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The invariant subspace structure of L2(T2)

for certain von Neumann algebras
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Abstract. In this note, we study invariant subspaces of L2(T2) with respect to certain

von Neumann algebras. We give a characterization of Beurling-type left-invariant sub-

spaces of L2(T2). We also give a structure theorem of a non-trivial two-sided invariant

subspace of L2(T2).
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1. Introduction

Let T2 be the torus that is the cartesian product of two unit circles
in C. Let L2(T2) and H2(T2) be the usual Lebesgue and Hardy space in
the torus T2, respectively.

A closed subspace M of L2(T2) is said to be invariant if

zM ⊂ M and wM ⊂ M.

There are many results about invariant subspaces of L2(T2) (cf. [2], [3], [5],
[6], [7], [8], etc.). Especially, in [6] the invariant subspaces M of L2(T2) of the
Beurling form were characterized as the subspaces on which multiplication
operators by z and w are doubly commuting. In [3] the structural theorem
of the invariant subspaces of L2(T2) is given.

Let θ be an irrational number in (0, 1). We consider the unitary oper-
ators on L2(T2) satisfying:

Lz(zmwn) = zm+1wn, Lw(zmwn) = e−2πimθzmwn+1,

Rz(zmwn) = e−2πinθzm+1wn and Rw(zmwn) = zmwn+1,

where z, w ∈ C such that |z| = |w| = 1. By the simple calculation, we have

LzLw = e2πiθLwLz and RwRz = e2πiθRzRw.

Let L (resp. R) denote the von Neumann algebra generated by Lz and Lw
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(resp. Rz and Rw), then they are II1-factors. Moreover, L and R are the
commutant of each other. So L and R are called the left von Neumann
algebra and the right von Neumann algebra, respectively. They are impor-
tant classes of operator algebras. More generally, let U and V be unitary
operators on a Hilbert space H satisfying UV = e2πiθV U . The C∗-algebra
Aθ generated by U and V is called an irrational rotation C∗-algebra. Then,
up to unitary equivalence, there exists a unique ∗-representation π of Aθ

onto C∗(Lz, Lw) such that π(U) = Lz and π(V ) = Lw (see [4]).
Let L+ (resp. R+) denote the σ-weakly closed subalgebra of L (resp. R)

generated by the positive powers of Lz and Lw (resp. Rz and Rw). A closed
subspace M of L2(T2) is said to be left-invariant (resp. right-invariant) if
L+M ⊂ M (resp. R+M ⊂ M). Moreover if LM ⊂ M (resp. RM ⊂ M),
then M is said to be left-reducing (resp. right-reducing). If M contains
no left-reducing (resp. right-reducing) subspace, M is said to be left-pure
(resp. right-pure). If the smallest left-reducing (resp. right-reducing) sub-
space containing M is L2(T2), M is said to be left-full (resp. right-full).
In this setting, we have an interest in the invariant subspace structure of
L2(T2). If θ = 0, then L and R are generated by the multiplication operators
{Mf : f ∈ L∞(T2)} on L2(T2), and the notion of invariant subspaces is that
of usual invariant subspaces of L2(T2) satisfying zM ⊂ M and wM ⊂ M.

In this paper we obtain necessary and sufficient conditions on the left-
invariant subspace of L2(T2) to be of the form V H2(T2), where V is a uni-
tary operator in R. A closed subspace M of L2(T2) is said to be two-
sided invariant if M is both left-invariant and right-invariant. The concept
of two-sided pure and two-sided full are defined similarly. We prove that
a non-trivial two-sided invariant subspace of L2(T2) is two-sided pure and
two-sided full.

Let M be a non-trivial two-sided subspace of L2(T2). Put U =(LzLw)|M
and V = (RzRw)|M. Then M is both U -invariant and V -invariant. The
couple W = (U, V ) is a commuting pair of isometries on M. By Popovici’s
decomposition of M with respect to W , we have

M = Muu ⊕Mus ⊕Msu ⊕Mws

(cf. [9, Theorem 2.8]). Then we show that W is a weak bi-shift on M, that
is, M = Mws.

