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On generalized spin-boson models

with singular perturbations
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Abstract. In this paper we consider generalized spin-boson models with singular

perturbations. It is proven that under the infrared regularity condition Hamiltonians

have the unique ground state for sufficiently small values of coupling constants. In

addition it is shown that the asymptotic creation and annihilation operators of massless

boson field exist.
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1. Introduction and Main Theorem

1.1. Introduction
A generalized spin-boson model (GSB-models) is introduced by Arai

and Hirokawa [5], which is a generalization of the so-called spin-boson model.
It describes a general quantum system coupled to a boson field. A GSB-
Hamiltonian is defined as a self-adjoint operator on the tensor product of a
certain Hilbert space K and a Boson Fock space Fb, which consists of a de-
coupled Hamiltonian and an interaction term. The decoupled Hamiltonian
is of the form:

H0 = K ⊗ I + I ⊗ dΓb(ω), (1)

where K is a self-adjoint operator on K, and dΓb(ω) the free Hamiltonian
on Fb, which is given by the second quantization of a non-negative function
ω. Then the GSB-Hamiltonian is given by

H0 + α

J∑

j=1

Bj ⊗ φ(fj), (2)

where α ∈ R is a coupling constant, Bj a symmetric operator on K, and
φ(fj) a field operator smeared by test function fj ∈ L2(Rd). The spectral
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properties of (2) are studied by [5], [7]. In particular the existence and
uniqueness of the ground state is established under suitable conditions.

In this paper, instead of (2), we investigate Hamiltonians of the form:

H = H0 + β
M∑

l=1

Cl ⊗ φ(gl)4, (3)

where β > 0 and Cl is a self-adjoint but bounded operator on K. The
interaction term of (3) is singular compared with (2), and in particular it
is not relatively bounded with respect to the decoupled Hamiltonian H0. It
is of interest to see the stability or instability of spectral properties of H0

under singular perturbations.

Essential self-adjointness As is mentioned above, the interaction term
in (3) is not relatively bounded with respect to H0. Then it is not trivial
to show the essential self-adjointness of H. In [3], [15], [23], an essential
self-adjointness of a Hamiltonian in quantum field theory with a singular
perturbation is considered. In this paper the essential self-adjointness of H

is proven by applying [3].

Existence of a ground state We consider a ground state of H for the
massless case:

inf
k∈Rd

ω(k) = 0. (4)

Note that if the left hand side above is strictly positive we call it massive.
Under (4) the bottom of the spectrum of H0 is an eigenvalue but embedded
in the continuous spectrum. Then it is not trivial to show the existence of a
ground state of H even for sufficiently small but nonzero β, since the regular
perturbation theory [22] for discrete spectra can not be applied. We prove
that for sufficiently small β and under the infrared regularity condition:

gj/ω ∈ L2(Rd), j = 1, . . . , d, (5)

H has a ground state such that the expectation of the number of bosons is
finite.

Asymptotic fields For a massive case, the asymptotic field is constructed
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in e.g., [10], [11], [21]. For a massless case, however, it is not straightforward
to construct it. Nevertheless it is also constructed in e.g., [12], [19]. Under
(4) we prove the existence of the asymptotic field and construct a wave
operator intertwining between H and dΓb(ω) + E by the methods used in
[19], where E denotes the ground state energy of H. From this we can
also show the absence of the spectral gap of H. Namely it follows that the
bottom of the spectrum, which is a point spectrum, also embedded in the
continuous spectrum.

Uniqueness of the ground state By using the asymptotic field men-
tioned above, we can also prove the uniqueness of the ground state of H.
Arai-Hirokawa [5] shows the uniqueness of the ground state of a massive
GSB model. In this paper we show it for the massless case by applying the
method used in [20].

Literatures of GSB-models and related works:
Miyao and Sasaki [24] consider a perturbation of a massive GSB-model:

GSB Hamiltonian + 1⊗ φ(f)2. (6)

They also show the existence of a ground state of (6). Arai, Hirokawa and
Hiroshima [6] consider the absence of eigenvectors of a GSB-Hamiltonian
(2) under the infrared singular condition:

gj/ω 6∈ L2(Rd) for some j. (7)

Arai and Kawano [8] prove the existence of a ground state even if the de-
coupled Hamiltonian has no ground state, but for a sufficiently large cou-
pling constant. Hiroshima [20] proves the uniqueness of the ground state
of Hamiltonians in some general class including GSB-Hamiltonians. Suzuki
[29] investigates a scaling limit of GSB-Hamiltonians and derives effective
Hamiltonians.

The existence of a ground state for related models is considered in e.g.,
[9], [13], [17], [19], [28]. In particular Bach, Fröhlich and Sigal [9] prove the
existence of a ground state of the so-called non-relativistic quantum electro-
dynamics without infrared regular condition but sufficiently small coupling
constants, and Griesemer, Lieb and Loss [17] extend it for arbitrary values
of coupling constants.
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Finally we give a short remark on a relationship between H and the φ4

model. Our Hamiltonian H is close to the φ4 model studied in Glimm and
Jaffe [14], [15], [16], but we introduce cutoff functions to construct the Hamil-
tonian as an operator on a Hilbert space. The φ4 model is defined on Fb and
massive, while H is massless, defined on K ⊗ Fb, and includes self-adjoint
operators Cj ’s. So the analysis of H cannot be derived straightforwardly.
Of course we need the infrared regular condition (5) in compensation for the
massless assumption (4).

This paper is organized as follows:
In the remaining of Section 1, we define the total Hamiltonian H in (3)
rigorously, and state the main results. In Section 2 we show the essential
self-adjointness of H. In Section 3 we give a proof of the existence and
uniqueness of the ground state of H. In Section 4 we give a proof of the
existence of the asymptotic fields.

1.2. Boson Fock Space
Let d ∈ N denotes the spatial dimension. The boson Fock space over

L2(Rd) is defined by

Fb := Fb(L2(Rd)) := ⊕∞n=0

(⊗n
s (L2(Rd))

)
,

where ⊗n
s L2(Rd) stands for the n-fold symmetric tensor product of L2(Rd)

and ⊗0
s (L

2(Rd)) := C. The inner product of Fb is given by

(Φ,Ψ)Fb =
∞∑

n=0

(Φ(n),Ψ(n))⊗nL2(Rd). (8)

In this paper the inner product (y, x)X on the Hilbert space X is linear in
x and antilinear in y. Unless confusions arise, we omit the subscript X of
(y, x)X . Let Ωb = {1, 0, 0, . . . } ∈ Fb be the Fock vacuum. For f ∈ L2(Rd),
the creation operator is defined by

(a∗(f)Ψ)(n) =
√

n + 1Sn+1(f ⊗Ψ(n)), n ≥ 1,

where Sn denotes a projection from ⊗nL2(Rd) onto ⊗n
s L2(Rd) and

(a∗(f)Ψ)(0) := 0. The domain of a∗(f) is given by
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D(a∗(f)) =
{

Ψ = {Ψ(n)}∞n=0

∣∣∣∣
∞∑

n=0

‖(a∗(f)Ψ)n‖2⊗nL2(Rd) < ∞
}

.

The annihilation operator a(f) is defined by the adjoint operator of a∗(f).
Let D ⊂ L2(Rd) be a subspace. The finite particle subspace over D is given
by

Ffin
b (D) = L{

a∗(f1) · · · a∗(fn)Ωb, Ωb | fj ∈ D, j = 1, . . . , n, n ∈ N
}
.

