Prediction of fractional processes with long-range dependence

Akihiko Inoue and Vo V. Anh
(Received March 26, 2009; Revised October 31, 2011)

Abstract

We introduce a class of Gaussian processes with stationary increments which exhibit long-range dependence. The class includes fractional Brownian motion with Hurst parameter $H>1 / 2$ as a typical example. We establish infinite and finite past prediction formulas for the processes in which the predictor coefficients are given explicitly in terms of the $\mathrm{MA}(\infty)$ and $\operatorname{AR}(\infty)$ coefficients.

Key words: Predictor coefficients, prediction, fractional Brownian motion, long-range dependence.

1. Introduction

Let $(X(t): t \in \mathbf{R})$ be a centered Gaussian process with stationary increments, defined on a probability space (Ω, \mathcal{F}, P), that admits the movingaverage representation

$$
\begin{equation*}
X(t)=\int_{-\infty}^{\infty}\{g(t-s)-g(-s)\} d W(s), \quad t \in \mathbf{R} \tag{1.1}
\end{equation*}
$$

where $(W(t): t \in \mathbf{R})$ is a Brownian motion, and $g(t)$ is a function of the form

$$
\begin{array}{ll}
g(t)=\int_{0}^{t} c(s) d s, & t \in \mathbf{R}, \\
c(t):=I_{(0, \infty)}(t) \int_{0}^{\infty} e^{-t s} \nu(d s), & t \in \mathbf{R} \tag{1.3}
\end{array}
$$

with some Borel measure ν on $(0, \infty)$ satisfying

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{1+s} \nu(d s)<\infty \tag{1.4}
\end{equation*}
$$

We will also assume some extra conditions such as

2010 Mathematics Subject Classification : Primary 60G25; Secondary 60G15.

$$
\begin{align*}
& \lim _{t \rightarrow 0+} c(t)=\infty \tag{1.5}\\
& g(t) \sim t^{H-(1 / 2)} \ell(t) \cdot \frac{1}{\Gamma\left(\frac{1}{2}+H\right)}, \quad t \rightarrow \infty \tag{1.6}
\end{align*}
$$

where $\ell(t)$ is a slowly varying function at infinity and H is a constant such that

$$
\begin{equation*}
1 / 2<H<1 \tag{1.7}
\end{equation*}
$$

In (1.6), and throughout the paper, $a(t) \sim b(t)$ as $t \rightarrow \infty$ means $\lim _{t \rightarrow \infty} a(t) / b(t)=1$. We call $c(t)$ (as well as $\left.g(t)\right)$ the $M A(\infty)$ coefficient of $(X(t))$. We remark that, in the prediction formulas for $(X(t))$ which we consider in this paper, $c(t)$ becomes more relevant than $g(t)$.

A typical example of ν is

$$
\begin{equation*}
\nu(d s)=\frac{\sin \left\{\pi\left(H-\frac{1}{2}\right)\right\}}{\pi} s^{(1 / 2)-H} d s \quad \text { on }(0, \infty) \tag{1.8}
\end{equation*}
$$

with (1.7). For this $\nu, g(t)$ becomes

$$
\begin{equation*}
g(t)=I_{(0, \infty)}(t) t^{H-(1 / 2)} \frac{1}{\Gamma\left(\frac{1}{2}+H\right)}, \quad t \in \mathbf{R} \tag{1.9}
\end{equation*}
$$

and $(X(t))$ reduces to fractional Brownian motion $\left(B_{H}(t)\right)$ with Hurst parameter H (see Example 2.3 below). Fractional Brownian motion, abbreviated fBm , was introduced by Kolmogorov $[\mathrm{K}]$. For $1 / 2<H<1$, fBm has both self-similarity and long-range dependence (Samorodnitsky and Taqqu [ST]), and plays an important role in various fields such as network traffic (see, e.g., Mikosch et al. [MRRS]) and finance (see, e.g., Hu et al. [HOS]); see also Taqqu $[T]$ and other papers in the same volume. Because of its importance, stochastic calculus for fBm has been developed by many authors; see, e.g., Decreusefond and Üstünel [DU], and Nualart [N]. Grecksch and Anh $[\mathrm{GA}]$ introduced Hilbert space-valued fBm and the corresponding stochastic calculus. Duncan et al. [DMP] and Tindel et al. [TTV] studied stochastic evolution equations with fBm in Hilbert spaces. Other important examples of $(X(t))$ are the processes with long-range dependence which, unlike fBm , have two different indices H_{0} and H describing the local properties (path properties) and long-time behavior of $(X(t))$, respectively (see

Example 2.4 below).
Let t_{0}, t_{1} and T be real constants such that

$$
\begin{equation*}
-\infty<-t_{0} \leq 0 \leq t_{1}<T<\infty, \quad-t_{0}<t_{1} \tag{1.10}
\end{equation*}
$$

For $I=\left(-\infty, t_{1}\right]$ or $\left[-t_{0}, t_{1}\right]$, we write $P_{I} X(T)$ for the predictor of the future value $X(T)$ based on the observable $(X(s): s \in I)$ (see Section 3 below). One of the fundamental prediction problems for $(X(t))$ is to express $P_{I} X(T)$ using the segment $(X(s): s \in I)$ and some deterministic quantities. Another is to express the variance of the prediction error $P_{I}^{\perp} X(T):=X(T)-P_{I} X(T)$. Results of this type become important tools in the analysis of non-Markovian processes and systems modulated by them (see, e.g., Norros et al. [NVV], Anh et al. [AIK], Inoue et al. [INA] and Inoue and Nakano [IN]). One of our main purposes here is to derive such results for $(X(t))$.

We establish the following infinite and finite past prediction formulas for $(X(t))$ (see Theorems 3.8 and 4.12 below):

$$
\begin{align*}
& P_{\left(-\infty, t_{1}\right]} X(T)=X\left(t_{1}\right)+\int_{-\infty}^{t_{1}}\left\{\int_{0}^{T-t_{1}} b\left(t_{1}-s, \tau\right) d \tau\right\} d X(s) \tag{1.11}\\
& P_{\left[-t_{0}, t_{1}\right]} X(T)=X\left(t_{1}\right)+\int_{-t_{0}}^{t_{1}}\left\{\int_{0}^{T-t_{1}} h\left(s+t_{0}, u\right) d u\right\} d X(s) . \tag{1.12}
\end{align*}
$$

The significance of (1.11) and (1.12) is that the predictor coefficients $b(t, s)$ and $h(t, s)$ are given explicitly in terms of the MA (∞) coefficient $c(t)$ and $\operatorname{AR}(\infty)$ coefficient $a(t)$, to be defined in Section 3.1, of $(X(t))$. The integral of $a(t)$ is in fact the coefficient of an $\operatorname{AR}(\infty)$-type equation describing $(X(t))$ (see Section 5). We will find that $a(t)$ has a nice integral representation similar to (1.3) (see (3.3) below). It turns out that the existence of such a nice $\operatorname{AR}(\infty)$ coefficient, in addition to the nice $\operatorname{MA}(\infty)$ coefficient, is a key to the solution to the prediction problems above.

For fBm with $1 / 2<H<1$, the predictor coefficients $b(t, s)$ and $h(t, s)$ are given in Gripenberg and Norros [GN]. See [NVV] and [NP] for different proofs. Fractional Brownian motion has a variety of nice properties, and the methods of proof of [GN], [NVV], [NP] naturally rely on such special properties of fBm , hence are not applicable to $(X(t))$. The method of this paper is based on the alternating projections to the past and future (see Section 4.1 below). As for fBm with $0<H<1 / 2$, its infinite and finite
past prediction formulas also exist, and are due to Yaglom [Y] and Nuzman and Poor [NP], respectively (see also Anh and Inoue [AI1]).

In Inoue and Anh [IA], a class of processes $(\tilde{X}(t))$ of the same form

$$
\begin{equation*}
\tilde{X}(t)=\int_{-\infty}^{\infty}\{\tilde{c}(t-s)-\tilde{c}(-s)\} d W(s), \quad t \in \mathbf{R} \tag{1.13}
\end{equation*}
$$

as (1.1) are introduced. Unlike $g(t)$ in (1.1), however, the kernel $\tilde{c}(t)$ itself is assumed to be of the form

$$
\begin{equation*}
\tilde{c}(t)=I_{(0, \infty)}(t) \int_{0}^{\infty} e^{-t s} \tilde{\nu}(d s), \quad t \in \mathbf{R} \tag{1.14}
\end{equation*}
$$

with a Borel measure $\tilde{\nu}$ on $(0, \infty)$ satisfying some suitable conditions. This class of $(\tilde{X}(t))$ includes fBm with $H \in(0,1 / 2)$ as a typical example. Notice that $\tilde{c}(t)$ in (1.14) (resp., $g(t)$ in (1.1)) is decreasing (resp., increasing) on $(0, \infty)$ as $t^{H-(1 / 2)}$ with $H \in(0,1 / 2)$ (resp., $\left.(1 / 2,1)\right)$ is. In [IA], prediction formulas for $(\tilde{X}(t))$ are proved, extending the results for fBm with $H \in$ $(0,1 / 2)$ stated above. These prediction formulas for $(\tilde{X}(t))$, including those for fBm with $H \in(0,1 / 2)$, have different forms from (1.11) and (1.12), in that no stochastic integrals appear there.

