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Local existence and uniqueness

for the n-dimensional Helfrich flow as a projected gradient flow

Takeyuki Nagasawa and Taekyung Yi
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Abstract. The gradient flow associated to the Helfrich variational problem, called

the Helfrich flow is considered. Here the n-dimensional Helfrich flow is investigated

for any n, as a projected gradient flow. A result of local existence is proved. The

uniqueness is shown for the cases (i) for the initial hypersurface with non-zero Gramian

when n ≥ 2, (ii) for every initial curve when n = 1.

Key words: Helfrich variational problem, gradient flow, constraints.

1. Introduction

Let Σ be a compact closed immersed orientable hypersurface in Rn+1.
The vectors f and ν are the position vector of a point on Σ and the unit
normal vector there respectively. We denote the mean curvature H, and dS

stands for surface element. Functionals W,A and V are defined by

W(Σ) =
n

2

∫

Σ

(H − c0)2dS, A(Σ) =
∫

Σ

dS, V(Σ) = − 1
n + 1

∫

Σ

f · νdS.

Here, c0 is a given constant. A(Σ) is the area of Σ. V(Σ) is the enclosed
volume, when Σ is an embedded hypersurface and ν is the inner normal.

For given constants A0 and V0, consider critical points of W(·) under
the constrains A(Σ) = A0, V(Σ) = V0. This problem is called the Helfrich
variational problem. This problem was firstly proposed by Helfrich [5]
as a model of shape transformation theory of human red blood cells. For
this case n = 2, and c0 is the spontaneous curvature which is determined by
the molecular structure of cell membrane. The surface Σ stands for the cell
membrane.

For n = 1, the functional W is

2010 Mathematics Subject Classification : 53C44, 49Q10, 53A04, 53A05, 58J35,
35K30.

Partly supported by Grant-in-Aid for Scientific Research (C) (No. 22540219), Japan
Society for the Promotion Science.



210 T. Nagasawa and T. Yi

1
2

∫

Σ

H2dS − c0

∫

Σ

Hds +
1
2
c2
0A(Σ).

If we consider the variational problem under the constrain of lengthA among
curves with fixed rotation number, then we can replace the functional with
the first integral 1

2

∫
Σ

H2dS. Because the second and third integrals are
respectively constant multiples of rotation number and the length, which
are invariant for our problem. According to [2], a shape transformation of
a closed loop of plastic tape between two parallel flat plates is governed
by the one-dimensional Helfrich variational problem. This problem is also
related with the spectral optimization problem for plain domains. Let Ω be
a bounded plane domain, and Σ be its boundary. The function G(x, y, t) is
the Green function for the heat equation in Ω × (0, T ) under the Dirichlet
condition. The asymptotic expansion

∫

Ω

G(x, x, t)dx =
1

4πt

(
a0 + a1t

1/2 + a2t + a3t
3/2 + · · · ) as t → +0

is well-known as the trace formula. Here

a0 = V(Σ), a1 = −
√

π

2
A(Σ), a2 =

1
3

∫

Σ

HdS a3 =
√

π

64

∫

Σ

H2dS.

a2 is determined by the topology of Ω. Hence the one-dimensional Helfrich
problem is equivalent to the following problem: For given a0, a1 and a2

find the domain Ω which minimize a3. This problem was proposed and
investigated by Watanabe [11], [12].

In this paper, we consider the associated gradient flow. Let {Σ(t)}t≥0

be one-parameter family of hypersurfaces, and let V be the normal velocity
of deformation. The equation of flow is

V (t) = −δW(Σ(t))− λ1(Σ(t))δA(Σ(t))− λ2(Σ(t))δV(Σ(t)). (1.1)

