Local existence and uniquenessfor the n-dimensional Helfrich flow as a projected gradient flow

Takeyuki NAGASAWA and Taekyung YI

(Received October 5, 2010; Revised April 18, 2011)

Abstract. The gradient flow associated to the Helfrich variational problem, called the Helfrich flow is considered. Here the *n*-dimensional Helfrich flow is investigated for any n, as a projected gradient flow. A result of local existence is proved. The uniqueness is shown for the cases (i) for the initial hypersurface with non-zero Gramian when $n \ge 2$, (ii) for every initial curve when n = 1.

Key words: Helfrich variational problem, gradient flow, constraints.

1. Introduction

Let Σ be a compact closed immersed orientable hypersurface in \mathbb{R}^{n+1} . The vectors \boldsymbol{f} and $\boldsymbol{\nu}$ are the position vector of a point on Σ and the unit normal vector there respectively. We denote the mean curvature H, and dSstands for surface element. Functionals \mathcal{W}, \mathcal{A} and \mathcal{V} are defined by

$$\mathcal{W}(\Sigma) = \frac{n}{2} \int_{\Sigma} (H - c_0)^2 dS, \quad \mathcal{A}(\Sigma) = \int_{\Sigma} dS, \quad \mathcal{V}(\Sigma) = -\frac{1}{n+1} \int_{\Sigma} \mathbf{f} \cdot \boldsymbol{\nu} dS.$$

Here, c_0 is a given constant. $\mathcal{A}(\Sigma)$ is the area of Σ . $\mathcal{V}(\Sigma)$ is the enclosed volume, when Σ is an embedded hypersurface and $\boldsymbol{\nu}$ is the inner normal.

For given constants \mathcal{A}_0 and \mathcal{V}_0 , consider critical points of $\mathcal{W}(\cdot)$ under the constrains $\mathcal{A}(\Sigma) = \mathcal{A}_0$, $\mathcal{V}(\Sigma) = \mathcal{V}_0$. This problem is called the **Helfrich variational problem**. This problem was firstly proposed by Helfrich [5] as a model of shape transformation theory of human red blood cells. For this case n = 2, and c_0 is the spontaneous curvature which is determined by the molecular structure of cell membrane. The surface Σ stands for the cell membrane.

For n = 1, the functional \mathcal{W} is

^{2010~}Mathematics Subject Classification : 53C44, 49Q10, 53A04, 53A05, 58J35, 35K30.

Partly supported by Grant-in-Aid for Scientific Research (C) (No. 22540219), Japan Society for the Promotion Science.

$$\frac{1}{2}\int_{\Sigma}H^2dS - c_0\int_{\Sigma}Hds + \frac{1}{2}c_0^2\mathcal{A}(\Sigma).$$

If we consider the variational problem under the constrain of length \mathcal{A} among curves with fixed rotation number, then we can replace the functional with the first integral $\frac{1}{2} \int_{\Sigma} H^2 dS$. Because the second and third integrals are respectively constant multiples of rotation number and the length, which are invariant for our problem. According to [2], a shape transformation of a closed loop of plastic tape between two parallel flat plates is governed by the one-dimensional Helfrich variational problem. This problem is also related with the spectral optimization problem for plain domains. Let Ω be a bounded plane domain, and Σ be its boundary. The function G(x, y, t) is the Green function for the heat equation in $\Omega \times (0, T)$ under the Dirichlet condition. The asymptotic expansion

$$\int_{\Omega} G(x, x, t) dx = \frac{1}{4\pi t} \left(a_0 + a_1 t^{1/2} + a_2 t + a_3 t^{3/2} + \cdots \right) \quad \text{as} \quad t \to +0$$

is well-known as the trace formula. Here

$$a_0 = \mathcal{V}(\Sigma), \quad a_1 = -\frac{\sqrt{\pi}}{2}\mathcal{A}(\Sigma), \quad a_2 = \frac{1}{3}\int_{\Sigma} HdS \quad a_3 = \frac{\sqrt{\pi}}{64}\int_{\Sigma} H^2 dS.$$

 a_2 is determined by the topology of Ω . Hence the one-dimensional Helfrich problem is equivalent to the following problem: For given a_0 , a_1 and a_2 find the domain Ω which minimize a_3 . This problem was proposed and investigated by Watanabe [11], [12].

In this paper, we consider the associated gradient flow. Let $\{\Sigma(t)\}_{t\geq 0}$ be one-parameter family of hypersurfaces, and let V be the normal velocity of deformation. The equation of flow is

$$V(t) = -\delta \mathcal{W}(\Sigma(t)) - \lambda_1(\Sigma(t))\delta \mathcal{A}(\Sigma(t)) - \lambda_2(\Sigma(t))\delta \mathcal{V}(\Sigma(t)).$$
(1.1)

A solution is called the **Helfrich flow**. Here δ means the first variation, and λ_j 's are Lagrange multipliers. The multipliers are unknown functions determined from the solution itself. It is natural that they are determined so that $\mathcal{A}(\Sigma(t)) \equiv \mathcal{A}_0, \mathcal{V}(\Sigma(t)) \equiv \mathcal{V}_0$. Let $\langle \cdot, \cdot \rangle$ denote the $L^2(\Sigma)$ -inner product. Since

$$\frac{d}{dt}\mathcal{A}(\Sigma(t)) = \langle \delta \mathcal{A}(\Sigma(t)), V(t) \rangle, \quad \frac{d}{dt}\mathcal{V}(\Sigma(t)) = \langle \delta \mathcal{V}(\Sigma(t)), V(t) \rangle,$$

we obtain

$$\begin{pmatrix} \langle \delta \mathcal{A}(\Sigma(t)), \delta \mathcal{A}(\Sigma(t)) \rangle & \langle \delta \mathcal{V}(\Sigma(t)), \delta \mathcal{A}(\Sigma(t)) \rangle \\ \langle \delta \mathcal{A}(\Sigma(t)), \delta \mathcal{V}(\Sigma(t)) \rangle & \langle \delta \mathcal{V}(\Sigma(t)), \delta \mathcal{V}(\Sigma(t)) \rangle \end{pmatrix} \begin{pmatrix} \lambda_1(\Sigma(t)) \\ \lambda_2(\Sigma(t)) \end{pmatrix} \\ = - \begin{pmatrix} \langle \delta \mathcal{A}(\Sigma(t)), \delta \mathcal{W}(\Sigma(t)) \rangle \\ \langle \delta \mathcal{V}(\Sigma(t)), \delta \mathcal{W}(\Sigma(t)) \rangle \end{pmatrix}$$
(1.2)

by calculating the product of (1.1) with $\delta \mathcal{A}(\Sigma(t))$ and $\delta \mathcal{V}(\Sigma(t))$. Put

$$G(\Sigma(t)) = \det \begin{pmatrix} \langle \delta \mathcal{A}(\Sigma(t)), \delta \mathcal{A}(\Sigma(t)) \rangle & \langle \delta \mathcal{V}(\Sigma(t)), \delta \mathcal{A}(\Sigma(t)) \rangle \\ \langle \delta \mathcal{A}(\Sigma(t)), \delta \mathcal{V}(\Sigma(t)) \rangle & \langle \delta \mathcal{V}(\Sigma(t)), \delta \mathcal{V}(\Sigma(t)) \rangle \end{pmatrix}$$