We provide the basic properties and examples of $(X(t))$ in Section 2. We consider the infinite and finite past prediction problems for $(X(t))$ in Sections 3 and 4, respectively. Finally in Section 5, we remark on the $\operatorname{AR}(\infty)$-type equations describing $(X(t))$ and $(\tilde{X}(t))$.

2. Basic properties and examples

In this section, we assume (1.2)-(1.4) and

$$
\begin{equation*}
\int_{1}^{\infty} c(t)^{2} d t<\infty \tag{2.1}
\end{equation*}
$$

Then, as in [IA, Lemma 2.1], we have $\int_{-\infty}^{\infty}|g(t-s)-g(-s)|^{2} d s<\infty$ for $t \in \mathbf{R}$. Therefore, for a one-dimensional standard Brownian motion $(W(t)$: $t \in \mathbf{R}$) with $W(0)=0$, we may define the centered stationary-increment Gaussian process $(X(t): t \in \mathbf{R})$ by (1.1).

For $s>0$ and $t \in \mathbf{R}$, we put $\Delta_{s} X(t):=X(t+s)-X(t)$. Then, by definition, $\left(\Delta_{s} X(t): t \in \mathbf{R}\right)$ is a stationary process.

Lemma 2.1 Let $s \in(0, \infty)$. We assume (1.6) and (1.7). Then $E\left[\Delta_{s} X(t) \cdot \Delta_{s} X(0)\right] \sim t^{2 H-2} \ell(t)^{2} \cdot \frac{s^{2} \Gamma(2-2 H) \sin \left\{\left(H-\frac{1}{2}\right) \pi\right\}}{\pi}, \quad t \rightarrow \infty$.

Since $-1<2 H-2<0$ in Lemma 2.1, we see from this lemma that $\left(\Delta_{s} X(t)\right)$, whence $(X(t))$, has long-range dependence.

We put $\sigma(t):=E\left[|X(t+s)-X(s)|^{2}\right]^{1 / 2}$ for $t \geq 0$ and $s \in \mathbf{R}$.
Lemma 2.2 Let $H_{0} \in(1 / 2,1)$ and $\ell_{0}(\cdot)$ a slowly varying function at infinity. We assume

$$
\begin{equation*}
g(t) \sim t^{H_{0}-(1 / 2)} \ell_{0}(1 / t) \cdot \frac{1}{\Gamma\left(\frac{1}{2}+H_{0}\right)}, \quad t \rightarrow 0+ \tag{2.2}
\end{equation*}
$$

Then

$$
\sigma(t) \sim t^{H_{0}} \ell_{0}(1 / t) \sqrt{v\left(H_{0}\right)}, \quad t \rightarrow 0+
$$

where $v\left(H_{0}\right):=\Gamma\left(2-2 H_{0}\right) \cos \left(\pi H_{0}\right) /\left\{\pi H_{0}\left(1-2 H_{0}\right)\right\}$. In particular, we have

$$
H_{0}=\sup \left\{\beta: \sigma(t)=o\left(t^{\beta}\right), t \rightarrow 0+\right\}=\inf \left\{\beta: t^{\beta}=o(\sigma(t)), t \rightarrow 0+\right\}
$$

From Lemma 2.2, we see that the index H_{0} describes the path properties of $(X(t))$ (see Adler [A, Section 8.4]).

By the monotone density theorem (cf. Bingham et al. [BGT, Theorem 1.7.5]), (1.6) with (1.7) implies

$$
\begin{equation*}
c(t) \sim t^{H-(3 / 2)} \ell(t) \cdot \frac{1}{\Gamma\left(H-\frac{1}{2}\right)}, \quad t \rightarrow \infty \tag{2.3}
\end{equation*}
$$

Similarly, (2.2) implies

$$
\begin{equation*}
c(t) \sim t^{H_{0}-(3 / 2)} \ell_{0}(1 / t) \cdot \frac{1}{\Gamma\left(H_{0}-\frac{1}{2}\right)} . \quad t \rightarrow 0+ \tag{2.4}
\end{equation*}
$$

Lemmas 2.1 and 2.2 follow from (2.3) and (2.4), respectively, by standard arguments. However, since we do not use these results, we omit the details.

Example 2.3 For $H \in(1 / 2,1)$, let ν be as in (1.8). Then we have (1.9);
and so all the conditions above are satisfied. The resulting process $(X(t))$ is $\mathrm{fBm}\left(B_{H}(t)\right)$:

$$
\begin{equation*}
B_{H}(t)=\frac{1}{\Gamma\left(\frac{1}{2}+H\right)} \int_{-\infty}^{\infty}\left\{\left((t-s)_{+}\right)^{H-(1 / 2)}-\left((-s)_{+}\right)^{H-(1 / 2)}\right\} d W(s) \tag{2.5}
\end{equation*}
$$

where $(x)_{+}:=\max (0, x)$ for $x \in \mathbf{R}$. The representation (2.5) of fBm is due to the pioneering work of Mandelbrot and Van Ness [MV].

Example 2.4 Let $f(\cdot)$ be a nonnegative, locally integrable function on $(0, \infty)$. For $H_{0}, H \in(1 / 2,1)$ and slowly varying functions $\ell_{0}(\cdot)$ and $\ell(\cdot)$ at infinity, we assume

$$
\begin{array}{ll}
f(s) \sim \frac{\sin \left\{\pi\left(H_{0}-\frac{1}{2}\right)\right\}}{\pi} s^{(1 / 2)-H} \ell(1 / s), & s \rightarrow 0+, \\
f(s) \sim \frac{\sin \left\{\pi\left(H_{0}-\frac{1}{2}\right)\right\}}{\pi} s^{(1 / 2)-H_{0}} \ell_{0}(s), & s \rightarrow \infty .
\end{array}
$$

Let $\nu(d s)=f(s) d s$. Then, by Abelian theorems for Laplace transforms (cf. [BGT, Section 1.7]), we have (2.3), whence (1.6). Similarly, we have (2.4), whence (2.2). Thus all the conditions above are satisfied. As we have seen above, the indices H_{0} and H describe the path properties and long-time behavior of $(X(t))$, respectively.

3. Infinite past prediction problems

In this section, we assume (1.1)-(1.5), (2.1) and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} g(t)=\infty \tag{3.1}
\end{equation*}
$$

Notice that, for the processes $(X(t))$ in Examples 2.3 and 2.4, all these conditions are satisfied. We also assume (1.10).

We write $M(X)$ for the real Hilbert space spanned by $\{X(t): t \in \mathbf{R}\}$ in $L^{2}(\Omega, \mathcal{F}, P)$, and $\|\cdot\|$ for its norm. Let I be a closed interval of \mathbf{R} such as $\left[-t_{0}, t_{1}\right],\left(-\infty, t_{1}\right]$, and $\left[-t_{0}, \infty\right)$. Let $M_{I}(X)$ be the closed subspace of $M(X)$ spanned by $\{X(t): t \in I\}$. We write P_{I} for the orthogonal projection operator from $M(X)$ to $M_{I}(X)$, and P_{I}^{\perp} for its orthogonal complement: $P_{I}^{\perp} Z=Z-P_{I} Z$ for $Z \in M(X)$. Note that, since $(X(t))$ is a Gaussian process, we have $P_{I} Z=E[Z \mid \sigma(X(s): s \in I)]$.

3.1. MA and AR coefficients

The conditions (1.5) and (3.1) imply $\nu(0, \infty)=\infty$ and $\int_{0}^{\infty} s^{-1} \nu(d s)=$ ∞, respectively. Therefore, by [IA, Theorem 3.2], there exists a unique Borel measure μ on $(0, \infty)$ satisfying

$$
\int_{0}^{\infty} \frac{1}{1+s} \mu(d s)<\infty, \quad \mu(0, \infty)=\infty, \quad \int_{0}^{\infty} \frac{1}{s} \mu(d s)=\infty
$$

and

$$
\begin{equation*}
-i z\left\{\int_{0}^{\infty} e^{i z t} c(t) d t\right\}\left\{\int_{0}^{\infty} e^{i z t} \alpha(t) d t\right\}=1, \quad \Im z>0 \tag{3.2}
\end{equation*}
$$

with

$$
\alpha(t):=\int_{0}^{\infty} e^{-s t} \mu(d s), \quad t>0
$$

We define

$$
\begin{equation*}
a(t):=-\frac{d \alpha}{d t}(t)=\int_{0}^{\infty} e^{-s t} s \mu(d s), \quad t>0 \tag{3.3}
\end{equation*}
$$

We call $a(t)$ (as well as $\alpha(t))$ the $A R(\infty)$ coefficient of $(X(t))$ (see Section 5 for background). We define the positive kernel $b(t, s)$ by

$$
b(t, s):=\int_{0}^{s} c(u) a(t+s-u) d u, \quad t, s>0
$$

Then, by [IA, Lemma 3.4], the following equalities hold:

$$
\begin{array}{ll}
\int_{0}^{\infty} b(t, s) d t=1, & s>0 \\
c(t+s)=\int_{0}^{t} c(t-u) b(u, s) d u, & t, s>0 \tag{3.5}
\end{array}
$$

