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View from inside
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Abstract. In this paper, we define a perspective projection of a given immersed n-

dimensional hypersurface as a C∞ map via a C∞ immersion from the given n-manifold

to Sn+1, and characterize when and only when such a perspective projection is non-

singular.

In order to obtain such characterizations, we consider an immersion from an n-

dimensional manifold to Sn+1. We first obtain equivalent conditions for a given point

P of Sn+1 to be outside the union of tangent great hyperspheres of a given immersed

n-dimensional manifold r(N) in Sn+1 (Theorem 2.4). It turns out that if such a

point P exists then the given manifold N must be diffeomorphic to Sn and in the

case that n ≥ 2 the given immersion r : N → Sn+1 must be an embedding. Then, we

obtain characterizations of a perspective projection of a given immersed n-dimensional

manifold to be non-singular.

Next, we obtain one more equivalent condition in terms of hedgehogs when the given

N is Sn and the given immersion is an embedding (Theorem 3.3). We also explain

why we consider these equivalent conditions for an embedding r : Sn → Sn+1 instead

of an embedding er : Sn → Rn+1 in terms of hedgehogs.

Key words: perspective projection, perspective point, projective dual, dual hypersur-

face, hedgehog

1. Introduction

Both the following C1, C2 of Fig. 1 are simply closed plane curves with
four inflection points but without singular points. At a glance, shapes of
these two curves seem to have no differences. However, by drawing their
tangent lines, we notice that the union of tangent lines for C1 does not
cover the plane, while the union of tangent lines for C2 does cover the plane
(see Fig. 2). These imply that we see no silhouette of the object C1 by
viewing it from the point P in the left side of Fig. 2, while we always see
the silhouette of the object C2 by viewing it from any point in the right side
of Fig. 2. In other words, there exists a point P inside C1 such that the
perspective projection of C1 from P seems to give no information on the
shape of C1 but the perspective projection of C2 from any point inside it
gives some information on the shape of C2 as its silhouette. Hence, we can
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Figure 1. Both C1, C2 are simply closed curves with four
inflection points and without singular points.

Figure 2. Left: The union of tangent lines for C1 does not cover the plane.
Right: The union of tangent lines for C2 covers the plane.

say that “the view of C1 from inside” is different from “the view of C2 from
inside”.

In this paper we clarify the meaning of such a hidden difference by
investigating conditions for a given point P ∈ Rn+1 to be outside the union
of tangent hyperplanes of an embedded n-dimensional manifold in Rn+1.
As a by-product, we see that the diffeomorphic type of an embedded n-
manifold is determined by the existence of a point from where the perspective
projection seems to give no information on the shape of it; in other words, a
“view from inside”when it seems to be useless determines the diffeomorphic
type of the n-manifold. In order to obtain such conditions we first introduce
the notions of spherical perspective projections and projective duals and
obtain several such conditions in Section 2. In Section 3, the notion of
hedgehogs is introduced and several results concerning hedgehogs are stated
and proved.
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2. Spherical perspective projections and projective duals

Let Sn+1 be the (n+1)-dimensional unit sphere in Rn+2 (n ≥ 1). We let
N and r : N → Sn+1 be a compact connected n-dimensional C∞ manifold
and a C∞ immersion respectively. For a point P ∈ Sn+1, we put

EP = {X ∈ Sn+1 | P ·X = 0},

where the dot in the center means the standard scalar product of P, X ∈
Rn+2. The set EP may be regarded as the equator with respect to the
north pole P . For a point P ∈ Sn+1 we can define the map πP : Sn+1 −
{±P} → EP which maps X ∈ Sn+1 − {±P} to the unique point Y such
that Y ∈ EP ∩ (RP + RX) and X · Y > 0. Note that for a point P such
that P · r(x) 6= ±1 for any x ∈ N , which means that {±P} ⊂ Sn+1 − r(N),
the restriction πP |r(N) : r(N) → EP is well-defined. The map πP and the
restriction πP |r(N) are called the spherical perspective projection relative to
P and the spherical perspective projection of r(N) relative to P respectively.
The set of critical values of πP ◦ r is called the silhouette of r(N) relative
to πP . The silhouette is also called outline or image contour or apparent
contour (for instance, see [3], [4], [5], [15]).

Lemma 2.1 For a point P ∈ Sn+1 such that P · r(x) 6= ±1 for any
x ∈ N , the silhouette of r(N) relative to πP is the empty set if and only if
P 6∈ ∪x∈NGHr(x) holds, where GHr(x) = Sn+1 ∩ (Rr(x) + drx(TxN)).

