Local existence and uniqueness

 for the n-dimensional Helfrich flow as a projected gradient flowTakeyuki Nagasawa and Taekyung Yi

(Received October 5, 2010; Revised April 18, 2011)

Abstract

The gradient flow associated to the Helfrich variational problem, called the Helfrich flow is considered. Here the n-dimensional Helfrich flow is investigated for any n, as a projected gradient flow. A result of local existence is proved. The uniqueness is shown for the cases (i) for the initial hypersurface with non-zero Gramian when $n \geq 2$, (ii) for every initial curve when $n=1$.

Key words: Helfrich variational problem, gradient flow, constraints.

1. Introduction

Let Σ be a compact closed immersed orientable hypersurface in \mathbb{R}^{n+1}. The vectors \boldsymbol{f} and $\boldsymbol{\nu}$ are the position vector of a point on Σ and the unit normal vector there respectively. We denote the mean curvature H, and $d S$ stands for surface element. Functionals \mathcal{W}, \mathcal{A} and \mathcal{V} are defined by

$$
\mathcal{W}(\Sigma)=\frac{n}{2} \int_{\Sigma}\left(H-c_{0}\right)^{2} d S, \quad \mathcal{A}(\Sigma)=\int_{\Sigma} d S, \quad \mathcal{V}(\Sigma)=-\frac{1}{n+1} \int_{\Sigma} f \cdot \boldsymbol{\nu} d S
$$

Here, c_{0} is a given constant. $\mathcal{A}(\Sigma)$ is the area of Σ. $\mathcal{V}(\Sigma)$ is the enclosed volume, when Σ is an embedded hypersurface and $\boldsymbol{\nu}$ is the inner normal.

For given constants \mathcal{A}_{0} and \mathcal{V}_{0}, consider critical points of $\mathcal{W}(\cdot)$ under the constrains $\mathcal{A}(\Sigma)=\mathcal{A}_{0}, \mathcal{V}(\Sigma)=\mathcal{V}_{0}$. This problem is called the Helfrich variational problem. This problem was firstly proposed by Helfrich [5] as a model of shape transformation theory of human red blood cells. For this case $n=2$, and c_{0} is the spontaneous curvature which is determined by the molecular structure of cell membrane. The surface Σ stands for the cell membrane.

For $n=1$, the functional \mathcal{W} is

[^0]$$
\frac{1}{2} \int_{\Sigma} H^{2} d S-c_{0} \int_{\Sigma} H d s+\frac{1}{2} c_{0}^{2} \mathcal{A}(\Sigma)
$$

If we consider the variational problem under the constrain of length \mathcal{A} among curves with fixed rotation number, then we can replace the functional with the first integral $\frac{1}{2} \int_{\Sigma} H^{2} d S$. Because the second and third integrals are respectively constant multiples of rotation number and the length, which are invariant for our problem. According to [2], a shape transformation of a closed loop of plastic tape between two parallel flat plates is governed by the one-dimensional Helfrich variational problem. This problem is also related with the spectral optimization problem for plain domains. Let Ω be a bounded plane domain, and Σ be its boundary. The function $G(x, y, t)$ is the Green function for the heat equation in $\Omega \times(0, T)$ under the Dirichlet condition. The asymptotic expansion

$$
\int_{\Omega} G(x, x, t) d x=\frac{1}{4 \pi t}\left(a_{0}+a_{1} t^{1 / 2}+a_{2} t+a_{3} t^{3 / 2}+\cdots\right) \quad \text { as } \quad t \rightarrow+0
$$

is well-known as the trace formula. Here

$$
a_{0}=\mathcal{V}(\Sigma), \quad a_{1}=-\frac{\sqrt{\pi}}{2} \mathcal{A}(\Sigma), \quad a_{2}=\frac{1}{3} \int_{\Sigma} H d S \quad a_{3}=\frac{\sqrt{\pi}}{64} \int_{\Sigma} H^{2} d S
$$

a_{2} is determined by the topology of Ω. Hence the one-dimensional Helfrich problem is equivalent to the following problem: For given a_{0}, a_{1} and a_{2} find the domain Ω which minimize a_{3}. This problem was proposed and investigated by Watanabe [11], [12].

In this paper, we consider the associated gradient flow. Let $\{\Sigma(t)\}_{t \geq 0}$ be one-parameter family of hypersurfaces, and let V be the normal velocity of deformation. The equation of flow is

$$
\begin{equation*}
V(t)=-\delta \mathcal{W}(\Sigma(t))-\lambda_{1}(\Sigma(t)) \delta \mathcal{A}(\Sigma(t))-\lambda_{2}(\Sigma(t)) \delta \mathcal{V}(\Sigma(t)) . \tag{1.1}
\end{equation*}
$$

A solution is called the Helfrich flow. Here δ means the first variation, and λ_{j} 's are Lagrange multipliers. The multipliers are unknown functions determined from the solution itself. It is natural that they are determined so that $\mathcal{A}(\Sigma(t)) \equiv \mathcal{A}_{0}, \mathcal{V}(\Sigma(t)) \equiv \mathcal{V}_{0}$. Let $\langle\cdot, \cdot\rangle$ denote the $L^{2}(\Sigma)$-inner product. Since

$$
\frac{d}{d t} \mathcal{A}(\Sigma(t))=\langle\delta \mathcal{A}(\Sigma(t)), V(t)\rangle, \quad \frac{d}{d t} \mathcal{V}(\Sigma(t))=\langle\delta \mathcal{V}(\Sigma(t)), V(t)\rangle,
$$

we obtain

$$
\begin{align*}
& \left(\begin{array}{ll}
\langle\delta \mathcal{A}(\Sigma(t)), \delta \mathcal{A}(\Sigma(t))\rangle & \langle\delta \mathcal{V}(\Sigma(t)), \delta \mathcal{A}(\Sigma(t))\rangle \\
\langle\delta \mathcal{A}(\Sigma(t)), \delta \mathcal{V}(\Sigma(t))\rangle & \langle\delta \mathcal{V}(\Sigma(t)), \delta \mathcal{V}(\Sigma(t))\rangle
\end{array}\right)\binom{\lambda_{1}(\Sigma(t))}{\lambda_{2}(\Sigma(t))} \\
& =-\binom{\langle\delta \mathcal{A}(\Sigma(t)), \delta \mathcal{W}(\Sigma(t))\rangle}{\langle\delta \mathcal{V}(\Sigma(t)), \delta \mathcal{W}(\Sigma(t))\rangle} \tag{1.2}
\end{align*}
$$

by calculating the product of (1.1) with $\delta \mathcal{A}(\Sigma(t))$ and $\delta \mathcal{V}(\Sigma(t))$. Put

$$
G(\Sigma(t))=\operatorname{det}\left(\begin{array}{ll}
\langle\delta \mathcal{A}(\Sigma(t)), \delta \mathcal{A}(\Sigma(t))\rangle & \langle\delta \mathcal{V}(\Sigma(t)), \delta \mathcal{A}(\Sigma(t))\rangle \\
\langle\delta \mathcal{A}(\Sigma(t)), \delta \mathcal{V}(\Sigma(t))\rangle & \langle\delta \mathcal{V}(\Sigma(t)), \delta \mathcal{V}(\Sigma(t))\rangle
\end{array}\right) .
$$

This is a Gramian of $\delta \mathcal{A}(\Sigma(t))$ and $\delta \mathcal{V}(\Sigma(t))$. When $G(\Sigma(t)) \neq 0$, the multipliers $\lambda_{j}(\Sigma)$ are uniquely determined from $\Sigma(t)$, and the equation is settled. When $G(\Sigma(t))=0$, they are not uniquely determined, but we can show that the linear combination $\lambda_{1}(\Sigma(t)) \delta \mathcal{A}(\Sigma(t))+\lambda_{2}(\Sigma(t)) \delta \mathcal{V}(\Sigma(t))$ is uniquely determined. As a result, we have the following.