3.2. Stochastic integrals

Let I be a closed interval of \mathbf{R}. We define

$$
\mathcal{H}_{I}(X):=\left\{f: \begin{array}{l}
f \text { is a real-valued measurable function on } I \text { such } \\
\text { that } \int_{-\infty}^{\infty}\left\{\int_{I}|f(u)| c(u-s) d u\right\}^{2} d s<\infty
\end{array}\right\}
$$

This is the class of functions f for which we can define the stochastic integral $\int_{I} f(s) d X(s)$. We notice that, by Lemma 5.2 below, the function $c(t)$, whence $\mathcal{H}_{I}(X)$, is uniquely determined by $(X(t))$. We define a subclass \mathcal{H}_{I}^{0} of $\mathcal{H}_{I}(X)$ by

$$
\mathcal{H}_{I}^{0}:=\left\{\sum_{k=1}^{m} a_{k} I_{\left(t_{k-1}, t_{k}\right]}(s): \begin{array}{l}
m \in \mathbf{N},-\infty<t_{0}<t_{1}<\cdots<t_{m}<\infty \\
\text { with }\left(t_{0}, t_{m}\right] \subset I, a_{k} \in \mathbf{R}(k=1, \ldots, m)
\end{array}\right\} .
$$

Each member of $f \in \mathcal{H}_{I}^{0}$ is a simple function on I.
Definition 3.1 For $f=\sum_{k=1}^{m} a_{k} I_{\left(t_{k-1}, t_{k}\right]} \in \mathcal{H}_{I}^{0}$, we define

$$
\int_{I} f(s) d X(s):=\sum_{k=1}^{m} a_{k}\left\{X\left(t_{k}\right)-X\left(t_{k-1}\right)\right\} .
$$

We see that $\int_{I} f(s) d X(s) \in M_{I}(X)$ for $f \in \mathcal{H}_{I}^{0}$.
Proposition 3.2 For $f \in \mathcal{H}_{I}^{0}$, we have

$$
\begin{equation*}
\int_{I} f(s) d X(s)=\int_{-\infty}^{\infty}\left\{\int_{I} f(u) c(u-s) d u\right\} d W(s) \tag{3.6}
\end{equation*}
$$

Proof. For $-\infty<a<b<\infty$ with $(a, b] \subset I$, we have

$$
X(b)-X(a)=\int_{-\infty}^{\infty}\left\{\int_{I} I_{(a, b]}(u) c(u-s) d u\right\} d W(s)
$$

which implies (3.6) for $f=I_{(a, b]}$. The general case follows easily from this.

Proposition 3.3 Let $f \in \mathcal{H}_{I}(X)$ such that $f \geq 0$, and let $f_{n}(n=1,2, \ldots)$ be a sequence of simple functions on I such that $0 \leq f_{n} \uparrow f$ a.e. Then, in $M(X)$,

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f_{n}(s) d X(s)=\int_{-\infty}^{\infty}\left\{\int_{I} f(u) c(u-s) d u\right\} d W(s)
$$

Proof. By Proposition 3.2 and the monotone convergence theorem, we have

$$
\begin{aligned}
& \left\|\int_{I} f_{n}(s) d X(s)-\int_{-\infty}^{\infty}\left\{\int_{I} f(u) c(u-s) d u\right\} d W(s)\right\|^{2} \\
& \quad \leq \int_{-\infty}^{\infty}\left\{\int_{I}\left(f(u)-f_{n}(u)\right) c(u-s) d u\right\}^{2} d s \downarrow 0, \quad n \rightarrow \infty .
\end{aligned}
$$

Thus the proposition follows.
For a real-valued function f on I, we write $f(x)=f^{+}(x)-f^{-}(x)$, where

$$
f^{+}(x):=\max (f(x), 0), \quad f^{-}(x):=\max (-f(x), 0), \quad x \in I .
$$

Definition 3.4 For $f \in H_{I}(X)$, we define

$$
\int_{I} f(s) d X(s):=\lim _{n \rightarrow \infty} \int_{I} f_{n}^{+}(s) d X(s)-\lim _{n \rightarrow \infty} \int_{I} f_{n}^{-}(s) d X(s) \quad \text { in } M(X)
$$

where $\left\{f_{n}^{+}\right\}$and $\left\{f_{n}^{-}\right\}$are arbitrary sequences of non-negative simple functions on I such that $f_{n}^{+} \uparrow f^{+}, f_{n}^{-} \uparrow f^{-}$, as $n \rightarrow \infty$, a.e.

From the definition above, we see that $\int_{I} f(s) d X(s) \in M_{I}(X)$ for $f \in$ $\mathcal{H}_{I}(X)$. The next proposition follows immediately from Proposition 3.3.

Proposition 3.5 The equality (3.6) also holds for $f \in \mathcal{H}_{I}(X)$.

3.3. Infinite past prediction formulas

We denote by $\mathcal{D}(\mathbf{R})$ the space of all $\phi \in C^{\infty}(\mathbf{R})$ with compact support, endowed with the usual topology. For a random distribution Y (cf. [I2, Section 2] and [AIK, Section 2]), we write $D Y$ for its derivative. For $t \in \mathbf{R}$, we write $M_{(-\infty, t]}(Y)$ for the closed linear hull of $\{Y(\phi): \phi \in \mathcal{D}(\mathbf{R}), \operatorname{supp} \phi \subset$ $(-\infty, t]\}$ in $L^{2}(\Omega, \mathcal{F}, P)$. Notice that $M_{I}(X)$ here coincides with that defined above.

As in [IA, Proposition 2.4], we have the next proposition.
Proposition 3.6 The derivative $D X$ of $(X(t))$ is a purely nondeterministic stationary random distribution, and $(W(t): t \in \mathbf{R})$ is a canonical Brownian motion of $D X$ in the sense that $M_{(-\infty, t]}(D X)=M_{(-\infty, t]}(D W)$ for every $t \in \mathbf{R}$.

See Section 5 for the proof.

Here is the infinite past prediction formula for $\int_{t}^{\infty} f(s) d X(s)$.
Theorem 3.7 For $t \in[0, \infty)$ and $f \in \mathcal{H}_{[t, \infty)}(X)$, the following assertions hold:
(a) $\int_{0}^{\infty} b(t-\cdot, \tau) f(t+\tau) d \tau \in \mathcal{H}_{(-\infty, t]}(X)$.
(b) $P_{(-\infty, t]} \int_{t}^{\infty} f(s) d X(s)=\int_{-\infty}^{t}\left\{\int_{0}^{\infty} b(t-s, \tau) f(t+\tau) d \tau\right\} d X(s)$.

Proof. Since $f \in \mathcal{H}_{[t, \infty)}(X)$ iff $|f| \in \mathcal{H}_{[t, \infty)}(X)$, we may assume $f \geq 0$. Since

$$
\begin{equation*}
c(u)=0, \quad t \leq 0 \tag{3.7}
\end{equation*}
$$

it follows from (3.5) and the Fubini-Tonelli theorem that, for $s<t$,

$$
\begin{align*}
\int_{t}^{\infty} f(u) c(u-s) d u & =\int_{0}^{\infty} d \tau f(t+\tau) \int_{0}^{t-s} c(t-s-u) b(u, \tau) d u \\
& =\int_{-\infty}^{t} d u c(u-s) \int_{0}^{\infty} b(t-u, \tau) f(t+\tau) d \tau \tag{3.8}
\end{align*}
$$

Thus we obtain (a). By Proposition 3.6 and [AIK, Proposition 2.3 (2)], we have

$$
\begin{equation*}
M_{(-\infty, t]}(X)=M_{(-\infty, t]}(D W) \tag{3.9}
\end{equation*}
$$

This and Proposition 3.5 yield

$$
P_{(-\infty, t]} \int_{t}^{\infty} f(s) d X(s)=\int_{-\infty}^{t}\left\{\int_{t}^{\infty} f(u) c(u-s) d u\right\} d W(s)
$$

By (3.7), (3.8) and Proposition 3.5, the integral on the right-hand side is

$$
\begin{aligned}
& \int_{-\infty}^{t}\left\{\int_{-\infty}^{t} d u c(u-s) \int_{0}^{\infty} b(t-u, \tau) f(t+\tau) d \tau\right\} d W(s) \\
& =\int_{-\infty}^{t}\left\{\int_{0}^{\infty} b(t-s, \tau) f(t+\tau) d \tau\right\} d X(s)
\end{aligned}
$$

Thus (b) follows.

By putting $f(s)=I_{\left(t_{1}, T\right]}(s)$ in Theorem 3.7 (b), we immediately obtain the next infinite past prediction formula for $(X(t))$.
Theorem 3.8 Let $0 \leq t_{1}<T<\infty$. Then $\int_{0}^{T-t_{1}} b\left(t_{1}-\cdot, \tau\right) d \tau \in$ $\mathcal{H}_{\left(-\infty, t_{1}\right]}(X)$ and the infinite past prediction formula (1.11) holds.

Using the Hilbert space isomorphism $\theta: M(X) \rightarrow M(X)$ characterized by $\theta(X(t))=X(-t)$ for $t \in \mathbf{R}$, we obtain the next theorem from Theorem 3.7 (see the proof of [AIK, Theorem 3.6]).

