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The unique ergodicity of equicontinuous laminations

Shigenori Matsumoto
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Abstract. We prove that a transversely equicontinuous minimal lamination on a

locally compact metric space Z has a transversely invariant nontrivial Radon measure.

Moreover if the space Z is compact, then the tranversely invariant Radon measure is

shown to be unique up to a scaling.
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1. Introduction

Let L be a p-dimensional lamination on a locally compact metric space
Z. Let X be a transversal of L. See Notes A for these fundamental concepts.
We assume throughout that L is minimal, i.e. all the leaves of L are dense
in Z. Notice that any leaf of L intersects X.

Given a leafwise curve c joining two points x and y on X, a holonomy
map along c is defined as usual to be a local homeomorphism γ from an
open neighbourhood Dom(γ) of x onto an open neighbourhood Range(γ) of
y. We say that L is transversely equicontinuous with respect to a transversal
X if the family of all the corresponding holonomy maps is equicontinuous.

Theorem 1.1 Let L be a minimal lamination on a locally compact metric
space Z, transversely equicontinuous with respect to a transversal X. Then
there is a nontrivial Radon measure on X which is left invariant by any
holonomy map. If further Z is compact, then the invariant measure is unique
up to a scaling.

The existence of invariant measure was already shown by R. Sackesteder
in [S] for a pseudogroup acting on a compact metric space. But the com-
pactness condition for a transversal is too strong to obtain a corresponding
result for laminations or foliations in general (even on compact spaces or
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manifolds). See Notes B.
In Section 2 we therefore include a slightly general theorem applicable to

laminations; the proof closely follows an argument in Lemme 4.4 in [DKN],
which is meant for codimension one foliations. In Section 3 we show the
uniqueness for a compact lamination.

The author expresses his hearty gratitude to the referees, whose valuable
comments are indeed helpful for the improvement of the presentation of the
paper.

2. The existence

Let Y be a Hausdorff space. By a local homeomorphism, we mean a
homeomorphism γ from an open subset Dom(γ) of Y onto an open subset
Range(γ). A set Γ of local homeomophisms of Y is called a pseudo*group,
if it satisfies the following conditions.

(1) If γ ∈ Γ and U is an open subset of Dom(γ), then the restriction γ|U is
in Γ.

(2) The identity idY belongs to Γ.
(3) If γ, γ′ ∈ Γ and Dom(γ′) = Range(γ), then the composite γ′ ◦ γ is in Γ.
(4) If γ ∈ Γ, then γ−1 ∈ Γ.

The set Γ is called a pseudogroup if it satisfies in addition the following
condition.

(5) If γ : U → V is a local homeomorphism of X, and if for any point x ∈ U

there is a neighbouhood Ux of x in U such that γ|Ux ∈ Γ, then γ ∈ Γ.

Thus for example the set of all the holonomy maps with respect to a
transversal given in section 1 forms a pseudo*group while the pseudogroup
they generate might be bigger, and even if the former is equicontinuous,
the latter is not equicontinuous in general. See Notes C. Also by the same
reason some part of the argument in Section 3 fails in the pseudogroup
setting. These force us to adopt the framework of pseudo*groups, and in
fact this has already been done in the literature e.g. Definition 2.1.3 in [HH],
as is pointed out by a referee.

Let X be a locally compact metric space and Γ a pseudo*group of local
homeomorphsims of X. We assume that the action is minimal, i.e. the Γ-
orbit of any point is dense in X, and that the action is equicontinuous,
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i.e. for any ε > 0, there is δ(ε) > 0 such that if γ ∈ Γ, x, x′ ∈ Dom(γ) and
d(x, x′) < δ(ε), then we have d(γx, γx′) ≤ ε.

Denote by Cc(X) the space of real valued continuous functions ζ whose
support suppζ is compact. A Radon measure µ on X is called Γ-invariant
if whenever ζ ∈ Cc(X) and γ ∈ Γ satisfy suppζ ⊂ Dom(γ), we have µ(ζ ◦
γ−1) = µ(ζ) for the composite ζ◦γ−1 ∈ Cc(X). In fact if µ is Γ-invariant, we
get a bit more: if ζ ∈ Cc(X) vanishes outside Dom(γ), we have µ(ζ ◦γ−1) =
µ(ζ), as the dominated convergence theorem shows. This will be used in the
proof of Lemma 3.8.

