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The wave equation for the p-Laplacian

Michael Dreher
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Abstract. We consider generalized wave equations for the p-Laplacian and prove the

local in time existence of solutions to the Cauchy problem. We give an estimate of the life-

span of the solution, and show by a generic counter-example that global in time solutions

can not be expected.

Key words: local in time Sobolev solutions, blow-up in finite time, weakly hyperbolic

equations.

1. Introduction

This paper is devoted to strong solutions to the hyperbolic Cauchy
problem

wtt(t, x)− (|wx(t, x)|p−2wx(t, x))x = 0, (1.1)

w(0, x) = Φ(x), wt(0, x) = Ψ(x),

where p is a positive real number, not necessarily an even integer. More
generally, we shall study

wtt(t, x)− a(wx(t, x))wxx(t, x) = 0, (1.2)

w(0, x) = Φ(x), wt(0, x) = Ψ(x),

where a = a(s) : [−M, M ] → R is a function with the following properties.

Condition 1 For all s ∈ [−M, M ] = BM , the following holds:

a(s) ≥ 0, a(s) = 0 ⇐⇒ s = 0, (1.3)

a(s) = s2a0(s), a0(s) ≤ Ca, (1.4)

0 ≤ sa′0(s) ≤ Caa0(s), 0 ≤ sa′(s) ≤ Caa(s). (1.5)

Additionally, a0 is even and a0, a1 ∈ CP (BM ), where a1(s) = a′(s)/s, and
P ∈ N.
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Remark 1.1 The choice a(s) = (p−1)|s|p−2 leads to (1.1) with p > P+4,
or p ∈ 2N, p ≥ 4, and P ∈ N is arbitrary.

The first of our main results is the following.

Theorem 1.2 Assume that the function a = a(s) satisfies Condition 1,
and suppose that the initial data Φ, Ψ ∈ Ck+2

0 (R) with 4 ≤ k ≤ P + 1,
P, k ∈ N, are compatible to a(s), i.e., they are real–valued and ‖Φx‖L∞ <

M .
Then the Cauchy problem (1.2) has a real–valued local solution w with

w ∈ L∞([0, T0], Hk(R)), ∂2
tw ∈ L∞([0, T0], Hk−2(R)).

This solution vanishes outside [0, T0]× supp(Φ, Ψ). The estimate T0 of the
life span only depends on M , supp(Φ, Ψ), and the norms ‖(Φ, Ψ)‖C6(R),
‖(a0, a1)‖C3(BM ). The solution is unique in the space of all functions w
with w ∈ L∞([0, T0], H4(R)), ∂2

tw ∈ L∞([0, T0], H2(R)).

Remark 1.3 By the same arguments, we can study the more general
equation

wtt − a(wx)wxx − b(wx)− cw = 0,

where a(s) is as above, b(s) is sufficiently smooth with b(0) = 0 and |b′(s)|2 ≤
Ca(s), and c is a real constant. It is even possible to allow an additional
dependence on time of a, b, c. However, for simplicity, we stick to (1.2).

Remark 1.4 If the function a(s) is analytic, we can drop Condition 1
and follow a modified version of the proof given in [17], where equations
utt − a(u)∆u = 0 with analytic function a were studied.

In the proof, we shall replace the nonsmooth coefficient a(s) by a smooth
approximation, preserving the other conditions.

Condition 2 The coefficient a = a(s) satisfies Condition 1, and a0 ∈
C∞(BM ).

Theorem 1.5 Let the assumptions of Theorem 1.2 be satisfied. Addition-
ally, suppose that a = a(s) satisfies Condition 2, and Φ, Ψ ∈ C∞0 (R).

Then the solution w to the Cauchy problem (1.2) belongs to C∞b ([0, T0]×
R).

The life span of the solution tends to infinity for initial data approaching
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zero, in the following sense. Fix some 0 < λ¿ 1, and consider the Cauchy
problem

wtt(t, x)− a(wx(t, x))wxx(t, x) = 0, (1.6)

w(0, x) = λΦ(x), wt(0, x) = λΨ(x).

Theorem 1.6 Let the assumptions of Theorem 1.2 be satisfied. Then the
lower estimate of the life span T0 = T0(λ) goes to infinity for λ→ 0. More
precisely,

T0(λ) ≥ C| lnλ|1/3, 0 < λ¿ 1.

It is known (see [7]) that (1.2) admits a unique local solution in Sobolev
spaces in the strictly hyperbolic case, (a(s) ≥ α > 0). However, this solution
is never a global classical solution, except in trivial cases. In [13], the Cauchy
problem

wtt(t, x)− a(wx(t, x))2wxx(t, x) = 0,

w(0, x) = Φ(x), wt(0, x) = Ψ(x)

has been considered, where a(wx) > 0, a′(wx) 6= 0, and the data Φ, Ψ have
compact support. It was shown that the only global solution w ∈ C2(Rt ×
Rx) is w ≡ 0. In other words, every nontrivial solution develops a singularity
in finite time, it is the second derivatives of w that become infinite. This
result can not be applied to (1.2) since (1.2) is neither strictly hyperbolic
nor everywhere genuinely nonlinear. However, by a different method, we
show in Section 9 that global solutions to (1.1) can not exist in case of p = 4
provided that the initial data satisfy appropriate sign conditions.

At first glance, it seems natural to attack (1.2) by a linearisation argu-
ment, leading to a family of Cauchy problems

w
(n+1)
tt (t, x)− a(w(n)

x (t, x))w(n+1)
xx (t, x) = 0,

w(n+1)(0, x) = Φ(x), w
(n+1)
t (0, x) = Ψ(x),

and then one hopes to be able to show convergence w(n) → w∗ at least for
small times. In general, this direct approach will not work in the weakly
hyperbolic case. In fact, a Cauchy problem

wtt(t, x)− a(t)wxx(t, x) = 0, a ≥ 0, a ∈ C∞,
w(0, x) = Φ(x), wt(0, x) = Ψ(x), Φ, Ψ ∈ C∞
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without solution was constructed in [3]. On the other hand, (1.2) is well–
posed in Gevrey spaces with Gevrey index between 1 and 2 if a = a(s) is
analytic. This is a special case of much more general results in [14], [15]. If
one allows damping terms of the form (−∆)α∂tw in (1.2), 0 < α ≤ 1, then
the global existence and the energy decay of weak solutions can be proved,
see for instance [1], [2], [9], [11].

In [8], the Cauchy problem

wtt −∇(|∇w|p−2∇w)− |w|q−1w = 0, p, q > 1, q ≥ p− 1,

w(0, x) = Φ0(x), wt(0, x) = Ψ0(x),

has been studied. Assuming that Φ0 and Ψ0 are real–valued and that
‖Ψ0‖2

L2 /2+‖∇Φ0‖pLp /p ≤ ‖Φ0‖q+1
Lq+1 /(q+1), it was shown that ‖w(t, · )‖L2

blows up in finite time if
∫

Φ0(x)Ψ0(x)dx > 0, and that ‖w(t, · )‖L2 decays
(for t→∞) if

∫
Φ0(x)Ψ0(x)dx < 0.

The life span of periodic analytic solutions to the nonlinear Cauchy
problem

wtt = F (x, w, Dw, D2w), w(0, x) = λΦ(x), wt(0, x) = λΨ(x)

has been studied in [5]. Assuming that this equation is weakly hyperbolic
at (x, 0, 0, 0), the estimate T0(λ) ≥ C log | log λ| was proved.

Our approach relies on two key ingredients. The first is a careful inves-
tigation of a so-called separating curve, a method which is represented in [6].
The second is a certain decomposition of the solution and the reduction to a
hyperbolic 2×2 system of second order. This technique has been developed
in [4] and [17], where certain semilinear and quasilinear cases were studied.
This method consists of several steps, which are performed in the Sections 2
to 8. A more detailed description can be found at the end of Section 2. The
blow–up of solutions for a variant of (1.1) is shown in Section 9.

We employ the standard notations ∂x = ∂/∂x, ∂t = ∂/∂t; Hk(X) =
W k

2 (X) are the usual Sobolev spaces on an open set X, and C∞b (X) denotes
the linear space of all functions that are bounded and continuous together
with all their derivatives.

2. Transformation into a system

In order to be able to derive a priori estimates for (1.2), we shall trans-
form this Cauchy problem into a second order system. The main advantage
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is that we will have more information about the principal part available.
Set u(t, x) = ∂xw(t, x), φ(x) = ∂xΦ(x), ψ(x) = ∂xΨ(x). Assuming

that w is a solution to (1.2), we find that u solves

utt(t, x)− ∂x(a(u(t, x))∂xu(t, x)) = 0, (2.1)

u(0, x) = φ(x), ut(0, x) = ψ(x).