Theorem 3.9 For $t \in[0, \infty)$ and $f \in \mathcal{H}_{[t, \infty)}(X)$, the following assertions hold:
(a) $\int_{0}^{\infty} b(t+\cdot, \tau) f(t+\tau) d \tau \in \mathcal{H}_{[-t, \infty)}(X)$.
(b) $P_{[-t, \infty)} \int_{-\infty}^{-t} f(-s) d X(s)=\int_{-t}^{\infty}\left\{\int_{0}^{\infty} b(t+s, \tau) f(t+\tau) d \tau\right\} d X(s)$.

As in [AIK, Definition 2.2], we define another Brownian motion $\left(W^{*}(t)\right.$: $t \in \mathbf{R})$ by

$$
\begin{equation*}
W^{*}(t):=\theta(W(-t)), \quad t \in \mathbf{R} . \tag{3.10}
\end{equation*}
$$

Proposition 3.10 Let I be a closed interval of \mathbf{R} and let $f \in \mathcal{H}_{I}(X)$. Then

$$
\int_{I} f(s) d X(s)=\int_{-\infty}^{\infty}\left\{\int_{I} f(u) c(s-u) d u\right\} d W^{*}(s)
$$

The proof of Proposition 3.10 is the same as that of [AIK, Proposition 3.5], whence we omit it. We need Theorem 3.9 and Proposition 3.10 in the next section.

Example 3.11 As in Example 2.3, we consider fBm $\left(B_{H}(t)\right)$ with $1 / 2<$ $H<1$. Then the MA (∞) coefficient $c(t)$ is given by

$$
\begin{equation*}
c(t)=t^{H-(3 / 2)} \frac{1}{\Gamma\left(H-\frac{1}{2}\right)}, \quad t>0 \tag{3.11}
\end{equation*}
$$

so that $\int_{0}^{\infty} e^{i z t} c(t) d t=(-i z)^{(1 / 2)-H}$ for $\Im z>0$. From (3.2), we have

$$
\int_{0}^{\infty} e^{i z t} \alpha(t) d t=(-i z)^{H-(3 / 2)}
$$

Hence, $\alpha(t)=t^{(1 / 2)-H} / \Gamma\left(\frac{3}{2}-H\right)$, so that the $\operatorname{AR}(\infty)$ coefficient $a(t)$ is given by

$$
\begin{equation*}
a(t)=t^{-(H+(1 / 2))} \frac{H-\frac{1}{2}}{\Gamma\left(\frac{3}{2}-H\right)}, \quad t>0 \tag{3.12}
\end{equation*}
$$

By the change of variable $u=s v, \int_{0}^{s}(s-u)^{H-(3 / 2)}(t+u)^{-H-(1 / 2)} d u$ becomes

$$
\begin{aligned}
& s^{H-(1 / 2)} t^{-H-(1 / 2)} \int_{0}^{1}(1-v)^{H-(3 / 2)}\{1+(s / t) v\}^{-H-(1 / 2)} d v \\
& \quad=\frac{1}{\left(H-\frac{1}{2}\right)}\left(\frac{s}{t}\right)^{H-(1 / 2)} \frac{1}{t+s},
\end{aligned}
$$

where we have used the equality

$$
\int_{0}^{1}(1-v)^{p-1}(1+x v)^{-p-1} d v=\frac{1}{p(x+1)}, \quad p>0, x>-1 .
$$

Thus

$$
\begin{equation*}
b(t, s)=\frac{\sin \left\{\pi\left(H-\frac{1}{2}\right)\right\}}{\pi}\left(\frac{s}{t}\right)^{H-(1 / 2)} \frac{1}{t+s}, \quad t>0, s>0 \tag{3.13}
\end{equation*}
$$

and so, from Theorem 3.8, we see that, for $0 \leq t<T$,

$$
\begin{aligned}
& E\left[B_{H}(T) \mid \sigma\left(B_{H}(s):-\infty<s \leq t\right)\right] \\
& =B_{H}(t)+\frac{\sin \left\{\pi\left(H-\frac{1}{2}\right)\right\}}{\pi} \int_{-\infty}^{t}\left\{\int_{0}^{T-t}\left(\frac{\tau}{t-s}\right)^{H-(1 / 2)} \frac{1}{t-s+\tau} d \tau\right\} d B_{H}(s) .
\end{aligned}
$$

This prediction formula was obtained in [GN, Theorem 3.1] by a different method.

4. Finite past prediction problems

In this section, we assume (1.1)-(1.7) and (1.10). Notice that (1.6) with (1.7) implies (3.1) as well as (2.3), whence (2.1). For t_{0}, t_{1}, and T in (1.10), we put

$$
t_{2}:=t_{0}+t_{1}, \quad t_{3}:=T-t_{1}
$$

4.1. Alternating projections to the past and future

For $n \in \mathbf{N}$, we define the orthogonal projection operator P_{n} by

$$
P_{n}:= \begin{cases}P_{\left(-\infty, t_{1}\right]}, & n=1,3,5, \ldots \\ P_{\left[-t_{0}, \infty\right)}, & n=2,4,6, \ldots\end{cases}
$$

It should be noted that $\left\{P_{n}\right\}_{n=1}^{\infty}$ is merely an alternating sequence of projection operators, first to $M_{\left(-\infty, t_{1}\right]}(X)$, then to $M_{\left[-t_{0}, \infty\right)}(X)$, and so on. This sequence plays a key role in the proof of the finite past prediction formula for $(X(t))$.

For $t, s \in(0, \infty)$ and $n \in \mathbf{N}$, we define $b_{n}(t, s)=b_{n}\left(t, s ; t_{2}\right)$ iteratively by

$$
\left\{\begin{array}{l}
b_{1}(t, s):=b(t, s), \tag{4.1}\\
b_{n}(t, s):=\int_{0}^{\infty} b(t, u) b_{n-1}\left(t_{2}+u, s\right) d u, \quad n=2,3, \ldots
\end{array}\right.
$$

Proposition 4.1 For $f \in \mathcal{H}_{\left[t_{1}, \infty\right)}(X)$, the following assertions hold:
(a) $\int_{0}^{\infty} b_{n}\left(t_{1}-\cdot, \tau\right) f\left(t_{1}+\tau\right) d \tau \in \mathcal{H}_{\left(-\infty, t_{1}\right]}(X)$ for $n=1,3,5, \ldots$.
(b) $\int_{0}^{\infty} b_{n}\left(t_{0}+\cdot, \tau\right) f\left(t_{1}+\tau\right) d \tau \in \mathcal{H}_{\left[-t_{0}, \infty\right)}(X)$ for $n=2,4,6, \ldots$

Proof. We may assume that $f \geq 0$. By Theorem 3.7, (a) holds for $n=1$. By the Fubini-Tonelli theorem, we have, for $s>-t_{0}$,

$$
\begin{aligned}
& \int_{0}^{\infty} d u b\left(t_{0}+s, u\right) \int_{0}^{\infty} b_{1}\left(t_{2}+u, \tau\right) f\left(t_{1}+\tau\right) d \tau \\
& \quad=\int_{0}^{\infty} b_{2}\left(t_{0}+s, \tau\right) f\left(t_{1}+\tau\right) d \tau
\end{aligned}
$$

Hence, by Theorem 3.9, we have (b) for $n=2$. Repeating this procedure, we obtain the proposition.

Let $f \in \mathcal{H}_{\left[t_{1}, \infty\right)}(X)$. By Proposition 4.1, we may define the random variables $G_{n}(f)$ by

$$
G_{n}(f):=\left\{\begin{array} { l l }
{ \int _ { - t _ { 0 } } ^ { t _ { 1 } } \{ \int _ { 0 } ^ { \infty } b _ { n } (t _ { 1 } - s , \tau) f (t _ { 1 } + \tau) d \tau \} d X (s) , } & { n = 1 , 3 , \ldots }
\end{array} \left\{\begin{array}{ll}
\int_{-t_{0}}^{t_{1}}\left\{\int_{0}^{\infty} b_{n}\left(t_{0}+s, \tau\right) f\left(t_{1}+\tau\right) d \tau\right\} d X(s), & n=2,4, \ldots
\end{array}\right.\right.
$$

We may also define the random variables $\epsilon_{n}(f)$ by $\epsilon_{0}(f):=\int_{t_{1}}^{\infty} f(s) d X(s)$ and

$$
\epsilon_{n}(f):= \begin{cases}\int_{-\infty}^{-t_{0}}\left\{\int_{0}^{\infty} b_{n}\left(t_{1}-s, \tau\right) f\left(t_{1}+\tau\right) d \tau\right\} d X(s), & n=1,3, \ldots \\ \int_{t_{1}}^{\infty}\left\{\int_{0}^{\infty} b_{n}\left(t_{0}+s, \tau\right) f\left(t_{1}+\tau\right) d \tau\right\} d X(s), & n=2,4, \ldots\end{cases}
$$

Proposition 4.2 Let $f \in \mathcal{H}_{\left[t_{1}, \infty\right)}(X)$ and $n \in \mathbf{N}$. Then

$$
\begin{equation*}
P_{n} P_{n-1} \cdots P_{1} \int_{t_{1}}^{\infty} f(s) d X(s)=\epsilon_{n}(f)+\sum_{k=1}^{n} G_{k}(f) \tag{4.2}
\end{equation*}
$$

We can prove (4.2) using Proposition 4.1 and the facts

$$
\begin{gather*}
M_{\left[-t_{0}, t_{1}\right]}(X) \subset M_{\left(-\infty, t_{1}\right]}(X) \cap M_{\left[-t_{0}, \infty\right)}(X), \tag{4.3}\\
G_{k} \in M_{\left[-t_{0}, t_{1}\right]}(X), \quad k=1,2, \ldots \tag{4.4}
\end{gather*}
$$

Since the proof is similar to that of [AIK, Proposition 4.4], we omit the details.