Theorem 1.1 Let $P(\Sigma(t))$ be the orthogonal projection from $L^{2}(\Sigma(t))$ to $\left(\operatorname{span}_{L^{2}(\Sigma(t))}\{\delta \mathcal{A}(\Sigma(t)), \delta \mathcal{V}(\Sigma(t))\}\right)^{\perp}$. Then the equation of Helfrich flow can be written as

$$
\begin{equation*}
V(t)=-P(\Sigma(t)) \delta \mathcal{W}(\Sigma(t)) \quad \text { for } \quad t>0 \tag{1.3}
\end{equation*}
$$

Solutions of the equation satisfy

$$
\begin{equation*}
\frac{d}{d t} \mathcal{W}(\Sigma(t)) \equiv-\|V(t)\|_{L^{2}(\Sigma(t))}^{2}, \quad \frac{d}{d t} \mathcal{A}(\Sigma(t)) \equiv 0, \quad \frac{d}{d t} \mathcal{V}(\Sigma(t)) \equiv 0 \tag{1.4}
\end{equation*}
$$

In Section 3, we shall give its proof.
We get a result on the existence and uniqueness of the initial value problem for the equation in Theorem 1.1. Let h^{α} be the little Hölder space.

Theorem 1.2

(i) Assume that Σ_{0} is in the class $h^{3+\alpha}(0<\alpha<1)$, and that $G\left(\Sigma_{0}\right) \neq 0$. Then there exists $T>0$ such that there uniquely exists the solution
$\{\Sigma(t)\}_{0 \leq t<T}$ of (1.3) satisfying $\Sigma(0)=\Sigma_{0}$.
(ii) Assume that $G\left(\Sigma_{0}\right)=0$. Let H_{0} and R_{0} be the mean curvature and the scalar curvature of Σ_{0} respectively. Put

$$
\overline{H_{0}}=\frac{1}{A_{0}} \int_{\Sigma_{0}} H_{0} d S, \quad \tilde{R}_{0}=R_{0}-\frac{1}{A_{0}} \int_{\Sigma_{0}} R_{0} d S .
$$

If $\left(\overline{H_{0}}-c_{0}\right) \tilde{R}_{0} \equiv 0$, then there exists a global solution $\{\Sigma(t)\}_{t \geq 0}$ of (1.3) satisfying $\Sigma(0)=\Sigma_{0}$.

Remark 1.1 For (ii), we do not know uniqueness of solutions for $n \geq 2$. When $n=1$, however, the uniqueness holds. See Theorem 4.1.

The low-dimensional Helfrich flow has been considered in [6] (for $n=2$) and in [7] (for $n=1$).

In [6], λ_{1}, λ_{2} are not determined as above, but given as known constants. That is, for given $\left\{\lambda_{1}, \lambda_{2}, \Sigma_{0}\right\}$ as the data, solutions of (1.1) with $\Sigma(0)=$ Σ_{0} were constructed. Of course, solutions do not satisfy $\frac{d}{d t} \mathcal{A}(\Sigma(t)) \equiv 0$, $\frac{d}{d t} \mathcal{V}(\Sigma(t)) \equiv 0$, and we cannot expect the global existence. Indeed, there exist solutions blowing up in finite/infinite time. The problem is shifted to find triples $\left\{\lambda_{1}, \lambda_{2}, \Sigma_{0}\right\}$ so that the solution can extend globally in time. In [6], the existence of such triples was shown near spheres. Furthermore, such triples form a finite dimensional center manifold. The class of initial surfaces is $h^{2+\alpha}$ for some $\alpha \in(0,1)$, which is wider than ours. In our formulation $\nabla_{g} H$ appears in the explicit expression of λ_{1}, λ_{2} and therefore we need extra regularity of Σ_{0} than [6].

In [7], we did not treat (1.1) (or (1.2)) directly. The gradient flow $\{\Sigma(\varepsilon, t)\}$ associated with the functional

$$
\mathcal{W}(\Sigma)+\frac{1}{2 \varepsilon}\left(\mathcal{A}(\Sigma)-\mathcal{A}_{0}\right)^{2}+\frac{1}{2 \varepsilon}\left(\mathcal{V}(\Sigma)-\mathcal{V}_{0}\right)^{2} \quad(\varepsilon>0)
$$

was constructed. The solution of (1.1) was obtained as the limit of $\{\Sigma(\varepsilon, t)\}$ as $\varepsilon \rightarrow+0$. This is a global solution, and satisfies (1.3). The class of initial curve is C^{∞}, but the uniqueness was uncertain.

This paper consists four sections. Following Introduction we calculate the first variation of the functional and we express (1.1) with geometrical quantity of $\Sigma(t)$ in Section 2. In Section 3, we show Theorem 1.1. In Section

4, following the method of [6], we regard $\Sigma(t)$ as the perturbation of Σ_{0} in normal direction with $\rho(t)$, and using $\rho(t)$, we write down (1.1). Using theory of quasi-linear parabolic equations [1], we shall show Theorem 1.2.

2. The derivation of equation

In this section, we write down (1.1) explicitly in terms of geometrical quantities of $\Sigma(t)$. To do this, we need the first variation formulas of \mathcal{W}, \mathcal{A} and \mathcal{V}. Those of \mathcal{A} and \mathcal{V} are well-known. That of \mathcal{W} is essentially found in [3], however, we give it here again. Let
$\Sigma=\left\{\boldsymbol{f}=\boldsymbol{f}\left(s^{1}, \ldots, s^{n}\right) \in \mathbb{R}^{n+1} \mid\left(s^{1}, \ldots, s^{n}\right)\right.$ is a local coordinate system $\}$
be a hypersurface. Let $\boldsymbol{\nu}$ denote the unit normal vector field on Σ.
The vector $\boldsymbol{\nu}$ is given by

$$
\begin{equation*}
\boldsymbol{\nu}=\frac{\boldsymbol{f}_{1} \wedge \boldsymbol{f}_{2} \wedge \cdots \wedge \boldsymbol{f}_{n}}{\left\|\boldsymbol{f}_{1} \wedge \boldsymbol{f}_{2} \wedge \cdots \wedge \boldsymbol{f}_{n}\right\|}, \quad \boldsymbol{f}_{i}=\frac{\partial \boldsymbol{f}}{\partial s^{i}} \tag{2.1}
\end{equation*}
$$