Let X0 be a relatively compact open subset of X, and denote by Γ0 the
restriction of Γ to X0 i.e.

Γ0 = {γ ∈ Γ | Dom(γ) ∪ Range(γ) ⊂ X0}.

The purpose of this section is to show the following theorem.

Theorem 2.1 There exists a nontrivial finite Γ0-invariant Radon measure
µ on X0.

The minimality assumption shows then the existence of Γ-invariant mea-
sure on X and the proof of the existence part of Theorem 1.1 will be com-
plete. Also if Γ̂ denotes the pseudogroup that Γ generates, then the measure
is invariant by Γ̂. In fact, if Γ̂′ denotes the set of all the measure preserv-
ing local homeomorphisms, then Γ̂′ contains Γ and satisfies the conditions
(1)∼(5) above. Therefore Γ̂, being the minimal set containing Γ and satis-
fying (1)∼(5), is contained in Γ̂′.

Let us define

Cc(X)≥0 = {ζ ∈ Cc(X) | ζ ≥ 0} and

Cc(X)>0 = {ζ ∈ Cc(X)≥0 | ζ(x) > 0, ∃x ∈ X}.

For any ψ ∈ Cc(X) and γ ∈ Γ, extend the function ψ ◦γ−1 to the whole
X so as to vanish outside Range(γ) and still denote it by ψ ◦ γ−1. It may
no longer be continuous. For any ζ ∈ Cc(X)≥0 and ψ ∈ Cc(X)>0, define
(ζ : ψ) by
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(ζ : ψ) = inf
{ n∑

i=1

ci

∣∣∣∣ ζ ≤
n∑

i=1

ciψ ◦ γ−1
i , ci > 0, γi ∈ Γ, n ∈ N

}
.

Notice that the minimality of Γ implies that (ζ : ψ) < ∞ and (ζ : ψ) = 0 if
and only if ζ = 0.

Fix once and for all a function χ ∈ Cc(X)>0 such that χ = 1 on X0,
and define a map Lψ : Cc(X)≥0 → R by

Lψ(ζ) = (ζ : ψ)/(χ : ψ).

It is routine to show the following properties of Lψ.

Lψ(cζ) = cLψ(ζ), ∀c ≥ 0, (2.1)

Lψ(ζ1 + ζ2) ≤ Lψ(ζ1) + Lψ(ζ2), (2.2)

ζ1 ≤ ζ2 ⇒ Lψ(ζ1) ≤ Lψ(ζ2), (2.3)

suppζ ⊂ Dom(γ) ⇒ Lψ(ζ ◦ γ−1) = Lψ(ζ), (2.4)

ζ ∈ Cc(X)>0 ⇒ Lψ(ζ) ≥ 1/(χ : ζ). (2.5)

The following lemma plays a key role in this section. As pointed out by
a referee, a simplified version of it can be found as Lemma 7.4.1 (p. 189) in
[SK].

Lemma 2.2 If η > 0 and ξ, ξ′ ∈ Cc(X)≥0 satisfy ξ + ξ′ = χ, then there
is δ > 0 such that if ψ ∈ Cc(X)>0, diam(suppψ) < δ and ζ ∈ Cc(X0)≥0 we
have

Lψ(ξζ) + Lψ(ξ′ζ) ≤ (1 + 2η)Lψ(ζ).

Proof. Given η > 0, there is ε > 0 such that if x, x′ ∈ X0 and d(x, x′) ≤ ε,
then |ξ(x) − ξ(x′)| ≤ η. Also this implies |ξ′(x) − ξ′(x′)| ≤ η. Choose
δ = δ(ε), the modulus of the equicontinuity. Let ψ be as in the lemma and
assume

ζ ≤
∑

i

ciψ ◦ γ−1
i . (2.6)

Notice that if we restrict γi in (2.6) to Dom(γi) ∩ suppψ ∩ γ−1
i (suppζ),
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still the inequality (2.6) holds. Hence if we choose xi from Range(γi) ⊂
supp(ζ) ⊂ X0, then for any x ∈ Range(γi), we have

|ξ(x)− ξ(xi)| ≤ η and |ξ′(x)− ξ′(xi)| ≤ η.