In particular we call Ffin
b (L2(Rd)) the finite particle subspace. It is seen that

the domains of operators a∗(f) and a(g) include the finite particle subspace,
leave it invariant, and satisfy the canonical commutation relations on it:

[a(f), a∗(g)] = (f, g), (9)

[a(f), a(g)] = [a∗(f), a∗(g)] = 0. (10)

The Segal operator is given by

φ(f) =
1√
2
(a(f) + a∗(f)). (11)

It is well known that φ(f) is essentially self-adjoint on Ffin
b (L2(Rd)). By (9)

and (10), it is seen that on Ffin
b (L2(Rd))

[φ(f), φ(g)] = i Im(f, g). (12)

In particular [φ(f), φ(g)] = 0, when f and g are real-valued functions.
Let T be an operator on L2(Rd). We define the second quantization

dΓb(T ) of T by

dΓb(T ) = ⊕∞n=0

( n∑

j=1

(
I ⊗ . . . I ⊗ T︸︷︷︸

jth

⊗I . . .⊗ I
))

.

1.3. Total Hamiltonian and Main Theorems
Let K be a Hilbert space over C. Then the total Hilbert space is defined

by
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H = K ⊗Fb. (13)

Let K be a operator on K. The decoupled Hamiltonian of GSB models is
defined by

H0 = K ⊗ I + I ⊗ dΓb(ω), (14)

where ω denotes the multiplication operator by a Lebesgue measurable func-
tion ω 6= 0. We assume the following conditions:

(S.1) The operator K is self-adjoint and non-negative.
(S.2) The function ω is non-negative with infk∈Rd ω(k) = 0.

Let

H ′ =
M∑

l=1

Cl ⊗ φ(gl)4, (15)

where Cl, l = 1, . . . , M , is an operator on K. We introduce the following
assumption:

(S.3) Cl, l = 1, . . . , M is a bounded, non-negative self-adjoint operator.

Proposition 1.1 (Essential self-adjointness) Assume (S.1)–(S.3). Then
H0 + βH ′, β ≥ 0, is essentially self-adjoint on

D0 = D(K)⊗̂Ffin
b (L2

0(R
d)), (16)

where ⊗̂ denotes the algebraic tensor product and

L2
0(R

d) =
{
ψ ∈ L2(Rd) | supp ψ is compact

}
.

It is noted that

Ffin
b (L2

0(R
d)) ⊂ ∩∞n=1D(dΓb(ω)n)

⋂
∩∞n=1D(φ(g)n).

Let us define the total Hamiltonian by

H = (H0 + βH ′)�D0 , (17)
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where X denotes the closure of X and β > 0. By Proposition 1.1, it is
seen that H is self-adjoint, and hence σ(H) ⊂ [E0(H),∞) follows where
E0(H) = inf σ(H).

Let us assume the following conditions.

(S.4) The function gl is a real-valued continuous function and gl ∈ D(ω)
for l = 1, . . . , M .

(S.5) ( I ) Cl and Cl′ commute for all l, l′ = 1, . . . , M .
(II) C

1/2
l , l = 1, . . . , M , leave D(K) invariant, i.e. C

1/2
l D(K) ⊂

D(K). There exists a constant νl ∈ R, such that for all Ψ ∈
D(K),

(
Ψ,

[
C

1/2
l ,

[
C

1/2
l ,K

]]
Ψ

)
> νl‖Ψ‖2.

It is noted that ClD(K) ⊂ D(K), l = 1, . . . , M , follows from the condition
(II) in (S.5).

By applying the methods used in [4], we can obtain the following propo-
sition.

Proposition 1.2 (Absence of spectral gap) Assume (S.1)–(S.5). Then
for sufficiently small β, σ(H) = [E0(H),∞) follows.

To prove the existence of a ground state of H, we introduce the following
assumptions:

(S.6) The function ω(k) is continuous and lim|k|→∞ ω(k) = ∞, and there
exist constants c̃ > 0 and r̃ > 0 such that

|ω(k)− ω(k′)| ≤ c̃|k− k′|r̃(1 + ω(k) + ω(k′)), k,k′ ∈ Rd.

(S.7) The operator K has a compact resolvent.
(S.8) (Infrared regularity condition) It holds that

∫

Rd

∣∣∣∣
gl(k)
ω(k)

∣∣∣∣
2

dk < ∞, l = 1, . . . , M.

Theorem 1.3 (Existence of Ground states) Assume (S.1)–(S.8). Then
H has a ground state for sufficiently small β.

We introduce the additional assumptions.
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(S.9) There exists a closed set O ⊂ Rd such that ω ∈ C2(Rd\O), gl ∈
C2

0 (Rd\O), l = 1, . . . , M , ∂ω
∂kj1

(k) 6= 0 and ∂ω
∂kj2

(k) 6= 0 on Rd\O for
some j1, j2 ∈ {1, . . . , d}.

Proposition 1.4 (Uniqueness of ground states) Assume (S.1)–(S.9).
Then dimker(H − E0(H)) ≤ dimker(K − E0(K)) for sufficiently small β,
where E0(X) = inf σ(X).

Theorem 1.5 (Existence of asymptotic fields) Suppose (S.1)–(S.3) and
(S.9). Let h ∈ C2(Rd\O) and supph be compact. Then for Ψ ∈ D(H), the
asymptotic field

a]
±∞(h)Ψ := s− lim

t→±∞
eitHe−itH0(I ⊗ a](h))eitH0e−itHΨ,

exists.

Let us define the asymptotic in/out-going Fock space by F±∞ =⊕
n Fn

±∞ with

Fn
±∞ = L{

a∗±∞(h1) · · · a∗±∞(hn)Ψg, | hi ∈ D(ω−1/2), i = 1, . . . , n
}
, (18)

where Ψg is a ground state of H and D denotes the closure of D. Here in
particular we set F0

±∞ = {zΨg | z ∈ C}. Let

Fn = L{
a∗(h1) · · · a∗(hn)Ωb,Ωb | hi ∈ D(ω−1/2), i = 1, . . . , n

}
. (19)

We define the wave operator W±∞ = ⊕nWn±∞, Wn
±∞ : Fn → Fn

±∞ by

Wn
±∞a∗(h1) · · · a∗(hn)Ωb := a∗±∞(h1) · · · a∗±∞(hn)Ψg. (20)

It is noted that by the commutation relations given by Lemma 4.2, Wn
±∞ is

isometry and then Wn±∞ is the unitary operator from Fn onto Fn
±∞. From

Theorem 1.5 and, we obtain the following corollary.

Corollary 1.6 Suppose (S.1)–(S.9). Then dΓb(ω) + E0(H) = W ∗
±∞ ·

H�F±∞W±∞.
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2. Essential Self-adjointness of H0 + βH ′

2.1. Proof of Proposition 1.1
For Ψ ∈ D(Nb + 1) it is known that ‖a](ξ)Ψ‖ ≤ ‖ξ‖‖(Nb + 1)1/2Ψ‖,

where a](ξ) = a(ξ) or a∗(ξ). Hence we have

‖φ(ξ)Ψ‖ ≤
√

2‖ξ‖∥∥(Nb + 1)1/2Ψ
∥∥. (21)

Let φ̃(ξ) = 1√
2
(−a(ξ) + a∗(ξ)). Then it follows that on Ffin

b (L2(Rd)),

[Nb, φ(ξ)] = φ̃(ξ) (22)

and for Ψ ∈ D(N1/2
b ),

‖φ̃(ξ)Ψ‖ ≤
√

2‖ξ‖∥∥(Nb + 1)1/2Ψ
∥∥. (23)

It is seen in ([2, Lemma 2.4]) that a](ξ) maps D(N3/2
b ) into D(Nb) and for

Ψ ∈ D(N3/2
b ),

∥∥[(Nb + 1)1/2, a](ξ)]Ψ
∥∥ ≤ c̃‖ξ‖∥∥(Nb + 1)1/2Ψ

∥∥, (24)

where c̃ = 1
π

∫∞
0

√
λ

(λ+1)2 dλ. From (21), (23) and (24), we obtain the following
lemma.