We are about to investigate the limit of (4.2) as $n \rightarrow \infty$ (see Lemma 4.9 below).

For $f \in \mathcal{H}_{\left[t_{1}, \infty\right)}(X)$ and $s>0$, we define $D_{n}(s, f)=D_{n}\left(s, f ; t_{1}, t_{2}\right)$ by

$$
D_{n}(s, f):= \begin{cases}\int_{0}^{\infty} c(u) f\left(t_{1}+s+u\right) d u, & n=0 \\ \int_{0}^{\infty} d u c(u) \int_{0}^{\infty} b_{n}\left(t_{2}+u+s, \tau\right) f\left(t_{1}+\tau\right) d \tau, & n=1,2, \ldots\end{cases}
$$

From the proof of the next proposition, we see that these integrals converge absolutely. Recall $\left(W^{*}(t)\right)$ from (3.10).

Proposition 4.3 Let $f \in \mathcal{H}_{\left[t_{1}, \infty\right)}(X)$. Then

$$
P_{n+1}^{\perp} \epsilon_{n}(f)= \begin{cases}\int_{t_{1}}^{\infty} D_{n}\left(s-t_{1}, f\right) d W(s), & n=0,2,4, \ldots \\ \int_{-\infty}^{-t_{0}} D_{n}\left(-t_{0}-s, f\right) d W^{*}(s), & n=1,3,5, \ldots\end{cases}
$$

Proof. By (3.9) and Proposition 3.5,

$$
P_{1}^{\perp} \epsilon_{0}(f)=\int_{t_{1}}^{\infty}\left\{\int_{s}^{\infty} f(u) c(u-s) d u\right\} d W(s)=\int_{t_{1}}^{\infty} D_{0}\left(s-t_{1}, f\right) d W(s)
$$

Thus the assertion holds for $n=0$. Let $n=1,3, \ldots$. Then, by Proposition 3.10,

$$
\epsilon_{n}(f)=\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{-t_{0}} d u c(s-u) \int_{0}^{\infty} b_{n}\left(t_{1}-u, \tau\right) f\left(t_{1}+\tau\right) d \tau\right\} d W^{*}(s)
$$

Hence, using [AIK, Proposition 2.3 (7)] and (3.7),

$$
\begin{aligned}
& P_{n+1}^{\perp} \epsilon_{n}(f) \\
& \quad=\int_{-\infty}^{-t_{0}}\left\{\int_{-\infty}^{s} d u c(s-u) \int_{0}^{\infty} b_{n}\left(t_{1}-u, \tau\right) f\left(t_{1}+\tau\right) d \tau\right\} d W^{*}(s) \\
& \quad=\int_{-\infty}^{-t_{0}}\left\{\int_{0}^{\infty} d u c(u) \int_{0}^{\infty} b_{n}\left(t_{2}+u-t_{0}-s, \tau\right) f\left(t_{1}+\tau\right) d \tau\right\} d W^{*}(s) \\
& \quad=\int_{-\infty}^{-t_{0}} D_{n}\left(-t_{0}-s, f\right) d W^{*}(s) .
\end{aligned}
$$

Thus we obtain the assertion for $n=1,3, \ldots$ The proof for $n=2,4, \ldots$ is similar; and so we omit it.

From Propositions 4.2 and 4.3, we immediately obtain the next proposition (cf. the proof of [AIK, Proposition 4.9]).

Proposition 4.4 Let $f \in \mathcal{H}_{\left[t_{1}, \infty\right)}(X)$. Then the following assertions hold:
(a) $\left\|P_{1}^{\perp} \int_{t_{1}}^{\infty} f(s) d X(s)\right\|^{2}=\int_{0}^{\infty} D_{0}(s, f)^{2} d s$.
(b) $\left\|P_{n+1}^{\perp} P_{n} P_{n-1} \cdots P_{1} \int_{t_{1}}^{\infty} f(s) d Y(s)\right\|^{2}=\int_{0}^{\infty} D_{n}(s, f)^{2} d s$ for $n=$ $1,2, \ldots$

We write Q for the orthogonal projection operator from $M(X)$ onto the intersection $M_{\left(-\infty, t_{1}\right]}(X) \cap M_{\left[-t_{0}, \infty\right)}(X)$. Then, by von Neumann's alternating projection theorem (see, e.g., [P, Theorem 9.20]), we have $Q=\mathrm{s}^{-\lim _{n \rightarrow \infty}} P_{n} P_{n-1} \cdots P_{1}$. Using this, (4.3) and Proposition 4.4, we immediately obtain the next proposition (cf. the proof of [AIK, Proposition 4.9 (3)]).

Proposition 4.5 Let $f \in \mathcal{H}_{\left[t_{1}, \infty\right)}(X)$. Then $\lim _{n \rightarrow \infty} \int_{0}^{\infty} D_{n}(s, f)^{2} d s=0$.
We need the next proposition.
Proposition 4.6 Let $f \in \mathcal{H}_{\left[t_{1}, \infty\right)}(X)$. Then, for $t>0$ and $n=0,1, \ldots$, we have

$$
\int_{0}^{\infty} b_{n+1}(t, \tau) f\left(t_{1}+\tau\right) d \tau=\int_{0}^{\infty} a(t+u) D_{n}(u, f) d u
$$

Proof. We may assume $f \geq 0$. By the Fubini-Tonelli theorem, we have, for $t>0$,

$$
\begin{aligned}
\int_{0}^{\infty} b_{1}(t, \tau) f\left(t_{1}+\tau\right) d \tau & =\int_{0}^{\infty}\left\{\int_{0}^{\tau} c(\tau-u) a(t+u) d u\right\} f\left(t_{1}+\tau\right) d \tau \\
& =\int_{0}^{\infty} a(t+u)\left\{\int_{0}^{\infty} c(\tau) f\left(t_{1}+u+\tau\right) d \tau\right\} d u \\
& =\int_{0}^{\infty} a(t+u) D_{0}(u, f) d u
\end{aligned}
$$

Thus the assertion holds for $n=0$. Now we assume that $n \geq 1$. Since we have

$$
b_{n+1}(t, \tau)=\int_{0}^{\infty} a(t+v)\left\{\int_{0}^{\infty} c(u) b_{n}\left(t_{2}+u+v, \tau\right) d u\right\} d v, \quad t, \tau>0
$$

we obtain the assertion, again using the Fubini-Tonelli theorem.
For $t, s>0$, we define $k(t, s)=k\left(t, s ; t_{2}\right)$ by

$$
k(t, s):=\int_{0}^{\infty} c(t+u) a\left(t_{2}+u+s\right) d u
$$

Notice that $k(t, s)<\infty$ for $t, s>0$ since $k(t, s) \leq c(t) \int_{t_{2}+s}^{\infty} a(u) d u$.
Proposition 4.7 Let $f \in \mathcal{H}_{\left[t_{1}, \infty\right)}(X)$. Then
$P_{n+1} \epsilon_{n}(f)=\left\{\begin{array}{l}\int_{-\infty}^{t_{1}}\left\{\int_{0}^{\infty} k\left(t_{1}-s, u\right) D_{n-1}(u, f) d u\right\} d W(s), \quad n=2,4, \ldots, \\ \int_{-t_{0}}^{\infty}\left\{\int_{0}^{\infty} k\left(t_{0}+s, u\right) D_{n-1}(u, f) d u\right\} d W^{*}(s), \quad n=1,3, \ldots .\end{array}\right.$
Proof. We assume $n=2,4, \ldots$ Then, by Propositions 3.5 and 4.6, we have

$$
\begin{aligned}
& P_{n+1} \epsilon_{n}(f) \\
& \quad=\int_{-\infty}^{t_{1}}\left\{\int_{t_{1}}^{\infty} d u c(u-s) \int_{0}^{\infty} b_{n}\left(t_{0}+u, \tau\right) f\left(t_{1}+\tau\right) d \tau\right\} d W(s) \\
& \quad=\int_{-\infty}^{t_{1}}\left\{\int_{0}^{\infty} d v c\left(t_{1}-s+v\right) \int_{0}^{\infty} a\left(t_{2}+v+u\right) D_{n-1}(u, f) d u v\right\} d W(s) \\
& \quad=\int_{-\infty}^{t_{1}}\left\{\int_{0}^{\infty} k\left(t_{1}-s, u\right) D_{n-1}(u, f) d u\right\} d W(s) .
\end{aligned}
$$

The proof of the case $n=1,3, \ldots$ is similar.
We need the next L^{2}-boundedness theorem.
Theorem 4.8 Let $p \in(0,1 / 2)$ and let $\ell(\cdot)$ be a slowly varying function at infinity. Let $C(\cdot)$ and $A(\cdot)$ be nonnegative and decreasing functions on $(0, \infty)$. We assume $C(\cdot) \in L_{\mathrm{loc}}^{1}[0, \infty)$ and $A(0+)<\infty$. We also assume

$$
\begin{array}{ll}
A(t) \sim t^{-(1+p)} \ell(t) p, & t \rightarrow \infty, \\
C(t) \sim \frac{t^{-(1-p)}}{\ell(t)} \cdot \frac{\sin (p \pi)}{\pi}, & t \rightarrow \infty,
\end{array}
$$

and put $K(x, y):=\int_{0}^{\infty} C(x+u) A(u+y) d u$ for $x, y>0$. Then

$$
\sup _{x>0} \int_{0}^{\infty} K(x, y)(x / y)^{1 / 2} d y<\infty, \quad \sup _{y>0} \int_{0}^{\infty} K(x, y)(y / x)^{1 / 2} d x<\infty
$$

In particular, the integral operator K defined by $(K f)(x) \quad:=$ $\int_{0}^{\infty} K(x, y) f(y) d y$ for $x>0$ is a bounded operator on $L^{2}((0, \infty), d y)$.