Moreover the following inequality

ξ(x)ψ ◦ γ−1
i (x) ≤ (ξ(xi) + η)ψ ◦ γ−1

i (x)

holds for any x ∈ X, since if x 6∈ Range(γi) the both hand sides are 0. Then
we have

ζ(x)ξ(x) ≤
∑

i

ciξ(x)ψ ◦ γ−1
i (x)

≤
∑

i

ci(ξ(xi) + η)ψ ◦ γ−1
i (x).

This shows

(ζξ : ψ) ≤
∑

i

ci(ξ(xi) + η).

We have a similar inequality for ξ′. Since xi ∈ X0 and thus ξ(xi)+ξ′(xi) = 1,
we have

(ζξ : ψ) + (ζξ′ : ψ) ≤ (2η + 1)
∑

i

ci.

The lemma follows from this. ¤

Continuing the proof of Theorem 1.1, let us first restrict the operator
Lψ to Cc(X0)≥0, and then extend it to Cc(X0) (still denoted by the same
letter Lψ) by just putting

Lψ(ζ) = Lψ(ζ+)− Lψ(ζ−),

where ζ+ (resp. ζ−) is the positive (resp. negative) part of ζ.
Then we have:

|Lψ(ζ)| ≤ ‖ζ‖∞, ∀ζ ∈ Cc(X0). (2.7)
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In fact if ζ ≥ 0, then ζ ≤ ‖ζ‖∞χ, and thus Lψ(ζ) ≤ ‖ζ‖∞, the general case
following easily from this.

Let us identify Lψ with the following point of a compact Hausdorff
space:

Lψ = {Lψ(ζ)}ζ ∈
∏

ζ∈Cc(X0)

[− ‖ζ‖∞, ‖ζ‖∞
]
.

Let {ψn} be a sequence in Cc(X)>0 such that diam(suppψn) → 0.
Choose an operator L ∈ ⋂

m Cl{Lψn | n ≥ m}. This means that for any
finite number of elements ζν ∈ Cc(X0) and any ε > 0, there is a sequence
ni → ∞ such that |L(ζν) − Lψni

(ζν)| < ε. Now we have the following
properties of the map L : Cc(X0) → R.

L(cζ) = cL(ζ), ∀c ∈ R, (2.8)

L(ζ1 + ζ2) ≤ L(ζ1) + L(ζ2), ∀ζ1, ζ2 ≥ 0, (2.9)

ζ1 ≤ ζ2 ⇒ L(ζ1) ≤ L(ζ2), (2.10)

suppζ ⊂ Dom(γ), γ ∈ Γ0 ⇒ L(ζ ◦ γ−1) = L(ζ), (2.11)

ζ ∈ Cc(X0)>0 ⇒ L(ζ) ≥ 1/(χ : ζ), (2.12)

|L(ζ)| ≤ ‖ζ‖∞. (2.13)

Moreover by Lemma 2.2 and (2.9), we have

Lemma 2.3 If ζ ∈ Cc(X0)≥0 and ξ, ξ′ ∈ Cc(X)≥0 satisfy ξ+ξ′ = χ, then

L(ξζ) + L(ξ′ζ) = L(ζ).

From this one can derive the linearity of L. First of all notice that

ζ, ζ ′ ∈ Cc(X0)≥0 ⇒ |L(ζ)− L(ζ ′)| ≤ ‖ζ − ζ ′‖∞. (2.14)

In fact we have

L(ζ ′) = L(ζ + ζ ′ − ζ) ≤ L(ζ + (ζ ′ − ζ)+) ≤ L(ζ) + L((ζ ′ − ζ)+)

≤ L(ζ) + ‖(ζ ′ − ζ)+‖∞ ≤ L(ζ) + ‖ζ ′ − ζ‖∞.
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Continuing the proof of the linearity, notice that it suffices to show it
only for those functions ζ1, ζ2 ∈ Cc(X0)≥0. Choose ε > 0 small and let

ξj = (ζj + εχ)/(ζ1 + ζ2 + 2ε)

for j = 1, 2. Then we have ξ1 + ξ2 = χ. Now

ξ1(ζ1 + ζ2)− ζ1 = ε(ζ2 − ζ1)/(ζ1 + ζ2 + ε).

Therefore by (2.14), we have

|L(ξ1(ζ1 + ζ2))− L(ζ1)| ≤ ε.