Put

$$
g_{i j}=\boldsymbol{f}_{i} \cdot \boldsymbol{f}_{j}, \quad g=\operatorname{det}\left(g_{i j}\right), \quad \boldsymbol{\nu}_{i}=\frac{\partial \boldsymbol{\nu}}{\partial s^{i}}
$$

It is easy to see

$$
\begin{equation*}
\boldsymbol{f}_{i} \cdot \boldsymbol{\nu}=\boldsymbol{f}_{j} \cdot \boldsymbol{\nu}=\boldsymbol{\nu} \cdot \boldsymbol{\nu}_{i}=\boldsymbol{f} \cdot \boldsymbol{\nu}_{j}=0, \quad\left\|\boldsymbol{f}_{1} \wedge \boldsymbol{f}_{2} \wedge \cdots \wedge \boldsymbol{f}_{n}\right\|=\sqrt{g} \tag{2.2}
\end{equation*}
$$

The first fundamental form is given by

$$
\begin{equation*}
\mathrm{I}=d \boldsymbol{f} \cdot d \boldsymbol{f}=g_{i j} d s^{i} d s^{j} \tag{2.3}
\end{equation*}
$$

Put

$$
\begin{equation*}
\mathrm{II}=-d \boldsymbol{\nu} \cdot d \boldsymbol{f}=\boldsymbol{\nu} \cdot d^{2} \boldsymbol{f}=h_{i j} d s^{i} d s^{j}, \quad h_{i j}=-\boldsymbol{\nu}_{i} \cdot \boldsymbol{f}_{j}=-\boldsymbol{\nu}_{j} \cdot \boldsymbol{f}_{i} \tag{2.4}
\end{equation*}
$$

which is the second fundamental form. Let $\left(g^{i j}\right)$ denote the inverse matrix of $\left(g_{i j}\right)$. The mean curvature and the surface element are given by

$$
\begin{align*}
H & =\frac{1}{n} g^{i j} h_{i j} \tag{2.5}\\
d S & =\sqrt{g} d s^{1} \cdots d s^{n} \tag{2.6}
\end{align*}
$$

By (2.2)-(2.4), we have $\boldsymbol{f}_{i j} \cdot \boldsymbol{\nu}=-\boldsymbol{f}_{i} \cdot \boldsymbol{\nu}_{j}=h_{i j}$, and

$$
\begin{equation*}
\boldsymbol{f}_{i j}=\frac{\partial^{2} \boldsymbol{f}}{\partial s^{i} \partial s^{j}}=\Gamma_{i j}^{k} \boldsymbol{f}_{k}+h_{i j} \boldsymbol{\nu} \tag{2.7}
\end{equation*}
$$

where

$$
\Gamma_{i \ell}^{k}=\frac{g^{k j}}{2}\left(\frac{\partial g_{i j}}{\partial s^{\ell}}+\frac{\partial g_{j \ell}}{\partial s^{i}}-\frac{\partial g_{i \ell}}{\partial s^{j}}\right)
$$

is called the Christoffel symbol. By the Weingarten equation

$$
\begin{equation*}
\boldsymbol{\nu}_{i}=-h_{i}^{j} \boldsymbol{f}_{j}, \quad h_{i}^{j}=g^{j k} h_{k i}, \tag{2.8}
\end{equation*}
$$

we obtain

$$
\boldsymbol{\nu}_{i} \cdot \boldsymbol{\nu}_{j}=h_{i}^{k} h_{j}^{l} \boldsymbol{f}_{k} \cdot \boldsymbol{f}_{l}=h_{i}^{k} h_{j}^{l} g_{k l}=h_{i}^{k} h_{j k}
$$

For a smooth function φ on Σ, consider the normal variation

$$
\Sigma_{t}=\left\{\boldsymbol{f}(t)=\boldsymbol{f}+t \varphi \boldsymbol{\nu} \in \mathbb{R}^{n+1}\right\}
$$

If $|t|$ is sufficiently small, Σ_{t} becomes a hypersurface. The first variation $\delta \mathcal{F}$ of functional \mathcal{F} to the direction φ is given by

$$
\langle\delta \mathcal{F}(\Sigma), \varphi\rangle=\left.\frac{d}{d t} \mathcal{F}\left(\Sigma_{t}\right)\right|_{t=0}
$$

If $\langle\delta \mathcal{F}(\Sigma), \varphi\rangle=0$ for arbitrary φ, we write $\delta \mathcal{F}(\Sigma)=0$ and Σ is called critical. We calculate the first variation concretely here. We use the notation δ not only for functionals but also for geometrical quantities to mean $\left.\frac{d}{d t}\right|_{t=0}$. Then we obtain

$$
\begin{equation*}
\delta \boldsymbol{f}=\varphi \boldsymbol{\nu}, \quad \delta \boldsymbol{f}_{i}=\varphi_{i} \boldsymbol{\nu}+\varphi \boldsymbol{\nu}_{i} \tag{2.9}
\end{equation*}
$$

$$
\begin{gather*}
\delta g_{i j}=-2 \varphi h_{i j}, \quad \delta g^{i j}=2 \varphi g^{i k} h_{k}^{j} \tag{2.10}\\
\delta \sqrt{g}=-n \varphi H \sqrt{g} \tag{2.11}
\end{gather*}
$$

By (2.7) and (2.8), we get

$$
\begin{align*}
\delta \boldsymbol{f}_{i j} & =\varphi_{i j} \boldsymbol{\nu}+\varphi_{i} \boldsymbol{\nu}_{j}+\varphi_{j} \boldsymbol{\nu}_{i}+\varphi \boldsymbol{\nu}_{i j} \\
& =\varphi_{i j} \boldsymbol{\nu}+\varphi_{i} \boldsymbol{\nu}_{j}+\varphi_{j} \boldsymbol{\nu}_{i}-\varphi\left\{\left(h_{i}^{k}\right)_{j} \boldsymbol{f}_{k}+h_{i}^{k} \boldsymbol{f}_{k j}\right\} \\
& =\varphi_{i j} \boldsymbol{\nu}+\varphi_{i} \boldsymbol{\nu}_{j}+\varphi_{j} \boldsymbol{\nu}_{i}-\varphi\left\{\left(h_{i}^{k}\right)_{j} \boldsymbol{f}_{k}+h_{i}^{k}\left(\Gamma_{k j}^{\ell} \boldsymbol{f}_{\ell}+h_{k j} \boldsymbol{\nu}\right)\right\} \tag{2.12}
\end{align*}
$$

Using (2.2), we obtain

$$
\begin{equation*}
\boldsymbol{\nu} \cdot \delta \boldsymbol{f}_{i j}=\varphi_{i j}-\varphi h_{i}^{k} h_{k j} \tag{2.13}
\end{equation*}
$$

Let $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}, \boldsymbol{u}_{n+1}$ be vectors in \mathbb{R}^{n+1}. The scalar product of the vector \boldsymbol{u}_{n+1} and the vector $\boldsymbol{u}_{1} \wedge \cdots \wedge \boldsymbol{u}_{n}$ are given by

$$
\begin{equation*}
\boldsymbol{u}_{n+1} \cdot \boldsymbol{u}_{1} \wedge \cdots \wedge \boldsymbol{u}_{n}=\operatorname{det}\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}, \boldsymbol{u}_{n+1}\right) \tag{2.14}
\end{equation*}
$$