In § 2 we study left-invariant subspaces of L2(T2). In particular we
give the characterization of Beurling-type invariant subspaces of L2(T2).
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In § 3 we introduce the notion of two-sided invariant, two-sided pure and
two-sided full. We prove that a non-trivial two-sided invariant subspace of
L2(T2) is two-sided pure and two-sided full. In § 4 we concern Popovici’s
decomposition of a non-trivial two-sided invariant subspace M with respect
to a commuting pair of isometries W = ((LzLw)|M, (RzRw)|M). We prove
that W is a weak bi-shift on M.

2. Beurling-type invariant subspaces of L2(T2)

In this section, we show certain properties of left-invariant subspaces of
L2(T2). Let θ be an irrational number in (0, 1). We consider the unitary
operators on L2(T2) satisfying:

Lz(zmwn) = zm+1wn, Lw(zmwn) = e−2πimθzmwn+1,

Rz(zmwn) = e−2πinθzm+1wn and Rw(zmwn) = zmwn+1,

where (z, w) ∈ T2. By the simple calculation, we have

LzLw = e2πiθLwLz and RwRz = e2πiθRzRw.

If we define JA1 = A∗1 for all A ∈ L, then J is a conjugate linear isometry
from L2(T2) onto L2(T2) and

J(zmwn) = e−2πimnθz−mw−n.

Thus JLzJ = Rz
∗, JLwJ = Rw

∗. Let L (resp. R) denote the von Neumann
algebra generated by Lz and Lw (resp. Rz and Rw), then JLJ = R and
JRJ = L. If we define τ(A) = 〈A1, 1〉 for all A ∈ L, then τ is a unique
normal faithful tracial state on L. So we have

Proposition 2.1 L and R are II1-factors. Moreover, L = R′ and R = L′.

Thus we shall call L and R the left von Neumann algebra and the right
von Neuman algebra, respectively.

Definition 2.2 Let M be a closed subspace of L2(T2). We shall say that
M is; left-invariant, if L+M ⊂ M; left-reducing, if LM ⊂ M; left-pure, if
M contains no left-reducing subspace; left-full, if the smallest left-reducing
subspace containing M is all of L2(T2). The right-hand versions of these
concepts are defined similarly.
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Remark 2.3 Let M be a closed subspace of L2(T2). Then M is left-
invariant if and only if LzM ⊂ M and LwM ⊂ M, left-reducing if and only
if there exists a projection P ∈ R such that M = PL2(T2), left-pure if and
only if

⋂
m,n≥0 Lm

z Ln
wM = {0}, and left-full if and only if

⋃
m,n<0 Lm

z Ln
wM =

L2(T2). The right-hand versions of this property hold similarly.

Our goal of this section is to characterize the Beurling-type left-invariant
subspaces of L2(T2).

Lemma 2.4 Let M0 =
∑⊕

m,n≥0 Lz
mLw

n[q] for some norm one ele-
ment q of L2(T2). Then there exists a unitary operator V ∈ R such that
M0 = V H2(T2).

Proof. Suppose that M0 =
∑⊕

m,n≥0 Lz
mLw

n[q] for some norm one el-
ement q of L2(T2). Then we note that 〈Lz

mLw
nq, Lz

kLw
lq〉 = 0 for all

m, n, k, l ∈ Z such that (m,n) 6= (k, l). Now we define an operator V by

V

( ∑

m,n≥0

⊕
αm,nLz

mLw
n1

)
=

∑

m,n≥0

⊕
αm,nLz

mLw
nq.

Then V is an isometry and V Lz = LzV , V Lw = LwV . Hence V is in the
commutant of L. That is, V is in R. Since R is a finite von Neumann
algebra, V is unitary. Since q = V 1, M0 =

∑⊕
m,n≥0 Lz

mLw
n[V 1] =

V H2(T2). This completes the proof. ¤

We note that subspaces of the form V H2(T2) can be represented:

V H2(T2) =
∑

m,n≥0

⊕
Lz

mLw
n[V 1] (2.1)

where V is a partial isometry in the commutant R of L. From above lemmas
we now get the following Beurling-type theorem.