If φ(x0) = ψ(x0) = 0, then (∂kt u)(0, x0) = 0 for all k ∈ N. This suggests
the educated guess

u(t, x) = φ(x)g(t, x) + ψ(x)h(t, x),

g(0, x) = 1, h(0, x) = 0, gt(0, x) = 0, ht(0, x) = 1.

A direct calculation gives us utt = φgtt + ψhtt and

∂x(a(u)ux) = a(u)(φgxx + ψhxx)

+ a′(u)ux(φgx + ψhx) + 2a0(u)(φg + ψh)2(φxgx + ψxhx)

+ (φg + ψh)(a0(u)u(φxxg + ψxxh) + a1(u)(φxg + ψxh)2),

which leads us to

φ(gtt − ∂x(a(u)gx)− 2a0(u)ug(φxgx + ψxhx)− cg)

+ ψ(htt − ∂x(a(u)hx)− 2a0(u)uh(φxgx + ψxhx)− ch) = 0,

where we have introduced

c = c(x, g, h) = a0(u)u(φxxg + ψxxh) + a1(u)(φxg + ψxh)2.

Now we define the vector U = (g, h)T of unknowns and

A(x, U) =
(
a(φ(x)g + ψ(x)h) 0

0 a(φ(x)g + ψ(x)h)

)
, (2.2)

B(x, U) = 2a0(φ(x)g + ψ(x)h)

× (φ(x)g + ψ(x)h)
(
φx(x)g ψx(x)g
φx(x)h ψx(x)h

)
, (2.3)

C(x, U) =
(
c(x, U) 0

0 c(x, U)

)
. (2.4)

Clearly, if we are able to find a solution U = U(t, x) to the Cauchy problem

∂2
t U − ∂x(A(x, U)∂xU)−B(x, U)∂xU − C(x, U)U = 0, (2.5)
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U(0, x) = (1, 0)T , Ut(0, x) = (0, 1)T ,

then the function u(t, x) = φ(x)g(t, x) + ψ(x)h(t, x) solves (2.1).
In case of (1.6), we obtain the Cauchy problem

∂2
t U − ∂x(Aλ(x, U)∂xU)−Bλ(x, U)∂xU − Cλ(x, U)U = 0, (2.6)

U(0, x) = (1, 0)T , Ut(0, x) = (0, 1)T ,

where Aλ, Bλ, Cλ are defined as in (2.2)–(2.4), with (φ, ψ) replaced by
(λφ, λψ).

We will consider a linearised version of (2.5),

∂2
t V − ∂x(A(x, U)∂xV )−B(x, U)∂xV − C(x, U)V = F (t, x),

(2.7)

with one of the following initial conditions:

V (0, x) = V0(x), Vt(0, x) = V1(x), (2.8)

V (t0, x) = V0(x), Vt(t0, x) = V1(x), 0 < t0 < T, (2.9)

where U = U(t, x) is some vector valued function with
∥∥∥∥U(t, · )−

(
1
t

)∥∥∥∥
C1
b ([0, T ]×BR)

< ε¿ 1. (2.10)T

The paper is organised as follows. In Section 3, we study the behaviour
of A = A(x,U(t, x)) under the condition (2.10)T . Using results from [17],
we shall derive a priori estimates in Sobolev spaces for a solution V to (2.7)
in Section 4. Then, a regularisation argument will enable us to prove the
existence of a unique C∞ solution V to (2.7) in Section 5. By means of
Nash–Moser–Hamilton theory, the existence of a local C∞ solution U to
(2.5) will be shown in Section 6. The life span of this solution is studied
in Section 7, leading to a proof of Theorem 1.5. Finally, Theorem 1.2 is
proved in Section 8. The proof of Theorem 1.6 relies on a careful analysis
of the dependence of all constants on λ.

3. The separating curve

Assume that U = (g, h)T is defined on [0, T ] × BR and fulfils (2.10)T .
Setting U(t, x) + U(−t, x) := 2U(0, x), we extend U as a C1 function
to [−T, T ] × BR, and have

∥∥U(t, · )− (1, t)T
∥∥
C1([−T, T ]×BR)

< ε, allowing
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some modification in ε. The next proposition describes the behaviour of
the function a∗(t, x) = a(φ(x)g(t, x) + ψ(x)h(t, x)) in a neighbourhood of
the line {0} ×BR.

Proposition 3.1 Let a = a(s) satisfy Condition 1, and assume that φ, ψ
∈ C1

0 (R) are compatible data, i.e., ‖φ‖L∞ < M . Introduce the notation

Ωφψ = {x : |φ(x)|+ |ψ(x)| > 0}.
Then there are constants ε, α, τ > 0 such that for every U = (g, h)T

with (2.10)τ there is a γ ∈ C1(Ωφψ) such that a∗(t, x) = a(φ(x)g(t, x) +
ψ(x)h(t, x)) satisfies

αa∗(t, x)− ∂ta∗(t, x) ≥ 0 : t < γ(x), (t, x) ∈ [−τ, τ ]× Ωφψ,

(3.1)

αa∗(t, x) + ∂ta∗(t, x) ≥ 0 : t > γ(x), (t, x) ∈ [−τ, τ ]× Ωφψ,

(3.2)

a∗(γ(x), x)(γ′(x))2 ≤ 1
4

: x ∈ Ωφψ. (3.3)

Moreover, the function γ has the same regularity as φ, ψ, and U ; and the
constants ε, τ , α depend only on M , Ca, ‖(φ, ψ)‖C1.

Remark 3.2 The curve {t = γ(x)} separates the (t, x) space into two
parts. In the following section, different methods will be employed in both
parts in order to derive a priori estimates of the solution V of (2.7).

Remark 3.3 Condition (3.3) means that the curve {t = γ(x)} is nonchar-
acteristic.

Proof. This proof is based on ideas from [17].
Set M ′ = ‖φ‖L∞ < M . If τ ≤ (M − M ′)/(2 ‖ψ‖L∞) and |t| ≤ τ ,

then ‖φ+ tψ‖L∞ ≤ (M + M ′)/2. If 0 < ε ≤ ε0(M, M ′, ‖ψ‖L∞), then
‖φg + ψh‖L∞ ≤ M for |t| ≤ τ and U = (g, h)T satisfying (2.10)τ ; and the
mapping t 7→ χ(t;x) = h(t, x)/g(t, x) is invertible for every |x| ≤ R, |t| ≤ τ .
Assuming ετ ≤ 1/6, we get

|χ(t;x)− t| ≤ 2ε+
|t|
2
, |χ(t;x)| ≤ 2(ε+ |t|), (3.4)

since |χt(t;x)−1| ≤ 1/2. Then the inverse function χ−1(s;x) of the mapping
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t 7→ χ(t;x) satisfies |χ−1(s;x)| ≤ 2(ε+ |s|). For every r > 0, we set

Ωr
φψ = {x ∈ Ωφψ : |φ(x)| ≤ r|ψ(x)|}.

Clearly, if x ∈ Ωr
φψ, then ψ(x) 6= 0. Assuming x ∈ Ωφψ \ Ωr

φψ, we have

|φ(x)g(t, x) + ψ(x)h(t, x)| ≥ |φ(x)|g(t, x)
(

1− |χ(t;x)|
r

)
,

|∂ta∗(t, x)| ≤ Caa∗(t, x)
|φ(x)gt(t, x) + ψ(x)ht(t, x)|
|φ(x)g(t, x) + ψ(x)h(t, x)| (3.5)

≤ Caa∗(t, x)
|φ(x)gt(t, x)|+ |ψ(x)ht(t, x)|

|φ(x)|g(t, x)
(

1− |χ(t;x)|
r

)−1

≤ Caa∗(t, x)
εr + 1 + ε

1− ε

1
r − |χ(t;x)|

≤ (2 + r)Ca
r − |χ(t;x)|a∗(t, x)

if |χ(t;x)| < r, due to (1.5). Trivially, if x ∈ Ω2r
φψ, then

∣∣∣∣∂x
φ(x)
ψ(x)

∣∣∣∣ ≤
‖φ′‖L∞ + 2r ‖ψ′‖L∞

|ψ(x)| . (3.6)

Now choose some odd function β = β(s) ∈ C∞0 (R) with suppβ ⊂ (−2, 2)
and ‖β‖L∞ ≤ 2, ‖β′‖L∞ ≤ 2, satisfying sβ(s) ≤ 0 and β(s) = −s, −1 ≤
s ≤ 1. Then we define the separating curve by

γ(x) = χ−1
(
rβ

( φ(x)
rψ(x)

)
;x

)
, 0 < r ¿ 1.