It follows from $(2.1),(2.5),(2.7),(2.8),(2.9),(2.11)$, and (2.14) that

$$
\begin{equation*}
\boldsymbol{f}_{i j} \cdot \delta \boldsymbol{\nu}=-\varphi_{k} \Gamma_{i j}^{k} \tag{2.15}
\end{equation*}
$$

Therefore, by (2.13) and (2.15), we obtain

$$
\begin{equation*}
\delta h_{i j}=\varphi_{i j}-\varphi_{k} \Gamma_{i j}^{k}-\varphi h_{i}^{k} h_{k j}=\nabla_{i} \varphi_{j}-\varphi h_{i}^{k} h_{k j} \tag{2.16}
\end{equation*}
$$

Here, $\nabla_{i} \varphi_{j}=\varphi_{i j}-\varphi_{k} \Gamma_{i j}^{k}$ is the convariant derivative of φ_{j}. By direct computation together with (2.13) and (2.16), we obtain

$$
\begin{equation*}
n(\delta H)=\Delta_{g} \varphi+\varphi h_{j}^{i} h_{i}^{j} \tag{2.17}
\end{equation*}
$$

Here, Δ_{g} is the Laplacian-Beltrami operator defined by

$$
\begin{aligned}
\Delta_{g} \varphi & =g^{i \ell} \nabla_{i} \varphi_{\ell}=g^{i \ell} \varphi_{i \ell}-g^{i \ell} \Gamma_{i \ell}^{k} \varphi_{k} \\
& =g^{i j} \varphi_{i j}+\frac{1}{\sqrt{g}}\left(\sqrt{g} g^{k j}\right)_{j} \varphi_{k}=\frac{1}{\sqrt{g}}\left(\sqrt{g} g^{i j} \varphi_{i}\right)_{j}
\end{aligned}
$$

The scalar curvature R is given by

$$
\begin{equation*}
R=n^{2} H^{2}-h_{j}^{i} h_{i}^{j} . \tag{2.18}
\end{equation*}
$$

Combining (2.17) and (2.18), we obtain

$$
\begin{equation*}
n(\delta H)=\Delta_{g} \varphi+\left(n^{2} H^{2}-R\right) \varphi \tag{2.19}
\end{equation*}
$$

Put $\mathcal{W}_{p}(\Sigma)=\int_{\Sigma} H^{p} d S$. Thus by using (2.6), (2.11) and (2.19), we can prove that

$$
\begin{equation*}
\delta \mathcal{W}_{p}(\Sigma)[\varphi]=\int_{\Sigma}\left[\frac{p}{n} H^{p-1} \Delta_{g} \varphi+\left\{n(p-1) H^{p+1}-\frac{p}{n} H^{p-1} R\right\} \varphi\right] d S \tag{2.20}
\end{equation*}
$$

When Σ is closed, using integration by parts, we obtain from (2.20)

$$
\begin{equation*}
\delta \mathcal{W}_{p}(\Sigma)[\varphi]=\int_{\Sigma}\left\{\frac{p}{n} \Delta_{g} H^{p-1}+n(p-1) H^{p+1}-\frac{p}{n} H^{p-1} R\right\} \varphi d S \tag{2.21}
\end{equation*}
$$

Since
$\mathcal{W}(\Sigma)=\frac{n}{2} \int_{\Sigma}\left(H^{2}-2 c_{0} H+c_{0}{ }^{2}\right) d S=\frac{n}{2}\left(\mathcal{W}_{2}(\Sigma)-2 c_{0} \mathcal{W}_{1}(\Sigma)+c_{0}{ }^{2} \mathcal{W}_{0}(\Sigma)\right)$,
we obtain

$$
\delta \mathcal{W}(\Sigma)[\varphi]=\int_{\Sigma}\left(\Delta_{g} H+\frac{n^{2}}{2} H^{3}-H R+c_{0} R-\frac{n^{2}}{2} c_{0}{ }^{2} H\right) \varphi d S .
$$

As well known, we have

$$
\delta \mathcal{A}(\Sigma)[\varphi]=-\int_{\Sigma} n H \varphi d S, \quad \delta \mathcal{V}(\Sigma)[\varphi]=-\int_{\Sigma} \varphi d S .
$$

As a result the equation (1.1) of Helfrich flow becomes

$$
\begin{align*}
V(t)= & -\Delta_{g(t)} H(t)-\frac{n^{2}}{2} H^{3}(t)+H(t) R(t)-c_{0} R(t)+\frac{n^{2}}{2} c_{0}{ }^{2} H(t) \\
& +\lambda_{1}(\Sigma(t)) n H(t)+\lambda_{2}(\Sigma(t)) \tag{2.22}
\end{align*}
$$

3. The Helfrich flow as a projected gradient flow

In this section, we show the following.
Theorem 3.1 If $\lambda_{1}(\Sigma(t))$ and $\lambda_{2}(\Sigma(t))$ are determined so that $\frac{d}{d t} \mathcal{A}(\Sigma(t))$ $\equiv 0, \frac{d}{d t} \mathcal{V}(\Sigma(t)) \equiv 0$ in the equation (1.1) of Helfrich flow, then it can be written as

$$
\begin{equation*}
V(t)=-P(\Sigma(t)) \delta \mathcal{W}(\Sigma(t)) \quad(t>0) \tag{3.1}
\end{equation*}
$$

Here $P(\Sigma(t))$ is the orthogonal projection from $L^{2}(\Sigma(t))$ to the subspace $\left(\operatorname{span}_{L^{2}(\Sigma(t))}\{\delta \mathcal{A}(\Sigma(t)), \delta \mathcal{V}(\Sigma(t))\}\right)^{\perp}$.

Conversely solutions to (3.1), if exist, satisfy

$$
\begin{equation*}
\frac{d}{d t} \mathcal{W}(\Sigma(t)) \equiv-\|V(t)\|_{L^{2}(\Sigma(t))}^{2}, \quad \frac{d}{d t} \mathcal{A}(\Sigma(t)) \equiv 0, \quad \frac{d}{d t} \mathcal{V}(\Sigma(t)) \equiv 0 \tag{3.2}
\end{equation*}
$$

Proof. The following is a special case of theory of projected gradient flows [9]. We denote $V(t), \Sigma(t)$ simply by V, Σ respectively. $\|\cdot\|$ stands for the $L^{2}(\Sigma)$-norm. Put

$$
\tilde{H}=H-\frac{1}{A} \int_{\Sigma} H d S, \quad H_{*}=\left\{\begin{array}{ll}
\frac{\tilde{H}}{\|\tilde{H}\|} & (\tilde{H} \not \equiv 0) \\
0 & (\tilde{H} \equiv 0)
\end{array}, \quad 1_{*}=\frac{1}{\|1\|}\right.
$$