A solution is called the Helfrich flow. Here δ means the first variation,
and λj ’s are Lagrange multipliers. The multipliers are unknown functions
determined from the solution itself. It is natural that they are determined so
that A(Σ(t)) ≡ A0, V(Σ(t)) ≡ V0. Let 〈·, ·〉 denote the L2(Σ)-inner product.
Since
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d

dt
A(Σ(t)) = 〈δA(Σ(t)), V (t)〉, d

dt
V(Σ(t)) = 〈δV(Σ(t)), V (t)〉,

we obtain
(〈δA(Σ(t)), δA(Σ(t))〉 〈δV(Σ(t)), δA(Σ(t))〉
〈δA(Σ(t)), δV(Σ(t))〉 〈δV(Σ(t)), δV(Σ(t))〉

)(
λ1(Σ(t))
λ2(Σ(t))

)

= −
(〈δA(Σ(t)), δW(Σ(t))〉
〈δV(Σ(t)), δW(Σ(t))〉

)
(1.2)

by calculating the product of (1.1) with δA(Σ(t)) and δV(Σ(t)). Put

G(Σ(t)) = det
(〈δA(Σ(t)), δA(Σ(t))〉 〈δV(Σ(t)), δA(Σ(t))〉
〈δA(Σ(t)), δV(Σ(t))〉 〈δV(Σ(t)), δV(Σ(t))〉

)
.

This is a Gramian of δA(Σ(t)) and δV(Σ(t)). When G(Σ(t)) 6= 0, the
multipliers λj(Σ) are uniquely determined from Σ(t), and the equation is
settled. When G(Σ(t)) = 0, they are not uniquely determined, but we can
show that the linear combination λ1(Σ(t))δA(Σ(t)) + λ2(Σ(t))δV(Σ(t)) is
uniquely determined. As a result, we have the following.

Theorem 1.1 Let P (Σ(t)) be the orthogonal projection from L2(Σ(t)) to
(spanL2(Σ(t)){δA(Σ(t)), δV(Σ(t))})⊥. Then the equation of Helfrich flow can
be written as

V (t) = −P (Σ(t))δW(Σ(t)) for t > 0. (1.3)

Solutions of the equation satisfy

d

dt
W(Σ(t)) ≡ −‖V (t)‖2L2(Σ(t)),

d

dt
A(Σ(t)) ≡ 0,

d

dt
V(Σ(t)) ≡ 0. (1.4)

In Section 3, we shall give its proof.

We get a result on the existence and uniqueness of the initial value
problem for the equation in Theorem 1.1. Let hα be the little Hölder space.

Theorem 1.2

( i ) Assume that Σ0 is in the class h3+α(0 < α < 1), and that G(Σ0) 6= 0.
Then there exists T > 0 such that there uniquely exists the solution
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{Σ(t)}0≤t<T of (1.3) satisfying Σ(0) = Σ0.
( ii ) Assume that G(Σ0) = 0. Let H0 and R0 be the mean curvature and

the scalar curvature of Σ0 respectively. Put

H0 =
1

A0

∫

Σ0

H0dS, R̃0 = R0 − 1
A0

∫

Σ0

R0dS.

If (H0− c0)R̃0 ≡ 0, then there exists a global solution {Σ(t)}t≥0 of (1.3)
satisfying Σ(0) = Σ0.

Remark 1.1 For (ii), we do not know uniqueness of solutions for n ≥ 2.
When n = 1, however, the uniqueness holds. See Theorem 4.1.

The low-dimensional Helfrich flow has been considered in [6] (for n = 2)
and in [7] (for n = 1).

In [6], λ1, λ2 are not determined as above, but given as known constants.
That is, for given {λ1, λ2,Σ0} as the data, solutions of (1.1) with Σ(0) =
Σ0 were constructed. Of course, solutions do not satisfy d

dtA(Σ(t)) ≡ 0,
d
dtV(Σ(t)) ≡ 0, and we cannot expect the global existence. Indeed, there
exist solutions blowing up in finite/infinite time. The problem is shifted to
find triples {λ1, λ2,Σ0} so that the solution can extend globally in time. In
[6], the existence of such triples was shown near spheres. Furthermore, such
triples form a finite dimensional center manifold. The class of initial surfaces
is h2+α for some α ∈ (0, 1), which is wider than ours. In our formulation
∇gH appears in the explicit expression of λ1, λ2 and therefore we need extra
regularity of Σ0 than [6].