Proof of Lemma 2.1. Since r is a C∞ immersion, a point x ∈ N is a sin-
gular point of πP ◦ r if and only if Sn+1 ∩ (RP + Rr(x)) ⊂ GHr(x). Thus,
Lemma 2.1 follows. ¤

Let Pn+1 be the (n + 1)-dimensional real projective space. For any 1
dimensional linear subspace ` ∈ Pn+1, we identify ` with the set ` ∩ Sn+1.

Lemma 2.2 The map [n] : N → Pn+1 given by

[n](x) =
⋂

Y ∈GHr(x)

EY ,

is well-defined under the above identification.

Proof of Lemma 2.2. For any Y ∈ drx(TxN) there exists a C∞ curve c :
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(−ε, ε) → N such that c(0) = x and Y = dr(c(t))
dt |t=0. By differentiating

r(c(t))·r(c(t)) = 1 with respect to t ∈ (−ε, ε), we see that r(x)·Y = 0. Since r
is a C∞ immersion, the vector space drx(TxN) is n-dimensional. Therefore,
the intersection in the right-hand side is the set of two antipodal points in
Sn+1, which can be identified with the 1-dimensional linear subspace passing
through these points. ¤

The map [n] is called the projective dual of r (for instance, see [2]). It
should be noted that the projective dual of r may be singular in general
though r is non-singular. Since the set

⋃

x∈N

( ⋂

Y ∈GHr(x)

EY

)

is equal to

{
X ∈ Sn+1 | ∃ x ∈ N such that X ·r(x) = 0, X ·Y = 0 ∀ Y ∈ drx(TxN)

}
,

under the above identification the image [n](N) may be identified with the
envelope of the family {Er(x) | x ∈ N} (for the definition of the envelope,
for instance see [3]).

For any x ∈ N define E[n](x) = EX (X ∈ [n](x)). By Lemma 2.2 E[n](x)

is well-defined and we have the following:

Lemma 2.3 For any x ∈ N the equality E[n](x) = GHr(x) holds.

If N is orientable, then the spherical dual n : N → Sn+1 of r is well-
defined by choosing one point from among the set of two antipodal points
[n](x) ⊂ Sn+1 for any x ∈ N compatible with the choice of orientation of N

(see [1, p. 3], [12], [13, Section 18]).
A C∞ map f : N → Sn+1 (resp. F : N → Pn+1) is said to be

hemispherical if there exists a point P ∈ Sn+1 such that EP ∩ f(N) = ∅
(resp. EP ∩F (N) = ∅) (here, F (N) is regarded as the union of 1-dimensional
linear subspaces of Rn+2 parametrized by N), and such a point is called a
hemispherical point for f (resp. F ).

Theorem 2.4 Let N be a compact connected n-dimensional C∞ manifold
and let r : N → Sn+1 be a C∞ immersion. For a point P ∈ Sn+1 the
following (a) and (b) are equivalent. Moreover, if n ≥ 2, then the following
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(c), too, is an equivalent condition.

(a) The silhouette of r(N) relative to πP is the empty set.
(b) The point P is a hemispherical point for the projective dual [n].
(c) The map πP ◦ r is a C∞ diffeomorphism.

Note first that the condition (c) implies that the given manifold N is C∞

diffeomorphic to Sn and that the given immersion r is an embedding. Note
second that any one of (a), (b), (c) implies that P · r(x) 6= ±1 for any
x ∈ N . Note third that as Fig. 3 shows the condition (c) is not a necessary
condition for the point P satisfying the condition (a), or equivalently the
condition (b) when n = 1. Note fourth that the equivalence of the condition
(c) implies that all higher dimensional spherical limaçons must be singular,
where a higher dimensional spherical limaçon is a C∞ map r : Sn → Sn+1

(n ≥ 2) which satisfy (a) or (b) but does not satisfy (c).

Figure 3. Spherical limaçon and its dual.

Proof of Theorem 2.4. Since P ∈ EQ holds if and only if Q ∈ EP holds
for any two points P, Q ∈ Sn+1, P ∈ E[n](x) holds if and only if [n](x) ⊂ EP

holds. Therefore, by virtue of Lemmas 2.1, 2.2 and 2.3, we have that (a) ⇔
(b).

Next, suppose that πP ◦ r is a C∞ diffeomorphism. Then, by the defi-
nition of silhouettes, (a) is satisfied. Therefore, in order to finish the proof
of Theorem 2.4 it is sufficient to show the following:

Lemma 2.51 Let N be a compact connected n-dimensional C∞ manifold

1As pointed out by one of referees, in the case that n = 2 and N is oriented, Lemma
2.5 can be obtained easily by Quine’s theorem [14].
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and r : N → Sn+1 be a C∞ immersion. Suppose that n ≥ 2 and P 6∈
∪x∈NE[n](x) holds. Then, πP ◦ r is a C∞ diffeomorphism.