Note that $\left\langle H_{*}, 1_{*}\right\rangle=0$. Since $\delta \mathcal{A}(\Sigma)=-n H, \delta \mathcal{V}(\Sigma)=-1$, we have

$$
\operatorname{span}_{L^{2}(\Sigma)}\{\delta \mathcal{A}(\Sigma), \delta \mathcal{V}(\Sigma)\}=\operatorname{span}_{L^{2}(\Sigma)}\{H, 1\}=\operatorname{span}_{L^{2}(\Sigma)}\left\{H_{*}, 1_{*}\right\}
$$

Hence the equation (1.1) becomes

$$
\begin{equation*}
V=-\delta \mathcal{W}(\Sigma)-\lambda_{1} \delta \mathcal{A}(\Sigma)-\lambda_{2} \delta \mathcal{V}(\Sigma)=-\delta \mathcal{W}(\Sigma)-\mu_{1} 1_{*}-\mu_{2} H_{*} \tag{3.3}
\end{equation*}
$$

for some μ_{j}. It follows from $\frac{d \mathcal{A}(\Sigma)}{d t}=\frac{d \mathcal{V}(\Sigma)}{d t}=0$ that $\langle H, V\rangle=\langle 1, V\rangle=0$. This implies

$$
\left\langle 1_{*}, V\right\rangle=\left\langle H_{*}, V\right\rangle=0 .
$$

Taking the $L^{2}(\Sigma)$-inner product (3.3) and $1_{*}, H_{*}$, we get

$$
0=\left\langle 1_{*}, V\right\rangle=-\left\langle 1_{*}, \delta \mathcal{W}(\Sigma)\right\rangle-\mu_{1}, \quad 0=\left\langle H_{*}, V\right\rangle=-\left\langle H_{*}, \delta \mathcal{W}(\Sigma)\right\rangle-\mu_{2}\left\|H_{*}\right\|^{2}
$$

In spite of $H_{*}=0$ or not, it holds that

$$
-\mu_{1} 1_{*}-\mu_{2} H_{*}=\left\langle 1_{*}, \delta \mathcal{W}(\Sigma)\right\rangle 1_{*}+\left\langle H_{*}, \delta \mathcal{W}(\Sigma)\right\rangle H_{*}
$$

Hence (3.3) is

$$
V=-\delta \mathcal{W}(\Sigma)+\left\langle 1_{*}, \delta \mathcal{W}(\Sigma)\right\rangle 1_{*}+\left\langle H_{*}, \delta \mathcal{W}(\Sigma)\right\rangle H_{*}=-P(\Sigma) \delta \mathcal{W}(\Sigma) .
$$

Consequently we obtain (3.1).
Conversely it holds for solution to (3.1) that

$$
\begin{aligned}
\frac{d}{d t} \mathcal{W}(\Sigma) & =\langle\delta \mathcal{W}(\Sigma), V\rangle=\langle\delta \mathcal{W}(\Sigma),-P(\Sigma) \delta \mathcal{W}(\Sigma)\rangle \\
& =-\|P(\Sigma) \delta \mathcal{W}(\Sigma)\|^{2}=-\|V\|^{2}
\end{aligned}
$$

Since $V \in\left(\operatorname{span}_{L^{2}(\Sigma)}\{\delta \mathcal{A}(\Sigma), \delta \mathcal{V}(\Sigma)\}\right)^{\perp}$, we have

$$
\frac{d}{d t} \mathcal{A}(\Sigma)=\langle\delta \mathcal{A}(\Sigma), V\rangle=0, \quad \frac{d}{d t} \mathcal{V}(\Sigma)=\langle\delta \mathcal{V}(\Sigma), V\rangle=0
$$

4. The existence

In this section we prove Theorem 1.2. Firstly we consider the case $G\left(\Sigma_{0}\right) \neq 0$. If the Herfrich flow with $\Sigma(0)=\Sigma_{0}$ exists, it holds that $G(\Sigma(t)) \neq 0$ for sufficiently small $t>0$. We denote $\Sigma(t)$ simply by Σ. It follows from (1.2) that

$$
\begin{align*}
\binom{\lambda_{1}(\Sigma)}{\lambda_{2}(\Sigma)}= & -\left(\begin{array}{cc}
\langle\delta \mathcal{A}(\Sigma), \delta \mathcal{A}(\Sigma)\rangle & \langle\delta \mathcal{V}(\Sigma), \delta \mathcal{A}(\Sigma)\rangle \\
\langle\delta \mathcal{A}(\Sigma), \delta \mathcal{V}(\Sigma)\rangle & \langle\delta \mathcal{V}(\Sigma), \delta \mathcal{V}(\Sigma)\rangle
\end{array}\right)^{-1}\binom{\langle\delta \mathcal{A}(\Sigma), \delta \mathcal{W}(\Sigma)\rangle}{\langle\delta \mathcal{V}(\Sigma), \delta \mathcal{W}(\Sigma)\rangle} \\
= & -\frac{1}{G(\Sigma)}\left(\begin{array}{cc}
\langle\delta \mathcal{V}(\Sigma), \delta \mathcal{V}(\Sigma)\rangle & -\langle\delta \mathcal{V}(\Sigma), \delta \mathcal{A}(\Sigma)\rangle \\
-\langle\delta \mathcal{A}(\Sigma), \delta \mathcal{V}(\Sigma)\rangle & \langle\delta \mathcal{A}(\Sigma), \delta \mathcal{A}(\Sigma)\rangle
\end{array}\right) \\
& \times\binom{\langle\delta \mathcal{A}(\Sigma), \delta \mathcal{W}(\Sigma)\rangle}{\langle\delta \mathcal{V}(\Sigma), \delta \mathcal{W}(\Sigma)\rangle} \tag{4.1}
\end{align*}
$$

By results of Section 2, we have

$$
\begin{align*}
\langle\delta \mathcal{A}(\Sigma), \delta \mathcal{A}(\Sigma)\rangle & =\int_{\Sigma} n^{2} H^{2} d S \\
\langle\delta \mathcal{A}(\Sigma), \delta \mathcal{V}(\Sigma)\rangle & =\int_{\Sigma} n H d S \\
\langle\delta \mathcal{V}(\Sigma), \delta \mathcal{V}(\Sigma)\rangle & =\int_{\Sigma} d S \\
\langle\delta \mathcal{A}(\Sigma), \delta \mathcal{W}(\Sigma)\rangle & =-\int_{\Sigma} n H\left(\Delta_{g} H+\frac{n^{2}}{2} H^{3}-H R+c_{0} R-\frac{n^{2}}{2} c_{0}^{2} H\right) d S \\
& =\int_{\Sigma}\left(n\left|\nabla_{g} H\right|^{2}-\frac{n^{3}}{2} H^{4}+n H^{2} R-n c_{0} H R+\frac{n^{3}}{2} c_{0}^{2} H^{2}\right) d S \\
\langle\delta \mathcal{V}(\Sigma), \delta \mathcal{W}(\Sigma)\rangle & =-\int_{\Sigma}\left(\Delta_{g} H+\frac{n^{2}}{2} H^{3}-H R+c_{0} R-\frac{n^{2}}{2} c_{0}{ }^{2} H\right) d S \\
& =\int_{\Sigma}\left(-\frac{n^{2}}{2} H^{3}+H R-c_{0} R+\frac{n^{2}}{2} c_{0}^{2} H\right) d S \\
G(\Sigma) & =\int_{\Sigma} n^{2} H^{2} d S \int_{\Sigma} d S-\left(\int_{\Sigma} n H d S\right)^{2}=n^{2} \mathcal{A} \int_{\Sigma} \tilde{H}^{2} d S \tag{4.2}
\end{align*}
$$

Here

$$
\tilde{H}=H-\bar{H}, \quad \bar{H}=\frac{1}{\mathcal{A}} \int_{\Sigma} H d S
$$

Inserting these into (4.1), we have the explicit expression of $\lambda_{j}(\Sigma)$'s in the case $G(\Sigma) \neq 0$.