This is a Gramian of $\delta \mathcal{A}(\Sigma(t))$ and $\delta \mathcal{V}(\Sigma(t))$. When $G(\Sigma(t)) \neq 0$, the multipliers $\lambda_j(\Sigma)$ are uniquely determined from $\Sigma(t)$, and the equation is settled. When $G(\Sigma(t)) = 0$, they are not uniquely determined, but we can show that the linear combination $\lambda_1(\Sigma(t))\delta \mathcal{A}(\Sigma(t)) + \lambda_2(\Sigma(t))\delta \mathcal{V}(\Sigma(t))$ is uniquely determined. As a result, we have the following.

Theorem 1.1 Let $P(\Sigma(t))$ be the orthogonal projection from $L^2(\Sigma(t))$ to $(\operatorname{span}_{L^2(\Sigma(t))} \{ \delta \mathcal{A}(\Sigma(t)), \delta \mathcal{V}(\Sigma(t)) \})^{\perp}$. Then the equation of Helfrich flow can be written as

$$V(t) = -P(\Sigma(t))\delta \mathcal{W}(\Sigma(t)) \quad for \quad t > 0.$$
(1.3)

Solutions of the equation satisfy

$$\frac{d}{dt}\mathcal{W}(\Sigma(t)) \equiv -\|V(t)\|_{L^2(\Sigma(t))}^2, \quad \frac{d}{dt}\mathcal{A}(\Sigma(t)) \equiv 0, \quad \frac{d}{dt}\mathcal{V}(\Sigma(t)) \equiv 0.$$
(1.4)

In Section 3, we shall give its proof.

We get a result on the existence and uniqueness of the initial value problem for the equation in Theorem 1.1. Let h^{α} be the little Hölder space.

Theorem 1.2

(i) Assume that Σ_0 is in the class $h^{3+\alpha}(0 < \alpha < 1)$, and that $G(\Sigma_0) \neq 0$. Then there exists T > 0 such that there uniquely exists the solution

 $\{\Sigma(t)\}_{0 \le t < T}$ of (1.3) satisfying $\Sigma(0) = \Sigma_0$.

(ii) Assume that $G(\Sigma_0) = 0$. Let H_0 and R_0 be the mean curvature and the scalar curvature of Σ_0 respectively. Put

$$\overline{H_0} = \frac{1}{A_0} \int_{\Sigma_0} H_0 dS, \quad \tilde{R_0} = R_0 - \frac{1}{A_0} \int_{\Sigma_0} R_0 dS.$$

If $(\overline{H_0} - c_0)\tilde{R_0} \equiv 0$, then there exists a global solution $\{\Sigma(t)\}_{t\geq 0}$ of (1.3) satisfying $\Sigma(0) = \Sigma_0$.

Remark 1.1 For (ii), we do not know uniqueness of solutions for $n \ge 2$. When n = 1, however, the uniqueness holds. See Theorem 4.1.

The low-dimensional Helfrich flow has been considered in [6] (for n = 2) and in [7] (for n = 1).

In [6], λ_1, λ_2 are not determined as above, but given as known constants. That is, for given $\{\lambda_1, \lambda_2, \Sigma_0\}$ as the data, solutions of (1.1) with $\Sigma(0) = \Sigma_0$ were constructed. Of course, solutions do not satisfy $\frac{d}{dt}\mathcal{A}(\Sigma(t)) \equiv 0$, $\frac{d}{dt}\mathcal{V}(\Sigma(t)) \equiv 0$, and we cannot expect the global existence. Indeed, there exist solutions blowing up in finite/infinite time. The problem is shifted to find triples $\{\lambda_1, \lambda_2, \Sigma_0\}$ so that the solution can extend globally in time. In [6], the existence of such triples was shown near spheres. Furthermore, such triples form a finite dimensional center manifold. The class of initial surfaces is $h^{2+\alpha}$ for some $\alpha \in (0, 1)$, which is wider than ours. In our formulation $\nabla_g H$ appears in the explicit expression of λ_1, λ_2 and therefore we need extra regularity of Σ_0 than [6].

In [7], we did not treat (1.1) (or (1.2)) directly. The gradient flow $\{\Sigma(\varepsilon, t)\}$ associated with the functional

$$\mathcal{W}(\Sigma) + \frac{1}{2\varepsilon} (\mathcal{A}(\Sigma) - \mathcal{A}_0)^2 + \frac{1}{2\varepsilon} (\mathcal{V}(\Sigma) - \mathcal{V}_0)^2 \quad (\varepsilon > 0)$$

was constructed. The solution of (1.1) was obtained as the limit of $\{\Sigma(\varepsilon, t)\}$ as $\varepsilon \to +0$. This is a global solution, and satisfies (1.3). The class of initial curve is C^{∞} , but the uniqueness was uncertain.

This paper consists four sections. Following Introduction we calculate the first variation of the functional and we express (1.1) with geometrical quantity of $\Sigma(t)$ in Section 2. In Section 3, we show Theorem 1.1. In Section

4, following the method of [6], we regard $\Sigma(t)$ as the perturbation of Σ_0 in normal direction with $\rho(t)$, and using $\rho(t)$, we write down (1.1). Using theory of quasi-linear parabolic equations [1], we shall show Theorem 1.2.

2. The derivation of equation

In this section, we write down (1.1) explicitly in terms of geometrical quantities of $\Sigma(t)$. To do this, we need the first variation formulas of \mathcal{W} , \mathcal{A} and \mathcal{V} . Those of \mathcal{A} and \mathcal{V} are well-known. That of \mathcal{W} is essentially found in [3], however, we give it here again. Let

$$\Sigma = \left\{ \boldsymbol{f} = \boldsymbol{f}(s^1, \dots, s^n) \in \mathbb{R}^{n+1} \mid (s^1, \dots, s^n) \text{ is a local coordinate system} \right\}$$

be a hypersurface. Let $\boldsymbol{\nu}$ denote the unit normal vector field on $\boldsymbol{\Sigma}$.