On the other hand by Lemma 2.3,

L(ξ1(ζ1 + ζ2)) + L(ξ2(ζ1 + ζ2))) = L(ζ1 + ζ2).

Since ε is arbitrary, we have obtained

L(ζ1 + ζ2) = L(ζ1) + L(ζ2),

as is required.

Now L, being a positive operator, corresponds to a Radon measure µ.
By (2.12), the measure µ is nontrivial, and since (2.13) implies

sup{L(ζ) | ζ ∈ Cc(X0)≥0, ‖ζ‖∞ ≤ 1} ≤ 1,

the measure µ satisfies µ(X0) ≤ 1. Finally (2.11) means the Γ0-invariance
of µ.

3. The uniqueness

In this section Γ is again an equicontinuous and minimal pseudo*group
of local homeomorphisms of a locally compact metric space X. The modulus
of equicontinuity is also denoted by ε 7→ δ(ε). Without loosing generality
one can assume that δ(ε) < ε. Denote by Br(x) the open r-ball in X

centered at x ∈ X.
We make the following additional assumption on the pseudo*group Γ.
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Assumption 3.1 There is a relatively compact open subset X0 of X and
a > 0 such that if γ ∈ Γ, x ∈ X0, x ∈ Dom(γ) ⊂ Ba(x) and γx ∈ X0, then
there is γ̂ ∈ Γ such that Dom(γ̂) = Ba(x) and γ̂|Dom(γ) = γ.

The purpose of this section is to show the following theorem.

Theorem 3.2 Let Γ be an equicontinuous and minimal pseudo*group on
X satisfying Assumption 3.1. Then the nontrivial Γ-invariant Radon mea-
sure on X is unique up to a scaling.

First of all let us show that the holonomy pseudo*group Γ on a transver-
sal X of a minimal lamination on a compact space Z, equicontinuous with
respect to X satisfies Assumption 3.1, and therefore the latter part of Theo-
rem 1.1 reduces to Theorem 3.2. Choose any relatively compact open subset
X0 of X. On one hand by compactness of Z there is L > 0 such that the
germ of any element of the restriction Γ0 to X0 is a finite composite of the
holonomy maps along leaf curves of length ≤ L that join two points in X0.
On the other hand there is a′ > 0 such that each leaf curve of length ≤ L

starting at x ∈ X0 and ending at a point in X0 admits a holonomy map
defined on the ball Ba′(x). An easy induction shows that Assumption 3.1 is
satisfied for a = δ(a′). Notice that a < a′ by the assumption.

Before starting the proof of Theorem 3.2, we shall outline what we are
going to do. Consider the simpler case where a discrete group Λ acts on
a compact space X minimally and equicontinuously. Then the completion
G of Λ in the compact-open topology is a compact metrizable group and
therfore admits a Haar probability measure m. Let µ be an arbitrary Λ-
invariant probability measure on X. Choose any continuous function f on
X. Define a function fm : X → R by

fm(x) =
∫

G

f(gx)m(dg).

Then the right invariance of m implies that fm is constant on X. Define a
function fµ : G → R by

fµ(g) =
∫

X

f(gx)µ(dx).

Then since µ is G-invariant, fµ is again constant, equal to fµ(e) = µ(f).



The unique ergodicity of equicontinuous laminations 397

Integrating f(gx) on G × X and applying Fubini, we get µ(f) is equal to
fm, a value which is independent of the particular choice of µ, showing the
uniqueness of invariant measures.

In our setting of pseudo*group, things becomes a little messy. We con-
sider a tiny compact ball C in the central part of X0 and define G as the
completion of “the restriction of Γ0 to C”. The space G is not a group,
but we can construct a pseudo*group Γ] acting on G, together with a Γ]-
invariant measure m on G. We cannot take G to be compact since we need
the minimality of the action of Γ] on G. However it turns out that things
work as well and we can apply Fubini.

Let us embark upon the proof of Theorem 3.2. Choosing a even smaller,
one may assume that there is a nonempty open subset X1 of X0 such that
the a-neighbourhood Ba(x) of any point x of X1 is contained in X0 and
that if γ ∈ Γ and x′ ∈ X0 satisfies Dom(γ) = Ba(x′) and γx′ ∈ X1, then
the image Range(γ) = γ(Ba(x′)) is contained in X0. Choose b > 0 so that
b ≤ δ(a/3), and assume there is x0 ∈ X1 such that C = Cl(B) ⊂ X1, where
B = Bb(x0).