In [7], we did not treat (1.1)（or (1.2)) directly. The gradient flow
{Σ(ε, t)} associated with the functional

W(Σ) +
1
2ε

(A(Σ)−A0)2 +
1
2ε

(V(Σ)− V0)2 (ε > 0)

was constructed. The solution of (1.1) was obtained as the limit of {Σ(ε, t)}
as ε → +0. This is a global solution, and satisfies (1.3). The class of initial
curve is C∞, but the uniqueness was uncertain.

This paper consists four sections. Following Introduction we calculate
the first variation of the functional and we express (1.1) with geometrical
quantity of Σ(t) in Section 2. In Section 3, we show Theorem 1.1. In Section
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4, following the method of [6], we regard Σ(t) as the perturbation of Σ0 in
normal direction with ρ(t), and using ρ(t), we write down (1.1). Using
theory of quasi-linear parabolic equations [1], we shall show Theorem 1.2.

2. The derivation of equation

In this section, we write down (1.1) explicitly in terms of geometrical
quantities of Σ(t). To do this, we need the first variation formulas of W, A
and V. Those of A and V are well-known. That of W is essentially found
in [3], however, we give it here again. Let

Σ =
{
f = f(s1, . . . , sn) ∈ Rn+1 | (s1, . . . , sn) is a local coordinate system

}

be a hypersurface. Let ν denote the unit normal vector field on Σ.
The vector ν is given by

ν =
f1 ∧ f2 ∧ · · · ∧ fn

‖f1 ∧ f2 ∧ · · · ∧ fn‖ , fi =
∂f

∂si
. (2.1)

Put

gij = fi · fj , g = det(gij), νi =
∂ν

∂si
.

It is easy to see

fi · ν = fj · ν = ν · νi = f · νj = 0, ‖f1 ∧ f2 ∧ · · · ∧ fn‖ =
√

g. (2.2)

The first fundamental form is given by

I = df · df = gijdsidsj . (2.3)

Put

II = −dν · df = ν · d2f = hijdsidsj , hij = −νi · fj = −νj · fi, (2.4)

which is the second fundamental form. Let (gij) denote the inverse matrix
of (gij). The mean curvature and the surface element are given by
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H =
1
n

gijhij , (2.5)

dS =
√

g ds1 · · · dsn. (2.6)

By (2.2)–(2.4), we have fij · ν = −fi · νj = hij , and

fij =
∂2f

∂si∂sj
= Γk

ijfk + hijν, (2.7)

where

Γk
i` =

gkj

2

(
∂gij

∂s`
+

∂gj`

∂si
− ∂gi`

∂sj

)

is called the Christoffel symbol. By the Weingarten equation

νi = −hj
ifj , hj

i = gjkhki, (2.8)

we obtain

νi · νj = hk
i hl

jfk · fl = hk
i hl

jgkl = hk
i hjk.

For a smooth function ϕ on Σ, consider the normal variation

Σt = {f(t) = f + tϕν ∈ Rn+1}.

If |t| is sufficiently small, Σt becomes a hypersurface. The first variation δF
of functional F to the direction ϕ is given by

〈δF(Σ), ϕ〉 =
d

dt
F(Σt)

∣∣∣∣
t=0

.

If 〈δF(Σ), ϕ〉 = 0 for arbitrary ϕ, we write δF(Σ) = 0 and Σ is called critical.
We calculate the first variation concretely here. We use the notation δ not
only for functionals but also for geometrical quantities to mean d

dt |t=0. Then
we obtain

δf = ϕν, δfi = ϕiν + ϕνi (2.9)
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δgij = −2ϕhij , δgij = 2ϕgikhj
k, (2.10)

δ
√

g = −nϕH
√

g. (2.11)

By (2.7) and (2.8), we get

δfij = ϕijν + ϕiνj + ϕjνi + ϕνij

= ϕijν + ϕiνj + ϕjνi − ϕ
{(

hk
i

)
j
fk + hk

i fkj

}

= ϕijν + ϕiνj + ϕjνi − ϕ
{(

hk
i

)
j
fk + hk

i

(
Γ`

kjf` + hkjν
)}

. (2.12)