Lemma 2.1 Assume (S.1)–(S.3). Then there exists a constant M̃ ≥ 0
such that

∥∥φ(g)4Ψ
∥∥ ≤ M̃‖g‖4∥∥(Nb + 1)2Ψ

∥∥, Ψ ∈ D(N2
b). (25)

Let us identify H = K ⊗Fb with

HK := ⊕∞n=0L
2
sym(Rdn;K), (26)

where L2
sym(Rdn;K) is the set of K-valued, square integrable symmetric

functions on Rdn with L2
sym(R0;K) := K. Let

Hfin
K =

{
Ψ = {Ψ(n)}∞n=0 ∈ FK | Ψ(k) = 0K for all k > J with some J

}
.
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It is clear that for Ψ = {Ψ(n)}∞n=0 ∈ Hfin
K ,

(
Ψ(m),H ′Ψ(n)

)
= 0 for |m− n| > 5. (27)

Lemma 2.2 Assume (S.1)–(S.3). Then H0 + βH ′ is essentially self-
adjoint on D(H0) ∩Hfin

K .

Proof. Let X , be the Hilbert spaces and S0, S′, NX and L be the operators
in Appendix A. Now we apply HK to X , H0 to S0, βH ′ to S′, I ⊗ Nb to
NX , and I⊗ I to L under the identification (26). Then, by (40) and Lemma
2.1, it is seen that H0 + βH ′ satisfies the assumptions (A.1) and (A.2) in
Appendix A. In addition, by the definition of H0 + βH ′, (A.3) is satisfied.
Hence by Theorem A, the proof is completed. ¤

Proof of Proposition 1.1. By Lemma 2.2, it is enough to show that

D(H0) ∩Hfin
K ⊂ D(

H�D0

)
. (28)

Let

Ej
K := EK([E0(K), j)), χn,j(k1, . . . ,kn) := χIj

(k1)× · · · × χIj
(kn),

where EK denotes the spectral projection of K and χIj
the characteristic

function on Ij = [−j, j)× · · · × [−j, j) ⊂ Rd. Let Ψ = {Ψ(0),Ψ(1), . . . ,Ψ(J),

0, 0, . . . } ∈ D(H0) ∩Hfin
K . Then Ψ(n), n 6 J , can be represented as

Ψ(n) =
∞∑

k=1

un,k ⊗ ψ
(n)
n,k ∈ D(K ⊗ I) ∩ D(

I ⊗ dΓb(ω)�⊗n
s L2(Rd)

)
,

where un,k ∈ H and Ψ(n)
n,k ∈ ⊗n

s L2(Rd). Let

Ψ(n)
j :=

∞∑

k=1

(
Ej

Kun,k

)⊗ (
χn,jψ

(n)
n,k

)
, j = 1, 2, . . . , (29)

Ψ(n)
j,q :=

q∑

k=1

(
Ej

Kun,k

)⊗ (
χn,jψ

(n)
n,k

)
, j = 1, 2, . . . . (30)
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It is seen that Ψ(n)
j = (Ej

K ⊗Mχn,j
)Ψ(n), where Mχn,j

denotes the multi-
plication operator defined by (Mχn,j

Ψ(n))(k1, . . . ,kn) = χn,j(k1, . . . ,kn) ·
Ψ(n)(k1, . . . ,kn). Hence limj→∞ ‖Ψ(n)

j −Ψ(n)‖ = 0. Since Ψ(n) ∈ D(K⊗I),

it is seen that ‖(K⊗I)Ψ(n)
j −(K⊗I)Ψ(n)‖ = ‖(Ej⊗Mχn,j−I)(K⊗I)Ψ(n)‖ →

0 as j → ∞. In addition, we have ‖I ⊗ dΓb(ω)Ψ(n)
j − I ⊗ dΓb(ω)Ψ(n)‖ =

‖(Ej ⊗Mχn,j
− I)(I ⊗ dΓb(ω))Ψ(n)‖ → 0 as j →∞. By Lemma 2.1, we see

that
∥∥(Cl ⊗ φ(gl)4)Ψ

(n)
j − (Cl ⊗ φ(gl)4)Ψ(n)

∥∥

6 Md

∥∥(Cl ⊗ (N + 1)2)
(
Ψ(n)

j −Ψ(n)
)∥∥

6 (n + 1)2Md‖Cl‖
∥∥Ψ(n)

j −Ψ(n)
∥∥ → 0,

as j → ∞. Hence, we have ‖HΨ(n)
j − HΨ(n)‖ → 0 as j → ∞. By the

definition of Ψ(n)
j,q , it can be also seen that ‖Ψ(n)

j,q −Ψ(n)
j ‖ → 0 and ‖HΨ(n)

j,q −
HΨ(n)

j ‖ → 0 as q → ∞. Since {Ψ(n)
j,q } is a sequence of D0, we obtain Ψ ∈

D(H�D0). Thus (28) is obtained. ¤

2.2. Proof of Proposition 1.2
Let ξ ∈ D(ω−1/2). It is well known that for Ψ ∈ D(dΓb(ω)1/2),

‖a(ξ)Ψ‖ ≤
∥∥∥∥

ξ√
ω

∥∥∥∥
∥∥dΓb(ω)1/2Ψ

∥∥, (31)

‖a∗(ξ)Ψ‖ ≤
∥∥∥∥

ξ√
ω

∥∥∥∥
∥∥dΓb(ω)1/2Ψ

∥∥ + ‖ξ‖‖Ψ‖, (32)

and hence

‖φ(ξ)Ψ‖ ≤
√

2
∥∥∥∥

ξ√
ω

∥∥∥∥
∥∥dΓb(ω)1/2Ψ

∥∥ +
1√
2
‖ξ‖‖Ψ‖. (33)

For ξ ∈ D(ω), it follows that on Ffin
b (L2(Rd)),

[dΓb(ω), a(ξ)] = −a(ωξ), [dΓb(ω), a∗(ξ)] = a∗(ωξ). (34)

Moreover it is seen in ([2, Lemma 2.4]) that for ξ ∈ D(ω1/2) ∩ D(ω),
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∥∥[(dΓb(ω) + 1)1/2, a](ξ)]Ψ
∥∥

≤ c̃
(‖ω1/2ξ‖+ ‖ωξ‖)∥∥(dΓb(ω) + 1)1/2Ψ

∥∥ (35)

where c̃ = 1
π

∫∞
0

√
λ

(λ+1)2 dλ. By (31), (32) and (35), we obtain the following
lemma.

Lemma 2.3 Let ξ ∈ D(ω−1/2) and η ∈ D(ωk/2), k = −1, 1, 2. Then for
Ψ ∈ D(dΓb(ω)),

∥∥a](ξ)a](η)Ψ
∥∥ ≤

∥∥∥∥
ξ√
ω

∥∥∥∥
∥∥∥∥

η√
ω

∥∥∥∥‖(dΓb(ω) + 1)Ψ‖

+ Z(ξ, η)
∥∥(dΓb(ω) + 1)1/2Ψ

∥∥ + ‖ξ‖‖η‖‖Ψ‖,

where Z(ξ, η) = c̃
∥∥ ξ√

ω

∥∥(‖ω1/2η‖+ ‖ωη‖) +
∥∥ ξ√

ω

∥∥‖η‖+ ‖ξ‖
∥∥ η√

ω

∥∥.

From Lemma 2.3 the following corollary immediately follows.

Corollary 2.4 Assume (S.1) and g ∈ D(ωk/2), k = −1, 1, 2. Then there
exist constants γ1 > 0, γ2 > 0 depending on g such that for Ψ ∈ D(dΓb(ω)),

‖φ(g)2Ψ‖ ≤ γ1‖dΓb(ω)Ψ‖+ γ2‖Ψ‖.