Let M be the space of continuous maps from C to X0, with the supre-
mum metric d∞. Define

ΓC = {γ|C | γ ∈ Γ, C ⊂ Dom(γ), γC ⊂ X0}

and let G be the closure of ΓC in M . Notice that G is not compact, because
we do not take the closure in a space bigger than M . This choice of G is
adapted for Lemma 3.6.

Lemma 3.3

(1) G is a locally compact metric space.
(2) Any g ∈ G is a homeomorphism onto a compact subset gC in X0 and

g, as well as the inverse map g−1, is δ(ε)-continuous.

Proof. All that needs proof is the δ(ε)-continuity of g−1. Assume γn ∈ ΓC

converge to g ∈ G in the d∞-metric. If x, x′ ∈ C satisfy d(x, x′) > ε, then
d(γnx, γnx′) ≥ δ(ε) by the equicontinuity of the inverse map γ−1

n . Thus
d(gx, gx′) ≥ δ(ε), as is required. ¤

Recall the notations B = Bb(x0) and C = Cl(B).
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Lemma 3.4 If gn → g in G, and y ∈ gB, then for all n sufficiently large
we have y ∈ gnB and g−1

n y → g−1y.

Proof. Choose an arbitrary point x ∈ B and ε > 0 such that Cl(Bε(x)) ⊂
B. First let us show that for any γ ∈ ΓC ,

Bδ(ε)(γx) ⊂ γCl(Bε(x)). (3.1)

In fact, by the choice of the number b, we have γ(B) ⊂ Cl(Ba/3(γx0)).
That is, γ(B) ⊂ Ba(γx), and thus (γ|B)−1 admits an extension γ̂−1 ∈ Γ
defined on Ba(γx). Choose an arbitrary point y ∈ Bδ(ε)(γx). Then by the
δ(ε)-continuity of γ̂−1, the point x′ = γ̂−1y lies in Cl(Bε(x)) ⊂ B. On the
other hand x′ = γ−1γx′ = γ̂−1γx′. Since γ̂−1 is injective, we have y = γx′.
This finishes the proof of (3.1).

Next let us show that for any g ∈ G, we have

Bδ(ε)/2(gx) ⊂ gCl(Bε(x)). (3.2)

Again assume γn ∈ ΓC converge to g ∈ G. Since γnx → gx, we have for all
n sufficiently large that Bδ(ε)/2(gx) ⊂ Bδ(ε)(γnx). Thus if y ∈ Bδ(ε)/2(gx),
then by (3.1) y = γnxn for some xn ∈ Cl(Bε(x)). Passing to a subsequence,
assume that xn → x′ ∈ Cl(Bε(x)). Now in the following inequality

d(gx′, y) = d(gx′, γnxn) ≤ d(gx′, γnx′) + d(γnx′, γnxn),

both terms of the RHS can be arbitrarily small if n is sufficiently large. That
is, y = gx′, showing (3.2).

To finish the proof of the lemma, assume gn → g ∈ G and y ∈ gB.
By (3.2), for any ε > 0 sufficiently small we have Bδ(ε)/2(gng−1y) ⊂
gnCl(Bε(g−1y)). Since gng−1y → y, we have y ∈ gnCl(Bε(g−1y)) for all
n sufficiently large and therefore g−1

n y ∈ Cl(Bε(g−1y)). Since ε is arbitrar-
ily small, this shows the lemma. ¤

Let Γ0 be the restriction of the pseudo*group Γ to X0. We shall con-
struct a pseudo*group Γ] of local homeomorphisms of G. For any γ ∈ Γ0,
define
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Dom(γ]) = {g ∈ G | gC ⊂ Dom(γ)},
Range(γ]) = {g ∈ G | gC ⊂ Range(γ)},

γ]g = γ ◦ g, ∀g ∈ Dom(γ].)

It may happen that for some γ ∈ Γ0, Dom(γ]) = Range(γ]) = ∅. In
that case γ] is not defined.

Lemma 3.5 The subsets Dom(γ]) and Range(γ]) are open in G, and γ]

is δ(ε)-continuous with respect to the metric d∞.