Using (2.2), we obtain

ν · δfij = ϕij − ϕhk
i hkj . (2.13)

Let u1, . . . ,un,un+1 be vectors in Rn+1. The scalar product of the vector
un+1 and the vector u1 ∧ · · · ∧ un are given by

un+1 · u1 ∧ · · · ∧ un = det(u1, . . . ,un,un+1). (2.14)

It follows from (2.1), (2.5), (2.7), (2.8), (2.9), (2.11), and (2.14) that

fij · δν = −ϕkΓk
ij . (2.15)

Therefore, by (2.13) and (2.15), we obtain

δhij = ϕij − ϕkΓk
ij − ϕhk

i hkj = ∇iϕj − ϕhk
i hkj . (2.16)

Here, ∇iϕj = ϕij − ϕkΓk
ij is the convariant derivative of ϕj . By direct

computation together with (2.13) and (2.16), we obtain

n(δH) = ∆gϕ + ϕhi
jh

j
i . (2.17)

Here, ∆g is the Laplacian-Beltrami operator defined by

∆gϕ = gi`∇iϕ` = gi`ϕi` − gi`Γk
i`ϕk

= gijϕij +
1√
g

(√
ggkj

)
j
ϕk =

1√
g

(√
ggijϕi

)
j
.
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The scalar curvature R is given by

R = n2H2 − hi
jh

j
i . (2.18)

Combining (2.17) and (2.18), we obtain

n(δH) = ∆gϕ + (n2H2 −R)ϕ. (2.19)

Put Wp(Σ) =
∫
Σ

HpdS. Thus by using (2.6), (2.11) and (2.19), we can
prove that

δWp(Σ)[ϕ] =
∫

Σ

[
p

n
Hp−1∆gϕ +

{
n(p− 1)Hp+1− p

n
Hp−1R

}
ϕ

]
dS. (2.20)

When Σ is closed, using integration by parts, we obtain from (2.20)

δWp(Σ)[ϕ] =
∫

Σ

{
p

n
∆gH

p−1 + n(p− 1)Hp+1 − p

n
Hp−1R

}
ϕdS. (2.21)

Since

W(Σ) =
n

2

∫

Σ

(
H2 − 2c0H + c0

2
)
dS =

n

2
(W2(Σ)− 2c0W1(Σ) + c0

2W0(Σ)
)
,

we obtain

δW(Σ)[ϕ] =
∫

Σ

(
∆gH +

n2

2
H3 −HR + c0R− n2

2
c0

2H

)
ϕdS.

As well known, we have

δA(Σ)[ϕ] = −
∫

Σ

nHϕdS, δV(Σ)[ϕ] = −
∫

Σ

ϕdS.

As a result the equation (1.1) of Helfrich flow becomes

V (t) = −∆g(t)H(t)− n2

2
H3(t) + H(t)R(t)− c0R(t) +

n2

2
c0

2H(t)

+ λ1(Σ(t))nH(t) + λ2(Σ(t)). (2.22)
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3. The Helfrich flow as a projected gradient flow

In this section, we show the following.

Theorem 3.1 If λ1(Σ(t)) and λ2(Σ(t)) are determined so that d
dtA(Σ(t))

≡ 0, d
dtV(Σ(t)) ≡ 0 in the equation (1.1) of Helfrich flow, then it can be

written as

V (t) = −P (Σ(t))δW(Σ(t)) (t > 0). (3.1)

Here P (Σ(t)) is the orthogonal projection from L2(Σ(t)) to the subspace
(spanL2(Σ(t)){δA(Σ(t)), δV(Σ(t))})⊥.