The vector $\boldsymbol{\nu}$ is given by

$$\boldsymbol{\nu} = \frac{\boldsymbol{f}_1 \wedge \boldsymbol{f}_2 \wedge \dots \wedge \boldsymbol{f}_n}{\|\boldsymbol{f}_1 \wedge \boldsymbol{f}_2 \wedge \dots \wedge \boldsymbol{f}_n\|}, \quad \boldsymbol{f}_i = \frac{\partial \boldsymbol{f}}{\partial s^i}.$$
 (2.1)

Put

$$g_{ij} = \boldsymbol{f}_i \cdot \boldsymbol{f}_j, \quad g = \det(g_{ij}), \quad \boldsymbol{\nu}_i = \frac{\partial \boldsymbol{\nu}}{\partial s^i}.$$

It is easy to see

$$\boldsymbol{f}_i \cdot \boldsymbol{\nu} = \boldsymbol{f}_j \cdot \boldsymbol{\nu} = \boldsymbol{\nu} \cdot \boldsymbol{\nu}_i = \boldsymbol{f} \cdot \boldsymbol{\nu}_j = 0, \quad \|\boldsymbol{f}_1 \wedge \boldsymbol{f}_2 \wedge \cdots \wedge \boldsymbol{f}_n\| = \sqrt{g}. \quad (2.2)$$

The first fundamental form is given by

$$\mathbf{I} = d\mathbf{f} \cdot d\mathbf{f} = g_{ij} ds^i ds^j. \tag{2.3}$$

Put

$$II = -d\boldsymbol{\nu} \cdot d\boldsymbol{f} = \boldsymbol{\nu} \cdot d^2 \boldsymbol{f} = h_{ij} ds^i ds^j, \quad h_{ij} = -\boldsymbol{\nu}_i \cdot \boldsymbol{f}_j = -\boldsymbol{\nu}_j \cdot \boldsymbol{f}_i, \quad (2.4)$$

which is the second fundamental form. Let (g^{ij}) denote the inverse matrix of (g_{ij}) . The mean curvature and the surface element are given by

$$H = \frac{1}{n}g^{ij}h_{ij},\tag{2.5}$$

$$dS = \sqrt{g} \, ds^1 \cdots ds^n. \tag{2.6}$$

By (2.2)–(2.4), we have $f_{ij} \cdot \boldsymbol{\nu} = -f_i \cdot \boldsymbol{\nu}_j = h_{ij}$, and

$$\boldsymbol{f}_{ij} = \frac{\partial^2 \boldsymbol{f}}{\partial s^i \partial s^j} = \Gamma^k_{ij} \boldsymbol{f}_k + h_{ij} \boldsymbol{\nu}, \qquad (2.7)$$

where

$$\Gamma_{i\ell}^{k} = \frac{g^{kj}}{2} \left(\frac{\partial g_{ij}}{\partial s^{\ell}} + \frac{\partial g_{j\ell}}{\partial s^{i}} - \frac{\partial g_{i\ell}}{\partial s^{j}} \right)$$

is called the Christoffel symbol. By the Weingarten equation

$$\boldsymbol{\nu}_i = -h_i^j \boldsymbol{f}_j, \quad h_i^j = g^{jk} h_{ki}, \tag{2.8}$$

we obtain

$$oldsymbol{
u}_i \cdot oldsymbol{
u}_j = h_i^k h_j^l oldsymbol{f}_k \cdot oldsymbol{f}_l = h_i^k h_j^l g_{kl} = h_i^k h_{jk}.$$

For a smooth function φ on Σ , consider the normal variation

$$\Sigma_t = \{ \boldsymbol{f}(t) = \boldsymbol{f} + t\varphi \boldsymbol{\nu} \in \mathbb{R}^{n+1} \}.$$

If |t| is sufficiently small, Σ_t becomes a hypersurface. The first variation $\delta \mathcal{F}$ of functional \mathcal{F} to the direction φ is given by

$$\langle \delta \mathcal{F}(\Sigma), \varphi \rangle = \frac{d}{dt} \mathcal{F}(\Sigma_t) \Big|_{t=0}.$$

If $\langle \delta \mathcal{F}(\Sigma), \varphi \rangle = 0$ for arbitrary φ , we write $\delta \mathcal{F}(\Sigma) = 0$ and Σ is called critical. We calculate the first variation concretely here. We use the notation δ not only for functionals but also for geometrical quantities to mean $\frac{d}{dt}|_{t=0}$. Then we obtain

$$\delta \boldsymbol{f} = \varphi \boldsymbol{\nu}, \quad \delta \boldsymbol{f}_i = \varphi_i \boldsymbol{\nu} + \varphi \boldsymbol{\nu}_i \tag{2.9}$$

$$\delta g_{ij} = -2\varphi h_{ij}, \quad \delta g^{ij} = 2\varphi g^{ik} h_k^j, \tag{2.10}$$

$$\delta\sqrt{g} = -n\varphi H\sqrt{g}.\tag{2.11}$$

By (2.7) and (2.8), we get

$$\delta \boldsymbol{f}_{ij} = \varphi_{ij}\boldsymbol{\nu} + \varphi_i\boldsymbol{\nu}_j + \varphi_j\boldsymbol{\nu}_i + \varphi\boldsymbol{\nu}_{ij}$$

= $\varphi_{ij}\boldsymbol{\nu} + \varphi_i\boldsymbol{\nu}_j + \varphi_j\boldsymbol{\nu}_i - \varphi\{(h_i^k)_j\boldsymbol{f}_k + h_i^k\boldsymbol{f}_{kj}\}$
= $\varphi_{ij}\boldsymbol{\nu} + \varphi_i\boldsymbol{\nu}_j + \varphi_j\boldsymbol{\nu}_i - \varphi\{(h_i^k)_j\boldsymbol{f}_k + h_i^k(\Gamma_{kj}^\ell\boldsymbol{f}_\ell + h_{kj}\boldsymbol{\nu})\}.$ (2.12)

Using (2.2), we obtain

$$\boldsymbol{\nu} \cdot \delta \boldsymbol{f}_{ij} = \varphi_{ij} - \varphi h_i^k h_{kj}. \tag{2.13}$$