Proof of Lemma 2.5. Let A ⊂ πP (r(N)) be the set of regular values of the
composition πP ◦ r and put B = EP − πP (r(N)). We have that A ∩B = ∅.
Since N is compact, we have that A and B are open. Note that πP ◦ r has
no silhouettes by Lemma 1.1. Thus, we have that A 6= ∅ and EP = A ∪ B.
Since EP is connected, we have that EP = A. Hence, πP ◦ r is surjective.
Let X be a point of EP . Since N is compact, as shown in [10, p. 8], the set
(πP ◦r)−1(X) is a finite set. Thus, we may put (πP ◦r)−1(X) = {x1, . . . , xk}
(k < ∞), where xi 6= xj if i 6= j. Suppose that k ≥ 2. Then, note that x1 6=
xk. Since N is connected there exists a continuous map f : [0, 1] → N such
that f(0) = x1 and f(1) = xk. Then, since πP ◦ r ◦ f(0) = πP ◦ r ◦ f(1) = X

and we have assumed that n ≥ 2, there exists a homotopy F : [0, 1]×[0, 1] →
EP between πP ◦r◦f and a constant map X : [0, 1] → EP (X(s) = X) such
that F (s, 0) = πP ◦ r ◦ f(s), F (s, 1) = X and F (0, t) = F (1, t) = X for any
t ∈ [0, 1]. Since we have shown that πP ◦ r is non-singular and surjective,
by the covering homotopy theorem (cf. [16]), there exist a continuous map
G : [0, 1]× [0, 1] → N such that G(s, 0) = f(s) and πP ◦ r ◦G(s, t) = F (s, t).
Since f(0) = x1, f(1) = xk, F (0, t) = F (1, t) = X and F (s, 1) = X, we have
that G(0, t) = x1 and G(1, t) = xk and the connected subset G([0, 1], 1) is
contained in (πP ◦r)−1(X). Hence and since the set (πP ◦r)−1(X) is a finite
set, the point G(0, 1) = x1 must be equal to G(1, 1) = xk, which contradicts
the assumption that x1 6= xk. Therefore we have that k = 1 and thus πP ◦ r
is injective under the assumption that n ≥ 2. Since we have proved that
πP ◦ r is bijective, by the inverse function theorem the map πP ◦ r must be
a C∞ diffeomorphism. ¤

Let r̃ : N → Rn+1 × {1} be a C∞ immersion. By composing an ap-
propriate parallel translation if necessary, we may assume that the image
r̃(N) does not contain the point P = (0, . . . , 0, 1) ∈ Rn+1 × {1}. Note that
{P} = Sn+1 ∩ (Rn+1 × {1}). Let Sn+1

P,+ be the upper hemisphere {X ∈
Sn+1 | P · X > 0}. Let αP : Sn+1

P,+ → Rn+1 × {1} be the map defined by
αP ((X1, . . . , Xn+2)) =

(
X1

Xn+2
, . . . , Xn+1

Xn+2
, 1

)
for any X = (X1, . . . , Xn+2) ∈

Sn+1
P,+ . The map αP is called the central projection. Then, by putting

r = α−1
P ◦ r̃ we obtain a C∞ immersion r : N → Sn+1 and thus we can

apply Theorem 2.4 to a C∞ immersion r : N → Sn+1. The restriction of
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Figure 4. Perspective projection of er(N) maps er(x) to πP ◦ α−1
P ◦ er(x).

the composition πP ◦ α−1
P |er(N) : r̃(N) → EP is called the perspective projec-

tion of r̃(N) from the perspective point P . Our definition of the perspective
projection is a higher dimensional generalization of the usual perspective
projection via an immersion r (for the usual perspective projection, for in-
stance see [4]). By Lemma 2.1 we see that the point x ∈ N is a singular
point of πP ◦ r if and only if the hyperplane {r̃(x) + X | X ∈ dr̃x(Tx(N))}
contains the point P . For any point Q̃ ∈ Rn+1 × {1} we put

Ẽ eQ,P =
{
X ∈ Rn+1 × {1} | Q̃ ·X = 0

}
.