By the algebraic identity [XY,Z] = X[Y, Z] + [X, Z]Y and (34), we see
that for Ψ ∈ Ffin

b (L2(Rd)) and for ξ ∈ D(ω),

[
φ(ξ)2, [φ(ξ)2, dΓ(ω)]

]
Ψ = −4(ξ, ωξ)φ(ξ)2Ψ. (36)

Lemma 2.5 Assume (S.1)–(S.5). Then for sufficiently small β > 0, there
exist constants c0 > 0 and d0 > 0, such that

‖H0Ψ‖+ ‖H ′Ψ‖ 6 c0‖HΨ‖+ d0‖Ψ‖, Ψ ∈ D(H). (37)

Proof. Let Ψ ∈ D0. Then we see that

‖HΨ‖2 = ‖H0Ψ‖2 + β2‖H ′Ψ‖2 + β(Ψ, (H ′H0 + H0H
′)Ψ). (38)

By using the equality X2Y + Y X2 = [X, [X, Y ]] + 2XY X with applying
C

1/2
l to X, and H0 to Y , we have
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(Ψ, (H ′H0 + H0H
′)Ψ)

>
M∑

l=1

(
Ψ,

[
C

1/2
l ⊗ φ(gl)

2
,
[
C

1/2
l ⊗ φ(gl)

2
,H0

]]
Ψ

)

=
M∑

l=1

{(
Ψ,

[
C

1/2
l ,

[
C

1/2
l ,K

]]⊗ φ(gl)
4Ψ

)

+
(
Ψ, Cl ⊗ [φ(gl)2, [φ(gl)2, dΓb(ωV )]]Ψ

)}
. (39)

By the assumption (S.4)–(S.5) and (36), we have

(Ψ, (H ′H0 + H0H
′)Ψ)

>
M∑

l=1

{
νl(Ψ, I ⊗ φ(gl)

4Ψ)− 4(gl, ωgl)(Ψ, Cl ⊗ φ(gl)
2Ψ)

}
. (40)

Then, by (S.3), we have

(Ψ, (H ′H0 + H0H
′)Ψ)

> −
M∑

l=1

{|νl|‖I ⊗ φ(gl)2Ψ‖2 + 4‖Cl‖(gl, ωgl)‖I ⊗ φ(gl)Ψ‖2
}
. (41)

By (33) and Corollary 2.4, there exists a constant Rl ≥ 0 such that

|νl|‖I ⊗ φ(gl)2Ψ‖2 + 4(gl, ωgl)‖Cl‖‖I ⊗ φ(gl)Ψ‖2

6 Rl(‖H0Ψ‖2 + ‖Ψ‖2). (42)

Hence, by (41), (42) and (38), we have

‖HΨ‖2 >
(

1− β
M∑

l=1

Rl

)
‖H0Ψ‖2 + β2‖H ′Ψ‖2 − β

M∑

l=1

Rl‖Ψ‖2

for Ψ ∈ D0. Let us take β sufficiently small such as 1 − β
∑M

l=1 Rl > 0.
Then (49) follows for all Ψ ∈ D0. Since D0 is a core of HL, we can extend
(49) for all Ψ ∈ D(H). Hence (37) is obtained. ¤

By the spectral decomposition theorem, it is seen that
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∥∥Cl ⊗ φ(gl)3Ψ
∥∥ ≤ ∥∥Cl ⊗ φ(gl)4Ψ

∥∥ + ‖Cl‖‖Ψ‖.

We also see that
∥∥Cl ⊗ φ(gl)4Ψ

∥∥ ≤ ‖H ′Ψ‖ (43)

follows by (S.5). Then by (37) and (43) we see that

∥∥(Cl ⊗ φ(gl)3)Ψ
∥∥ 6 c0‖HΨ‖+ (d0 + ‖Cl‖)‖Ψ‖, Ψ ∈ D(H). (44)

Proof of Proposition 1.2. To complete the proof, we show that H satisfies
the assumptions (E.1)–(E.4) in Appendix B with applying H = H0 + βH ′

to X = X0 + qX ′. It is seen that H satisfies (E.1)–(E.4). Then we check
(E.4). By the canonical commutation relations, we see that for Φ,Ψ ∈ D0,

(I ⊗ a∗(h)Φ,H ′Ψ)− (H ′Ψ, I ⊗ a(h)Φ)

= 2
√

2β
M∑

l=1

(h, gl)(Φ, Cl ⊗ φ(gl)3Ψ). (45)

By (44) and Lemma 2.5, we can extend (45) for all Ψ ∈ D(H). Let {fn}∞n=1

be the sequence of D(ω) ∩ D(ω−1/2) such that ‖fn‖ = 1, n ≥ 1, and w −
limn→∞ fn = 0. Then we have

(I ⊗ a∗(fn)Φ,H ′Ψ)− (H ′Ψ, I ⊗ a(fn)Φ)

= 2
√

2β

M∑

l=1

(fn, gl)(Φ, Cl ⊗ φ(gl)3Ψ) −→ 0,

as n →∞. Hence H satisfies the (E.4), and the proof is completed. ¤

3. Ground States

3.1. Massive Case
In this subsection we investigate the ground state of H in the massive

cases:

m := inf
k∈Rd

ω(k) > 0.



On generalized spin-boson models with singular perturbations 331

Let V > 0 and L > 0. We set

ΓV =
2π

V
Zd =

{
q = (q1, . . . , qd) | qj =

2π

V
nj , nj ∈ Z, j = 1, . . . , d

}
,

ΓV,L =
{
q = (q1, . . . , qd) ∈ ΓV | |qj |+ π

V
≤ L, j = 1, . . . , d

}
,

Let

Fb,V := Fb(`2(ΓV )).

We can regard Fb,V as a closed subspace of Fb(L2(Rd)). For a lattice point
q = (q1, . . . , qd) ∈ ΓV , we set the subset of Rd by

C(q, V ) :=
[
q1 − π

V
, q1 +

π

V

)
× · · · ×

[
qd − π

V
, qd +

π

V

)
.

Let us define the following functions

ωV (k) =
∑

q∈ΓV

ω(q)χC(q,V )(k), gl,L,V (k) =
∑

q∈ΓV,L

gl(q)χC(q,V)(k),

gl,L = χL(k)gl(k), (46)

where χC(q,V) is the characteristic function on C(q,V), and χL(k) =
χ[−L,L](k1) · · ·χ[−L,L](k3). Let

HV = K ⊗Fb,V ,

and

HL,V =
(
H0,V + βH ′

L,V

)
�D0

, (47)

where H0,V = K ⊗ I + I ⊗ dΓ(ωV ), H ′
L,V =

∑M
l=1 Cl ⊗ φ(gl,L,V )4, and

HL =
(
H0 + βH ′

L

)
�D0

, (48)

where H ′
L =

∑M
l=1 Cl⊗φ(gl,L)4. In a similar way as the proof of Proposition

1.1, it is proven that HL,V and HL are essentially self-adjoint on D0.
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Proposition 3.1 Assume that (S.1)–(S.5) holds. Let V and L are suffi-
ciently large, and β > 0 sufficiently small. Then

(1) there exist constants c1 > 0 and d1 > 0 independent of both V and L

such that

‖H0,V Ψ‖+
∥∥H ′

L,V Ψ
∥∥ 6 c1‖HL,V Ψ‖+ d1‖Ψ‖, Ψ ∈ D(HL,V ), (49)

(2) there exist constants c2 > 0 and d2 > 0 independent of L such that

‖H0Ψ‖+
∥∥H ′

LΨ
∥∥ 6 c2‖HLΨ‖+ d2‖Ψ‖, Ψ ∈ D(HL). (50)

Proof. In a similar way of Lemma 2.5, we have for Ψ ∈ D0,

‖HL,V Ψ‖2 = ‖H0,V Ψ‖2 + β2‖H ′
L,V Ψ‖2

+ β
(
Ψ, (H ′

L,V H0,V + H0,V H ′
L,V )Ψ

)
.

In a similar way as (41), we have

(
Ψ, (H ′

L,V H0,V + H0,V H ′
L,V )Ψ

)

>
M∑

l=1

{
νl(Ψ, I ⊗ φ(gl,L,V )4Ψ)− 4(gl,L,V , ωV gl,L,V )(Ψ, Cl ⊗ φ(gl,L,V )2Ψ)

}
.