We see that |γ(x)| ≤ 4(ε + r). Now we check that this function γ =
γ(x) satisfies (3.1)–(3.3) for small r. If x ∈ Ωr

φψ, then −φ(x)/ψ(x) =
h(γ(x), x)/g(γ(x), x). In case t<γ(x) we have −φ(x)/ψ(x)>h(t, x)/g(t, x).
Assuming

ε(1 + r) < 1, (3.7)

we then obtain

φ(x)gt(t, x) + ψ(x)ht(t, x)
φ(x)g(t, x) + ψ(x)h(t, x)

< 0,

which implies



The wave equation for the p-Laplacian 29

αa∗(t, x)− ∂ta∗(t, x) = αa∗(t, x)

− a′(φ(x)g(t, x) + ψ(x)h(t, x))(φ(x)g(t, x) + ψ(x)h(t, x))

× φ(x)gt(t, x) + ψ(x)ht(t, x)
φ(x)g(t, x) + ψ(x)h(t, x)

≥ 0,

for any α ≥ 0, see Condition 1. The case t > γ(x) can be considered
similarly.

Now assume that x ∈ Ωφψ \ Ωr
φψ, |χ(t;x)| ≤ r/2. According to (3.5),

|∂ta∗(t, x)| ≤ (2 + r)Ca
r − |χ(t;x)|a∗(t, x) ≤

(4 + 2r)Ca
r

a∗(t, x),

which proves (3.1) and (3.2) with

2ε ≤ r

4
, 2τ ≤ r

4
, α =

(4 + 2r)Ca
r

, (3.8)

see (3.4). It remains to check (3.3). This holds true for x ∈ Ωr
φψ, since then

the left–hand side vanishes. Now let x ∈ Ωφψ \ Ωr
φψ, but x ∈ Ω2r

φψ, which
implies r|ψ(x)| < |φ(x)| ≤ 2r|ψ(x)|. By elementary computation,

γ′(x) =
β′(φ(x)/(rψ(x)))∂x(φ(x)/ψ(x))

∂t(h(t, x)/g(t, x))

∣∣∣∣
t=γ(x)

− ∂x(h(t, x)/g(t, x))
∂t(h(t, x)/g(t, x))

∣∣∣∣
t=γ(x)

.

From (2.10)τ we obtain ‖∂x(h/g)‖L∞ ≤ (2 + r)ε ≤ 2 and |∂t(h/g)| = |χt| ≥
1/2. Consequently, according to (3.6) and (1.4),

|γ′(x)| ≤ 4
‖φ′‖L∞ + 2r ‖ψ′‖L∞

|ψ(x)| + 4,

a∗(γ(x), x)(γ′(x))2 (3.9)

≤ 32Ca(φ(x)g(γ(x), x) + ψ(x)h(γ(x), x))2

×
(

(‖φ′‖L∞ + 2r ‖ψ′‖L∞)2

|ψ(x)|2 + 1
)

≤ 32Car2
(

2g(γ(x), x) +
5(ε+ r)

r

)2

× (
(‖φ′‖L∞ + 2r‖ψ′‖L∞)2 + ‖ψ‖2

L∞
)

≤ 1
4
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if r is sufficiently small, compare (3.8). It remains to consider x ∈ Ωφψ \
Ω2r
φψ. Then γ(x) = χ−1(0;x); hence |γ′(x)| ≤ 4ε. Then we need

a∗(γ(x), x)(γ′(x))2 ≤ 32Ca(‖φ‖L∞ + τ ‖ψ‖L∞)2ε2 ≤ 1
4
. (3.10)

We choose r according to (3.9), and then ε, τ , α as in (3.7), (3.8) and
(3.10). ¤

Remark 3.4 In the case of (2.6), ε, τ , α will depend on λ. Careful check-
ing of the proof shows r = O(λ−1/2), τ = O(λ−1/2), α = O(1), ε = O(λ1/2).

Remark 3.5 Consider (2.6) and choose ε, τ as given in Remark 3.4. Sup-
pose that U = (g, h)T satisfies (2.10) with that τ and that ε. Then we have,
for all λ,

∑

|α|+|β|≤k
|∂αx ∂βUAλ(x, U)|+ |∂αx ∂βUBλ(x, U)|

+ |∂αx ∂βUCλ(x, U)| ≤ Ckλ.

From Lemma 10.1, we conclude that

‖Aλ( · , U(t, · ))‖Hk(BR) + ‖Bλ( · , U(t, · ))‖Hk(BR)

+ ‖Cλ( · , U(t, · ))‖Hk(BR)

≤ Ckλ(1 + ‖U(t, · )‖kL∞)(1 + ‖U(t, · )‖Hk(BR))

for k ≥ 1. By computation,
∥∥∂2

xa∗,λ(t, · )
∥∥
L∞ ≤ Cλ(1 +

∥∥∂2
xU(t, · )∥∥

L∞).

4. A priori estimates for (2.7)

The system (2.7) can be written in the form

∂2
t V − a∗(t, x)∂2

xV − B̃(t, x)∂xV − C̃(t, x)V = F (t, x),

V (0, x) = V0(x), Vt(0, x) = V1(x), (4.1)

where B̃(t, x) = B(x,U(t, x)) + ∂xa∗(t, x)I, C̃(t, x) = C(x,U(t, x)). More
generally, we consider the Cauchy problem

∂2
t V − a∗(t, x)∂2

xV −B∗(t, x)∂xV − C∗(t, x)V = F (t, x), (4.2)

V (t0, x) = V0(x), Vt(t0, x) = V1(x), (4.3)
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where a∗, B∗, C∗ are functions satisfying the following hypothesis.

Hypothesis 1
(a) a∗(t, x) = a(φ(x)g(t, x) + ψ(x)h(t, x)), and a = a(s) satisfies Condi-

tion 1,
(b) |B∗(t, x)|2 ≤ La∗(t, x) for some L ≥ 0 (Levi Condition),
(c) φ, ψ ∈ C2

0 (R) with supp(φ, ψ) ⊂ BR = {|x| < R}, and ‖φ‖L∞ < M ,
(d) the coefficient a∗ admits a separating curve in the sense of Proposi-

tion 3.1,
(e) the numbers ε and τ from (2.10)τ , (3.1), (3.2) are chosen as in Propo-

sition 3.1.

For the proof of (b) we only recall Condition 1 and Glaeser’s inequality
[10],

|e′(x)|2 ≤ 2 ‖e‖C2(R) e(x),

for every function e = e(x) ∈ C2(R) with e(x) ≥ 0 for all x.
Now we give estimates of |V (t, x)| separately in the both zones

{x : γ(x) > t} and {x : γ(x) < t}. Our approach is based on a work of
Manfrin, we only list the results and refer the reader to [17] for the proofs.
See also [18].

We introduce the sets

D(t) = {(t′, x) : x ∈ Ωφψ, 0 < t′ < min{γ(x), t}},
G(t) = {(t′, x) : x ∈ Ωφψ, max{γ(x), 0} < t′ < t},

and define the energies

E (t, x) = |Vt(t, x)|2 + a∗(t, x)|Vx(t, x)|2 + |V (t, x)|2,
E1(t) =

∫

{x : γ(x)>t}
eθ1tE (t, x)dx,

E2(t) = e−β2t

∫∫

G(t)
eθ2t

′ |V (t′, x)|2dxdt′.

The following results have been proved in [17], Lemmas 5.1 and 5.2.

Lemma 4.1 Let V (t, x) be a solution of (4.1), (4.2) and assume Hypoth-
esis 1. Then there is a θ1,0 ∈ R,
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θ1,0 =− const.(1+α+L+sup
[0,τ ]

∥∥∂2
xa∗(t, · )

∥∥
L∞ + ‖C∗(t, · )‖L∞(BR)),

(4.4)

such that if we define E1(t) with θ1 ≤ θ1,0, the following estimate holds:

E1(t) +
1
2

∫

{x : 0<γ(x)≤t}
eθ1γ(x)E (γ(x), x)dx (4.5)

≤ E1(0) +
∫∫

D(t)
eθ1t

′ |F (t′, x)|2dxdt′, 0 ≤ t ≤ τ.

Lemma 4.2 Let V (t, x) be a solution of (4.1), (4.2) and assume Hypoth-
esis 1. Then there is a θ2,0,

θ2,0 = const.(α+L+sup
[0,τ ]

∥∥∂2
xa∗(t, · )

∥∥
L∞), (4.6)

such that if we define E2(t) with θ2 ≥ θ2,0, there is a β2,0 > 0,

β2,0 = const.(1 + τ2) (4.7)

× sup
[0,τ ]

(
1 + θ2

2 + L+
∥∥∂2

xa∗(t, · )
∥∥
L∞

+ ‖B∗(t, · )‖C1 + ‖C∗(t, · )‖L∞(BR)

)
,

such that for β2 ≥ β2,0 and t ∈ [0, τ ] we have

E2(t) ≤
∫ t

0
e−β2s

∫

{x : 0<γ(x)<s}
eθ2γ(x)E (γ(x), x)dxds

+
∫ t

0
e−β2s

∫∫

G(s)
eθ2t

′ |F (t′, x)|2dxdt′ds

+
1− e−β2t

β2

∫

{x : γ(x)≤0}
|V (0, x)|2 + |Vt(0, x)|2dx.