Let $u_1, \ldots, u_n, u_{n+1}$ be vectors in \mathbb{R}^{n+1} . The scalar product of the vector u_{n+1} and the vector $u_1 \wedge \cdots \wedge u_n$ are given by

$$\boldsymbol{u}_{n+1} \cdot \boldsymbol{u}_1 \wedge \dots \wedge \boldsymbol{u}_n = \det(\boldsymbol{u}_1, \dots, \boldsymbol{u}_n, \boldsymbol{u}_{n+1}). \tag{2.14}$$

It follows from (2.1), (2.5), (2.7), (2.8), (2.9), (2.11), and (2.14) that

$$\boldsymbol{f}_{ij} \cdot \delta \boldsymbol{\nu} = -\varphi_k \Gamma_{ij}^k. \tag{2.15}$$

Therefore, by (2.13) and (2.15), we obtain

$$\delta h_{ij} = \varphi_{ij} - \varphi_k \Gamma_{ij}^k - \varphi h_i^k h_{kj} = \nabla_i \varphi_j - \varphi h_i^k h_{kj}.$$
(2.16)

Here, $\nabla_i \varphi_j = \varphi_{ij} - \varphi_k \Gamma_{ij}^k$ is the convariant derivative of φ_j . By direct computation together with (2.13) and (2.16), we obtain

$$n(\delta H) = \Delta_g \varphi + \varphi h_j^i h_i^j. \tag{2.17}$$

Here, Δ_g is the Laplacian-Beltrami operator defined by

$$\begin{split} \Delta_g \varphi &= g^{i\ell} \nabla_i \varphi_\ell = g^{i\ell} \varphi_{i\ell} - g^{i\ell} \Gamma^k_{i\ell} \varphi_k \\ &= g^{ij} \varphi_{ij} + \frac{1}{\sqrt{g}} \left(\sqrt{g} g^{kj} \right)_j \varphi_k = \frac{1}{\sqrt{g}} \left(\sqrt{g} g^{ij} \varphi_i \right)_j. \end{split}$$

The scalar curvature R is given by

$$R = n^2 H^2 - h_j^i h_i^j. (2.18)$$

Combining (2.17) and (2.18), we obtain

$$n(\delta H) = \Delta_g \varphi + (n^2 H^2 - R)\varphi.$$
(2.19)

Put $\mathcal{W}_p(\Sigma) = \int_{\Sigma} H^p dS$. Thus by using (2.6), (2.11) and (2.19), we can prove that

$$\delta \mathcal{W}_p(\Sigma)[\varphi] = \int_{\Sigma} \left[\frac{p}{n} H^{p-1} \Delta_g \varphi + \left\{ n(p-1) H^{p+1} - \frac{p}{n} H^{p-1} R \right\} \varphi \right] dS.$$
(2.20)

When Σ is closed, using integration by parts, we obtain from (2.20)

$$\delta \mathcal{W}_p(\Sigma)[\varphi] = \int_{\Sigma} \left\{ \frac{p}{n} \Delta_g H^{p-1} + n(p-1)H^{p+1} - \frac{p}{n} H^{p-1} R \right\} \varphi dS. \quad (2.21)$$

Since

$$\mathcal{W}(\Sigma) = \frac{n}{2} \int_{\Sigma} \left(H^2 - 2c_0 H + c_0^2 \right) dS = \frac{n}{2} \left(\mathcal{W}_2(\Sigma) - 2c_0 \mathcal{W}_1(\Sigma) + c_0^2 \mathcal{W}_0(\Sigma) \right),$$

we obtain

$$\delta \mathcal{W}(\Sigma)[\varphi] = \int_{\Sigma} \left(\Delta_g H + \frac{n^2}{2} H^3 - HR + c_0 R - \frac{n^2}{2} c_0^2 H \right) \varphi dS.$$

As well known, we have

$$\delta \mathcal{A}(\Sigma)[\varphi] = -\int_{\Sigma} nH\varphi dS, \quad \delta \mathcal{V}(\Sigma)[\varphi] = -\int_{\Sigma} \varphi dS.$$

As a result the equation (1.1) of Helfrich flow becomes

$$V(t) = -\Delta_{g(t)}H(t) - \frac{n^2}{2}H^3(t) + H(t)R(t) - c_0R(t) + \frac{n^2}{2}c_0^2H(t) + \lambda_1(\Sigma(t))nH(t) + \lambda_2(\Sigma(t)).$$
(2.22)

3. The Helfrich flow as a projected gradient flow

In this section, we show the following.

Theorem 3.1 If $\lambda_1(\Sigma(t))$ and $\lambda_2(\Sigma(t))$ are determined so that $\frac{d}{dt}\mathcal{A}(\Sigma(t)) \equiv 0$, $\frac{d}{dt}\mathcal{V}(\Sigma(t)) \equiv 0$ in the equation (1.1) of Helfrich flow, then it can be written as

$$V(t) = -P(\Sigma(t))\delta\mathcal{W}(\Sigma(t)) \quad (t > 0).$$
(3.1)

Here $P(\Sigma(t))$ is the orthogonal projection from $L^2(\Sigma(t))$ to the subspace $(\operatorname{span}_{L^2(\Sigma(t))} \{ \delta \mathcal{A}(\Sigma(t)), \delta \mathcal{V}(\Sigma(t)) \})^{\perp}$.

Conversely solutions to (3.1), if exist, satisfy

$$\frac{d}{dt}\mathcal{W}(\Sigma(t)) \equiv -\|V(t)\|_{L^2(\Sigma(t))}^2, \quad \frac{d}{dt}\mathcal{A}(\Sigma(t)) \equiv 0, \quad \frac{d}{dt}\mathcal{V}(\Sigma(t)) \equiv 0.$$
(3.2)

Proof. The following is a special case of theory of projected gradient flows [9]. We denote $V(t), \Sigma(t)$ simply by V, Σ respectively. $\|\cdot\|$ stands for the $L^2(\Sigma)$ -norm. Put

$$\tilde{H} = H - \frac{1}{A} \int_{\Sigma} H dS, \quad H_* = \begin{cases} \frac{H}{\|\tilde{H}\|} & (\tilde{H} \neq 0) \\ 0 & (\tilde{H} \equiv 0) \end{cases}, \quad 1_* = \frac{1}{\|1\|}$$

Note that $\langle H_*, 1_* \rangle = 0$. Since $\delta \mathcal{A}(\Sigma) = -nH$, $\delta \mathcal{V}(\Sigma) = -1$, we have

$$\operatorname{span}_{L^2(\Sigma)} \{ \delta \mathcal{A}(\Sigma), \delta \mathcal{V}(\Sigma) \} = \operatorname{span}_{L^2(\Sigma)} \{ H, 1 \} = \operatorname{span}_{L^2(\Sigma)} \{ H_*, 1_* \}.$$