(51)

Since limV→∞(gl,L,V , ωV gl,L,V ) = (gl,L, ωgl,L) and limL→∞(gl,L, ωgl,L) =
(gl, ωgl), we have for sufficiently large V ≥ 0 and L ≥ 0,

(
Ψ, (H ′

L,V H0,V + H0,V H ′
L,V )Ψ

)

> −
M∑

l=1

{|νl|‖I ⊗ φ(gl,L,V )2Ψ‖2 + 4‖Cl‖(gl, ωgl)‖I ⊗ φ(gl,L,V )Ψ‖2}.

(52)

By (33) and Corollary 2.4, there exists a constant R̃l ≥ 0 such that

|νl|‖I ⊗ φ(gl,L,V )2Φ‖2 + 4(gl, ωgl)‖Cl‖‖I ⊗ φ(gl,L,V )Ψ‖2

6 R̃l(‖H0,V Ψ‖+ ‖Ψ‖).
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Hence, by (52), we have

‖HL,V Ψ‖2 >
(

1− β
M∑

l=1

R̃l

)
‖H0,V Ψ‖2 + β2

∥∥H ′
L,V Ψ

∥∥2 − β
M∑

l=1

R̃l‖Ψ‖2

for Ψ ∈ D0. Hence sufficiently small β such as 1 − β
∑M

l=1 R̃l > 0, (49)
follows for all Ψ ∈ D0. Since D0 is a core of HL,V , we can extend (49) for
all Ψ ∈ D(H). Hence (49) is obtained. We can prove (2) in a similar way
as (1). ¤

Lemma 3.2 Assume (S.1)–(S.5) and (S.7). Then HL,V is reduced by
HV , and HL,V has purely discrete spectrum in [E0(HL,V ), E0(HL,V ) + m).

Proof. It is similar to ([5, Lemma 3.9, Lemma 3.10]). ¤

Lemma 3.3 Assume (S.1)–(S.6). Then for all z ∈ C\R, it follows that

lim
V→∞

‖(HL,V − z)−1 − (HL − z)−1‖ = 0, (53)

lim
L→∞

‖(HL − z)−1 − (H − z)−1‖ = 0. (54)

Proof. We see that

(HL,V − z)−1 − (HL − z)−1 = L1,V + L2,V ,

where

L1,V = (HL,V − z)−1(1⊗ dΓb(ω)− 1⊗ dΓb(ωV ))(HL − z)−1,

L2,V = β

M∑

l=1

(HL,V − z)−1
(
Cl ⊗ (φ(gl,L,V )4 − φ(gl,L)4)

)
(HL − z)−1.

Let c̃ > 0 and r̃ > 0 be the constants in (S.6) and we set R(V ) :=
c̃r̃d/2

(
π
V

)d( 1
2m + 1

)
.

Then it is seen ([5, Lemma 3.1]) that ‖(dΓb(ω) − dΓb(ωV ))Ψ‖ 6
2R(V )

1−R(V )‖dΓb(ω)Ψ‖, for Ψ ∈ D(dΓb(ω)).
Then we have
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‖L1,V ‖ 6 2R(V )
|Imz|(1−R(V ))

‖(I ⊗ dΓb(ω))(HL − z)−1)‖ → 0, (55)

as V → ∞. By (12) and the assumption (S.2), φ(gL,V ) commutes with
φ(gL). Then

M∑

l=1

Cl ⊗
(
φ(gl,L,V )4 − φ(gl,L)4

)
=

3∑

j=0

Sj ,

where Sj =
∑M

l=1 Cl ⊗ ((φ(gl,L,V ) − φ(gl,L))φ(gl,L,V )3−j
φ(gl,L)j), j =

0, . . . , 3.
Let Ψ = (HL − z)Ξ for Ξ ∈ D0. Then for Φ ∈ D0

|(Φ, L2,V Ψ)| 6 β

3∑

j=0

∣∣(Φ, (HL,V − z)−1Sj)Ξ)
∣∣. (56)

We evaluate the right side of (56). Let j = 0. We see that

∣∣(Φ, (HL,V − z)−1
S0Ξ)

∣∣ (57)

6
M∑

l=1

∥∥Cl ⊗ φ(gl,L,V )2(HL,V − z†)
−1

Φ
∥∥

· ‖I ⊗ φ(gl,L,V − gl,L)φ(gl,L,V )Ξ‖. (58)

It is seen that ‖φ(gl,L,V )2Θ‖ ≤ ‖φ(gl,L,V )4Θ‖+ ‖Θ‖ for Θ ∈ D(φ(gl,L,V )4).
Then by (49), the first term of (58) can be estimated as

∥∥Cl ⊗ φ(gl,L,V )2(HL,V − z†)−1Φ
∥∥

6
∥∥Cl ⊗ φ(gl,L,V )4(HL,V − z†)−1Φ

∥∥ + |‖Cl‖
∥∥(HL,V − z†)

−1
Φ

∥∥

6
(∥∥H ′

L,V (HL,V − z†)
−1∥∥ +

‖Cl‖
|Imz|

)
‖Φ‖

6
(

c1

(
1 +

|z|
|Imz|

)
+

d1 + ‖Cl‖
|Imz|

)
‖Φ‖. (59)

On the second term of (58), by Lemma 2.3 we have
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∥∥I ⊗ φ(gl,L,V − gl,L)φ(gl,L,V )Ξ
∥∥

≤ (‖ω−1/2(gl,L,V − gl,L)‖‖ω−1/2gl,L,V ‖+ Z(gl,L,V − gL, gl,L,V )
)

· ‖(dΓb(ω) + 1)(HL − z)−1‖‖Ψ‖
+ ‖gl,L,V − gl,L‖‖gl,L,V ‖‖(HL − z)−1‖‖Ψ‖. (60)

By (59) and (60), there exists a constant M0(gl,L,V , gl,L) > 0 such that

∣∣(Φ, (HL,V − z)−1
S0(HL − z)−1Ψ)

∣∣ 6
M∑

l=1

M0(gl,L,V , gl,L)‖Φ‖‖Ψ‖, (61)

and limV→∞M0(gL,V , gL) = 0. Since Ran [(HL − z)�D0 ] is dense in H, we
obtain

lim
V→∞

‖(HL,V − z)−1S0(HL − z)−1‖ = 0.

In a similar way as S0, we have for j = 1, 2, 3

lim
V→∞

‖(HL,V − z)−1Sj(HL − z)−1‖ = 0.

Thus (53) is obtained. (54) is also proven in a similar way as (53). ¤

Proposition 3.4 Assume (S.1)–(S.7). Then H has purely discrete spec-
trum in [E0(H), E0(H) + m). In particular H has a ground state.

Proof. By Lemma 3.2, HL,V has purely discrete spectrum in [E0(HL,V ),
E0(HL,V ) + m). In addition HL,V converges to HL in the norm resolvent
sense as V →∞ by Lemma 3.3. Hence by the general theorem ([27, Lemma
4.6]) HL has purely discrete spectrum in [E0(HL), E0(HL) + m). It is also
seen that HL converges to H in the norm resolvent sense as L → ∞ by
Lemma 3.3. Hence H also has purely discrete spectrum in [E0(H), E0(H)+
m). ¤
3.2. Ground states in Massless Cases

In this subsection, we assume that

inf
k∈Rd

ω(k) = 0.
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Let

ωm(k) = ω(k) + m, (m > 0),

and

H0,m = K ⊗ I + I ⊗ dΓb(ωm), (62)

Hm = (H0,m + β H ′)|D0 . (63)

By Proposition 1.1 and Theorem 1.2, Hm is essentially self-adjoint on D0

and has a ground state. Let Ψm be a normalized ground state of Hm:

HmΨm = EmΨm, ‖Ψm‖ = 1, (64)

where Em := E0(Hm).