Conversely solutions to (3.1), if exist, satisfy

d

dt
W(Σ(t)) ≡ −‖V (t)‖2L2(Σ(t)),

d

dt
A(Σ(t)) ≡ 0,

d

dt
V(Σ(t)) ≡ 0. (3.2)

Proof. The following is a special case of theory of projected gradient flows
[9]. We denote V (t),Σ(t) simply by V , Σ respectively. ‖ · ‖ stands for the
L2(Σ)-norm. Put

H̃ = H − 1
A

∫

Σ

HdS, H∗ =

{
H̃
‖H̃‖ (H̃ 6≡ 0)

0 (H̃ ≡ 0)
, 1∗ =

1
‖1‖ .

Note that 〈H∗, 1∗〉 = 0. Since δA(Σ) = −nH, δV(Σ) = −1, we have

spanL2(Σ){δA(Σ), δV(Σ)} = spanL2(Σ){H, 1} = spanL2(Σ){H∗, 1∗}.

Hence the equation (1.1) becomes

V = −δW(Σ)− λ1δA(Σ)− λ2δV(Σ) = −δW(Σ)− µ11∗ − µ2H∗ (3.3)

for some µj . It follows from dA(Σ)
dt = dV(Σ)

dt = 0 that 〈H, V 〉 = 〈1, V 〉 = 0.
This implies

〈1∗, V 〉 = 〈H∗, V 〉 = 0.

Taking the L2(Σ)-inner product (3.3) and 1∗, H∗, we get
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0 = 〈1∗, V 〉 = −〈1∗, δW(Σ)〉−µ1, 0 = 〈H∗, V 〉 = −〈H∗, δW(Σ)〉−µ2‖H∗‖2.

In spite of H∗ = 0 or not, it holds that

−µ11∗ − µ2H∗ = 〈1∗, δW(Σ)〉1∗ + 〈H∗, δW(Σ)〉H∗.

Hence (3.3) is

V = −δW(Σ) + 〈1∗, δW(Σ)〉1∗ + 〈H∗, δW(Σ)〉H∗ = −P (Σ)δW(Σ).

Consequently we obtain (3.1).
Conversely it holds for solution to (3.1) that

d

dt
W(Σ) = 〈δW(Σ), V 〉 = 〈δW(Σ),−P (Σ)δW(Σ)〉

= −‖P (Σ)δW(Σ)‖2 = −‖V ‖2.

Since V ∈ (spanL2(Σ){δA(Σ), δV(Σ)})⊥, we have

d

dt
A(Σ) = 〈δA(Σ), V 〉 = 0,

d

dt
V(Σ) = 〈δV(Σ), V 〉 = 0. ¤

4. The existence

In this section we prove Theorem 1.2. Firstly we consider the case
G(Σ0) 6= 0. If the Herfrich flow with Σ(0) = Σ0 exists, it holds that
G(Σ(t)) 6= 0 for sufficiently small t > 0. We denote Σ(t) simply by Σ.
It follows from (1.2) that

(
λ1(Σ)
λ2(Σ)

)
= −

(〈δA(Σ), δA(Σ)〉 〈δV(Σ), δA(Σ)〉
〈δA(Σ), δV(Σ)〉 〈δV(Σ), δV(Σ)〉

)−1 (〈δA(Σ), δW(Σ)〉
〈δV(Σ), δW(Σ)〉

)

= − 1
G(Σ)

( 〈δV(Σ), δV(Σ)〉 −〈δV(Σ), δA(Σ)〉
−〈δA(Σ), δV(Σ)〉 〈δA(Σ), δA(Σ)〉

)

×
(〈δA(Σ), δW(Σ)〉
〈δV(Σ), δW(Σ)〉

)
. (4.1)

By results of Section 2, we have
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〈δA(Σ), δA(Σ)〉 =
∫

Σ

n2H2dS,

〈δA(Σ), δV(Σ)〉 =
∫

Σ

nHdS,

〈δV(Σ), δV(Σ)〉 =
∫

Σ

dS,

〈δA(Σ), δW(Σ)〉 = −
∫

Σ

nH

(
∆gH +

n2

2
H3 −HR + c0R− n2

2
c0

2H

)
dS

=
∫

Σ

(
n|∇gH|2−n3

2
H4+nH2R−nc0HR+

n3

2
c0

2H2

)
dS,

〈δV(Σ), δW(Σ)〉 = −
∫

Σ

(
∆gH +

n2

2
H3 −HR + c0R− n2

2
c0

2H

)
dS

=
∫

Σ

(
− n2

2
H3 + HR− c0R +

n2

2
c0

2H

)
dS,

G(Σ) =
∫

Σ

n2H2dS

∫

Σ

dS −
( ∫

Σ

nHdS

)2

= n2A
∫

Σ

H̃2dS.

