polynomial k(x)\in Z_{p}[x] , and a unit u(x)\in(Z\langle x\rangle)^{\cross} :

h(x)=p^{e}k(x)u(x) .

Here, the order N of the polynomial k(x) is given by

N= \max\{n\in Z_{+}|\nu_{p}(h_{n})=,\min_{n\geq 0}\nu_{p}(h_{n’})\} for h(x)= \sum_{n=0}^{\infty}h_{n}x^{n} .

Also, for any x\in Z_{p} ,

\nu_{p}(h(x))=e+\nu_{p}(k(x)) .
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Lemma 2.5 Let h(x)\in Z\langle x\rangle .
(i) If

h(x)\equiv cp^{e} mod p^{e+1} .

with some e\in Z and c\in(Z/pZ)^{\cross} , then \nu_{p}(h(m))=e . In particular, if
h(x)=f_{i}(x) , then

\nu_{p}(a(p^{2}m+i))=(p-1)m+e .

(ii) If
h(x)\equiv cp^{e}(x-b^{(1)}) mod p^{d+1} ,

with some e\in Z , c\in(Z/pZ)^{\cross} , and b^{(1)}\in Z/pZ , then the equation h(x)=0
has a unique solution x=b\in Z_{p} such that b\equiv b^{(1)} mod p . Using this
solution, \nu_{p}(h(m))=e+\nu_{p}(m-b) . In particular, if h(x)=f_{i}(x) , then

\nu_{p}(a(p^{2}m+i))=(p-1)m+e+\nu_{p}(m-b) .

Proof. We use the notation in Lemma 2.4.
For (i), we see that N=0, and that k(x)=1 .
For (ii), we see that N=1 , and that k(x)=x-b. \square

Lemma 2.5 may not apply to all situations, but its assumptions are
satisfied in most cases. In fact, Lemma 2.5 covers all cases for p\leq 11 , as is
seen in \S 3.

3. Example

In this section, we deal with the case for a small p .

3.1. On Condition A
We will see that Condition A is true for p=2,3,5,7,11,13,17,19,23 .

Proposition 3.1 For p\leq 23 , every entry of the matrix

C(p^{2}x+p^{2}-1) . . C(p^{2}x+1)C(p^{2}x)

can be divided by p^{p-1} .

In other words, T(x)\in M(p, Z[x]) . Let us define

\tilde{T}(x):= (T(x) mod p) \in M(p, (Z/pZ)[x]) .
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Proposition 3.2 For p\leq 23 , we have
(a) The matrix \tilde{T}(x) does not contain the variable x .
(b) All row vectors of \tilde{T}(x) are identical.
(c) tr(\tilde{T}(x))=-1 mod p .

In particular, Condition A holds for p\leq 23 . Both propositions are
proved with the help of Mathematica. The explicit form of \tilde{T}(x) is given as
follows:

T(x)\equiv(\begin{array}{ll}0 10 1\end{array}) =e (0,1) mod 2.

T(x)\equiv e((0,2,0) mod 3.
T(x)\equiv e((2,1,3,2,1) mod 5.
T(x)\equiv e((6,3,5,0,4,3,6) mod 7.
T(x)\equiv e . (0, 2, 3, 3, 9, 2, 4, 0, 7, 7, 6) mod 11.
T(x)\equiv e\tau (9,0,9,5,2,1,1,10,3,2,7,6,9) mod 13.
T(x)\equiv e1 (10,7,16,5,15,9,8,7,14,5,5,14,9,13,15,0,0) mod 17.
T(x)\equiv e\cdot(9,2,13,5,18,7,11,13, 2,6,13,15,13,13,7,6,12,5,0)

mod 19.
T(x)\equiv e\cdot(8,10,8,12, 14,9,20,2,9,6,1,18,0,11,9,21,10,15,19 ,

3,15,17,15) mod 23.

In what follows, we calculate f_{i}(x) for p\leq 11 . This enables us to
express the series \nu_{p}(a(m)) explicitly.

3.2. p=2
We use the algorithm given in the proof of Proposition 2.1. We easily

obtain, for example,

f_{0}(x)\equiv 1 mod p^{5}

f_{1}(x)\equiv 1+24x+16x^{2} mod p^{5}-

This, with the help of the proof of Theorem B , implies that

f_{2}(x)\equiv 2(1+14x+8x^{2}) mod p^{5}

f_{3}(x)\equiv 4(1+2x^{2}) mod p^{5}

Then it is summarized as

f_{0}(x)\equiv 1 , f_{1}(x)\equiv 1 , f_{2}(x)\equiv p(1+px) , f_{3}(x)\equiv p^{2} mod p^{3} .
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All of these are of the form in Lemma 2.5 (i). Hence, we have

\nu_{p}(f_{0}(m))=0 , \nu_{p}(f_{1}(m))=0 ,
\nu_{p}(f_{2}(m))=1 , \nu_{p}(f_{3}(m))=2 , and
\nu_{2}(a(4m))=m , \nu_{2}(a(4m+1))=m ,

\nu_{2}(a(4m+2))=m+1 , \nu_{2}(a(4m+3))=m+2 .