Moreover, almost everywhere in [0, τ ] we have
∫

{x : γ(x)<t}
eθ2t|V (t, x)|2dx ≤ β2e

β2tE2(t) (4.8)

+
∫

{x : 0<γ(x)<t}
eθ2γ(x)E (γ(x), x)dx

+
∫

{x : γ(x)≤0}
|V (0, x)|2 + |Vt(0, x)|2 dx
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+
∫∫

G(t)
eθ2t

′ |F (t′, x)|2 dx dt′.

Remark 4.3 The above two estimates have been proved in [17] in case of

a∗(t, x) = a0(t, x)(φ(x)g(t, x) + ψ(x)h(t, x))2q, q ∈ N+,

where a0 ≥ δ > 0 is some C2 function. However, in the proofs of Lem-
mas 5.1 and 5.2 in [17] this special form of the coefficient a∗ was never used.
Actually, it suffices to assume that a∗ admits a separating curve in the sense
of Proposition 3.1.

Now we are in a position to estimate the L2(BR) norm of V (t, x).

Proposition 4.4 Let V = V (t, x) with ∂jt V ∈ L∞([t0, τ ], H2−j(BR)),
j = 0, 1, 2, be a solution of (4.2), (4.3) and assume that Hypothesis 1
holds. Then there is a constant C0 such that for all t ∈ [t0, τ ] we have

‖V (t, · )‖2
L2(BR) (4.9)

≤ C0

(
‖V0( · )‖2

H1(BR) + ‖V1( · )‖2
L2(BR) +

∫ t

t0

‖F (s, · )‖2
L2(BR) ds

)
.

The constant C0 depends only on τ , α, L, and the norms
sup[0,τ ] ‖a∗(t, · )‖C2(BR), sup[0,τ ] ‖B∗(t, · )‖C1(BR), ‖C∗( · , · )‖L∞([0, τ ]×BR).

Proof. Assume for a moment that t0 = 0. If x ∈ BR \ Ωφψ, the Cauchy
problem (4.2) degenerates into

∂2
t V − C∗(t, x)V = F (t, x),

which directly leads to an estimate of ‖V ‖L2(BR\Ωφψ) in terms of
‖V0‖L2(BR\Ωφψ), ‖V1‖L2(BR\Ωφψ), and ‖F (s, · )‖L2(BR\Ωφψ). Therefore we
may restrict ourselves to the case x ∈ Ωφψ. Then we can apply the Lem-
mas 4.1 and 4.2. We set θ1 = θ1,0, θ2 = θ2,0, and β2 = β2,0(θ2). Let
t ∈ [0, τ ] be a number such that (4.8) holds. By Sard’s Lemma, the set of
all t with

meas{x ∈ Ωφψ : γ(x) = t} > 0

has Lebesgue measure 0. Assume that t is not from that set. Then we have
∫

Ωφψ

|V (t, x)|2dx
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=
∫

{x : γ(x)>t}
|V (t, x)|2dx+

∫

{x : γ(x)<t}
|V (t, x)|2dx

≤ e−θ1tE1(t) + β2e
(β2−θ2)tE2(t)

+ e−θ2t
∫

{x : 0<γ(x)<t}
eθ2γ(x)E (γ(x), x)dx

+ e−θ2t(‖V0( · )‖2
L2(Ωφψ) + ‖V1( · )‖2

L2(Ωφψ))

+ e−θ2t
∫∫

G(t)
eθ2t

′ |F (t′, x)|2dxdt′,

due to Lemmas 4.1 and 4.2. Applying these lemmas once more, we get

‖V (t, · )‖2
L2(Ωφψ)

≤C0

(
‖V0( · )‖2

H1(Ωφψ) + ‖V1( · )‖2
L2(Ωφψ) +

∫ t

0
‖F (s, · )‖2

L2(Ωφψ) ds

)
.

This gives us the desired estimate for a.e. t ∈ [0, τ ]. Since ∂tV belongs to
the space L∞([0, τ ], H1(BR)), we have shown (4.9) for all values of t.

Now let t0 > 0. We set Ṽ (t, x) = V (t + t0, x). Since Hypothesis 1 is
invariant under the translation t 7→ t+ t0, we get from (4.9) an estimate for
Ṽ (t, x). ¤

Remark 4.5 Consider (2.6) and suppose
∥∥∂2

xU(t, · )
∥∥
L∞ ≤ C, uniformly

in λ. Then C0 = C0(λ) ≤ exp(C(1 + τ(λ)3)), for all λ, see Remark 3.5 and
(4.4), (4.6), (4.7).

By standard arguments, we can estimate derivatives ∂kxV (t, x).

Proposition 4.6 Let ε, τ be determined as in Proposition 3.1, and
suppose that U satisfies (2.10)τ . Let k ∈ N, and V with ∂jt V ∈ L∞(

[t0, τ ],
Hk+2−j(BR)

)
, j = 0, 1, 2, be a solution to (2.7), (2.9). Then the estimate

‖V (t, · )‖2
Hk(BR) ≤ Ck(1 + sup

[t0,t]
‖U(s, · )‖2

Hk+2(BR)) (4.10)

×
(
‖V0( · )‖2

Hk+1(BR) + ‖V1( · )‖2
Hk(BR) +

∫ t

t0

‖F (s, · )‖2
Hk(BR) ds

)

holds for 0 ≤ t0 ≤ t ≤ τ , where Ck depends only on τ , α, L, and the norms

sup
[0,τ ]

‖U(t, · )‖H3(BR) , ‖A( · , · )‖Ck+2(BR×[1−ε,1+ε]×[τ−ε, τ+ε]) ,

‖B( · , · )‖Ck(BR×[1−ε,1+ε]×[τ−ε, τ+ε]) ,
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‖C( · , · )‖Ck(BR×[1−ε,1+ε]×[τ−ε, τ+ε]) .

Proof. The estimate (4.10) holds for k = 0, see Proposition 4.4. Assume
that (4.10) is true for k replaced by k−1. We set V k(t, x) = ∂kxV (t, x) and
obtain

∂2
t V

k−A(x, U)∂2
xV

k− ((k+1)(∂xA(x, U(t, x)))+B(x, U))∂xV k

−
(
k(k+1)

2
(∂2
xA(x, U(t, x)))+ k(∂xB(x, U(t, x)))+C(x, U)

)
V k

=F k =∂kxF + I1 + I2 + I3 + I4

=∂kxF +
k∑

l=3

(
k

l

)
(∂lxA(x, U(t, x)))V k+2−l

+
k∑

l=2

(
k

l

)
(∂l+1
x A(x, U(t, x)))V k+1−l

+
k∑

l=2

(
k

l

)
(∂lxB(x, U(t, x)))V k+1−l

+
k∑

l=1

(
k

l

)
(∂lxC(x, U(t, x)))V k−l.

By Proposition 4.4, we deduce that
∥∥V k(t, · )

∥∥2

L2

≤ C0

(
‖V0( · )‖2

Hk+1 + ‖V1( · )‖2
Hk +

∫ t

t0

∥∥F k(s, · )
∥∥2

L2ds

)
.

For the estimate of I1 and I2, we have to consider terms of the form
(∂mx A)V k+2−m with m = 3, . . . , k + 1. From Lemma 10.1 and Sobolev’s
embedding theorem,

∥∥(∂mx A( · , U(t, · )))V k+2−m(t, · )∥∥
L2

≤ ‖∂mx A( · , U(t, · ))‖L∞
∥∥V k+2−m(t, · )

∥∥
L2

≤ C(‖U(t, · )‖L∞)(1 + ‖U(t, · )‖Hm+1) ‖V (t, · )‖Hk+2−m ,

Similarly, we get

I3 + I4 ≤ C(‖U(t, · )‖C2) ‖V (t, · )‖Hk−1
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+ C(‖U(t, · )‖L∞)
k∑

m=3

(1 + ‖U(t, · )‖Hm+1) ‖V (t, · )‖Hk+1−m .

Then it follows that

‖V (t, · )‖2
Hk(BR) ≤ C0

(
‖V0( · )‖2

Hk+1 + ‖V1( · )‖2
Hk

)

+ C0

∫ t

t0

‖F (s, · )‖2
Hk(BR) + ‖V (s, · )‖2

Hk−1(BR) ds

+ C(sup
[t0,t]

‖U(s, · )‖C2(BR))

×
k+1∑

m=3

sup
[t0,t]

(1 + ‖U(s, · )‖2
Hm+1(BR))

∫ t

t0

‖V (s, · )‖2
Hk+2−m(BR) ds.

From the induction assumption,

sup
[t0,t]

‖U(s, · )‖2
Hm+1(BR)

∫ t

t0

‖V (s, · )‖2
Hk+2−m(BR) ds

≤ Ck sup
[t0,t]

‖U(s, · )‖2
Hm+1(BR)

(
1 + sup

[t0,t]
‖U(s, · )‖2

Hk+4−m(BR)

)

×
(
‖V0( · )‖2

Hk(BR) + ‖V1( · )‖2
Hk−1(BR) +

∫ t

t0

‖F (s, · )‖2
Hk−1(BR) ds

)
.