In a similar way as Proposition 3.1, we obtain the following lemma.

Lemma 3.5 Assume (S.1)–(S.5). Then there exist constants c3 > 0 and
d3 > 0 independent of m such that

‖H0,mΨ‖+ ‖H ′Ψ‖ 6 c3‖HmΨ‖+ d3‖Ψ‖. (65)

Remark 3.1 It is noted that the condition m > 0 is not used in the proof
of Proposition 3.1. And hence we can prove (65) for m = 0.

Proposition 3.6 Assume (S.1)–(S.8). Then for sufficiently small m,
there exists a constant c4 > 0 independent of m such that

∥∥(I ⊗Nb)1/2Ψm

∥∥2 6 c4β
2

M∑

l=1

∥∥∥∥
gl

ωm

∥∥∥∥
2

. (66)

Proof. Let h ∈ D(ωm) ∩ D(ω−1/2
m ) and

Tm(h) := I ⊗ a(ωmh) + 2
√

2β

M∑

l=1

(h, gl)Cl ⊗ φ(gl)
3
.

Since Ψm ∈ D(I ⊗ dΓb(ωm)) and h ∈ D(ωm), Ψm ∈ I ⊗ a(ωmh) follows.
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By ‖Cl ⊗ φ(gl)
3Ψm‖ ≤ ‖Cl ⊗ φ(gl)

4Ψm‖+ ‖Cl‖‖Ψm‖, (43) and (65), Ψm ∈
D(Hm) implies that Ψm ∈ Cl ⊗ φ(gl)3. Then by the commutation relation
(34), we have

(Hm − Em)(I ⊗ a(h))Ψm = −Tm(h)Ψm. (67)

By (67), we see that

0 6
(
I ⊗ a(h)Ψm, (Hm − Em)I ⊗ a(h)Ψm

)

= −(I ⊗ a(ωmh)Ψm, I ⊗ a(h)Ψm)

− 2
√

2β
∑

l

(h, gl)
(
I ⊗ a(h)Ψm, Cl ⊗ φ(gl)

3Ψm

)
. (68)

Let {ei}∞i=1 be a complete orthonormal system of L2(Rd) such that ei ∈
D(ω1/2) ∩ D(ω−1/2). By (68), we have

νl,i :=
(

I ⊗ a

(
ei√
ωm

)
Ψm, I ⊗ a(

√
ωmel)Ψm

)

+ 2
√

2β
(
I ⊗ a(ηl)Ψm, Cl ⊗ φ(gl)

3Ψm

)
6 0,

where ηi = 1√
ωm

(
ei,

g√
ω

)
ei. It is seen ([5, Lemma 4.2]) that for all Ψ ∈

D(I ⊗ dΓ(ωm)),

∞∑

i=1

(
I ⊗ a

(
ei√
ωm

)
Ψ, I ⊗ a(

√
ωmei)Ψ

)
=

∥∥I ⊗N
1/2
b Ψ

∥∥2
. (69)

Since {ei}∞i=1 is a complete orthonormal system, we see that

∞∑

i=1

(
I ⊗ a(ηi)Ψm, Cl ⊗ φ(gl)

3Ψm

)

=
(

I ⊗ a

(
g

ωm

)
Ψm, Cl ⊗ φ(gl)

3Ψm

)
. (70)

Then by (69) and (70) it follows that
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0 >
∞∑

i=1

νl,i =
∥∥I ⊗N

1/2
b Ψm

∥∥2 + 2
√

2β

(
I ⊗ a

(
g

ωm

)
Ψm, Cl ⊗ φ(gl)

3Ψm

)
.

Thus we have

∥∥I ⊗N
1/2
b Ψm

∥∥2 6 2
√

2β

∥∥∥∥
(

I ⊗ a

(
gl

ωm

))
Ψm

∥∥∥∥
∥∥Cl ⊗ φ(gl)3Ψm

∥∥. (71)

Note that
∥∥(

I ⊗ a
(

gl

ωm

))
Ψm

∥∥ 6
∥∥ gl

ωm

∥∥‖(I ⊗N
1/2
b )Ψm‖. From (65) and (43)

it follows that
∥∥Cl ⊗ φ(gl)3Ψm

∥∥ 6
∥∥Cl ⊗ φ(gl)4Ψm

∥∥ + ‖Cl‖‖Ψm‖
6 c3Em + d3 + ‖Cl‖. (72)

By the definition of ωm, we see that dΓ(ωm) = dΓ(ω) + mNb. Then for
m < m′, Em < Em′ follows. Hence the right side of (72) is suppressed by
some constant independent of m. Then (66) is obtained. ¤

Let dim K = ∞. By (S.7) we can take the sequence {µr}∞r=0 which
is eigenvector of K with µr 6 µr+1 and µr → ∞ as r → ∞. We define
orthogonal projections by

Pr : the projection from K to ⊕r
s=0Ks,

P⊥r := 1− Pr,

PΩb : the projection from Fb to {zΩb|z ∈ C}.

Lemma 3.7 Assume (S.1)–(S.8). Then

(1) limm→0 Em = E0(H),
(2) Let m be sufficiently small. Then for sufficiently large r, there exists a

constant c5 such that

(
Ψm, (P⊥r ⊗ PΩb)Ψm

)
6 c5

(µr+1 − Em)2
. (73)

Proof. (1) is proven in a similar way as ([5, Lemma 4.11]). (2) is also
proven in a similar way as ([5, Lemma 4.3]). ¤
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Proof of Theorem 1.3.
(Case of dim K = ∞) By (1) in Lemma 3.7 and the general theorem

([5, Lemma 4.9]), it is enough to show that there exists a nonzero weak limit
of Ψm as m → 0. Since ‖Ψm‖ = 1, there exists a subsequence {Ψmj

} such
that Ψ0 := w − limj→∞Ψmj

. By the inequality Pr ⊗ PΩb > I − I ⊗ Nb −
P⊥r ⊗ PΩb , (66) and (73), we have

(
Ψmj

, (Pr ⊗ PΩb)Ψmj

)

> 1− c4|β|2
M∑

l=1

∥∥∥∥
gl

ωmj

∥∥∥∥
2

− c5

(µr+1 − E0(Hmj ))2
. (74)

Since µr → ∞ as r → ∞, we see that (Ψmj
, (Pr ⊗ PΩb)Ψmj

) ≥ 1 −
c4|β|2

∑M
l=1

∥∥ gl

ωmj

∥∥2 for sufficiently large r. Since Pr ⊗ PΩb is a finite rank

operator, (Pr ⊗ PΩb)Ψmj
strongly converges to (Pr ⊗ PΩb)Ψ0 as j → ∞.

Then (Ψ0, (Pr ⊗ PΩ)Ψ0) > 1 − c4β
2
∑M

l=1

∥∥ gl

ω0

∥∥2. For sufficiently small β,
we have (Ψ0, (Pr ⊗ PΩ)Ψ0) > 0. Then Ψ0 6= 0 follows, and Ψ0 is a ground
state of H.

(Case of dim K < ∞) By I ⊗ PΩ > I − I ⊗ Nb, we get (Ψm, (I ⊗
PΩb)Ψm) > 1−c4|β|2

∑M
l=1

∥∥ gl

ωm

∥∥2
> 0 for sufficiently small β. Then Ψ0 6= 0,

and Ψ0 is a ground state of H. ¤
3.3. Uniqueness of Ground States
Lemma 3.8 Assume (S.9). Then for η ∈ C2

0 (Rd\O) ∩ L1(Rd),

∣∣∣∣
∫

Rd

η(k)e−itω(k)dk
∣∣∣∣ ≤

1
t2

∫

Rd

|η̃(k)|dk, (75)

where η̃(k) = ∂2

∂kj1
∂kj2

{(∂ω(k)
∂kj1

)−1(∂ω(k)
∂kj2

)−1
η(k)

}
with j1 6= j2.