(4.2)

Here

H̃ = H − H̄, H̄ =
1
A

∫

Σ

HdS.

Inserting these into (4.1), we have the explicit expression of λj(Σ)’s in the
case G(Σ) 6= 0.

Proposition 4.1 When G(Σ) 6= 0, λj(Σ)’s are given by

λ1(Σ) =
nA

G(Σ)

∫

Σ

{
− |∇gH|2 + H̃

(
n2

2
H3 −HR + c0R− n2

2
c2
0H

)}
dS,

λ2(Σ) =
n2

G(Σ)

∫

Σ

{
AH̄|∇gH|2

+
( ∫

Σ

H̃2dS −AH̄H̃

)(
n2

2
H3 −HR + c0R− n2

2
c2
0H

)}
dS.
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In particular they depend on
∫

Σ

|∇gH|2dS,

∫

Σ

HpdS (p = 0, 1, 2, 3, 4),
∫

Σ

HqRdS (q = 0, 1, 2),

analytically.

In order to prove Theorem 1.2 (i), we regard Σ(t) as the perturbation
of Σ0 in normal direction with signed distance ρ(t). This is in a similar
manner to [6]. We can write down the Laplace-Beltrami operater, the mean
curvature, the scalar curvature, and the Lagrange multipliers in term of
the function ρ and its derivatives, denoted ∆ρ,H(ρ), R(ρ), λ1(ρ), and λ2(ρ)
respectively. Let

⋃m
`=1 U` be the open covering of Σ0. We denote the inner

unit normal vector field of Σ0 by ν0. The mapping X` : U` × (−a, a) 3
(s, r) → s + rν0(s) ∈ Rn+1 is a C∞-diffeomorphism from U` × (−a, a) to
R` = Im(X`) provided a > 0 is sufficiently small. Let us denote the inverse
mapping X−1

` by (S`,Λ`), where S`(X`(s, r)) = s ∈ U`, and Λ`(X`(s, r)) =
r ∈ (−a, a).

When Σ(t) is close to Σ0 for small t > 0, we can represent it as a graph
of a function on Σ0 as

Σρ(t) = Σ(t) =
m⋃

`=1

Im(X`(·, ρ(·, t)) : U` → Rn, [s 7→ X`(s, ρ(s, t))]).

Conversely, for a given function ρ : Σ0 × [0, T ) → (−a, a) we define the
mapping Φ`,ρ from R` × [0, T ) to R by

Φ`,ρ(x, t) = Λ`(x)− ρ(S`(x), t). (4.3)

Then Φ`,ρ(·, t)−1(0) gives the surface Σρ(t).
The velocity in the direction of the inner normal vector field of Σ =

{Σρ(t) : t ∈ [0, T )} at (x, t) = (X`(s, ρ(s, t)), t) is given by

V (s, t) = − ∂tΦ`,ρ(x, t)
‖∇xΦ`,ρ(x, t)‖

∣∣∣∣
x=X`(s,ρ(s,t))

=
∂tρ(s, t)

‖∇xΦ`,ρ(x, t)‖

∣∣∣∣
x=X`(s,ρ(s,t))

.

The equation (1.1) is represented as
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∂tρ = Lρ

(
−∆ρH(ρ)− n2

2
H3(ρ) + H(ρ)R(ρ)− c0R(ρ) +

n2

2
c0

2H(ρ)

+ λ1(ρ)nH(ρ) + λ2(ρ)
)

where Lρ = ‖∇xΦ`,ρ(x, t)‖x=X`(s,ρ(s,t)).
Let Kj be the fundamental function of order j of the principal curvatures

κ1, κ2, . . . , κn, that is,

K1 =
∑

i

κi, K2 =
∑

i<j

κiκj , K3 =
∑

i<j<k

κiκjκk, . . . , Kn = κ1κ2 . . . κn.