We omit the proof of Theorem 4.8 which is similar to that of [IA, Theorem 5.1].

By putting $z=i y$ in (3.2), we get

$$
y\left\{\int_{0}^{\infty} e^{-y t} c(t) d t\right\}\left\{\int_{0}^{\infty} e^{-y t} \alpha(t) d t\right\}=1, \quad y>0
$$

By Karamata's Tauberian theorem (cf. [BGT, Theorem 1.7.6]) applied to this, (2.3) implies $\alpha(t) \sim t^{-\left(H-\frac{1}{2}\right)} /\{\ell(t) \Gamma((3 / 2)-H)\}$ as $t \rightarrow \infty$. This and the monotone density theorem give

$$
\begin{equation*}
a(t) \sim \frac{t^{-(H+1 / 2)}}{\ell(t)} \cdot \frac{\left(H-\frac{1}{2}\right)}{\Gamma\left(\frac{3}{2}-H\right)}, \quad t \rightarrow \infty \tag{4.5}
\end{equation*}
$$

The next lemma is a key to our arguments.
Lemma 4.9 Let $f \in \mathcal{H}_{\left[t_{1}, \infty\right)}(X)$. Then $\left\|\epsilon_{n}(f)\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Proof. It follows from (2.3), (4.5) and Theorem 4.8 below that the integral operator K defined by $K f(t):=\int_{0}^{\infty} k(t, s) f(s) d s$ is a bounded operator on $L^{2}((0, \infty), d s)$. Hence, by Propositions 4.3, 4.5 and 4.7 , we have

$$
\begin{aligned}
\left\|\epsilon_{n}(f)\right\|^{2} & =\int_{0}^{\infty} D_{n}(s, f)^{2} d s+\int_{0}^{\infty}\left\{\int_{0}^{\infty} k(s, u) D_{n-1}(u, f) d u\right\}^{2} d s \\
& \leq \int_{0}^{\infty} D_{n}(s, f)^{2} d s+\|K\|^{2} \int_{0}^{\infty} D_{n-1}(s, f)^{2} d s \rightarrow 0, \quad n \rightarrow \infty
\end{aligned}
$$

Thus the lemma follows.
We can now state the conclusions of the arguments above.
Theorem 4.10 The following assertions hold:
(a) $M_{\left[-t_{0}, t_{1}\right]}(X)=M_{\left(-\infty, t_{1}\right]}(X) \cap M_{\left[-t_{0}, \infty\right)}(X)$.
(b) $P_{\left[-t_{0}, t_{1}\right]}=\mathrm{s}-\lim _{n \rightarrow \infty} P_{n} P_{n-1} \cdots P_{1}$.
(c) $\left\|P_{\left[-t_{0}, t_{1}\right]}^{\perp} Z\right\|^{2}=\left\|P_{1}^{\perp} Z\right\|^{2}+\sum_{n=1}^{\infty}\left\|\left(P_{n+1}\right)^{\perp} P_{n} \cdots P_{1} Z\right\|^{2}$ for $Z \in M(X)$.

We can prove Theorem 4.10 using Proposition 4.2 and Lemma 4.9. Since the proof is similar to that of [AIK, Theorem 4.6], we omit the details.

4.2. Finite past prediction formulas

We define $h(s, u)=h\left(s, u ; t_{2}\right)$ by

$$
\begin{equation*}
h(s, u):=\sum_{k=1}^{\infty}\left\{b_{2 k-1}\left(t_{2}-s, u\right)+b_{2 k}(s, u)\right\}, \quad 0<s<t_{2}, u>0 \tag{4.6}
\end{equation*}
$$

Here is the finite past prediction formula for $\int_{t_{1}}^{\infty} f(s) d X(s)$.
Theorem 4.11 Let $f \in \mathcal{H}_{\left[t_{1}, \infty\right)}(X)$. Then the following assertions hold:
(a) $\int_{0}^{\infty} h\left(t_{0}+\cdot, u\right) f\left(t_{1}+u\right) d u \in \mathcal{H}_{\left[-t_{0}, t_{1}\right]}(X)$.
(b) $P_{\left[-t_{0}, t_{1}\right]} \int_{t_{1}}^{\infty} f(s) d X(s)=\int_{-t_{0}}^{t_{1}}\left\{\int_{0}^{\infty} h\left(t_{0}+s, u\right) f\left(t_{1}+u\right) d u\right\} d X(s)$.
(c) $\left\|P_{\left[-t_{0}, t_{1}\right]}^{\perp} \int_{t_{1}}^{\infty} f(s) d X(s)\right\|^{2}=\sum_{n=0}^{\infty} \int_{0}^{\infty} D_{n}(s, f)^{2} d s$.

Proof. We may assume that $f \geq 0$. By Theorem 4.10 (b), Proposition 4.2 and Lemma 4.9, we have, in $M(X)$,

$$
\begin{aligned}
P_{\left[-t_{0}, t_{1}\right]} \int_{t_{1}}^{\infty} f(s) d X(s) & =\lim _{n \rightarrow \infty} P_{n} P_{n-1} \cdots P_{1} \int_{t_{1}}^{\infty} f(s) d X(s) \\
& =\lim _{n \rightarrow \infty} \int_{-t_{0}}^{t_{1}}\left\{\int_{0}^{\infty} h_{n}\left(t_{0}+u, v\right) f\left(t_{1}+v\right) d v\right\} d X(s)
\end{aligned}
$$

where, for $0<s<t_{2}$ and $u>0$, we define $h_{n}(s, u)=h_{n}\left(s, u ; t_{2}\right)$ by

$$
h_{n}(s, u)= \begin{cases}b_{1}\left(t_{2}-s, u\right)+b_{2}(s, u)+\cdots+b_{n}\left(t_{2}-s, u\right), & n=1,3,5, \ldots \\ b_{1}\left(t_{2}-s, u\right)+b_{2}(s, u)+\cdots+b_{n}(s, u), & n=2,4,6, \ldots\end{cases}
$$

Since $h_{n}(s, u) \uparrow h(s, u)$, we obtain (a) and (b) using the monotone convergence theorem. Finally, (c) follows from Theorem 4.10 (c) and Proposition 4.4.

For $s, u>0$, we define $D_{n}(s)=D_{n}\left(s ; t_{2}, t_{3}\right)$ by

$$
D_{n}(s):=\int_{0}^{\infty} d u c(u) \int_{0}^{t_{3}} b_{n}\left(t_{2}+u+s, \tau\right) d \tau, \quad n=1,2, \ldots
$$

Here are the solutions to the finite past prediction problems for $(X(t))$.
Theorem 4.12 The finite past prediction formula (1.12) and the following equality for the mean-square prediction error hold:

$$
\left\|P_{\left[-t_{0}, t_{1}\right]}^{\perp} X(T)\right\|^{2}=\int_{0}^{T-t_{1}} g(s)^{2} d s+\sum_{n=1}^{\infty} \int_{0}^{\infty} D_{n}(s)^{2} d s
$$

Proof. We put $f(s)=I_{\left(t_{1}, T\right]}(s)$. Then $\int_{t_{1}}^{\infty} f(s) d X(s)=X(T)-X\left(t_{1}\right)$ and

$$
\int_{0}^{\infty} h\left(t_{0}+s, u\right) f\left(t_{1}+u\right) d u=\int_{0}^{t_{3}} h\left(t_{0}+s, u\right) d u, \quad-t_{0}<s<t_{1}
$$

We also have $D_{n}(s, f)=D_{n}(s)$ for $n=1,2, \ldots$ and $D_{0}(s, f)=g\left(t_{3}-s\right)$. Thus the theorem follows from Theorem 4.11.