3.3. p=3
It is enough to calculate f(x) mod p^{5} , although this fact cannot be

recognized before the calculation. The result is

f_{0}(x)\equiv 1 mod p^{5}

f_{1}(x)\equiv 1+108x+81x^{2} mod p^{5}

f_{2}(x)\equiv 1+117x+81x mod p^{5}

f_{3}(x)\equiv p(1+48x+54x^{2}) mod p^{5}

f_{4}(x)\equiv p^{2}(1+12x) mod p^{5}

f_{5}(x)\equiv p(7+39x+54x^{2}) mod p^{5}

f_{6}(x)\equiv p^{4}(1+x) mod p^{5}

f_{7}(x)\equiv p^{3}(4+3x) mod p^{5}

f_{8}(x)\equiv p^{2}(2+18x+9x^{2}) mod p^{5} .

Now we introduce the notation

f(x)\sim cp^{d}\Leftrightarrow deff(x)\equiv cp^{d} mod p^{d+1}

for short. Then the result above can be written

f_{0}(x)\sim 1p^{0} , f_{1}(x)\sim 1p^{0} , f_{2}(x)\sim 1p^{0}

f_{3}(x)\sim 1p^{1} , f_{4}(x)\sim 1p^{2} , f_{5}(x)\sim 1p^{1}

f_{6}(x)\sim(1+x)p^{4} , f_{7}(x)\sim 1p3 , f_{8}(x)\sim 2p2 .

For \nu_{3}(f_{i}(m)) and \nu_{3}(a_{9m+i}) , we can apply Lemma 2.5. For example,

\nu_{3}(a(9m))=2m , \nu_{3}(a(9m+1))=2m ,

\nu_{3}(a(9m+2))=2m , \nu_{3}(a(9m+3))=2m+1 ,

\nu_{3}(a(9m+4))=2m+2 , \nu_{3}(a(9m+5))=2m+1 ,

\nu_{3}(a(9m+6))\geq 2m+4 , \nu_{3}(a(9m+7))=2m+3 ,

\nu_{3}(a(9m+8))=2m+2 .
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For f_{6}(x) , we can apply Lemma 2.5 (ii). In particular, we have

\nu_{3}(a(9m+6))=2m+4+\nu_{3}(m-b)

with some b\in Z_{3} . Its approximation is

b\equiv-1+3+3^{2}-3^{7}-3^{8}+3^{9}-3^{10}

+3^{14}-3^{15}-3^{16}+3^{17}+3^{18}-3^{19}+3^{20} mod 3^{21}

3.4. p=5
It is enough to calculate f(x) mod p^{5} . The result is

(\begin{array}{lll}f_{0}(x) f_{1}(x) f_{p-1}(x)f_{p}(x) f_{p+1}(x) f_{2p-1}(x)f_{p^{2}-p}(x) f_{p^{2}-1}(x)\end{array})\sim(\begin{array}{lllll}1p0 1p0 1p0 1p0 1p01p2 4p1 1p1 4p1 1p24p3 2p2 1p2 1p3 3p34p3 3p3 4p3 4p3 4p33p4 1p4 3p4 1p4 2p4\end{array})

This set of relations is read entry-wise, as in \S 3.3.
As is above, this completely determines \nu_{5}(f_{i}(m)) and \nu_{5}(a(m)) by

Lemma 2.5 (i). Remark that no ‘exception’ arises for p=5 .

It is enough to calculate f(x) mod p^{9} . We find

(\begin{array}{lll}f_{0}(x) f_{1}(x) f_{p-1}(x)f_{p}(x) f_{p+1}(x) f_{2p-1}(x)f_{p^{2}-p}(x) f_{p^{2}-1}(x)\end{array})\sim

3.5. p=7

(^{1p}1^{6}4^{5}p314^{2}p5^{1}ppp*0 6p5^{5}4^{4}6^{3}3^{2}4^{1}1pppppp60 2p6^{5}5^{3}3^{2}1^{4}4^{2}1pppppp60
6^{6}5^{5}2^{4}4^{2}1^{3}2p1pppppp01 6p3^{6}4^{4}5^{3}4^{2}5^{2}1pppppp60 4p4^{5}3^{4}3^{3}4^{1}1p1^{0}ppppp62 4^{5}4^{5}1p4^{2}1^{3)}5^{1}1pppppp80
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Here the missing entry*=(6+6x)p^{6} . Slightly more precisely,

f_{28}(x)\equiv p^{6}(186476807+166348020x+226514421x^{2}

+112502285x^{3}+83692x^{4}+241874339x^{5}

+97295723x^{6}+132590423x^{7} mod p^{16} .