The mean curvature H, the scalar curvature R, and the Gaussian curvature
K are given by

H =
K1

n
, R = 2K2, K = Kn.

To get expressions of H(ρ) and R(ρ), we need those of Kj in term of deriva-
tives of Φ`,ρ. We denote Φ`,ρ simply by Φ.

Lemma 4.1 Assume that a hypersurface is defined by {x ∈ Rn+1 : Φ(x) =
0} locally, and that ∇xΦ 6= 0 everywhere near the hypersurface. Then Kj is
given by

Kj =
1

(n− j)!
dn−j

dεn−j
G(∇xΦ,HessxΦ, ε)

∣∣∣∣
ε=0,{x:Φ(x)=0}

,

where

G(p, X, ε) = detn+1

(‖p‖−1(In+1 − p⊗ p)X(In+1 − p⊗ p) + p⊗ p + εEtE
)
,

E = (e1, . . . ,en) ∈ Mn+1(R), p = ‖p‖−1p for p ∈ Rn+1

Proof. We prove the assertion by the adapted argument of [6, Lemma
5.1]. We may assume x = 0. Then there exists a neighborhood of U of
0 ∈ Rn such that Φ(x) = 0 is a graph of a function of f : U → R. Let
x̃ = (x1, . . . , xn) and x = (x̃, xn+1). Since principal curvature at 0 are
eigenvalues of Hessx̃f(0), it holds that
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detn(Hessx̃f(0) + εIn) =
n∑

j=0

Kjε
n−j ,

where K0 = 1. Consequently

Kj =
1

(n− j)!
dn−j

dεn−j
detn(Hessx̃f(0) + εIn)

∣∣∣∣
ε=0

.

As shown in [6, Lemma 5.1], putting p = ∇xΦ(0), X = HessxΦ(0), we have

Hessx̃f̃(0) = ‖p‖−1tEXE.

Hence

detn(Hessx̃f(0) + εIn)

= detn+1

(‖p‖−1tEXE + εIn 0
0 1

)

= detn+1

(‖p‖−1EtEXEtE + εEtE + en+1
ten+1

)

= detn+1

(‖p‖−1(In+1 − p⊗ p)X(In+1 − p⊗ p) + p⊗ p + εEtE
)
. ¤

It follows from (4.3) that ∇xΦ and HessxΦ can be written in terms of
derivatives of ρ up to the 2nd order, and therefore so do H(ρ) and R(ρ). By
Proposition 4.1 we find that λj(Σ)’s depend analytically on derivatives of ρ

up to the 3rd order near ρ = 0. Consequently the equation (2.21) is in the
form

ρt + Lρ∆ρH(ρ) + Φ(ρ, ∂ρ, ∂2ρ, ∂3ρ) = 0.

Now we study precisely where the third derivarive ∂3ρ appears. There are
no terms including it other than Lρ∆ρH(ρ) and λj(ρ). The analysis of the
principal term Lρ∆ρH(ρ) is in the same as [4] and [6], and ∂3ρ appears
linearly there. We have found |∇gH|2 (= |∇ρH(ρ)|2) in the numerator of
the expression of λj(Σ) (= λj(ρ)) in Proposition 4.1. It follows from [6,
Lemma 2.1] that ∇ρH(ρ) is linear in ∂3ρ. The denominator G(Σ) of λ1(Σ)
does not depend on ∇gH. Hence we have a term including ∂3ρ quadrically
from λ1(ρ).
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An argument similar to [4, Lemma 2.1] and [10, Lemma 2.1] gives the
following. Let hγ(Σ0) be the little Hölder space on Σ0 of order γ. We fix
0 < α < β < 1. For β0 ∈ (α, β), put

U =
{
ρ ∈ h3+β0(Σ0) : ‖ρ‖C2(Σ0) < a

}
.