5. AR(∞)-type equations

In this section, we consider the $\operatorname{AR}(\infty)$-type equations for $(X(t))$ in (1.1) and $(\tilde{X}(t))$ in (1.13). For a Borel measure τ on $(0, \infty)$ satisfying $\int_{0}^{\infty}(1+s)^{-1} \tau(d s)<\infty$, we write

$$
F_{\tau}(z):=\int_{0}^{\infty} \frac{1}{\lambda-i z} \tau(d \lambda), \quad \Im z \geq 0
$$

First, we consider the process $X=(X(t))$ in (1.1) with (1.2)-(1.5), (2.1) and (3.1). Let $f_{t}(s):=g(t-s)-g(-s)=\int_{-s}^{t-s} c(u) d u$ for $t, s \in \mathbf{R}$.
Lemma 5.1 Let $t \in \mathbf{R}$. Then the Fourier transform of $f_{t}(\cdot)$ in the L^{2} sense is equal to $(i \xi)^{-1}\left(1-e^{-i t \xi}\right) F_{\nu}(\xi)$:

$$
\begin{equation*}
\frac{\left(1-e^{-i t \xi}\right)}{i \xi} F_{\nu}(\xi)=\underset{M \rightarrow \infty}{\operatorname{li.m.}} \int_{-M}^{M} e^{-i s \xi} f_{t}(s) d s \tag{5.1}
\end{equation*}
$$

Proof. Since $\int_{-\infty}^{\infty}\left|f_{t}(s)\right|^{2} d s<\infty$, the limit on the right-hand side of (5.1) exists. Therefore, it is enough to justify the following point-wise convergence:

$$
\begin{equation*}
\frac{\left(1-e^{-i t \xi}\right)}{i \xi} F_{\nu}(\xi)=\lim _{M \rightarrow \infty} \int_{-M}^{M} e^{-i s \xi} f_{t}(s) d s, \quad \xi \neq 0 \tag{5.2}
\end{equation*}
$$

Now, if $-M \leq t \leq M$, then

$$
\begin{aligned}
& \int_{-M}^{M} e^{-i s \xi} f_{t}(s) d s \\
& \quad=\int_{-M}^{M} d s e^{-i s \xi} \int_{0}^{t} c(u-s) d u=\int_{0}^{t} d u \int_{-M}^{M} e^{-i s \xi} c(u-s) d s \\
& \quad=\int_{0}^{t} d u e^{-i u \xi} \int_{u-M}^{u+M} e^{i v \xi} c(v) d v=\int_{0}^{t} d u e^{-i u \xi} \int_{0}^{u+M} e^{i v \xi} c(v) d v
\end{aligned}
$$

because $u-M \leq 0 \leq u+M$ for u between 0 and t, and $c(s)=0$ for $s \leq 0$. However,

$$
\begin{aligned}
& \int_{0}^{t} d u e^{-i u \xi} \int_{0}^{u+M} e^{i s \xi} c(s) d s \\
& \quad=\int_{0}^{t} d u e^{-i u \xi} \int_{0}^{\infty} \frac{1-e^{(i \xi-\lambda)(u+M)}}{\lambda-i \xi} \nu(d \lambda) \\
& \quad=\frac{\left(1-e^{-i t \xi}\right)}{i \xi} F_{\nu}(\xi)-e^{i \xi M} \int_{0}^{t} d u \int_{0}^{\infty} \frac{e^{-\lambda(u+M)}}{\lambda-i \xi} \nu(d \lambda)
\end{aligned}
$$

so that, for $\xi \neq 0$,

$$
\left|\frac{\left(1-e^{-i t \xi}\right)}{i \xi} F_{\nu}(\xi)-\int_{-M}^{M} e^{-i s \xi} f_{t}(s) d s\right| \leq t \int_{0}^{\infty} \frac{e^{-\lambda M}}{|\lambda-i \xi|} \nu(d \lambda) \downarrow 0, \quad M \rightarrow \infty
$$

Thus, (5.2) holds.
For the Brownian motion $W=(W(t))$ in (1.1), let $D W(\phi)=\int_{-\infty}^{\infty} \hat{\phi}(\xi)$ $Z_{D W}(d \xi)$ with $\phi \in \mathcal{D}(\mathbf{R})$ be the spectral decomposition of $D W$ as a stationary random distribution, where $\hat{\phi}(\xi):=\int_{-\infty}^{\infty} e^{-i t \xi} \phi(\xi) d \xi$ and $Z_{D W}$ is the associated complex-valued random measure such that $E\left[Z_{D W}(A) \overline{Z_{D W}(B)}\right]=$ $(2 \pi)^{-1} \int_{A \cap B} d \xi$ (see Itô [It]). By Lemma 5.1 and the Parseval-type formula for the homogeneous random measure $Z_{D W}$, we obtain $X(t)=$ $\int_{-\infty}^{\infty}\left[\left(1-e^{-i t \xi}\right) /(i \xi)\right] F_{\nu}(\xi) Z_{D W}(d \xi)$, whence

$$
\begin{equation*}
D X(\phi)=\int_{-\infty}^{\infty} \hat{\phi}(\xi) F_{\nu}(\xi) Z_{D W}(d \xi), \quad \phi \in \mathcal{D}(\mathbf{R}) \tag{5.3}
\end{equation*}
$$

Let $\rho_{D X}$ be the spectral measure of $D X: E[X(\phi) \overline{X(\psi)}]=\int_{-\infty}^{\infty} \hat{\phi}(\xi) \overline{\hat{\psi}}(\xi)$ $\rho_{D X}(d \xi)$. Then, from (5.3), we see that $\rho_{D X}(d \xi)=(2 \pi)^{-1}\left|F_{\nu}(\xi)\right|^{2} d \xi$. Thus, $D X$ has the spectral density $\Delta_{D X}(\xi):=(2 \pi)^{-1}\left|F_{\nu}(\xi)\right|^{2}$. Since, for $z=x+i y$ with $y>0$, we have

$$
\Re\left\{F_{\nu}(z)\right\}=\int_{0}^{\infty} \frac{s+y}{(s+y)^{2}+x^{2}} \nu(d s)>0
$$

the function $F_{\nu}(z)$ is an outer function on the upper half plane $\Im z>0$:

$$
\begin{equation*}
F_{\nu}(z)=\exp \left\{\frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{1+\xi z}{\xi-z} \cdot \frac{\log \left|F_{\nu}(\xi)\right|}{1+\xi^{2}} d \xi\right\}, \quad \Im z>0 \tag{5.4}
\end{equation*}
$$

In particular, Proposition 3.6 follows from this and (5.3).
We also have the next lemma.
Lemma 5.2 The following equality holds:
$\int_{0}^{\infty} e^{i z t} c(t) d t=\sqrt{2 \pi} \exp \left\{\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{1+\xi z}{\xi-z} \cdot \frac{\log \left|\Delta_{D X}(\xi)\right|}{1+\xi^{2}} d \xi\right\}, \quad \Im z>0$.
Proof. Since $F_{\nu}(z)=\int_{0}^{\infty} e^{i z t} c(t) d t$ and $\left|F_{\nu}(\xi)\right|=\left\{2 \pi \Delta_{D X}(\xi)\right\}^{1 / 2}$, the lemma follows from (5.4).

From Lemma 5.2, we see that the kernel $c(\cdot)$ is uniquely determined by $D X$, whence $(X(t))$, as claimed in Section 3.2.

Let $D^{2} X:=D(D X)$. For the $\operatorname{AR}(\infty)$ kernel $\alpha(\cdot)$ in Section 3.1, we define the convolution $\alpha * D^{2} X$, which is also a stationary random distribution, by

$$
\begin{equation*}
\left(\alpha * D^{2} X\right)(\phi):=\underset{M \rightarrow \infty}{\operatorname{l.i.m.}} \int_{0}^{M} \alpha(u) D^{2} X\left(\tau_{u} \phi\right) d u, \quad \phi \in \mathcal{D}(\mathbf{R}) \tag{5.5}
\end{equation*}
$$

where $\tau_{u} \phi(t):=\phi(t+u)$ and the integral on the right-hand side is an $M(X)$ valued Bochner integral. Then, by [I2, Proposition 2.3] and (5.3), we have

$$
\left(\alpha * D^{2} X\right)(\phi)=-\int_{-\infty}^{\infty} i \xi F_{\mu}(\xi) F_{\nu}(\xi) \hat{\phi}(\xi) Z_{D W}(d \xi)
$$

However, since (3.2) implies $-i \xi F_{\mu}(\xi) F_{\nu}(\xi)=1$ for $\xi \neq 0$, we see that X satisfies

$$
\begin{equation*}
\alpha * D^{2} X=D W \tag{5.6}
\end{equation*}
$$

More precisely, we have the next theorem.
Theorem 5.3 The process $(X(t))$ is the only stationary-increment process with $X(0)=0$ satisfying the following two conditions:
(1) the stationary random distribution $D X$ is purely nondeterministic;
(2) $(X(t))$ satisfies (5.6).