By Lemma 2.5, this completely determines \nu_{7}(f_{i}(m)) and
\nu_{7}(a(49m+i)) , except for the case i=28 . The approximation of the solu-
tion x=b for the equation f_{28}(x)=0 is given by

b\equiv-1-p+3^{24}p+3p-p^{5}+2p-6p^{8} mod p^{10} .

3.6. p=11

(\begin{array}{lll}f_{0}(x) f_{1}(x) f_{p-1}(x)f_{p}(x) f_{p+1}(x) f_{2p-1}(x)f_{p^{2}-p}(x) f_{p^{2}-1}(x)\end{array})\sim

\{\begin{array}{l}1p0 1p^{0} 1p0 1p0 1p^{0} 1p0 1p0 1p0 1p^{0} 1p01p1 5p^{2} 5p^{1} 1p1 9p^{1} 2p2 9p^{1} 1p1 5p1 3p21p^{2} 1p^{2} 7p2 1o_{p}^{2} 9p^{3} 6p3 8p^{2} 3p2 10p^{2} 1o_{p}^{2}7p^{4} 8p^{3} 3p3 4p3 4p3 4p3 7p^{4} 5p3 4p^{3} 8p38p^{4} 9p^{4} 3p4 5p4 1p4 ** lo_{p}^{5} 5p4 3p4 8p44p^{5} 3p5 1p^{5} *** 7p^{5} 7p^{5} 7p^{5} 5p^{5} 10p^{5} 8p^{5}3p^{6} 7p^{6} 4p^{6} 4p6 10p^{6} 6p^{6} 10p6 1p6 10p^{6} 1p67p^{7} 2p7 10p^{7} 8p^{7} 7p7 3p^{7} 6p7 5p^{7} 1o_{p}^{7} 8p79p^{8} 4p^{8} 8p^{8} 5p^{8} 2p8 6p^{8} 9p^{8} 8p^{8} 9p^{8} 8p^{8}9p9 6p^{9} 3p^{9} 1o_{p}^{9} 4p10 9p^{9} 1p9 8p^{9} 2p9 5p^{9}10p^{11} 6p^{10} 2p10 9p10 9p^{10} 2p10 4p10 2p10 5p10 8p^{10}\end{array}

10p^{10}4^{4}1p^{0}4^{5}1p^{1}8^{4}1p^{2}3^{6}7p^{7}9p^{8}9p^{9}pppp|

Here, **=(3+3x)p^{6}\sim f_{49}(x) and ***=(10+9x)p^{7}\sim f_{58}(x) . More
precisely, modulo p^{12} , we have

f_{49}(x)\equiv p^{6}(338968+472706x+807653x^{2}+741730x^{3}

+766656x^{4}+263538x^{5})
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f_{58}(x)\equiv p^{7}(66439+76074x+39666x^{2}+19844x^{3}

+35937x^{4}+117128x^{5}) .

This table completely determines \nu_{11}(f_{i}(m)) and \nu_{11}(a(121m+i)) for
i\neq 49,58 by Lemma 2.5 (i). For i=49,58 , we can apply Lemma 2.5 (ii).
An approximation of the solution is given by

b\equiv-1-2p-p^{3}+5p-43p5 mod p^{6} for f_{49}(b)=0 .
b’\equiv 5+6p+4p2+5p3+4p4 mod p^{5} for f_{58}(b’)=0 .

References
[BGR] Bosch S., G\"untzer U. and Remmert R., Non-Archimedean Analysis. Springer,

Grund. 261, 1984.
[G] Gouv\^ea F.Q., p-adic Numbers. Springer, Universitext, 2nd. ed., 1997.
[K] Koblitz N., p-adic numbers, p-adic analysis, and zeta functions. Springer, Gradu-

ate Text in Math. 58, 1977.
[O] Ochiai H., A three-adic property of Taylor senes of \exp(x+x^{3}/3) . (1997), preprint.
[S] Stanley R., Enumerative combinatorics. Vol. 1, Wadsworth&Brooks/Cole Mathe-

matics Series, 1986, reprinted from Cambridge Studies in Advanced Mathematics.
49 (1997).

[Y] Yoshida T., Groups and generating functions. in ‘Groups and Combinatorics’, PrO-
ceeding of Symp. RIMS 794 (1992), 18-29.

Department of Mathematics, Rikkyo University
Nishi-ikebukuro, Tokyo 171-8501, Japan

Current Address:
Deparment of Mathematics, Kyushu University
Fukuoka 812-0053, Japan
E-mail: ochiai@rkmath.rikkyo.ac.jp

ochiai@math.kyushu-u.ac.jp


	Introduction
	Theorem B ...

	Notation
	1. Transfer matrix T(x)
	2. Main theorem
	Theorem 2.2 ...

	3. Example
	3.1. On Condition A
	3.2. p=2
	3.3. p=3
	3.4. p=5
	3.5. p=7
	3.6. p=11

	References