Proof. The easy proof is omitted. ¤

Denote by Γ] the pseudo*group consisting of all the elements γ] for
γ ∈ Γ0 and their restrictions to open subsets of the domains. The following
lemma does not use the minimality assumption of Γ on X.

Lemma 3.6 The action of Γ] on G is minimal.

Proof. First let us show that for γ1, γ2 ∈ ΓC , there is γ] ∈ Γ] such
that γ1 ∈ Dom(γ]) and that γ](γ1) = γ2. Since γ1C ⊂ Ba(γ1x0), there
is an element γ′ ∈ Γ defined on Ba(γ1x0) which extends γ2 ◦ γ−1

1 . Let
γ ∈ Γ0 be the restriction of γ′ to Γ0, i.e. the restriction such that Dom(γ) =
Ba(γ1x0) ∩X0 ∩ γ′−1X0. Clearly γ1C is contained in Dom(γ), showing the
claim.

Thus we have shown that Γ]-orbit of idC is nothing but ΓC and hence
dense in G. To finish the proof, we shall show that for any g ∈ G, the Γ]-orbit
of g visits an arbitrarily small neighbourhood of any element γ2 ∈ ΓC . Let
ε be any small number such that the 2ε-neighbourhood of γ2C is contained
in X0. Take γ1 ∈ ΓC such that d∞(g, γ1) < δ(ε). Choosing ε and hence δ(ε)
even smaller, one may very well assume that gC is contained in Ba(γ1x0).
Then the element γ ∈ Γ0 constructed above (for γ1 and γ2) contains gC in
its domain, i.e. g is contained in Dom(γ]), and furthermore d∞(γ]g, γ2) < ε.

¤

Now by Lemmata 3.3, 3.5 and 3.6, one can apply Theorem 2.1 to (Γ], G)
to find a nontrivial Γ]-invariant Radon measure m on G. (Notice that even
if Γ] is equicontinuous, the pseudogroup it generates may not be equicontin-
uous. Compare Notes C.) One can assume m is a probability measure since
G is in fact a precompact open subset of a bigger space. Now let µ and µ′
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be distinct Γ0-invariant probability measures on X0. Then their restrictions
to B are also distinct, by the minimality of the Γ0-action. That is, there is
a function ζ ∈ Cc(B) such that µ(ζ) 6= µ′(ζ). One may assume further that
ζ is nonnegative valued.

Lemma 3.7 For any g ∈ G, we have
∫

X0

ζ(g−1x)µ(dx) =
∫

X0

ζ(x)µ(dx).

Proof. For g ∈ ΓC , this is just the Γ0-invariance of µ. For general g, assume
γn → g for γn ∈ ΓC . Then by Lemma 3.4, if x ∈ gB, then x ∈ γnB for all
n sufficiently large and γ−1

n x → g−1x. If x 6∈ gB, then ζ(g−1x) = 0. On the
other hand ζ(γ−1

n x) = 0 for any n sufficiently large. In fact since γn → g in
d∞-metric, we have γnsupp(ζ) → gsupp(ζ) in the Hausdorff metric. Since
x 6∈ gsupp(ξ), it follows that x 6∈ γnsupp(ζ) for all n sufficiently large.

In any case for any x ∈ X0, we have ζ(γ−1
n x) → ζ(g−1x). The lemma

follows from the dominated convergence theorem. ¤

Now recall the space X1. It is an open subset of X0 which contains C

such that the a-neighbourhood Ba(x) of any point x of X1 is contained in
X0 and that if γ ∈ Γ and x′ ∈ X0 satisfies Dom(γ) = Ba(x′) and γx′ ∈ X1,
then the image Range(γ) = γ(Ba(x′)) is contained in X0.

Lemma 3.8 The function

Z(x) =
∫

G

ζ(g−1x)m(dg)

is constant on X0.