By Nirenberg–Gagliardo interpolation,

‖U(s, · )‖Hm+1(BR)

≤ C ‖U(s, · )‖(m−2)/(k−1)

Hk+2(BR)
‖U(s, · )‖1−(m−2)/(k−1)

H3(BR)
,

‖U(s, · )‖Hk+4−m(BR)

≤ C ‖U(s, · )‖(k+1−m)/(k−1)

Hk+2(BR)
‖U(s, · )‖1−(k+1−m)/(k−1)

H3(BR)
,

for k ≥ 2. This completes the proof. ¤

5. Existence of solutions to (2.7)

Proposition 5.1 Let a = a(s) satisfy Condition 2, and let φ, ψ ∈ C∞0 (R)
be to a(s) compatible data, i.e., ‖φ‖L∞ < M . Assume supp(φ, ψ) ⊂ BR =
{|x| < R}. Choose ε, τ as in Proposition 3.1, and suppose that U ∈
C2([0, τ ], C∞b (BR)) satisfies (2.10)τ . Finally, assume that
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F ∈ C([t0, τ ], C∞b (BR)), V0, V1 ∈ C∞b (BR). Then the problem (2.7), (2.9)
has a unique solution V ∈ C2([t0, τ ], C∞b (BR)).

Remark 5.2 Fix 0 < R′ < R with supp(φ, ψ) ⊂ BR′ . Then the functions
A(x, U), B(x, U), C(x, U) vanish for R′ ≤ |x| ≤ R; and the existence of a
solution V ∈ C2([t0, τ ], C∞b ({R′ ≤ |x| ≤ R})) is clear. Hence, we assume
in the sequel |x| ≤ R′.

The proof of Proposition 5.1 is based on an approximation argument.

Definition 5.3 Let % = %(s) be an even function from the Gevrey space
Gd0(R),

|∂ks %(s)| ≤ Ck+1k!d, k ∈ N, s ∈ R, 1 < d < 2,

and supp % ⊂ (−1, 1). Additionally, suppose that s%′(s) ≤ 0 ≤ %(s),∫∞
−∞ %(s)ds = 1, and write %m(s) = m%(ms) for 1 ¿ m ∈ R. Then we

define for large m

a0,m(s) = (a0 ∗ %m)(s), am(s) = s2a0,m(s), a1,m(s) = a′m(s)/s,

φm(x) = (φ ∗ %m)(x), ψm(x) = (ψ ∗ %m)(x),

Um(t, x) = (U ∗ %m)(t, x), Fm(t, x) = (F ∗ %m)(t, x),

V0,m(x) = (V0 ∗ %m)(x), V1,m(x) = (V1 ∗ %m)(x),

where ∗ denotes the usual convolution.

Lemma 5.4 Replace the interval BM = [−M, M ] of Condition 1 by some
shrinked interval [−M ′, M ′], 0 < M ′ < M . If m is large enough, then the
coefficient am(s) satisfies Condition 1 with Ca replaced by Ca + 3.

Proof. Suppose that m is so large that am(s) is well defined on [−M ′, M ′].
The properties of the convolution imply 0 < a0,m(s) ≤ Ca for all |s| ≤ M ′.
We have

0 ≤ s

∫
a′0(s− r)m%(mr)dr = s∂sa0,m(s),

since a0 and % are even functions. From r%′(mr) ≤ 0 we deduce that

s∂sa0,m(s) = s

∫
a′0(s− r)m%(mr)dr

= s

∫
a0(s− r)m2%′(mr)dr ≤

∫
(s− r)a0(s− r)m2%′(mr)dr
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=
∫

(a0(s− r) + (s− r)a′0(s− r))m%(mr)dr ≤ (Ca + 1)a0,m(s).

Clearly, 0 ≤ sa′m(s) ≤ (Ca + 3)am(s). This completes the proof. ¤

Proof of Proposition 5.1. We consider the linear system

∂2
t Vm − ∂x(Am(x, Um)∂xVm)−Bm(x, Um)∂xVm (5.1)

− Cm(x, Um)Vm = Fm(t, x),

Vm(0, x) = V0,m(x), ∂tVm(0, x) = V1,m(x),

where Am, Bm, Cm are defined as in (2.2)–(2.4) with a(s) replaced by
am(s). According to [16], the problem (5.1) has a unique solution Vm ∈
C2([t0, τ ], Gd(BR′)). Similarly to Section 4, we set

a∗,m(t, x) = am(φm(x)gm(t, x) + ψm(x)hm(t, x)),

B∗,m(t, x) = Bm(x, Um(t, x)) + ∂xa∗,m(t, x)I,

C∗,m(t, x) = Cm(x, Um(t, x)).

Obviously, a∗,m → a∗, B∗,m → B∗, C∗,m → C∗ in the topology of the space
C([t0, τ ], C∞b (BR′)). Due to Proposition 4.6, we have uniform estimates

sup
[t0,τ ]

‖Vm(t, · )‖Hk(BR′ )
≤ Ck, m ≥ m0, k ∈ N.

Then (5.1) yields ‖Vm( · , · )‖C2([t0, τ ], Hk(BR′ ))
≤ Ck. By the Arzela–Ascoli

theorem, there is a subsequence {Vm′} converging in C1([t0, τ ], Hk−1(BR′))
to some limit V (k) which solves (2.7). By Proposition 4.4, solutions to (2.7)
are unique. Therefore, V (k) = V (l) for all k, l; hence we have a solution
V ∈ C2([t0, τ ], C∞b (BR′)). ¤

6. Existence of solutions to (2.5)

Now we prove the existence of C∞ solutions U to (2.5) for small times.
In the next section, more attention will be paid to a better description of the
life span of this solution. We shall show that, under suitable assumptions, a
solution U to (2.5) can be extended to some longer interval. Therefore, we
now discuss the equation (2.5) with slightly more general initial conditions.

Define A, B, C as in (2.2)–(2.4), and consider the Cauchy problem

∂2
t U − ∂x(A(x, U)∂xU)−B(x, U)∂xU − C(x, U)U = 0, (6.1)

U(t0, x) = U0(x), Ut(t0, x) = U1(x),
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∥∥U0( · )− (1, t0)T
∥∥
C1(BR)

< ε0,
∥∥U1( · )− (0, 1)T

∥∥
L∞(BR)

< ε0,

(6.2)

Proposition 6.1 Let a = a(s) satisfy Condition 2, and let (φ, ψ) ∈
C∞0 (R) with supp(φ, ψ) ⊂ BR be to a(s) compatible data, i.e., ‖φ‖L∞ <

M .
Then there is an ε0, depending only on M , Ca, ‖φ‖C1(BR), ‖ψ‖C1(BR),

such that:
For every U0, U1 ∈ C∞b (BR) with (6.2) there is some T1 > t0 and a

unique local solution U ∈ C∞b ([t0, T1]×BR) to the Cauchy problem (6.1).

The proof bases on the Nash–Moser–Hamilton theory. We recall the
main results of that theory and refer the reader to [12] for the details.

Definition 6.2
(a) A graded (Fréchet) space E is a Fréchet space whose topology is in-

duced by a grading, that is a sequence of seminorms {‖ · ‖n : n ∈ N}
such that ‖e‖n ≤ ‖e‖n+1 for all e ∈ E and all n ∈ N.

(b) A tame linear map is a linear map L ∈ L(E1, E2) between two graded
spaces E1, E2 such that constants r, b ∈ N exist with

‖Le‖E2,n
≤ Cn ‖e‖E1,n+r , e ∈ E1, n ≥ b,

where the Cn do not depend on e ∈ E1.
(c) For a Banach space B, we define the graded space

∑
(B) of exponen-

tially decreasing sequences by

∑
(B)=

{
{vk}∞k=0 : vk ∈B, ‖{vk}‖n =

∞∑

k=0

enk ‖vk‖B <∞, n∈N
}
.

(d) The graded space E is a tame space if some Banach space B and
linear tame maps L1 ∈ L(E,

∑
(B)), L2 ∈ L(

∑
(B), E) exist with the

property that L2L1 is the identity on E.

Example 6.3 Spaces of C∞b functions on smooth compact manifolds X
(with or without boundary) are tame (see [12], pp. 135–138), when we define
the seminorms ‖v‖n = ‖v( · )‖Wn

p (X), 1 ≤ p ≤ ∞.

Definition 6.4 Let P : M ⊂ E1 → E2 be a (nonlinear) mapping between
the graded spaces E1, E2, and be defined on the open set M . The map P is
called tame if for each point e∗ ∈ M there is a neighbourhood e∗ ∈ Ω ⊂ M
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and constants r, b ∈ N such that

‖P (e)‖E2,n
≤ Cn(1 + ‖e‖E1,n+r), e ∈ Ω, n ≥ b.