The proof of Theorem 5.3 is similar to that of [AI2, Theorem 2.6], whence we omit it. Notice that (5.6) can be written formally as the following $\operatorname{AR}(\infty)$-type equation:

$$
\begin{equation*}
\int_{-\infty}^{t} \alpha(t-s) \frac{d^{2} X}{d s^{2}}(s) d s=\frac{d W}{d t}(t) \tag{5.7}
\end{equation*}
$$

Example 5.4 Let $\left(B_{H}(t)\right)$ be the fBm in (2.5) with $1 / 2<H<1$. Then, by Example 3.11, we have $\alpha(t)=t^{(1 / 2)-H} / \Gamma\left(\frac{3}{2}-H\right)$ for $t>0$, whence (5.7) becomes

$$
\frac{1}{\Gamma\left(\frac{3}{2}-H\right)} \int_{-\infty}^{t} \frac{1}{(t-s)^{H-(1 / 2)}} \cdot \frac{d^{2} B_{H}}{d s^{2}}(s) d s=\frac{d W}{d t}(t)
$$

Next, we turn to $\tilde{X}=(\tilde{X}(t))$ in (1.13) with (1.14). We assume that $\tilde{\nu}$ is a Borel measure on $(0, \infty)$ satisfying the following conditions:

$$
\int_{0}^{\infty} \frac{1}{1+s} \tilde{\nu}(d s)<\infty, \quad \tilde{\nu}((0, \infty))=\int_{0}^{\infty} \frac{1}{s} \tilde{\nu}(d s)=\infty, \quad \int_{0}^{1} \tilde{c}(t)^{2} d t<\infty
$$

By [IA, Theorem 3.2], there exists a unique Borel measure $\tilde{\mu}$ on $(0, \infty)$ satisfying

$$
\int_{0}^{\infty} \frac{1}{1+s} \tilde{\mu}(d s)<\infty, \quad \tilde{\mu}((0, \infty))=\int_{0}^{\infty} \frac{1}{s} \tilde{\mu}(d s)=\infty
$$

and $-i z F_{\tilde{\nu}}(z) F_{\tilde{\mu}}(z)=1$ for $\Im z>0$. If we define

$$
\tilde{\alpha}(t):=\int_{0}^{\infty} e^{-s t} \tilde{\mu}(d s), \quad t>0
$$

then the last equality becomes

$$
\begin{equation*}
-i z\left\{\int_{0}^{\infty} e^{i z t} \tilde{c}(t) d t\right\}\left\{\int_{0}^{\infty} e^{i z t} \tilde{\alpha}(t) d t\right\}=1, \quad \Im z>0 \tag{5.8}
\end{equation*}
$$

By [IA, (2.3)], we have

$$
\begin{equation*}
D \tilde{X}(\phi)=\int_{-\infty}^{\infty} \hat{\phi}(\xi)(-i \xi) F_{\tilde{\nu}}(\xi) Z_{D W}(d \xi), \quad \phi \in \mathcal{D}(\mathbf{R}) \tag{5.9}
\end{equation*}
$$

whence, in the same way as the proof of [I1, Proposition 5.1], we get

$$
(\tilde{\alpha} * D \tilde{X})(\phi)=-\int_{-\infty}^{\infty} i \xi F_{\tilde{\mu}}(\xi) F_{\tilde{\nu}}(\xi) \hat{\phi}(\xi) Z_{D W}(d \xi), \quad \phi \in \mathcal{D}(\mathbf{R})
$$

where the convolution $\tilde{\alpha} * D \tilde{X}$ is defined in the same way as (5.5). However, since $-i \xi F_{\tilde{\mu}}(\xi) F_{\tilde{\nu}}(\xi)=1$ for $\xi \neq 0$, we see that $(\tilde{X}(t))$ satisfies

$$
\begin{equation*}
\tilde{\alpha} * D \tilde{X}=D W \tag{5.10}
\end{equation*}
$$

Notice that the equation (5.10) can be written formally as the following $\operatorname{AR}(\infty)$-type equation:

$$
\begin{equation*}
\int_{-\infty}^{t} \tilde{\alpha}(t-s) \frac{d \tilde{X}}{d s}(s) d s=\frac{d W}{d t}(t) \tag{5.11}
\end{equation*}
$$

We can also prove an analogue of Theorem 5.3 for $(\tilde{X}(t))$, which we omit in this paper.

Example 5.5 Let $\left(B_{H}(t)\right)$ be the fBm in (2.5) with $0<H<1 / 2$. Then, by [IA, Example 3.9], we have $\tilde{\alpha}(t)=t^{-(1 / 2)-H} / \Gamma\left(\frac{1}{2}-H\right)$ for $t>0$, whence (5.11) becomes

$$
\frac{1}{\Gamma\left(\frac{1}{2}-H\right)} \int_{-\infty}^{t} \frac{1}{(t-s)^{H+(1 / 2)}} \cdot \frac{d B_{H}}{d s}(s) d s=\frac{d W}{d t}(t)
$$

Acknowledgements We would like to express our gratitude to an anonymous referee for useful suggestions.

References

[A] Adler R. J., The Geometry of random fields. John Wiley and Sons, New York, 1981.
[AI1] Anh V. V. and Inoue A., Prediction of fractional Brownian motion with Hurst index less than 1/2. Bull. Austral. Math. Soc. 70 (2004), 321-328.
[AI2] Anh V. V. and Inoue A., Financial markets with memory I: Dynamic models. Stochastic Anal. Appl. 23 (2005), 275-300.
[AIK] Anh V. V., Inoue A. and Kasahara Y., Financial markets with memory II: Innovation processes and expected utility maximization. Stochastic Anal. Appl. 23 (2005), 301-328.
[BGT] Bingham N. H., Goldie C. M. and Teugels J. L., Regular Variation. 2nd ed., Cambridge Univ. Press, Cambridge, 1989.
[DU] Decreusefond L. and Üstünel A. S., Stochastic analysis of the fractional Brownian motion. Potential Analysis 10 (1999), 177-214.
[DMP] Duncan T. E., Maslowski B. and Pasik-Duncan B., Fractional Brownian motion and stochastic equations in Hilbert spaces. Stoch. Dyn. 2 (2002), 225-250.
[GA] Grecksch W. and Anh V. V., A parabolic stochastic differential equation with fractional Brownian motion input. Statist. Probab. Letters 41 (1999), 337-345.
[GN] Gripenberg G. and Norros I., On the prediction of fractional Brownian motion. J. Appl. Probab. 33 (1996), 400-410.
[HOS] Hu Y., Øksendal B. and Sulem A., Optimal consumption and portfolio in a Black-Scholes market driven by fractional Brownian motion. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), 519-536.
[I1] Inoue A., On the equations of stationary processes with divergent diffusion coefficients. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40 (1993), 307-336.
[I2] Inoue A., Regularly varying correlation functions and KMO-Langevin equations. Hokkaido Math. J. 26 (1997), 1-26.
[IA] Inoue A. and Anh V. V., Prediction of fractional Brownian motion-type processes. Stoch. Anal. Appl. 25 (2007), 641-666.
[IN] Inoue A. and Nakano Y., Optimal long-term investment model with memory. Appl. Math. Optim. 55 (2007), 93-122.
[INA] Inoue A., Nakano Y. and Anh V. V., Linear filtering of systems with
memory and application to finance. J. Appl. Math. Stoch. Anal. 2006, Art. ID 53104, 26 pp .
[It] Itô K., Stationary random distributions. Mem. Coll. Sci. Univ. Kyoto 28 (1954), 209-223.
[K] Kolmogorov A., Wienersche spiralen und einige andere interessante Kurven in Hilbertschen Raum. C.R. (Dokl.) Acad. Sci. USSR (N.S.) 26 (1940), 422-437.
[MV] Mandelbrot B. and Van Ness J., Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968), 422-437.
[MRRS] Mikosch T., Resnick S., Rootzen H. and Stegeman A., Is network traffic approximated by stable Levy motion or fractional Brownian motion? Ann. Appl. Probab. 12 (2002), 23-68.
[NVV] Norros I., Valkeila E. and Virtamo J., An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5 (1999), 571-587.
[N] Nualart D., Stochastic integration with respect to fractional Brownian motion and applications. Stochastic models, Mexico City 2002, Contemp. Math., vol. 336, Amer. Math. Soc., Providence, RI, 2003, pp. 339.
[NP] Nuzman C. J. and Poor H. V., Linear estimation of self-similar processes via Lamperti's transformation. J. Appl. Probab. 37 (2000), 429452.
[P] Pourahmadi M., Foundations of Time Series Analysis and Prediction Theory. Wiley-Interscience, New York, 2001.
[ST] Samorodnitsky G. and Taqqu M. S., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York, 1994.
[T] Taqqu M., Fractional Brownian motion and long-range dependence. Theory and Applications of Long-Range Dependence, P. Doukhan and M. Taqqu (Eds.), Birkhäuser, Boston, 2003, pp. 5-38.
[TTV] Tindel S., Tudor C. A. and Viems F., Stochastic evolution equations with fractional Brownian motion. Probab. Theory Relat. Fields 127 (2003), 186-204.
[Y] Yaglom A. M., Correlation theory of processes with random stationary $n t h$ increments. Mat. Sb. N.S. 37 (1955), 141-196 (in Russian). English translation in Am. Math. Soc. Translations Ser. (2) 8 (1958), 87-141.

Akihiko Inoue
Department of Mathematics
Hiroshima University
Higashi-Hiroshima 739-8526, Japan
E-mail: inoue100@hiroshima-u.ac.jp

Vo V. Anh
School of Mathematical Sciences
Queensland University of Technology
GPO Box 2434, Brisbane, Queensland 4001
Australia
E-mail: v.anh@qut.edu.au