Then, Ẽ eQ,P is a hyperplane of Rn+1 × {1} (resp. the empty set) if P 6= Q̃

(resp. P = Q̃). Furthermore, we see easily that for any Q ∈ Sn+1
P,+ the

equality αP (Sn+1
P,+ ∩EQ) = ẼαP (Q),P holds. The envelope of the hyperplane

family {Ẽer(x),P | x ∈ N} is called the dual hypersurface of r̃ relative to the
point P . Note that the dual hypersurface of r̃ relative to P is nothing but
the intersection [n](N) ∩ (Rn+1 × {1}), where [n] is the projective dual of
r = α−1

P ◦ r̃ and the set [n](N) is regarded as the union of 1-dimensional
linear subspaces of Rn+2 parametrized by N . As a corollary of Theorem 2.4
we obtain the following:

Theorem 2.6 Let N , r̃ : N → Rn+1×{1} and P be a compact connected
n-dimensional C∞ manifold, a C∞ immersion and the point (0, . . . , 0, 1) ∈
Rn+1 × {1} respectively. Then, the following (a) and (b) are equivalent.
Moreover, if n ≥ 2, then the following (c), too, is an equivalent condition.
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(a) The silhouette of α−1
P ◦ r̃(N) relative to πP is the empty set.

(b) The dual hypersurface of r̃ relative to P is compact.
(c) The map πP ◦ α−1

P ◦ r̃ is a C∞ diffeomorphism.

3. Hedgehogs

Definition 1 Let h : Sn → R be a C∞ function. For any θ ∈ Sn ⊂ Rn+1

we let the hyperplane {X ∈ Rn+1 × {1} | X · (θ, 0) = h(θ)} be denoted by
Πh,θ. The envelope constructed by the family {Πh,θ | θ ∈ Sn} is called the
hedgehog defined by the support function h and is denoted by Hh.

For details of hedgehogs, see for instance [8], [9]. As shown by the
subtitle of [8], a hedgehog is the envelope parametrized by its Gauss maps.
Thus, hedgehogs seem to have closely related with our research in Section
2. We clarify the relation in this section. Put P = (0, . . . , 0, 1) ∈ Sn+1 and
let the cylinder {(θ, ρ) | θ ∈ Sn, ρ ∈ R} be denoted by CP . Furthermore, let
βP : Sn+1 − {±P} → CP be the central cylindrical projection (see Fig. 5).

Figure 5. Central cylindrical projection βP .

Theorem 3.1 Any hedgehog Hh can be realized as the set αP ([n](Sn) ∩
Sn+1

P,+ ), where P = (0, . . . , 0, 1) ∈ Sn+1 and [n] is the projective dual of the
embedding r : Sn → Sn+1 defined by r(θ) = β−1

P (θ,−h(θ)).

Note that any hedgehog Hh must be compact by the construction of r
in Theorem 3.1.
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Proof of Theorem 3.1. Define the C∞ map r : Sn → Sn+1 as r(θ) =
β−1

P (θ,−h(θ)). From the construction of r, we see that the composition
πP ◦ r is a C∞ diffeomorphism. Thus, by Theorem 2.4 we see that P is a
hemispherical point for the projective dual of r. Since the projective dual
of r is the envelope of the family {Er(θ) | θ ∈ Sn}, in order to show that the
hedgehog Hh is equal to the set αP ([n](Sn) ∩ Sn+1

P,+ ), it is sufficient to show
that Πh,θ = αP (Er(θ) ∩ Sn+1

P,+ ) holds for any θ ∈ Sn.
Let ΨP : Sn+1 − {±P} → Sn+1 be the map given by

ΨP (X) =
1√

1− (P ·X)2
(P − (P ·X)X).

The map ΨP , which has been introduced in [11] for the study of spheri-
cal pedal curves (see also [7] where the hyperbolic version of ΨP has been
introduced and studied), has the following interesting properties:

1. X ·ΨP (X) = 0 for any X ∈ Sn+1 − {±P}.
2. ΨP (X) ∈ RP + RX for any X ∈ Sn+1 − {±P}.
3. P ·ΨP (X) > 0 for any X ∈ Sn+1 − {±P}.
By the above property 3, αP ◦ΨP ◦ r(θ) is well-defined for any θ ∈ Sn. By
the above properties 1 and 2, we have the following (see Fig. 6):

h(θ) = (αP ◦ΨP ◦ r(θ)) · (θ, 0) (∀θ ∈ Sn).

Then, by considering the geometric meaning of the central projection αP

and the above property 1, we see easily the following equivalence holds for
any θ ∈ Sn.

X ∈ Πh,θ ⇔ α−1
P (X) ∈ Er(θ). ¤

Theorem 3.2 Let r : S1 → S2 be a C∞ embedding such that all inflection
points of r are ordinary inflection points and r has at least one inflection
point. Suppose that the projective dual [n] : S1 → P 2 is injective. Then, r
is not hemispherical.