Proposition 4.1 When $G(\Sigma) \neq 0, \lambda_{j}(\Sigma)$'s are given by

$$
\begin{aligned}
\lambda_{1}(\Sigma)= & \frac{n \mathcal{A}}{G(\Sigma)} \int_{\Sigma}\left\{-\left|\nabla_{g} H\right|^{2}+\tilde{H}\left(\frac{n^{2}}{2} H^{3}-H R+c_{0} R-\frac{n^{2}}{2} c_{0}^{2} H\right)\right\} d S \\
\lambda_{2}(\Sigma)= & \frac{n^{2}}{G(\Sigma)} \int_{\Sigma}\left\{\mathcal{A} \bar{H}\left|\nabla_{g} H\right|^{2}\right. \\
& \left.\quad+\left(\int_{\Sigma} \tilde{H}^{2} d S-\mathcal{A} \bar{H} \tilde{H}\right)\left(\frac{n^{2}}{2} H^{3}-H R+c_{0} R-\frac{n^{2}}{2} c_{0}^{2} H\right)\right\} d S .
\end{aligned}
$$

In particular they depend on

$$
\int_{\Sigma}\left|\nabla_{g} H\right|^{2} d S, \quad \int_{\Sigma} H^{p} d S(p=0,1,2,3,4), \quad \int_{\Sigma} H^{q} R d S(q=0,1,2),
$$

analytically.
In order to prove Theorem 1.2 (i), we regard $\Sigma(t)$ as the perturbation of Σ_{0} in normal direction with signed distance $\rho(t)$. This is in a similar manner to [6]. We can write down the Laplace-Beltrami operater, the mean curvature, the scalar curvature, and the Lagrange multipliers in term of the function ρ and its derivatives, denoted $\Delta_{\rho}, H(\rho), R(\rho), \lambda_{1}(\rho)$, and $\lambda_{2}(\rho)$ respectively. Let $\bigcup_{\ell=1}^{m} U_{\ell}$ be the open covering of Σ_{0}. We denote the inner unit normal vector field of Σ_{0} by ν_{0}. The mapping $X_{\ell}: U_{\ell} \times(-a, a) \ni$ $(s, r) \rightarrow s+r \boldsymbol{\nu}_{0}(s) \in \mathbb{R}^{n+1}$ is a C^{∞}-diffeomorphism from $U_{\ell} \times(-a, a)$ to $\mathcal{R}_{\ell}=\operatorname{Im}\left(X_{\ell}\right)$ provided $a>0$ is sufficiently small. Let us denote the inverse mapping X_{ℓ}^{-1} by $\left(S_{\ell}, \Lambda_{\ell}\right)$, where $S_{\ell}\left(X_{\ell}(s, r)\right)=s \in U_{\ell}$, and $\Lambda_{\ell}\left(X_{\ell}(s, r)\right)=$ $r \in(-a, a)$.

When $\Sigma(t)$ is close to Σ_{0} for small $t>0$, we can represent it as a graph of a function on Σ_{0} as

$$
\Sigma_{\rho(t)}=\Sigma(t)=\bigcup_{\ell=1}^{m} \operatorname{Im}\left(X_{\ell}(\cdot, \rho(\cdot, t)): U_{\ell} \rightarrow \mathbb{R}^{n},\left[s \mapsto X_{\ell}(s, \rho(s, t))\right]\right)
$$

Conversely, for a given function $\rho: \Sigma_{0} \times[0, T) \rightarrow(-a, a)$ we define the mapping $\Phi_{\ell, \rho}$ from $\mathcal{R}_{\ell} \times[0, T)$ to \mathbb{R} by

$$
\begin{equation*}
\Phi_{\ell, \rho}(x, t)=\Lambda_{\ell}(x)-\rho\left(S_{\ell}(x), t\right) \tag{4.3}
\end{equation*}
$$

Then $\Phi_{\ell, \rho}(\cdot, t)^{-1}(0)$ gives the surface $\Sigma_{\rho(t)}$.
The velocity in the direction of the inner normal vector field of $\Sigma=$ $\left\{\Sigma_{\rho(t)}: t \in[0, T)\right\}$ at $(x, t)=\left(X_{\ell}(s, \rho(s, t)), t\right)$ is given by

$$
V(s, t)=-\left.\frac{\partial_{t} \Phi_{\ell, \rho}(x, t)}{\left\|\nabla_{x} \Phi_{\ell, \rho}(x, t)\right\|}\right|_{x=X_{\ell}(\boldsymbol{s}, \rho(\boldsymbol{s}, t))}=\left.\frac{\partial_{t} \rho(\boldsymbol{s}, t)}{\left\|\nabla_{x} \Phi_{\ell, \rho}(x, t)\right\|}\right|_{x=X_{\ell}(\boldsymbol{s}, \rho(s, t))} .
$$

The equation (1.1) is represented as

$$
\begin{aligned}
\partial_{t} \rho=L_{\rho}(& -\Delta_{\rho} H(\rho)-\frac{n^{2}}{2} H^{3}(\rho)+H(\rho) R(\rho)-c_{0} R(\rho)+\frac{n^{2}}{2} c_{0}^{2} H(\rho) \\
& \left.+\lambda_{1}(\rho) n H(\rho)+\lambda_{2}(\rho)\right)
\end{aligned}
$$

where $L_{\rho}=\left\|\nabla_{x} \Phi_{\ell, \rho}(x, t)\right\|_{x=X_{\ell}(\boldsymbol{s}, \rho(\boldsymbol{s}, t))}$.
Let K_{j} be the fundamental function of order j of the principal curvatures $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}$, that is,

$$
K_{1}=\sum_{i} \kappa_{i}, K_{2}=\sum_{i<j} \kappa_{i} \kappa_{j}, K_{3}=\sum_{i<j<k} \kappa_{i} \kappa_{j} \kappa_{k}, \ldots, K_{n}=\kappa_{1} \kappa_{2} \ldots \kappa_{n} .
$$