For two Banach spaces E0 and E1 satisfying E1 ↪→ E0 the set H(E1, E0)
is the class of A ∈ L(E1, E0) such that −A, considered as an unbounded
operater in E0, generates a strongly continuous analytic semigroup on E0.

Proposition 4.2 There exist Q ∈ C∞(U ,H(h4+α(Σ0), hα(Σ0))), and
F ∈ C∞(U , hβ0(Σ0)) such that the equation (2.21) is in the form

ρt + Q(ρ)ρ + F (ρ) = 0.

Applying [1, Theorem 12.1] with Xβ = U , E1 = h4+α(Σ0), E0 =
hα(Σ0), and Eγ = hβ0(Σ0), we get an existence and uniqueness result for
the Helfrich flow in case G(Σ0) 6= 0.

Remark 4.1 The equation dealt with in [6] is a similar forth-order equa-
tion, but linear with respect to the third order derivatives of ρ. The term
Q(ρ)ρ includes such parts, and F (ρ) does not include the third order deriva-
tives. Therefore it was solvable for initial data in the class h2+α. In our
case, the terms with ∂3ρ, which are not linear with respect to it, are ex-
cluded from Q(ρ)ρ, and they are included into F (ρ). This is why we need
extra regularity than the result in [6].

Now consider the assertion (ii) in Theorem 1.2. Before going to prove,
we see an example of Σ0 satisfying G(Σ0) = 0 and (H0 − c0)R̃0 ≡ 0. A
typical example is a sphere. Indeed, spheres have constant mean curvature,
and there for G(Σ0) = 0 (see (4.2)). Since the scalar curvature is also
constant, we have R̃0 = 0. Furthermore spheres are stationary solution to
(3.1).

To show the assertion (ii), it is enough to see that Σ0 is a stationary
solution.

Assume that G(Σ) = 0. It follows from (4.2) that Σ has a constant
mean curvature H = H. Hence
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spanL2(Σ){δA, δV} = spanL2(Σ){1},

and

P (Σ)φ = φ− 1
A(Σ)

∫

Σ

φdS

for φ ∈ L2(Σ). Therefore at the time when G(Σ(t)) = 0, the equation (3.1)
becomes

V (t) = −δW(Σ(t)) +
1

A(Σ)

∫

Σ

δW(Σ(t))dS

= −∆gH − 1
2
H

3
+ HR− c0R +

1
2
n2c2

0H

+
1

A(Σ)

∫

Σ

(
1
2
H

3 −HR + c0R− 1
2
n2c2

0H

)
dS

= −(H − c0)R̃,

where

R̃ = R− 1
A(Σ)

∫

Σ

RdS.

Consequently if the hypersurface Σ0 satisfies G(Σ0) = 0 and (H− c0)R̃ ≡ 0,
then it is a stationary of solution (3.1).

Thus we complete the proof of Theorem 1.2. ¤

We do not know the uniqueness in case of Theorem 1.2 (ii), expect for
n = 1.

Theorem 4.1 Consider the one-dimensional Helfrich flow. If Σ0 satisfies
G(Σ0) = 0, then {Σ(t) ≡ Σ0} is the unique global solution with Σ(0) = Σ0.

Remark 4.2 When n = 1, the scalar curvature is zero by its definition,
and therefore the condition (H − c0)R̃ ≡ 0 is automatically satisfied.

Proof. When n = 1, the integral
∫
Σ

HdS is a constant multiple of the
rotation number. Therefore it does not depend on t. Consequently we have
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d

dt
G(Σ) = A0

d

dt

∫

Σ

H2dS = 2A0
d

dt
W = −2A0‖V ‖2 ≤ 0.

Combining this with G(Σ) ≥ 0 (see (4.2)), it hold that G(Σ) ≡ 0 provided
G(Σ0) = 0. Using the above relation again, we have V ≡ 0, that is, Σ(t) ≡
Σ(0). ¤
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