Proof. For x ∈ X0 define a function ζx : G → R by ζx(g) = ζ(g−1x).
Lemma 3.4 and an additional argument as in the proof of Lemma 3.7 shows
that ζx is a continuous function. Also the function Z(x) is continuous since
ζ ◦ g−1 for g ∈ G has the same modulus of continuity. Choose any x ∈ X0

and x′ ∈ X1 on the same Γ-orbit. The proof is complete once we show
Z(x) = Z(x′) since the Γ-action on X0 is minimal and any orbit intersects
X1. By the assumption of X1, there is γ ∈ Γ0 such that γx = x′ and
Dom(γ) = Ba(x) ∩X0 and Range(γ) ⊂ X0. Then we have

{g ∈ G | ζx(g) > 0} ⊂ Dom(γ]).
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In fact if ζx(g) = ζ(g−1x) > 0, then x ∈ gB. On the other hand, diam(gB) ≤
2a/3, and thus gC ⊂ Ba(x) ∩X0 = Dom(γ), i.e. g ∈ Dom(γ]).

By the Γ]-invariance of the measure m, we have

Z(x) =
∫

G

ζx(g)m(dg) =
∫

G

ζx(γ−1
] (g))m(dg) =

∫

G

ζx(γ−1 ◦ g)m(dg)

=
∫

G

ζ(g−1γx)m(dg) =
∫

G

ζγx(g)m(dg) = Z(x′),

as is required. ¤

Now let us finish the proof of Theorem 3.2. By Lemma 3.8, the function
Z is constant on X0, depending only on ζ and m. We have on one hand

∫

X0

∫

G

ζ(g−1x)m(dg)µ(dx) =
∫

X0

Zµ(dx) = Z.

On the other hand by Fubini and by Lemma 3.7

Z =
∫

G

∫

X0

ζ(g−1x)µ(dx)m(dg) =
∫

G

µ(ζ)m(dg) = µ(ζ).

Since Z does not depend on the choice of µ, we have µ(ζ) = µ′(ζ),
contrary to the assumption.

Remark 3.9 In fact the argument of this section works under the assump-
tion that the pseudo*group Γ acts transitively (having one dense orbit) on
X, which is weaker than the minimality. As is pointed out there, Lemma
3.6 does not use the minimality assumption, and all the other parts are
valid under the weaker assumption. However any transitive and equicontin-
uous pseudo*group satisfying Assumption 3.1 can be shown to be minimal.
Assume the contrary, and let Z be a proper minimal set and x a point
in X0 whose orbit is dense in X. Assume the distance of x to Z is big-
ger than a constant ε > 0, and δ(ε) < a, where a is a constant given in
Assumption 3.1. Then there is a point x′ ∈ Γx ∩ X0 and a point y ∈ Z

such that d(x′, y) < δ(ε). By Assumption 3.1 there is γ ∈ Γ such that
Dom(γ) = Ba(x′) and γx′ = x. Then we have d(x, γy) ≤ ε. A contradic-
tion.
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4. Notes

A. Let Z be a locally compact metric space, covered by a countable number
of open sets Ei. Assume there is a homeomorphism ϕi : Ei → Ui ×Xi,
where Ui is an open ball in Rp and Xi is a locally compact metric space.
If Ei ∩Ej 6= ∅, then the transition function ψji = ϕj ◦ ϕ−1

i is defined as
a homeomorphism from ϕi(Ei ∩Ej) onto ϕj(Ei ∩Ej). Assume that the
transition function is of the form

ψji(u, x) = (α(u, x), β(x)).

A subset of Z of the form ϕ−1
i (Ui × x) is called a plaque. A maximal

connected countable union of plaques is called a leaf. This way M admits
a decompositon L into leaves, which is called a lamination of dimension
p. A subset of the form ϕ−1

i (u×Xi) is called a transversal of L.
B. Let H be the Lie group of all the orientation preserving affine transfor-

mations of the real line. A. Haefliger constructed ([Gh]) a minimal Lie H

foliation F on a closed 5-manifold. The corresponding (global) holonomy
group Λ is dense in H. The transverse holonomy groupoid is equivalent
to (Λ,H), but it is not equivalent to a groupoid on a compact space X.
For if it is, then X must be a closed surface with a (H, H)-structure,
which is impossible since H is not unimodular.

C. Consider a linear foliation F on the 2-torus S1 × S1 of irrational slope.
The pseudo*group on the transversal S1(= S1 × {0}) is generated by
an irrational rotation R and is equicontinuous, but the psuodogroup is
not, since it contains an element γ given for a small positive number ε as
follows. (1) Dom(γ) = (−ε, 0)∪(0, ε). (2) γ|(−ε,0) = R and γ|(0,ε) = R−1.
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