Proof. It is seen that e−itω = − 1
t2

(∂ω(k)
∂kj1

)−1(∂ω(k)
∂kj2

)−1 ∂2

∂kj1
∂kj2

e−itω. Using

integration by parts, we have
∫

Rd

η(k)e−itω(k)dk =
1
t2

∫

Rd

η̃(k)e−itω(k)dk.

Hence we can complete the proof. ¤
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Proof of Proposition 1.4. We see that for Φ,Ψ ∈ D(H),

(I ⊗ a∗(h)Φ,H ′Ψ)− (H ′Ψ, I ⊗ a(h)Φ) = 2
√

2β
M∑

l=1

(h, gl)(Φ, Cl ⊗ φ(gl)3Ψ)

=
∫

Rd

h(k)(Φ, T (k)Ψ)dk,

where

T (k)Ψ := 2
√

2β
M∑

l=1

gl(k)Cl ⊗ φ(gl)3Ψ. (76)

To complete the proof it is enough to show that H and T (k) satisfy the
assumptions (H.1)–(H.6) in Appendix C with applying H = H0 + βH ′ to
X = X0 + qX ′ and T (k) to S(k). But it is trivial to see (H.1)–(H.3) and
(H.5). Hence it remains to show (H.4) and (H.6). Let h ∈ C2

0 (Rd\O). We
see that

∣∣∣∣
∫

Rd

h(k)
(
Φ, e−it(H−E0(H)+ω(k))T (k)Ψ

)
dk

∣∣∣∣

≤ 2
√

2β‖Φ‖
M∑

l=1

‖Cl ⊗ φ(g)3Ψ‖|(h, e−itωgl)|.

Then Lemma 3.8 implies that
∫
Rd h(k)(Φ, e−it(H−E0(H)+ω(k))T (k)Ψ)dk ∈

L1([0,∞), dt). We can also see that

‖T (k)Ψ‖ ≤ 2
√

2β
M∑

l=1

|gl(k)|‖Cl ⊗ φ(gl)3Ψ‖, (77)

and hence
∫
Rd ‖T (k)Ψ‖2dk < ∞ follows. Thus (H.4) is satisfied. Let Ψg

be a ground state of H. Then by (44) and (77), we have

‖(H − E0(H) + ω(k))−1T (k)Ψg‖

≤
M∑

l=1

(c0E0(H) + d0 + ‖Cl‖) |gl(k)|
ω(k)

‖Ψg‖,
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and hence (H.6) follows. ¤

4. Asymptotic fields

4.1. Existence of Asymptotic Fields
Let

a]
t(h) := eitHe−itH0(I ⊗ a](h))eitH0e−itH ,

where a](h) = a(h) or a∗(h). Let us prepare the some inequalities for
proving the existence of the asymptotic fields. It is noted that by the spectral
decomposition theorem, for all ε > 0, there exists λε > 0 such that for all
Ψ ∈ D(dΓb(ω)),

‖dΓb(ω)1/2Ψ‖ ≤ ε‖dΓb(ω)Ψ‖+ λε‖ψ‖. (78)

Proposition 4.1 Assume (S.1)–(S.3), (S.5) and (S.9). Let Ψ ∈ D(H)
and s′ < s. Then

as(h)Ψ− as′(h)Ψ

= −4iβ√
2

M∑

l=1

∫ s

s′
(gl, e

−itωh)eitH(C ⊗ φ(gl)3)e−itHΨ dt, (79)

where the above integral is the Bochner integral.

Proof. Let Φ,Ψ ∈ D(H) and Φ(t) = e−itHΦ, Ψ(t) = e−itHΨ. It is seen
that e−itH0(I ⊗ a(h))eitH0 = I ⊗ a(e−itωh). Then by the strong differentia-
bility of eitHΨ and eitH0Ψ with respect to t, we have

d

dt
(Φ, at(h)Ψ)

= i
(
HΦ(t), I ⊗ a(e−itωh)Ψ(t)

)− i
(
H0Φ(t), I ⊗ a(e−itωh)Ψ(t)

)

+ i
(
I ⊗ a∗(eitωh)Φ(t),H0Ψ(t)

)− i
(
I ⊗ a∗(eitωh)Φ(t),HΨ(t)

)
. (80)

Since Φ(t), Ψ(t) ∈ D(H), there exist sequences {Φn}∞n=1 and {Ψn}∞n=1

such that Φn ∈ D0, Φn → Φ(t), HΦn → HΦ(t), and Ψn ∈ D0, Ψn →
Ψ(t)HΨn → HΨ(t) as n →∞. Since Φn, Ψn ∈ D0, we have
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νn : = i
(
Φn, [H ′, I ⊗ a(e−itωh)]Ψn

)

= i
M∑

l=1

(
Φn, Cl ⊗ [φ(gl)4, a(e−itωh)]Ψn

)

=
−4i√

2

M∑

l=1

(gl, e
−itωh)(Φn, Cl ⊗ φ(gl)3Ψn). (81)

On the other hand, HΨn → HΨ(t) yields that H0Ψn → H0Ψ(t) by (37).
Then by (31) and (78), we obtain that I⊗a(e−itωh)Ψn → I⊗a(e−itωh)Ψ(t)
as n → ∞. In addition, (44) implies that limn→∞ Cl ⊗ φ(gl)3Ψn = Cl ⊗
φ(gl)3Ψ(t) as n →∞. Hence we see that

(80) = lim
n→∞

νn =
−4i√

2
β

M∑

l=1

(gl, e
−itωh)

(
Φ(t), Cl ⊗ φ(gl)3Ψ(t)

)
.

Thus

(Φ, (as(h)− as′(h))Ψ)

=
−4iβ√

2

M∑

l=1

∫ s

s′
(gl, e

−itωh)
(
Φ, eitH(Cl ⊗ φ(g)3)e−itHΨ

)
dt,

follows. Since D(H) is dense in H, the proof is completed. ¤

Proof of Theorem 1.5. Let h ∈ C2
0 (Rd\O), and Ψ ∈ D(H). By Proposi-

tion 4.1,

‖(as(h)− as′(h))Ψ‖

6 4β
4∑

l=1

∫ s

s′
|(gl, e

−itωh)|∥∥eitH(Cl ⊗ φ(gl)3)e−itHΨ
∥∥dt. (82)

It is seen by (44) that

∥∥(Cl ⊗ φ(gl)3)e−itHΨ
∥∥ ≤ c0‖HΨ‖+ (d0 + ‖Cl‖)‖Ψ‖. (83)

Then by (82), (83) and Lemma 3.8, we obtain that ‖(as(h) − as′(h))Ψ‖ 6
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const.
∫ s

s′
1
t2 dt → 0, as s, s′ → ∞ for h ∈ C2(Rd\O). Let ξ ∈ D(ω−1/2).

Since C2
0 (Rd\O) is a core of ω−1/2, there exists a sequence {ξn} ⊂

C2
0 (Rd\O) such that ‖ξn − ξ‖ → 0, and ‖ω−1/2ξn − ω−1/2ξ‖ → 0 as n → 0.

It is seen that for Ψ ∈ D(H) and t′ < t,

∥∥as(ξ)Ψ− as′(ξ)Ψ
∥∥ ≤ ∥∥a(e−itω(ξ − ξn))e−isHΨ

∥∥ +
∥∥as(ξn)Ψ− as′(ξn)Ψ

∥∥

+
∥∥a(e−is′ω(ξ − ξn))e−is′HΨ

∥∥. (84)

By (31), (37) and (78),

∥∥a(e−isω(ξ − ξn))e−isHΨ
∥∥

≤
∥∥∥∥

ξ − ξn√
ω

∥∥∥∥(εc0‖HΨ‖+ (εd0 + λε)‖Ψ‖) + ‖ξ − ξn‖‖Ψ‖ → 0,

as n →∞. Hence by (84), ‖as(ξ)Ψ− as′(ξ)Ψ‖ → 0, as s, s′ →∞. ¤

4.2. Algebraic Properties of the Asymptotic Fields
Lemma 4.2 Assume (S.1)–(S.3) and (S.9).

(1) Let h ∈ D(ω−1/2). Then for Φ,Ψ ∈ D(H),

(Φ, a±∞(h)Ψ) =
(
a∗±∞(h)Φ,Ψ

)
.