Hence the equation (1.1) becomes

$$V = -\delta \mathcal{W}(\Sigma) - \lambda_1 \delta \mathcal{A}(\Sigma) - \lambda_2 \delta \mathcal{V}(\Sigma) = -\delta \mathcal{W}(\Sigma) - \mu_1 \mathbf{1}_* - \mu_2 H_*$$
(3.3)

for some μ_j . It follows from $\frac{d\mathcal{A}(\Sigma)}{dt} = \frac{d\mathcal{V}(\Sigma)}{dt} = 0$ that $\langle H, V \rangle = \langle 1, V \rangle = 0$. This implies

$$\langle 1_*, V \rangle = \langle H_*, V \rangle = 0.$$

Taking the $L^2(\Sigma)$ -inner product (3.3) and 1_* , H_* , we get

$$0 = \langle 1_*, V \rangle = -\langle 1_*, \delta \mathcal{W}(\Sigma) \rangle - \mu_1, \quad 0 = \langle H_*, V \rangle = -\langle H_*, \delta \mathcal{W}(\Sigma) \rangle - \mu_2 \|H_*\|^2.$$

In spite of $H_* = 0$ or not, it holds that

$$-\mu_1 1_* - \mu_2 H_* = \langle 1_*, \delta \mathcal{W}(\Sigma) \rangle 1_* + \langle H_*, \delta \mathcal{W}(\Sigma) \rangle H_*.$$

Hence (3.3) is

$$V = -\delta \mathcal{W}(\Sigma) + \langle 1_*, \delta \mathcal{W}(\Sigma) \rangle 1_* + \langle H_*, \delta \mathcal{W}(\Sigma) \rangle H_* = -P(\Sigma) \delta \mathcal{W}(\Sigma).$$

Consequently we obtain (3.1).

Conversely it holds for solution to (3.1) that

$$\frac{d}{dt}\mathcal{W}(\Sigma) = \langle \delta \mathcal{W}(\Sigma), V \rangle = \langle \delta \mathcal{W}(\Sigma), -P(\Sigma)\delta \mathcal{W}(\Sigma) \rangle$$
$$= -\|P(\Sigma)\delta \mathcal{W}(\Sigma)\|^2 = -\|V\|^2.$$

Since $V \in (\operatorname{span}_{L^2(\Sigma)} \{ \delta \mathcal{A}(\Sigma), \delta \mathcal{V}(\Sigma) \})^{\perp}$, we have

$$\frac{d}{dt}\mathcal{A}(\Sigma) = \langle \delta \mathcal{A}(\Sigma), V \rangle = 0, \quad \frac{d}{dt}\mathcal{V}(\Sigma) = \langle \delta \mathcal{V}(\Sigma), V \rangle = 0. \qquad \Box$$

4. The existence

In this section we prove Theorem 1.2. Firstly we consider the case $G(\Sigma_0) \neq 0$. If the Herfrich flow with $\Sigma(0) = \Sigma_0$ exists, it holds that $G(\Sigma(t)) \neq 0$ for sufficiently small t > 0. We denote $\Sigma(t)$ simply by Σ . It follows from (1.2) that

$$\begin{pmatrix} \lambda_1(\Sigma)\\ \lambda_2(\Sigma) \end{pmatrix} = - \begin{pmatrix} \langle \delta \mathcal{A}(\Sigma), \delta \mathcal{A}(\Sigma) \rangle & \langle \delta \mathcal{V}(\Sigma), \delta \mathcal{A}(\Sigma) \rangle \\ \langle \delta \mathcal{A}(\Sigma), \delta \mathcal{V}(\Sigma) \rangle & \langle \delta \mathcal{V}(\Sigma), \delta \mathcal{V}(\Sigma) \rangle \end{pmatrix}^{-1} \begin{pmatrix} \langle \delta \mathcal{A}(\Sigma), \delta \mathcal{W}(\Sigma) \rangle \\ \langle \delta \mathcal{V}(\Sigma), \delta \mathcal{W}(\Sigma) \rangle \end{pmatrix}$$
$$= -\frac{1}{G(\Sigma)} \begin{pmatrix} \langle \delta \mathcal{V}(\Sigma), \delta \mathcal{V}(\Sigma) \rangle & -\langle \delta \mathcal{V}(\Sigma), \delta \mathcal{A}(\Sigma) \rangle \\ -\langle \delta \mathcal{A}(\Sigma), \delta \mathcal{V}(\Sigma) \rangle & \langle \delta \mathcal{A}(\Sigma), \delta \mathcal{A}(\Sigma) \rangle \end{pmatrix} \\ \times \begin{pmatrix} \langle \delta \mathcal{A}(\Sigma), \delta \mathcal{W}(\Sigma) \rangle \\ \langle \delta \mathcal{V}(\Sigma), \delta \mathcal{W}(\Sigma) \rangle \end{pmatrix}.$$
(4.1)

By results of Section 2, we have

$$\begin{split} \langle \delta \mathcal{A}(\Sigma), \delta \mathcal{A}(\Sigma) \rangle &= \int_{\Sigma} n^2 H^2 dS, \\ \langle \delta \mathcal{A}(\Sigma), \delta \mathcal{V}(\Sigma) \rangle &= \int_{\Sigma} n H dS, \\ \langle \delta \mathcal{V}(\Sigma), \delta \mathcal{V}(\Sigma) \rangle &= \int_{\Sigma} dS, \\ \langle \delta \mathcal{A}(\Sigma), \delta \mathcal{W}(\Sigma) \rangle &= -\int_{\Sigma} n H \left(\Delta_g H + \frac{n^2}{2} H^3 - HR + c_0 R - \frac{n^2}{2} c_0^2 H \right) dS \\ &= \int_{\Sigma} \left(n |\nabla_g H|^2 - \frac{n^3}{2} H^4 + n H^2 R - n c_0 HR + \frac{n^3}{2} c_0^2 H^2 \right) dS, \\ \langle \delta \mathcal{V}(\Sigma), \delta \mathcal{W}(\Sigma) \rangle &= -\int_{\Sigma} \left(\Delta_g H + \frac{n^2}{2} H^3 - HR + c_0 R - \frac{n^2}{2} c_0^2 H \right) dS \\ &= \int_{\Sigma} \left(-\frac{n^2}{2} H^3 + HR - c_0 R + \frac{n^2}{2} c_0^2 H \right) dS, \\ G(\Sigma) &= \int_{\Sigma} n^2 H^2 dS \int_{\Sigma} dS - \left(\int_{\Sigma} n H dS \right)^2 = n^2 \mathcal{A} \int_{\Sigma} \tilde{H}^2 dS. \end{split}$$
(4.2)

Here

$$\tilde{H} = H - \bar{H}, \quad \bar{H} = \frac{1}{\mathcal{A}} \int_{\Sigma} H dS.$$

Inserting these into (4.1), we have the explicit expression of $\lambda_j(\Sigma)$'s in the case $G(\Sigma) \neq 0$.