Remark 6.5 A map is a tame linear map if and only if it is linear and
tame.

Definition 6.6 Let P : M ⊂ E1 → E2 be a tame map. Then, P is called
smooth tame if it is C∞ and DnP is tame for all n ∈ N.

Example 6.7 Nonlinear partial differential operators acting on the tame
space C∞b (X) are smooth tame. Sums and compositions of smooth tame
maps are smooth tame (see [12], p. 146).

The following implicit function theorem is the crucial tool in the fol-
lowing.

Theorem 6.8 (Nash–Moser–Hamilton) Let E1, E2 be tame spaces,
M ⊂ E1 be an open set, and P : M ⊂ E1 → E2 be a smooth tame
map. Suppose that the derivative DP (u) ∈ L(E1, E2) has a right inverse
V P (u) ∈ L(E2, E1) for each u ∈ M , which is smooth tame as a mapping
V P (u) : M ×E2 → E1. Then P is in M locally invertible, and each inverse
is smooth tame.

Proof of Proposition 6.1. We show U ∈ C2([t0, T1], C∞b (BR)). The
smoothness in time then follows from (2.5). We fix the tame spaces

E1 = (C2([t0, T ], C∞b (BR)))2,

E2 = (C([t0, T ], C∞b (BR)))2 × (C∞b (BR))2 × (C∞b (BR))2,

‖e‖E1,n

= sup
[t0, T ]

(
‖e(t, · )‖Hn(BR) + ‖et(t, · )‖Hn(BR) + ‖ett(t, · )‖Hn(BR)

)
,

‖(eI , eII , eIII)‖E2,n

= sup
[t0, T ]

‖eI(t, · )‖Hn(BR) + ‖eII( · )‖Hn(BR) + ‖eIII( · )‖Hn(BR) ,

where T with 0 < T − t0 ¿ 1 will be chosen later. The map P : E1 → E2 is

P (U) =
(
∂2
t U − ∂x(A(x, U)∂xU)−B(x, U)∂xU − C(x, U)U,

U(t0, x) − U0(x), Ut(t0, x) − U1(x)
)
,
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which is a smooth tame map. To fix the open set M , we introduce

U∗(t, x) = U0(x)+(t− t0)U1(x)+
1
2
(t− t0)2∂x(A(x,U0(x))U0,x(x))

+
1
2
(t− t0)2B(x,U0(x))U0,x(x) +

1
2
(t− t0)2C(x,U0(x))U0(x),

and define

M = {U ∈ E1 : ‖U − U∗‖C1([t0, T ]×BR) < ε0,

sup
[t0, T ]

‖U(t, · )‖H3(BR) < C}

with some constant C > 0. If we fix ε0 = ε/10 and choose T = T (ε) with 0 <
T−t0 ¿ 1 appropriately, then each element of M can be extended to [0, T ]×
BR in such a way that (2.10)T holds, with ε chosen as in Proposition 3.1.
Obviously,

P (U∗)(t, x) =
(
(t− t0)Z(t, x), 0, 0

)

with some Z ∈ C([t0, T ], C∞b (BR)). Choose some function χ ∈ C∞(R)
with χ(t) = 0 for t ≤ 1 and χ(t) = 1 for t ≥ 2. Then

(
(t − t0)χ(m(t −

t0))Z(t, x), 0, 0
)

converges to
(
(t − t0)Z(t, x), 0, 0

)
in the topology of E2

if m tends to infinity. Therefore, every neighbourhood of P (U∗) contains
elements of the form (Z̃(t, x), 0, 0) where Z̃(t, x) = 0 for t0 ≤ t ≤ T1; and
T1 − t0 > 0 is small. If we are able to show that the image P (M ) contains
a neighbourhood of P (U∗) in E2, then we have proved the existence of a
solution U to (2.5) in [t0, T1]×BR. More precisely, we show that P is locally
invertible in the neighbourhood M .

The Fréchet derivative DP (U) is a linear map V 7→ (F, V0, V1) with

F = ∂2
t V − ∂x(A(x, U)∂xV )− ∂x((AU (x, U)V )∂xU) (6.3)

−B(x, U)∂xV −BU (x, U)V ∂xU −C(x, U)V −CU (x, U)V U,

V0(x) = V (t0, x), V1(x) = Vt(t0, x).

Here we have introduced the notation

AU (x, U)V = a′(φg+ψh)(φ, ψ)V I, U =(g, h)T , V =(v1, v2)T ,

where (φ, ψ)V = φv1 + ψv2 is the usual R2 scalar product. This Cauchy
problem is of the form (2.7); and Hypothesis 1 is satisfied if U ∈ M . We
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note that the Levi condition (b) follows from |a′(s)|2 ≤ C3
aa(s), see (1.5).

Then the Propositions 4.6 and 5.1 imply the existence of an inverse map

V P : (U, F, V0, V1) 7→ V, M × E2 → E1

which satisfies

sup
[t0, T ]

‖V (t, · )‖Hk(BR) ≤ Ck(1 + ‖U‖E1,k+2) ‖(F, V0, V1)‖E2,k
.

From the equation (6.3),

‖V ‖E1,k
≤ Ck(1 + ‖U‖E1,k+4) ‖(F, V0, V1)‖E2,k+2 .

Hence V P : M × E2 → E1 is tame, see [12]. The proof is complete if we
show that V P is smooth tame. We proceed by induction and only show
that D1V P is tame; the higher derivatives DkV P can be considered in the
same way. We find that

V (1) = D1V P (U, F, V0, V1){δU, δF, δV0, δV1},
where V (1) ∈ E1 depends linearly on (δU, δF, δV0, δV1) ∈ E1 × E2 and
nonlinearly on (U, F, V0, V1) ∈ M × E2. More precisely,

∂2
t V

(1) − ∂x(A(x, U)∂xV (1))− ∂x((AU (x, U)V (1))∂xU)

−B(x, U)∂xV (1) −BU (x, U)V (1)∂xU

− C(x, U)V (1) − CU (x, U)V (1)U

= δF +RδU,

V (1)(t0, x) = δV0(x), V
(1)
t (t0, x) = δV1(x),

where R is a linear differential operator depending on U and V =
V P (U, F, V0, V1). By Proposition 4.6, D1V P is tame. This completes
the proof. ¤

7. A life span criterion

In this section, we describe the life span of the C∞ solution U to (2.5)
mentioned in Proposition 6.1.

Proposition 7.1 Let the assumptions of Proposition 6.1 be satisfied. Then
there is a constant T0 > 0 depending only on M , R, ‖(a0, a1)‖C3(BM ),
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‖(φ, ψ)‖C5(BR); and there is a unique solution U ∈ C∞b ([0, T0] × BR) to
(2.5).

The proof is split into the Lemmas 7.2 and 7.5.

Lemma 7.2 Let the assumptions of Proposition 6.1 be satisfied, and let
ε, τ be the numbers determined in Proposition 3.1. Finally, let
U ∈ C2([0, T ), C∞b (BR)), 0 < T < τ , be a solution to (2.5) which satisfies
(2.10). Then the estimates

‖U(t, · )‖2
Hk(BR) (7.1)

≤ CR(1 + t2)Ck

∫ t

0
%k(‖U(s, · )‖H3(BR))(1 + ‖U(s, · )‖2

Hk(BR))ds,

sup
[0,t]

∥∥U(s, · )− (1, s)T
∥∥2

H3(BR)
≤ tC3%̃3(sup

[0,t]
‖U(s, · )‖2

H3(BR)) (7.2)

hold for 0 ≤ t < T , where %k, %̃k : R+ → R+ are certain continuous and
increasing functions, and Ck depend on ‖(a0, a1)‖Ck(BM ), ‖(φ, ψ)‖Ck+2(BR),
and R.

The proof is based on an a priori estimate similar to that of Proposi-
tion 4.6 for the Cauchy problem (2.7), but now we take advantage from the
fact U ≡ V .

Lemma 7.3 Let m, n ∈ N with m ≥ 2, n ≥ 3, and X ⊂ R be a bounded
domain. Then

‖w‖Cm(X) ‖w‖Hn(X) ≤ C ‖w‖H3(X) ‖w‖Hm+n−2(X) ,

w ∈ Hm+n−2(X).