(2) Let h, h′ ∈ D(ωk/2), k = −1, 1, 2. Then on D(H),

[
a±∞(h), a∗±∞(h′)

]
= (h, h′),

[
a±∞(h), a±∞(h′)

]
=

[
a∗±∞(h), a∗±∞(h′)

]
= 0.

(3) Let h ∈ D(ω−1/2) ∩ D(ω). Then it follows that on D(|H|3/2),

[H, a±∞(h)] = −a±∞(ωh), [H, a∗±∞(h)] = a∗±∞(ωh).

(4) Let ΨE be an eigenvector of H with eigenvalue E. Then for h ∈
D(ω−1/2),

a±∞(h)ΨE = 0. (85)
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Proof. (1) is proven in a similar way as ([19, Lemma 4.5]), (2) is ([19,
Lemma 4.8]), (3) is ([19, Lemma 4.10]) and (4) is ([19, Lemma 4.11, Lemma
4.12]). ¤

Proof of Corollary 1.6. Let hi ∈ D(ω−1/2), i = 1, . . . , n. By Lemma 4.2,

eitHa∗±∞(h1) . . . a∗±∞(hn)Ωg

= eitE0(H)a∗±∞(eitωh1) . . . a∗±∞(eitωhn)Ωg. (86)

Then eitH leaves F±∞ invariant, and hence H is reduced by F±∞. In
addition, we see that

W±∞eitdΓb(ω)a∗(h1) . . . a∗(hn)Ωb

= eit(H−E0(H))W±∞a∗(h1) . . . a∗(hn)Ωb.

Thus we obtain W±∞eit(dΓb(ω)+E0(H)) = eitHW±∞, on F±∞ and dΓb(ω) +
E0(H) = W ∗

±∞H�F±∞W±∞. Hence the proof is completed. ¤

5. Concluding Remarks

In this paper we analyzed the GSB-Hamiltonian with a singular pertur-
bation. But this model does not include the Hamiltonian of the system of
non-relativistic particles coupled to bose fields

H = −4+ V + dΓb(ω) + κφΛ(x)4,

where

φΛ(x) =
∫

Rd

χΛ(k)√
2ω(k)

(
akeik·x + a∗ke−ik·x)

dk,

and χΛ is the ultraviolet cutoff. Indeed, the singular perturbation H ′ defined
in (15) is finite tensor product. This problem is left for future study.

Appendix A. ([3, Self-adjointness])

Let Xn, n > 0, be a sequence of a Hilbert space. We consider the infinite
direct sum of Xn:
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X =
∞⊕

n=0

Xn

with the inner product (y, x)X =
∑∞

n=0(y
(n), x(n))Xn

for x = {x(n)}∞n=0,
{y(n)}∞n=0 ∈ X . Let S0 be a self-adjoint operator on X with S0(D(S0) ∩
Xn) ⊂ Xn and S′ be a symmetric operator on X such that D(S′) ⊃ Dfin

X ,
where

Dfin
X :=

{
x = {x(n)}∞n=0 ∈ X | x(k) = 0 for all k > J with some J

}
.

The number operator NX on X is defined by (NXx)(n) = nx(n). Let us
define S the symmetric operator by

S = S0 + S′.

We introduce the following assumptions:

(A.1) There exist a constant c > 0 and linar operator L on X such that
D((S�D(S0)∩Dfin

X
)∗) ⊂ D(L), L(D(L) ∩ Xn) ⊂ Xn, for all n ≥ 0, and

|(y, x)| 6 c‖Ly‖‖(NX + 1)2x‖, x, y ∈ D(S0) ∩ Dfin
X .

(A.2) There exists an integer p > 0 such that for all x ∈ Dfin
X ,

(
x(m), S′x(n)

)
X = 0 for |m− n| > p + 1.

(A.3) S is bounded from below.

Theorem A ([3, Theorem 2.1]) Suppose that (A.1)–(A.3). Then S is
essentially self-adjoint on D(S0) ∩ Dfin

X .

Appendix B. [4, Essential spectrum]

Let X0 = A⊗ I + I ⊗ dΓb(ω), and

X = X0 + qX ′, q ∈ R.

We assume the following conditions:

(E.1) The operator A is self-adjoint and bounded from below.
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(E.2) X ′ is a symmetric operator on H.
(E.3) X is self-adjoint and bounded from bellow.
(E.4) For the sequence {ξn}∞n=1 of D(ω) ∩ D(ω−1/2) such that ‖ξn‖ = 1,

n ≥ 1, and w − limn→∞ ξn = 0, it follows that for Ψ ∈ D(X),

lim
n→∞

{
((X ′)∗Ψ, I ⊗ a(ξn)∗Ψ)− (I ⊗ a(ξn)Ψ, X ′Ψ)

}
= 0.

Theorem B ([4, Theorem 1.3]) Assume (E.1)–(E.4) and σ(ω) = [0.∞).
Then σ(X) = σess(X) = [E0(X),∞).

Appendix C. [20, Uniqueness of ground states]

Let X0 = A⊗ I + I ⊗ dΓb(ω), and

X = X0 + qX ′, q ∈ R.

We introduce the following assumptions:

(H.1) The operator A is self-adjoint and bounded from below.
(H.2) X ′ is a symmetric operator on H, and there exist constants a ≥ 0

and b ≥ 0 such that

‖X ′Ψ‖ ≤ a‖X0Ψ‖+ b‖Ψ‖, Ψ ∈ D(H0).

(H.3) There exists an operator S(k) : H → H, k ∈ R3, such that for
Φ,Ψ ∈ D(H0),

(I ⊗ a∗(f)Φ, X ′Ψ)− (X ′Φ, I ⊗ a(f)Ψ) =
∫

Rd

f(k)(Φ, S(k)Ψ)dk.

(H.4) Let Φ ∈ D(X0), f ∈ C∞(Rd) and S(k) in (H.3). Then for any ground
state ϕ of X, it follows that

∫

Rd

f(k)
(
Φ, eit(X(q)−E0(X(q))+ω(k))S(k)ϕ

)
dk ∈ L1([0,∞), dt),

and
∫
Rd ‖S(k)ϕ‖2dk < ∞.

Theorem C.1 ([20, Theorem 2.9]) Assume (H.1)–(H.4). Let ϕ be an
ground state of X. Then (a) and (b) are equivalent.
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(a) ϕ ∈ D(I ⊗N
1/2
b ).

(b)
∫
Rd ‖(X − E0(X) + ω(k))−1S(k)ϕ‖2dk < ∞.

In particular, if (a) or (b) holds, then

∥∥(I ⊗N
1/2
b )ϕ

∥∥2 = q2

∫

Rd

‖(X − E0(X) + ω(k))−1S(k)ϕ‖2dk.

In addition, we introduce following assumptions:

(H.5) (Existence of positive spectral gap of A) It holds that inf σess(A) −
E0(A) > 0.

(H.6) It follows that

lim
q→0

sup
ϕ∈ker(X−E0(X))\{0}

q2

∫

Rd

· ∥∥(X − E0(X) + ω(k))−1S(k)ϕ
∥∥2

dk/‖ϕ‖2 = 0.

Theorem C.2 ([20, Theorem 4.2]) Assume (H.1)–(H.6). Then there exists
a constant q̃ > 0 such that for |q| < q̃,

dim ker(X(q)− E0(X(q))) ≤ dim ker(A− E0(A)).
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