The mean curvature H, the scalar curvature R, and the Gaussian curvature K are given by

$$
H=\frac{K_{1}}{n}, \quad R=2 K_{2}, \quad K=K_{n}
$$

To get expressions of $H(\rho)$ and $R(\rho)$, we need those of K_{j} in term of derivatives of $\Phi_{\ell, \rho}$. We denote $\Phi_{\ell, \rho}$ simply by Φ.
Lemma 4.1 Assume that a hypersurface is defined by $\left\{x \in \mathbb{R}^{n+1}: \Phi(x)=\right.$ $0\}$ locally, and that $\nabla_{x} \Phi \neq 0$ everywhere near the hypersurface. Then K_{j} is given by

$$
K_{j}=\left.\frac{1}{(n-j)!} \frac{d^{n-j}}{d \epsilon^{n-j}} \mathcal{G}\left(\nabla_{x} \Phi, \operatorname{Hess}_{x} \Phi, \epsilon\right)\right|_{\epsilon=0,\{x: \Phi(x)=0\}},
$$

where

$$
\begin{gathered}
\mathcal{G}(\boldsymbol{p}, X, \epsilon)=\operatorname{det}_{n+1}\left(\|\boldsymbol{p}\|^{-1}\left(I_{n+1}-\boldsymbol{p} \otimes \boldsymbol{p}\right) X\left(I_{n+1}-\boldsymbol{p} \otimes \boldsymbol{p}\right)+\boldsymbol{p} \otimes \boldsymbol{p}+\epsilon E^{t} E\right), \\
E=\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right) \in M_{n+1}(\mathbb{R}), \quad \boldsymbol{p}=\|\boldsymbol{p}\|^{-1} \boldsymbol{p} \text { for } \boldsymbol{p} \in \mathbb{R}^{n+1}
\end{gathered}
$$

Proof. We prove the assertion by the adapted argument of [6, Lemma 5.1]. We may assume $x=0$. Then there exists a neighborhood of U of $0 \in \mathbb{R}^{n}$ such that $\Phi(x)=0$ is a graph of a function of $f: U \rightarrow \mathbb{R}$. Let $\tilde{x}=\left(x^{1}, \ldots, x^{n}\right)$ and $x=\left(\tilde{x}, x^{n+1}\right)$. Since principal curvature at 0 are eigenvalues of $\operatorname{Hess}_{\tilde{x}} f(0)$, it holds that

$$
\operatorname{det}_{n}\left(\operatorname{Hess}_{\tilde{x}} f(0)+\epsilon I_{n}\right)=\sum_{j=0}^{n} K_{j} \epsilon^{n-j}
$$

where $K_{0}=1$. Consequently

$$
K_{j}=\left.\frac{1}{(n-j)!} \frac{d^{n-j}}{d \epsilon^{n-j}} \operatorname{det}_{n}\left(\operatorname{Hess}_{\tilde{x}} f(0)+\epsilon I_{n}\right)\right|_{\epsilon=0}
$$

As shown in [6, Lemma 5.1], putting $\boldsymbol{p}=\nabla_{x} \Phi(0), X=\operatorname{Hess}_{x} \Phi(0)$, we have

$$
\operatorname{Hess}_{\tilde{x}} \tilde{f}(0)=\|\boldsymbol{p}\|^{-1 t} E X E .
$$

Hence

$$
\begin{aligned}
& \operatorname{det}_{n}\left(\operatorname{Hess}_{\tilde{x}} f(0)+\epsilon I_{n}\right) \\
& \quad=\operatorname{det}_{n+1}\left(\begin{array}{cc}
\|\boldsymbol{p}\|^{-1 t} E X E+\epsilon I_{n} & 0 \\
0 & 1
\end{array}\right) \\
& \quad=\operatorname{det}_{n+1}\left(\|\boldsymbol{p}\|^{-1} E^{t} E X E^{t} E+\epsilon E^{t} E+\boldsymbol{e}_{n+1}^{t} \boldsymbol{e}_{n+1}\right) \\
& \quad=\operatorname{det}_{n+1}\left(\|\boldsymbol{p}\|^{-1}\left(I_{n+1}-\boldsymbol{p} \otimes \boldsymbol{p}\right) X\left(I_{n+1}-\boldsymbol{p} \otimes \boldsymbol{p}\right)+\boldsymbol{p} \otimes \boldsymbol{p}+\epsilon E^{t} E\right)
\end{aligned}
$$

It follows from (4.3) that $\nabla_{x} \Phi$ and $\operatorname{Hess}_{x} \Phi$ can be written in terms of derivatives of ρ up to the 2 nd order, and therefore so do $H(\rho)$ and $R(\rho)$. By Proposition 4.1 we find that $\lambda_{j}(\Sigma)$'s depend analytically on derivatives of ρ up to the 3rd order near $\rho=0$. Consequently the equation (2.21) is in the form

$$
\rho_{t}+L_{\rho} \Delta_{\rho} H(\rho)+\Phi\left(\rho, \partial \rho, \partial^{2} \rho, \partial^{3} \rho\right)=0
$$

Now we study precisely where the third derivarive $\partial^{3} \rho$ appears. There are no terms including it other than $L_{\rho} \Delta_{\rho} H(\rho)$ and $\lambda_{j}(\rho)$. The analysis of the principal term $L_{\rho} \Delta_{\rho} H(\rho)$ is in the same as [4] and [6], and $\partial^{3} \rho$ appears linearly there. We have found $\left|\nabla_{g} H\right|^{2}\left(=\left|\nabla_{\rho} H(\rho)\right|^{2}\right)$ in the numerator of the expression of $\lambda_{j}(\Sigma)\left(=\lambda_{j}(\rho)\right)$ in Proposition 4.1. It follows from [6, Lemma 2.1] that $\nabla_{\rho} H(\rho)$ is linear in $\partial^{3} \rho$. The denominator $G(\Sigma)$ of $\lambda_{1}(\Sigma)$ does not depend on $\nabla_{g} H$. Hence we have a term including $\partial^{3} \rho$ quadrically from $\lambda_{1}(\rho)$.

An argument similar to [4, Lemma 2.1] and [10, Lemma 2.1] gives the following. Let $h^{\gamma}\left(\Sigma_{0}\right)$ be the little Hölder space on Σ_{0} of order γ. We fix $0<\alpha<\beta<1$. For $\beta_{0} \in(\alpha, \beta)$, put

$$
\mathcal{U}=\left\{\rho \in h^{3+\beta_{0}}\left(\Sigma_{0}\right):\|\rho\|_{C^{2}\left(\Sigma_{0}\right)}<a\right\} .
$$

For two Banach spaces E_{0} and E_{1} satisfying $E_{1} \hookrightarrow E_{0}$ the set $\mathcal{H}\left(E_{1}, E_{0}\right)$ is the class of $A \in \mathcal{L}\left(E_{1}, E_{0}\right)$ such that $-A$, considered as an unbounded operater in E_{0}, generates a strongly continuous analytic semigroup on E_{0}.
Proposition 4.2 There exist $Q \in C^{\infty}\left(\mathcal{U}, \mathcal{H}\left(h^{4+\alpha}\left(\Sigma_{0}\right), h^{\alpha}\left(\Sigma_{0}\right)\right)\right)$, and $F \in C^{\infty}\left(\mathcal{U}, h^{\beta_{0}}\left(\Sigma_{0}\right)\right)$ such that the equation (2.21) is in the form

$$
\rho_{t}+Q(\rho) \rho+F(\rho)=0
$$

Applying [1, Theorem 12.1] with $X_{\beta}=\mathcal{U}, E_{1}=h^{4+\alpha}\left(\Sigma_{0}\right), E_{0}=$ $h^{\alpha}\left(\Sigma_{0}\right)$, and $E_{\gamma}=h^{\beta_{0}}\left(\Sigma_{0}\right)$, we get an existence and uniqueness result for the Helfrich flow in case $G\left(\Sigma_{0}\right) \neq 0$.