Proof. By Sobolev’s embedding theorem,

‖w‖Cm(X) ‖w‖Hn(X)≤C ‖w‖Hm+1(X) ‖w‖Hn(X)

≤C ‖w‖H3(X) ‖w‖Hm+n−2(X) ,

where we have used the complex interpolation method,

Hm+1(X) =
[
H3(X), Hm+n−2(X)

]
θ1
,

Hn(X) =
[
H3(X), Hm+n−2(X)

]
θ2
,

with θ1 + θ2 = 1. ¤
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Proof of Lemma 7.2. We write (2.5) in the form

∂2
t U −A(x, U)∂2

xU

−Ax(x, U)Ux −AU (x, U)UxUx −B(x, U)Ux − C(x, U)U = 0,

where Ax(x, U) = a′(φg + ψh)(φx, ψx)UI, and (φx, ψx)U is the R2 scalar
product φxg + ψxh. Similarly, AU (x, U)Ux = a′(φg + ψh)(φ, ψ)UxI. We
apply ∂kx , set Uk = ∂kxU , and obtain

∂2
t U

k −A(x, U)∂2
xU

k − (k + 1)(∂xA(x, U))∂xUk

−AU (x, U)(∂xUk)Ux −B(x, U)∂xUk

= F k = I1 + I2 + I3 + I4

=
k∑

l=2

(
k

l

)
(∂lxA(x, U))Uk+2−l

+
k∑

l=1

(
k

l

)
(∂lxAx(x, U) + ∂lxB(x, U))Uk+1−l

+
k−1∑

l+m=0

k!
l!m!(k − l −m)!

(∂k−l−mx AU (x, U))U l+1Um+1

+ ∂kx(C(x, U)U).

From Uk(0, · ) = (∂tUk)(0, · ) = 0 for k ≥ 1 and Proposition 4.4,

∥∥Uk(t, · )
∥∥2

L2(BR)
≤ C0

∫ t

0

∥∥F k(s, · )
∥∥2

L2(BR)
ds.

We recall that Hypothesis 1 is satisfied because of |a′(s)|2 ≤ C3
aa(s), see

(1.5). Employing Lemmas 7.3 and 10.1, we estimate I1, . . . , I4. For l = 2
in I1, we find

∥∥(∂2
xA(x, U))Uk

∥∥2

L2 ≤ C(‖a‖C2 , ‖(φ, ψ)‖C2)(1 + ‖U‖4
C2)

∥∥Uk
∥∥2

L2 .

For 3 ≤ l ≤ k, we have
∥∥(∂lxA(x, U))Uk+2−l∥∥2

L2

≤ C(‖a‖Cl , ‖U‖L∞ , ‖(φ, ψ)‖Cl)(1 + ‖U‖2
Hl)‖U‖2

Ck+2−l

≤ C(‖a‖Cl , ‖U‖L∞ , ‖(φ, ψ)‖Cl)(1 + ‖U‖2
H3)‖U‖2

Hk .

The term I2 can be discussed similarly. Concerning I3, it is enough to
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discuss the case m ≤ l. Suppose k − 1 ≥ l +m ≥ k − 2 and l ≥ 2 (l ≤ 1 is
trivial). Then

∥∥(∂k−l−mx AU (x, U))U l+1Um+1‖2
L2

≤ C(‖a‖C3 , ‖(φ, ψ)‖C2)(1 + ‖U‖4
C2)

∥∥U l+1
∥∥2

L2

∥∥Um+1
∥∥2

L∞

≤ C(‖a‖C3 , ‖(φ, ψ)‖C2)(1 + ‖U‖4
C2)‖U‖2

H3‖U‖2
Hk .

Now let 1 ≤ l +m ≤ k − 3. Then we have
∥∥(∂k−l−mx AU (x, U))U l+1Um+1

∥∥2

L2

≤ C(‖a‖Ck , ‖U‖L∞ , ‖(φ, ψ)‖Ck)
× (1 + ‖U‖2

Hk−l−m)
∥∥U l+1

∥∥2

L∞
∥∥Um+1

∥∥2

L∞ .

By Lemma 7.3,

‖U‖2
Hk−l−m

∥∥U l+1
∥∥2

L∞
∥∥Um+1

∥∥2

L∞ ≤ C‖U‖2
H3‖U‖2

Hk−m−1‖U‖2
Cm+1

≤ C‖U‖4
H3‖U‖2

Hk−1 .

In case l = m = 0 we apply Lemma 10.1 and find
∥∥(∂kxAU (x, U))U1U1

∥∥2

L2

≤ C(‖a‖Ck+1 , ‖U‖L∞ , ‖(φ, ψ)‖Ck)(1 + ‖U‖2
Hk)‖U‖4

C1 .

The term I4 is left to the reader, see Lemma 10.1. From a′(s) = sa1(s) we
derive ‖a‖Ck+1 ≤ C‖a1‖Ck . Then we obtain the estimate

∥∥∂kxU(t, · )
∥∥2

L2(BR)

≤ Ck

∫ t

0
%k(‖U(s, · )‖H3(BR))(1 + ‖U(s, · )‖2

Hk(BR))ds

for k ≥ 1. Since supp(φ, ψ) ⊂ BR, there is some 0 < R′ < R such that
φ(x) = ψ(x) = 0 for R′ ≤ |x| ≤ R. For such x, the Cauchy problem
(2.5) degenerates to ∂2

t U = 0; hence U(t, x) = (1, t)T . Then Poincaré’s
inequality implies

‖U(t, · )− (1, t)T ‖2
L2(BR) ≤ CR‖∂xU(t, · )‖2

L2(BR).

The desired estimates (7.1), (7.2) are then obtained easily. ¤
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Remark 7.4 Consider (2.6). Remarks 3.5, 4.5 and Lemma 10.1 give the
refinement

∥∥∂kxU(t, · )‖2
L2(BR)

≤ Cke
C(1+τ3)

∫ t

0
λ2(1 + τk)

× (1 + ‖U(s, · )‖4
H3(BR))(1 + ‖U(s, · )‖2

Hk(BR))ds

for k ≥ 1. From this we conclude that

sup
[0,t]

‖U(s, · )− (1, s)T ‖2
H3(BR)

≤ λ2tC3e
C′(1+τ3)(1 + sup

[0,t]
‖U(s, · )‖6

H3(BR)), (7.3)

for all λ and all 0 ≤ t < T . Obviously,

‖Utt(t, · )‖L∞
≤ ‖Aλ(x, U)Ux‖C1 + ‖Bλ(x, U)Ux‖L∞ + ‖Cλ(x, U)U‖L∞
≤ C‖Aλ(x, U)‖H2(BR)‖(U(t, · )− (1, t)T )x‖H2(BR)

+ ‖Bλ(x, U)‖L∞‖(U(t, · )− (1, t)T )x‖L∞ + ‖Cλ(x, U)U‖L∞
≤ Cλ(1 + ‖U(t, · )‖3

H2(BR))‖U(t, · )− (1, t)T ‖H3(BR) +Cλ(1 + τ).

Supposing that the right–hand side of (7.3) were less than 1, we find
∥∥Ut(t, · )− (0, 1)T

∥∥
L∞(BR)

≤ C ′λτ(1+τ3). (7.4)

Lemma 7.5 Let the assumptions of Proposition 6.1 be satisfied. Assume
that U ∈ C2([0, T ), C∞b (BR)), 0 < T < τ , is a solution to (2.5) which fulfils

∥∥U(t, · )− (1, t)T
∥∥
C1
b ([0, T )×BR)

< ε0, (7.5)

sup
[0, T )

‖U(t, · )‖H3(BR) <∞, (7.6)

where ε0 is from Proposition 6.1. Then U can be extended to some function
Ũ ∈ C2([0, T ′], C∞b (BR)), T < T ′ < τ , which solves (2.5) for (t, x) ∈
[0, T ′]×BR.

Proof. According to Lemma 7.2, ‖U(t, · )‖Hk(BR) ≤ Ck for 0 ≤ t < T and
all k ∈ N. The equation (2.5) then gives ‖∂2

t U(t, · )‖Hk(BR) ≤ Ck for 0 ≤
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t < T and all k. Therefore, U can be smoothly extended in a unique way
up to t = T . Now we consider the Cauchy problem

∂2
tW − ∂x(A(x, W )∂xW )−B(x, W )∂xW − C(x, W )W = 0,

W (t, x) = U(t, x), Wt(t, x) = Ut(t, x).