Proposition 4.1 When $G(\Sigma) \neq 0$, $\lambda_j(\Sigma)$'s are given by

$$\begin{split} \lambda_1(\Sigma) &= \frac{n\mathcal{A}}{G(\Sigma)} \int_{\Sigma} \left\{ -|\nabla_g H|^2 + \tilde{H} \left(\frac{n^2}{2} H^3 - HR + c_0 R - \frac{n^2}{2} c_0^2 H \right) \right\} dS, \\ \lambda_2(\Sigma) &= \frac{n^2}{G(\Sigma)} \int_{\Sigma} \left\{ \mathcal{A}\bar{H} |\nabla_g H|^2 \right. \\ &+ \left(\int_{\Sigma} \tilde{H}^2 dS - \mathcal{A}\bar{H}\tilde{H} \right) \left(\frac{n^2}{2} H^3 - HR + c_0 R - \frac{n^2}{2} c_0^2 H \right) \right\} dS. \end{split}$$

In particular they depend on

$$\int_{\Sigma} |\nabla_g H|^2 dS, \quad \int_{\Sigma} H^p dS \ (p = 0, 1, 2, 3, 4), \quad \int_{\Sigma} H^q R dS \ (q = 0, 1, 2),$$

analytically.

In order to prove Theorem 1.2 (i), we regard $\Sigma(t)$ as the perturbation of Σ_0 in normal direction with signed distance $\rho(t)$. This is in a similar manner to [6]. We can write down the Laplace-Beltrami operater, the mean curvature, the scalar curvature, and the Lagrange multipliers in term of the function ρ and its derivatives, denoted $\Delta_{\rho}, H(\rho), R(\rho), \lambda_1(\rho), \text{ and } \lambda_2(\rho)$ respectively. Let $\bigcup_{\ell=1}^m U_\ell$ be the open covering of Σ_0 . We denote the inner unit normal vector field of Σ_0 by $\boldsymbol{\nu}_0$. The mapping $X_\ell : U_\ell \times (-a, a) \ni$ $(\boldsymbol{s}, r) \to \boldsymbol{s} + r \boldsymbol{\nu}_0(\boldsymbol{s}) \in \mathbb{R}^{n+1}$ is a C^{∞} -diffeomorphism from $U_\ell \times (-a, a)$ to $\mathcal{R}_\ell = \text{Im}(X_\ell)$ provided a > 0 is sufficiently small. Let us denote the inverse mapping X_ℓ^{-1} by (S_ℓ, Λ_ℓ) , where $S_\ell(X_\ell(\boldsymbol{s}, r)) = \boldsymbol{s} \in U_\ell$, and $\Lambda_\ell(X_\ell(\boldsymbol{s}, r)) =$ $r \in (-a, a)$.

When $\Sigma(t)$ is close to Σ_0 for small t > 0, we can represent it as a graph of a function on Σ_0 as

$$\Sigma_{\rho(t)} = \Sigma(t) = \bigcup_{\ell=1}^{m} \operatorname{Im}(X_{\ell}(\cdot, \rho(\cdot, t)) : U_{\ell} \to \mathbb{R}^{n}, \ [\boldsymbol{s} \mapsto X_{\ell}(\boldsymbol{s}, \rho(\boldsymbol{s}, t))])$$

Conversely, for a given function $\rho : \Sigma_0 \times [0,T) \to (-a,a)$ we define the mapping $\Phi_{\ell,\rho}$ from $\mathcal{R}_{\ell} \times [0,T)$ to \mathbb{R} by

$$\Phi_{\ell,\rho}(x,t) = \Lambda_{\ell}(x) - \rho(S_{\ell}(x),t).$$
(4.3)

Then $\Phi_{\ell,\rho}(\cdot,t)^{-1}(0)$ gives the surface $\Sigma_{\rho(t)}$.

The velocity in the direction of the inner normal vector field of $\Sigma = \{\Sigma_{\rho(t)} : t \in [0,T)\}$ at $(x,t) = (X_{\ell}(s,\rho(s,t)),t)$ is given by

$$V(\boldsymbol{s},t) = -\frac{\partial_t \Phi_{\ell,\rho}(\boldsymbol{x},t)}{\|\nabla_x \Phi_{\ell,\rho}(\boldsymbol{x},t)\|} \bigg|_{\boldsymbol{x}=X_{\ell}(\boldsymbol{s},\rho(\boldsymbol{s},t))} = \frac{\partial_t \rho(\boldsymbol{s},t)}{\|\nabla_x \Phi_{\ell,\rho}(\boldsymbol{x},t)\|} \bigg|_{\boldsymbol{x}=X_{\ell}(\boldsymbol{s},\rho(\boldsymbol{s},t))}$$

The equation (1.1) is represented as

$$\begin{split} \partial_t \rho &= L_\rho \bigg(-\Delta_\rho H(\rho) - \frac{n^2}{2} H^3(\rho) + H(\rho) R(\rho) - c_0 R(\rho) + \frac{n^2}{2} c_0{}^2 H(\rho) \\ &+ \lambda_1(\rho) n H(\rho) + \lambda_2(\rho) \bigg) \end{split}$$

where $L_{\rho} = \|\nabla_x \Phi_{\ell,\rho}(x,t)\|_{x=X_{\ell}(\boldsymbol{s},\rho(\boldsymbol{s},t))}.$

Let K_j be the fundamental function of order j of the principal curvatures $\kappa_1, \kappa_2, \ldots, \kappa_n$, that is,

$$K_1 = \sum_i \kappa_i, \ K_2 = \sum_{i < j} \kappa_i \kappa_j, \ K_3 = \sum_{i < j < k} \kappa_i \kappa_j \kappa_k, \ \dots, \ K_n = \kappa_1 \kappa_2 \dots \kappa_n.$$

The mean curvature H, the scalar curvature R, and the Gaussian curvature K are given by

$$H = \frac{K_1}{n}, \quad R = 2K_2, \quad K = K_n.$$

To get expressions of $H(\rho)$ and $R(\rho)$, we need those of K_j in term of derivatives of $\Phi_{\ell,\rho}$. We denote $\Phi_{\ell,\rho}$ simply by Φ .