Remark 4.1 The equation dealt with in [6] is a similar forth-order equation, but linear with respect to the third order derivatives of ρ. The term $Q(\rho) \rho$ includes such parts, and $F(\rho)$ does not include the third order derivatives. Therefore it was solvable for initial data in the class $h^{2+\alpha}$. In our case, the terms with $\partial^{3} \rho$, which are not linear with respect to it, are excluded from $Q(\rho) \rho$, and they are included into $F(\rho)$. This is why we need extra regularity than the result in [6].

Now consider the assertion (ii) in Theorem 1.2. Before going to prove, we see an example of Σ_{0} satisfying $G\left(\Sigma_{0}\right)=0$ and $\left(\bar{H}_{0}-c_{0}\right) \tilde{R}_{0} \equiv 0$. A typical example is a sphere. Indeed, spheres have constant mean curvature, and there for $G\left(\Sigma_{0}\right)=0$ (see (4.2)). Since the scalar curvature is also constant, we have $\tilde{R}_{0}=0$. Furthermore spheres are stationary solution to (3.1).

To show the assertion (ii), it is enough to see that Σ_{0} is a stationary solution.

Assume that $G(\Sigma)=0$. It follows from (4.2) that Σ has a constant mean curvature $H=\bar{H}$. Hence

$$
\operatorname{span}_{L^{2}(\Sigma)}\{\delta \mathcal{A}, \delta \mathcal{V}\}=\operatorname{span}_{L^{2}(\Sigma)}\{1\}
$$

and

$$
P(\Sigma) \phi=\phi-\frac{1}{\mathcal{A}(\Sigma)} \int_{\Sigma} \phi d S
$$

for $\phi \in L^{2}(\Sigma)$. Therefore at the time when $G(\Sigma(t))=0$, the equation (3.1) becomes

$$
\begin{aligned}
V(t)= & -\delta \mathcal{W}(\Sigma(t))+\frac{1}{\mathcal{A}(\Sigma)} \int_{\Sigma} \delta \mathcal{W}(\Sigma(t)) d S \\
= & -\Delta_{g} \bar{H}-\frac{1}{2} \bar{H}^{3}+\bar{H} R-c_{0} R+\frac{1}{2} n^{2} c_{0}^{2} \bar{H} \\
& +\frac{1}{\mathcal{A}(\Sigma)} \int_{\Sigma}\left(\frac{1}{2} \bar{H}^{3}-\bar{H} R+c_{0} R-\frac{1}{2} n^{2} c_{0}^{2} \bar{H}\right) d S \\
= & -\left(\bar{H}-c_{0}\right) \tilde{R}
\end{aligned}
$$

where

$$
\tilde{R}=R-\frac{1}{\mathcal{A}(\Sigma)} \int_{\Sigma} R d S
$$

Consequently if the hypersurface Σ_{0} satisfies $G\left(\Sigma_{0}\right)=0$ and $\left(\bar{H}-c_{0}\right) \tilde{R} \equiv 0$, then it is a stationary of solution (3.1).

Thus we complete the proof of Theorem 1.2.
We do not know the uniqueness in case of Theorem 1.2 (ii), expect for $n=1$.

Theorem 4.1 Consider the one-dimensional Helfrich flow. If Σ_{0} satisfies $G\left(\Sigma_{0}\right)=0$, then $\left\{\Sigma(t) \equiv \Sigma_{0}\right\}$ is the unique global solution with $\Sigma(0)=\Sigma_{0}$.

Remark 4.2 When $n=1$, the scalar curvature is zero by its definition, and therefore the condition $\left(\bar{H}-c_{0}\right) \tilde{R} \equiv 0$ is automatically satisfied.

Proof. When $n=1$, the integral $\int_{\Sigma} H d S$ is a constant multiple of the rotation number. Therefore it does not depend on t. Consequently we have

$$
\frac{d}{d t} G(\Sigma)=\mathcal{A}_{0} \frac{d}{d t} \int_{\Sigma} H^{2} d S=2 \mathcal{A}_{0} \frac{d}{d t} \mathcal{W}=-2 \mathcal{A}_{0}\|V\|^{2} \leq 0
$$

Combining this with $G(\Sigma) \geq 0$ (see (4.2)), it hold that $G(\Sigma) \equiv 0$ provided $G\left(\Sigma_{0}\right)=0$. Using the above relation again, we have $V \equiv 0$, that is, $\Sigma(t) \equiv$ $\Sigma(0)$.

References

[1] Amann H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problem. Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), Ed.: H.-J. Schmeisser \& H. Triebel, Teubner-Texte Math. 133, B. G. Teubner, Stuttgart, Leipzig, 1993, pp. 9126.
[2] Brailsford J. D., Mechanoelastic properties of biological membranes. Membrane Fluidity in Biology, Vol. 1 Concepts of Membrane Structure, Academic Press, San Diego, 1983, pp. 291-319.
[3] Chen B.-Y., On a variational problem on hypersurfaces. J. London Math. Soc. (2) 6 (1973), 321-325.
[4] Escher J., Mayer U. F. and Simonett G., The surface diffusion flow for immersed hypersurface. SIAM J. Math. Anal. 29(6) (1998), 1419-1433.
[5] Helfrich W., Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch 28c (1973), 693-703.
[6] Kohsaka Y. and Nagasawa T., On the existence of solutions of the Helfrich flow and its center manifold near spheres. Differential Integral Equations 19 (2) (2006), 121-142.
[7] Kurihara T. and Nagasawa T., On the gradient flow for a shape optimization problem of plane curves as a singular limit. Saitama Math. J. 24 (2006/2007), 43-75.
[8] Nagasawa T. and Takagi I., Bifurcating critical points of bending energy under constraints related to the shape of red blood cells. Calc. Partial Differential Equations 16(1) (2003), 63-111.
[9] Shikhman V. and Stein O., Constrained optimization: projected gradient flows. J. Optin. Theory Appl. 140(1) (2009), 117-130.
[10] Simonett G., The Willmore flow near sphere. Differential Integral Equations 14(8) (2001), 1005-1014.
[11] Watanabe K., Plane domains which are spectrally determined. Ann. Global Anal. Geom. 18(5) (2000), 447-475.
[12] Watanabe K., Plane domains which are spectrally determined. II. J. Inequal. Appl. 7(1) (2002), 25-47.

Takeyuki NAGASAWA
Department of Mathematics
Graduate School of Science and Engineering
Saitama University
Saitama 338-8570, Japan
E-mail: tnagasaw@rimath.saitama-u.ac.jp
Taekyung Yi
Department of Mathematics
Graduate School of Science and Engineering
Saitama University
Saitama 338-8570, Japan
E-mail: s08dm004@mail.saitama-u.ac.jp

[^0]: 2010 Mathematics Subject Classification : 53C44, 49Q10, 53A04, 53A05, 58J35, 35K30.

 Partly supported by Grant-in-Aid for Scientific Research (C) (No. 22540219), Japan Society for the Promotion Science.