By Proposition 6.1, this problem has a solution W ∈ C2([T, T1], C∞b (BR)).
We set

Ũ(t, x) =

{
U(t, x) : 0 ≤ t < T,

W (t, x) : T ≤ t ≤ T1 = T ′,

and the proof is complete. ¤

Proof of Proposition 7.1. From Proposition 6.1 we conclude that there is
a local solution U ∈ C∞b ([0, T1] × BR) to (2.5) which satisfies (7.2). By
Lemma 7.5, this solution can be extended as long as (7.5) and (7.6) are
satisfied. A lower estimate T0 > 0 of the life span of U can then be derived
from (7.2). ¤

Proof of Theorem 1.5. The problem (1.2) can be transformed into the sys-
tem (2.5) by means of the reduction presented in Section 2. According to
Proposition 7.1, this system has a unique local solution U ∈ C∞b ([0, T0] ×
BR). For x 6∈ supp(φ, ψ), the system (2.5) degenerates into ∂2

t U(t, x) = 0,
hence u(t, x) = 0. Therefore, we have found a solution u ∈ C∞b ([0, T0]×R)
to (2.1), which vanishes outside [0, T0] × supp(φ, ψ). Then the solution w

to (1.2) is given by

w(t, x) =
∫ x

−R
u(t, y)dy,

and it is easy to show that w vanishes outside [0, T0]× supp(Φ, Ψ). ¤

Proof of Theorem 1.6. For 0 < λ ¿ 1, choose ε(λ) = O(λ1/2) as in Re-
mark 3.4, and set ε0 = ε/10, see the proof of Proposition 6.1. Now choose
τ = τ(λ) with

λ2τC3e
C′(1+τ3)(1 + (ε0 + ‖(1, τ)‖H3(BR))

6)

< C−2
sobε

2
0, C ′λτ(1 + τ3) < ε0,

see (7.3), (7.4). Here Csob is the norm of the embedding H3(BR) ⊂ C1(BR).
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Due to Remark 7.4, we then have
∥∥U(t, · )− (1, t)T

∥∥
C1(BR)

< ε0,
∥∥Ut(t, · )− (0, 1)T

∥∥
L∞(BR)

< ε0

provided that t < τ . According to Lemma 7.5, the solution U persists in
the interval [0, τ). Finally, τ(λ) > C| lnλ|1/3. ¤

8. The case of non smooth a(s)

Proof of Theorem 1.2. We transform (1.2) into the system (2.5), where A,
B, C are given by (2.2)–(2.4), and (φ, ψ) = (Φx, Ψx) ∈ Ck+1

0 (R). We
approximate a0(s), φ(x), ψ(x) by a0,m, φm, ψm as in Definition 5.3, and
obtain uniform estimates

‖(φm, ψm)‖Ck+1 , ‖a0,m‖CP (BM′ ) ≤ C, m≥m0(M ′), M ′ <M.

We set am(s) = s2a0,m(s), a1,m(s) = a′m(s)/s = 2a0,m(s)+sa′0,m(s). Clearly,

sa′0,m(s) = s

∫
a′0(s− r)m%(mr)dr =

∫
(s− r)a′0(s− r)m%(rm)dr

+
∫
a0(s− r)m%(rm)dr +

∫
a0(s− r)rm2%′(rm)dr

= I1,m(s) + I2,m(s) + I3,m(s).

We see that ‖I1,m‖CP + ‖I2,m‖CP ≤ C(‖a0‖CP + ‖a1‖CP ), since sa′0(s) =
a1(s)− 2a0(s). Due to |mr| ≤ 1 on supp %′(mr),

|∂Ps I3,m(s)| ≤ ‖a0‖CP
∫
|m%′(mr)|dr ≤ C‖a0‖CP .

As a consequence, ‖a1,m‖CP ≤ C for all m.
Now we consider the Cauchy problem

∂2
t Um − ∂x(Am(x,Um)∂xUm)

− Bm(x,Um)∂xUm − Cm(x,Um)Um = 0,

Um(0, x) = (1, 0)T , Um,t(0, x) = (0, 1)T ,

where Am, Bm, Cm are defined as in (2.2)–(2.4), but with a0, a1, a, φ, ψ
replaced by a0,m, a1,m, am, φm, ψm. According to Proposition 7.1, there is
a unique local solution Um ∈ C∞b ([0, T0]× BR) for large m, where T0 only
depends on ‖(a0,m, a1,m)‖C3 , ‖(φm, ψm)‖C5 . These norms are uniformly in
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m bounded. Taking into account that k ≥ 4, we apply Lemma 7.2 with k

replaced by k − 1. Then we find

sup
[0, T0]

‖Um(t, · )‖Hk−1(BR) ≤ C <∞

for all m ≥ m0. By the differential equation, it can be deduced that {Um}
is a bounded sequence in C([0, T0], Hk−1(BR)) ∩ C2([0, T0], Hk−3(BR)).
The Arzela–Ascoli theorem gives us a subsequence {Um′} converging in
C1([0, T0], Hk−4(BR)) to some limit U∗. Interpolating between the spaces
C([0, T0], Hk−4(BR)) and C([0, T0], Hk−1(BR)) shows Um′ → U∗ in
C([0,T0],Hk−1−ε(BR)). Especially, we have convergence in C([0,T0],C2(BR)),
since k ≥ 4. Then the limit U∗ is a solution to (2.5). From the weak
precompactness of bounded sets in Hk−1 we deduce that Um′ → U∗ in
L∞([0, T0], Hk−1(BR)). The differential equation then yields

∂2
t U

∗ ∈ L∞([0, T0], Hk−3(BR)).

The uniqueness of U∗ can be shown by standard arguments, Proposi-
tion 4.4 and Gronwall’s lemma.

Then we find a solution u ∈ L∞([0, T0], Hk−1(BR)) to (2.1), which
satisfies ∂2

t u ∈ L∞([0, T0], Hk−3(BR)). A solution w to (1.2) then is given
by w(t, x) =

∫ x
−R u(t, y)dy, compare the proof of Theorem 1.5.

Finally, we discuss the uniqueness of this solution w. It suffices to
consider the reduced problem (2.1). Let v = v(t, x) be a second solution to
(2.1) with

∂jt v ∈ L∞([0, T0], H3−j(R)), j = 0, 2.

Then the difference z(t, x) = u(t, x)− v(t, x) solves

∂2
t z − ∂x(a∗(t, x)∂xz)− b(t, x)∂xz − c(t, x)z = 0

with the coefficients a∗(t, x) = a(u(t, x)), b(t, x) = a′(u(t, x))∂xv(t, x),
and c(t, x) is given implicitly by c(t, x)z = (a(u) − a(v))∂2

xv + (a′(u) −
a′(v))(∂xv)2. We see that c(t, x) is bounded; and by Condition 1, |b(t, x)|2 ≤
La∗(t, x). From Proposition 4.4 we get ‖z(t, · )‖L2(BR) = 0. On the other
hand, u(t, x) ≡ 0 for x 6∈ BR, which implies ∂2

t z − c(t, x)z = 0. Conse-
quently, z(t, x) vanishes everywhere. ¤
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9. A blow-up result

We consider the Cauchy problem 1.2 and describe a class of coefficients
a = a(s), and initial data Φ, Ψ for which the solution blows up in finite
time.

Proposition 9.1 Suppose Condition 2 with a0(0) > 0. We assume that
Φ, Ψ ∈ C∞0 (R) are even functions, and

Φ′′(0) > 0, Ψ′′(0) > 0 or Φ′′(0) < 0, Ψ′′(0) < 0.

Then the Cauchy problem (1.2) has no global C∞ solution w.

Proof. According to Theorem 1.5, there is a unique solution
w ∈ C∞b ([0, T0] × R), for some T0 > 0. Now we show that T0 is bounded
from above.

Since a, Φ, Ψ are even functions, the solution w = w(t, x) is also even,
hence wx(t, 0) = 0 for 0 ≤ t ≤ T0, which implies w(t, 0) = Φ(0) + tΨ(0).
For 0 ≤ t ≤ T0, −ε < x < ε, we have the Taylor expansion

w(t, x) =
2∑

k=0

1
k!

(∂kxw)(t, 0) + O(|x|3)

=
(
Φ(0) + tΨ(0)

)
+ ξ(t)x2 + O(|x|3),

ξ(0) =
1
2
Φ′′(0), ξ′(0) =

1
2
Ψ′′(0).

Plugging this into (1.2) and collecting the terms with x2 gives

ξtt(t)x2 − a(2ξ(t)x) · 2ξ(t) + O(|x|3) = 0,

ξtt(t)− (2ξ(t))3a0(0) = 0, 0 ≤ t ≤ T0.

Since ξ(0) and ξ′(0) have the same sign, and a0(0) > 0, this ODE has no
global solution, as can be seen from the equivalent formulation

(
(ξt)2

)
t
= 4a0(0)(ξ4)t, 0 ≤ t ≤ T0.

¤

10. Appendix

The following technical lemma is proved by Nirenberg-Gagliardo inter-
polation.
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Lemma 10.1 Let f = f(x, u) : Ω×M → R be some Ck function, where
Ω ⊂ Rn, M ⊂ RN are domains with smooth boundary, and Ω is bounded.
Assume k > n/2. Then there is some continuous function %k : R+ → R+

depending on ‖f( · , · )‖Ck(Ω×M ) such that

‖f(x, u(x))‖Hk(Ω) ≤ %k(‖u( · )‖L∞(Ω))(1 + ‖u( · )‖Hk(Ω))

for all functions u ∈ Hk(Ω) taking values in M . The function %k satisfies

%k(s) ≤ Ck sup
x∈Ω,|u|≤s

∑

|α|+|β|≤k
|∂αx ∂βuf(x, u)|(1 + sk).
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