Lemma 4.1 Assume that a hypersurface is defined by $\{x \in \mathbb{R}^{n+1} : \Phi(x) = 0\}$ locally, and that $\nabla_x \Phi \neq 0$ everywhere near the hypersurface. Then K_j is given by

$$K_j = \frac{1}{(n-j)!} \frac{d^{n-j}}{d\epsilon^{n-j}} \mathcal{G}(\nabla_x \Phi, \operatorname{Hess}_x \Phi, \epsilon) \bigg|_{\epsilon=0, \{x: \Phi(x)=0\}},$$

where

$$\mathcal{G}(\boldsymbol{p}, X, \epsilon) = \det_{n+1} \left(\|\boldsymbol{p}\|^{-1} (I_{n+1} - \boldsymbol{p} \otimes \boldsymbol{p}) X (I_{n+1} - \boldsymbol{p} \otimes \boldsymbol{p}) + \boldsymbol{p} \otimes \boldsymbol{p} + \epsilon E^t E \right),$$
$$E = (\boldsymbol{e}_1, \dots, \boldsymbol{e}_n) \in M_{n+1}(\mathbb{R}), \quad \boldsymbol{p} = \|\boldsymbol{p}\|^{-1} \boldsymbol{p} \text{ for } \boldsymbol{p} \in \mathbb{R}^{n+1}$$

Proof. We prove the assertion by the adapted argument of [6, Lemma 5.1]. We may assume x = 0. Then there exists a neighborhood of U of $0 \in \mathbb{R}^n$ such that $\Phi(x) = 0$ is a graph of a function of $f: U \to \mathbb{R}$. Let $\tilde{x} = (x^1, \ldots, x^n)$ and $x = (\tilde{x}, x^{n+1})$. Since principal curvature at 0 are eigenvalues of $\text{Hess}_{\tilde{x}}f(0)$, it holds that

$$\det_n(\operatorname{Hess}_{\tilde{x}} f(0) + \epsilon I_n) = \sum_{j=0}^n K_j \epsilon^{n-j},$$

where $K_0 = 1$. Consequently

$$K_j = \frac{1}{(n-j)!} \frac{d^{n-j}}{d\epsilon^{n-j}} \det_n (\operatorname{Hess}_{\tilde{x}} f(0) + \epsilon I_n) \bigg|_{\epsilon=0}$$

As shown in [6, Lemma 5.1], putting $\boldsymbol{p} = \nabla_x \Phi(0), X = \text{Hess}_x \Phi(0)$, we have

$$\operatorname{Hess}_{\tilde{x}}\tilde{f}(0) = \|\boldsymbol{p}\|^{-1t} EXE.$$

Hence

$$\det_{n}(\operatorname{Hess}_{\tilde{x}}f(0) + \epsilon I_{n})$$

$$= \det_{n+1} \begin{pmatrix} \|\boldsymbol{p}\|^{-1t}EXE + \epsilon I_{n} & 0\\ 0 & 1 \end{pmatrix}$$

$$= \det_{n+1} \left(\|\boldsymbol{p}\|^{-1}E^{t}EXE^{t}E + \epsilon E^{t}E + \boldsymbol{e}_{n+1}^{t}\boldsymbol{e}_{n+1} \right)$$

$$= \det_{n+1} \left(\|\boldsymbol{p}\|^{-1}(I_{n+1} - \boldsymbol{p} \otimes \boldsymbol{p})X(I_{n+1} - \boldsymbol{p} \otimes \boldsymbol{p}) + \boldsymbol{p} \otimes \boldsymbol{p} + \epsilon E^{t}E \right). \quad \Box$$

It follows from (4.3) that $\nabla_x \Phi$ and $\operatorname{Hess}_x \Phi$ can be written in terms of derivatives of ρ up to the 2nd order, and therefore so do $H(\rho)$ and $R(\rho)$. By Proposition 4.1 we find that $\lambda_j(\Sigma)$'s depend analytically on derivatives of ρ up to the 3rd order near $\rho = 0$. Consequently the equation (2.21) is in the form

$$\rho_t + L_\rho \Delta_\rho H(\rho) + \Phi(\rho, \partial\rho, \partial^2 \rho, \partial^3 \rho) = 0.$$

Now we study precisely where the third derivarive $\partial^3 \rho$ appears. There are no terms including it other than $L_{\rho}\Delta_{\rho}H(\rho)$ and $\lambda_j(\rho)$. The analysis of the principal term $L_{\rho}\Delta_{\rho}H(\rho)$ is in the same as [4] and [6], and $\partial^3 \rho$ appears linearly there. We have found $|\nabla_g H|^2$ (= $|\nabla_{\rho}H(\rho)|^2$) in the numerator of the expression of $\lambda_j(\Sigma)$ (= $\lambda_j(\rho)$) in Proposition 4.1. It follows from [6, Lemma 2.1] that $\nabla_{\rho}H(\rho)$ is linear in $\partial^3 \rho$. The denominator $G(\Sigma)$ of $\lambda_1(\Sigma)$ does not depend on $\nabla_g H$. Hence we have a term including $\partial^3 \rho$ quadrically from $\lambda_1(\rho)$.

An argument similar to [4, Lemma 2.1] and [10, Lemma 2.1] gives the following. Let $h^{\gamma}(\Sigma_0)$ be the little Hölder space on Σ_0 of order γ . We fix $0 < \alpha < \beta < 1$. For $\beta_0 \in (\alpha, \beta)$, put

$$\mathcal{U} = \{ \rho \in h^{3+\beta_0}(\Sigma_0) : \|\rho\|_{C^2(\Sigma_0)} < a \}.$$

For two Banach spaces E_0 and E_1 satisfying $E_1 \hookrightarrow E_0$ the set $\mathcal{H}(E_1, E_0)$ is the class of $A \in \mathcal{L}(E_1, E_0)$ such that -A, considered as an unbounded operator in E_0 , generates a strongly continuous analytic semigroup on E_0 .

Proposition 4.2 There exist $Q \in C^{\infty}(\mathcal{U}, \mathcal{H}(h^{4+\alpha}(\Sigma_0), h^{\alpha}(\Sigma_0)))$, and $F \in C^{\infty}(\mathcal{U}, h^{\beta_0}(\Sigma_0))$ such that the equation (2.21) is in the form

$$\rho_t + Q(\rho)\rho + F(\rho) = 0.$$

Applying [1, Theorem 12.1] with $X_{\beta} = \mathcal{U}, E_1 = h^{4+\alpha}(\Sigma_0), E_0 = h^{\alpha}(\Sigma_0)$, and $E_{\gamma} = h^{\beta_0}(\Sigma_0)$, we get an existence and uniqueness result for the Helfrich flow in case $G(\Sigma_0) \neq 0$.