Proof of Theorem 3.2. Suppose that there exists a point P ∈ Sn+1 such
that P is a hemispherical point for r. Without loss of generality, we may
assume that r(S1) ⊂ S2

P,+. Then, αP ◦ r is a plane curve. Note that by
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Figure 6. h(θ) = (αP ◦ΨP ◦ r(θ)) · (θ, 0).

the central projection αP an inflection point of a spherical curve is mapped
to an inflection point of a plane curve and an ordinary inflection point of a
spherical curve is mapped to an ordinary inflection point of a plane curve.
Since we have assumed that the projective dual of r is injective, there are
no lines which tangent to αP ◦ r(S1) at more than one points. Then, by the
celebrated formula due to Fabricius-Bjerre ([6]) we see that the plane curve
αP ◦ r does not have any inflection points. However, since we have assumed
that there exists at least one ordinary inflection point for r, this yields a
contradiction. ¤

Theorem 3.3 Let r : Sn → Sn+1 be a C∞ embedding. For a point P ∈
Sn+1 the following (a), (b), (c) and (d) are equivalent.

(a) The silhouette of r(Sn) relative to πP is the empty set.
(b) The point P is a hemispherical point for the projective dual [n].
(c) The map πP ◦ r is a C∞ diffeomorphism.
(d) The set αP ([n](Sn) ∩ Sn+1

P,+ ) is a hedgehog Hh in the hyperplane {X ∈
Rn+2 | P ·X = 1}, where the support function h is given by βP ◦ r(θ) =
(θ,−h(θ)).

Proof of Theorem 3.3. First we show that (d) implies (b). Suppose that
there exists a point P such that αP ([n](Sn) ∩ Sn+1

P,+ ) is a hedgehog. By
rotating Rn+2 if necessary we may assume that P = (0, . . . , 0, 1). Then, by
Theorem 3.1 αP ([n](Sn) ∩ Sn+1

P,+ ) is a compact subset of Rn+1 × {1} and
hence P is a hemispherical point for the projective dual.
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Next, we show that (b) implies (c). Suppose that P is a hemispherical
point for the projective dual. Then, in the case that n ≥ 2, πP ◦ r is a C∞

diffeomorphism by Theorem 2.4. Since the given r is an embedding by the
assumption, the set r(Sn) is an embedded hypersurface. Thus, by the proof
of Theorem 2.4 we see that πP ◦ r is a C∞ diffeomorphism also in the case
that n = 1,

Since we have already shown that (c) implies (d) in the proof of The-
orem 3.1, we have that (a) ⇔ (b) ⇔ (c) ⇔ (d) by Theorem 2.4. ¤

Similarly as in Section 2, we have the following:

Theorem 3.4 Let r̃ : Sn → Rn+1 × {1}, P be a C∞ embedding and the
point (0, . . . , 0, 1) ∈ Rn+1 × {1} respectively. Then, the following (a), (b),
(c) and (d) are equivalent.

(a) The silhouette of α−1
P ◦ r̃(Sn) relative to πP is the empty set.

(b) The dual hypersurface of r̃ relative to P is compact.
(c) The map πP ◦ α−1

P ◦ r̃ is a C∞ diffeomorphism.
(d) The dual hypersurface of r̃ relative to P is a hedgehog.

Theorem 3.4 is more significant than Theorem 2.6 since by Theorem 3.4
we can apply properties of hedgehogs to our research in Section 2. However,
note that not all hedgehogs can be realized as dual hypersurfaces of C∞

embeddings. For instance, by Theorem 3.2 the astroid in the right side of
Fig. 7, which is a hedgehog since it can be constructed in the same way as
in Theorem 3.1, never appear under the situation of Theorem 3.4 while by
Theorem 3.1 it can appear under the situation of Theorem 3.3.

Two curves C1, C2 in Fig. 8 are the same curves as C1, C2 in Fig. 2
respectively. In Fig. 8 dual curves, too, are drawn. By the equivalence of
(a) and (d) in Theorem 3.4, a point P is outside the union of tangent lines
for the given plane curve if and only if the dual curve of the given curve
relative to the point P is a hedgehog. Thus, we can say that Theorem 3.4
clarifies the hidden meaning of the complement of the union of tangent lines
in Fig. 2 from the view point of hedgehogs.
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Figure 7. Left: The image of an embedding r : S1 → S2 and the intersection
[n](S1) ∩ S2

P,+ which has four singular points. Right: The astroid αP ([n](S1) ∩
S2

P,+) and the image αP (r(S1) ∩ S2
P,+).

Figure 8. Left: The dual curve of C1 relative to P is a hedgehog. Right: The
dual curve of C2 relative to P is not a hedgehog.
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