Remark 4.1 The equation dealt with in [6] is a similar forth-order equation, but linear with respect to the third order derivatives of ρ . The term $Q(\rho)\rho$ includes such parts, and $F(\rho)$ does not include the third order derivatives. Therefore it was solvable for initial data in the class $h^{2+\alpha}$. In our case, the terms with $\partial^3 \rho$, which are not linear with respect to it, are excluded from $Q(\rho)\rho$, and they are included into $F(\rho)$. This is why we need extra regularity than the result in [6].

Now consider the assertion (ii) in Theorem 1.2. Before going to prove, we see an example of Σ_0 satisfying $G(\Sigma_0) = 0$ and $(\overline{H}_0 - c_0)\tilde{R}_0 \equiv 0$. A typical example is a sphere. Indeed, spheres have constant mean curvature, and there for $G(\Sigma_0) = 0$ (see (4.2)). Since the scalar curvature is also constant, we have $\tilde{R}_0 = 0$. Furthermore spheres are stationary solution to (3.1).

To show the assertion (ii), it is enough to see that Σ_0 is a stationary solution.

Assume that $G(\Sigma) = 0$. It follows from (4.2) that Σ has a constant mean curvature $H = \overline{H}$. Hence

$$\operatorname{span}_{L^2(\Sigma)} \{ \delta \mathcal{A}, \delta \mathcal{V} \} = \operatorname{span}_{L^2(\Sigma)} \{ 1 \},$$

and

$$P(\Sigma)\phi = \phi - \frac{1}{\mathcal{A}(\Sigma)} \int_{\Sigma} \phi dS$$

for $\phi \in L^2(\Sigma)$. Therefore at the time when $G(\Sigma(t)) = 0$, the equation (3.1) becomes

$$\begin{split} V(t) &= -\delta \mathcal{W}(\Sigma(t)) + \frac{1}{\mathcal{A}(\Sigma)} \int_{\Sigma} \delta \mathcal{W}(\Sigma(t)) dS \\ &= -\Delta_g \overline{H} - \frac{1}{2} \overline{H}^3 + \overline{H}R - c_0 R + \frac{1}{2} n^2 c_0^2 \overline{H} \\ &+ \frac{1}{\mathcal{A}(\Sigma)} \int_{\Sigma} \left(\frac{1}{2} \overline{H}^3 - \overline{H}R + c_0 R - \frac{1}{2} n^2 c_0^2 \overline{H} \right) dS \\ &= -(\overline{H} - c_0) \tilde{R}, \end{split}$$

where

$$\tilde{R} = R - \frac{1}{\mathcal{A}(\Sigma)} \int_{\Sigma} R dS.$$

Consequently if the hypersurface Σ_0 satisfies $G(\Sigma_0) = 0$ and $(\overline{H} - c_0)\tilde{R} \equiv 0$, then it is a stationary of solution (3.1).

Thus we complete the proof of Theorem 1.2.

We do not know the uniqueness in case of Theorem 1.2 (ii), expect for n = 1.

Theorem 4.1 Consider the one-dimensional Helfrich flow. If Σ_0 satisfies $G(\Sigma_0) = 0$, then $\{\Sigma(t) \equiv \Sigma_0\}$ is the unique global solution with $\Sigma(0) = \Sigma_0$.

Remark 4.2 When n = 1, the scalar curvature is zero by its definition, and therefore the condition $(\overline{H} - c_0)\tilde{R} \equiv 0$ is automatically satisfied.

Proof. When n = 1, the integral $\int_{\Sigma} H dS$ is a constant multiple of the rotation number. Therefore it does not depend on t. Consequently we have

$$\frac{d}{dt}G(\Sigma) = \mathcal{A}_0 \frac{d}{dt} \int_{\Sigma} H^2 dS = 2\mathcal{A}_0 \frac{d}{dt} \mathcal{W} = -2\mathcal{A}_0 \|V\|^2 \le 0.$$

Combining this with $G(\Sigma) \ge 0$ (see (4.2)), it hold that $G(\Sigma) \equiv 0$ provided $G(\Sigma_0) = 0$. Using the above relation again, we have $V \equiv 0$, that is, $\Sigma(t) \equiv \Sigma(0)$.

References

- Amann H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problem. Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), Ed.: H.-J. Schmeisser & H. Triebel, Teubner-Texte Math. 133, B. G. Teubner, Stuttgart, Leipzig, 1993, pp. 9– 126.
- [2] Brailsford J. D., Mechanoelastic properties of biological membranes. Membrane Fluidity in Biology, Vol. 1 Concepts of Membrane Structure, Academic Press, San Diego, 1983, pp. 291–319.
- [3] Chen B.-Y., On a variational problem on hypersurfaces. J. London Math. Soc. (2) 6 (1973), 321–325.
- [4] Escher J., Mayer U. F. and Simonett G., The surface diffusion flow for immersed hypersurface. SIAM J. Math. Anal. 29(6) (1998), 1419–1433.
- [5] Helfrich W., Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch 28c (1973), 693–703.
- [6] Kohsaka Y. and Nagasawa T., On the existence of solutions of the Helfrich flow and its center manifold near spheres. Differential Integral Equations 19(2) (2006), 121–142.
- [7] Kurihara T. and Nagasawa T., On the gradient flow for a shape optimization problem of plane curves as a singular limit. Saitama Math. J. 24 (2006/2007), 43–75.
- [8] Nagasawa T. and Takagi I., Bifurcating critical points of bending energy under constraints related to the shape of red blood cells. Calc. Partial Differential Equations 16(1) (2003), 63–111.
- [9] Shikhman V. and Stein O., Constrained optimization: projected gradient flows. J. Optin. Theory Appl. 140(1) (2009), 117–130.
- Simonett G., The Willmore flow near sphere. Differential Integral Equations 14(8) (2001), 1005–1014.
- Watanabe K., Plane domains which are spectrally determined. Ann. Global Anal. Geom. 18(5) (2000), 447–475.
- [12] Watanabe K., Plane domains which are spectrally determined. II. J. Inequal. Appl. 7(1) (2002), 25–47.

Takeyuki NAGASAWA Department of Mathematics Graduate School of Science and Engineering Saitama University Saitama 338-8570, Japan E-mail: tnagasaw@rimath.saitama-u.ac.jp

Taekyung YI Department of Mathematics Graduate School of Science and Engineering Saitama University Saitama 338-8570, Japan E-mail: s08dm004@mail.saitama-u.ac.jp