Let F be a closed subspace of L2(T2). We shall say that F is a wandering
subspace, if Lm

z Ln
wF and Lm′

z Ln′
w F are orthogonal for any different (m,n) and

(m′, n′) in Z2.

Theorem 2.5 Let M be a left-invariant subspace of L2(T2) and put Vz =
Lz|M, Vw = Lw|M, Fz = MªVzM and Fw = MªVwM. Then the following
statements are equivalent:

(1) There exists a wandering subspace F such that M =∑⊕
m,n≥0 Vz

mVw
nF,
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(2) Vz, Vw are shift operatorson M and VwVz
∗ = e2πiθVz

∗Vw,
(3) Vw is a shift operator on M and Fw =

∑⊕
n≥0 Vz

n(Fz ∩ Fw), or
Vz is a shift operator on M and Fz =

∑⊕
m≥0 Vw

m(Fz ∩ Fw),
(4) Fz∩Fw is a wandering subspace and M=

∑⊕
m,n≥0Vz

mVw
n(Fz∩Fw),

(5) M is of the form V H2(T2), where V is a unitary operator in R.

Proof. (1) ⇒ (2). Let F be a wandering subspace such that M =∑⊕
m,n≥0 Vz

mVw
nF. We define

Fz
′ =

∑

m≥0

⊕
Vw

mF and Fw
′ =

∑

n≥0

⊕
Vz

nF.

Since

M =
∑

n≥0

⊕
Vz

nFz
′ =

∑

m≥0

⊕
Vw

mFw
′,

Vz and Vw are shift operators. It follows that Fz = Fz
′ and Fw = Fw

′. Now
we shall show VwVz

∗ = e2πiθVz
∗Vw. If x ∈ M, then x =

∑
m≥0 Vz

mxm,
where xm ∈ Fz. Then we have

Vz
∗Vwx =

∑

m≥0

Vz
∗VwVz

mxm =
∑

m≥0

e−2πimθVz
∗Vz

mVwxm

=
∑

m≥1

e−2πimθVz
m−1Vwxm + Vz

∗Vwx0.

On the other hand, we have

VwVz
∗x =

∑

m≥0

VwVz
∗Vz

mxm =
∑

m≥1

VwVz
m−1xm + VwVz

∗x0

= e2πiθ
∑

m≥1

e−2πimθVz
m−1Vwxm + VwVz

∗x0.

Since Vz
∗Vwx0 = 0 and VwVz

∗x0 = 0, we have VwVz
∗ = e2πiθVz

∗Vw.
(2) ⇒ (3). We shall prove that Fw =

∑⊕
n≥0 Vz

n(Fz∩Fw). The second as-
sertion can be obtained in the same way. First we notice that Fw reduces Vz.
Hence for all n ≥ 0,

Vz
n(Fz ∩ Fw) ⊂ Fw.

Evidently Fz ∩ Fw is a wandering subspace for Vz. Then we have
∑

n≥0

⊕
Vz

n(Fz ∩ Fw) ⊂ Fw.
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Let F0 = Fw ª VzFw. If we prove that F0 ⊂ Fz ∩ Fw, then we get

Fw =
∑

n≥0

⊕
Vz

nF0 ⊂
∑

n≥0

⊕
Vz

n(Fz ∩ Fw) ⊂ Fw,

which finishes this part of the proof. Suppose that x ∈ F0. Then x ⊥ VzFw

and consequently Vz
∗x ⊥ Fw. On the other hand x ∈ Fw. Since Fw re-

duces Vz, we have Vz
∗x ∈ Fw. This implies that Vz

∗x = 0 and so x ∈ Fz.
Since x ∈ Fw, our proof is complete.
(3) ⇒ (4). Suppose that the first condition of (3) is fullfilled. Since Vw is
a shift, we have M =

∑
m≥0

⊕
Vw

mFw. Then

M =
∑

m≥0

⊕
Vw

m

( ∑

n≥0

⊕
Vz

n(Fz ∩ Fw)

)

=
∑

m,n≥0

⊕
Vz

mVw
n(Fz ∩ Fw).

In the second case the proof is the same.
(4) ⇒ (1). (1) follows (4) immediately.
(5) ⇒ (2). It is clear from (2.1).
(4) ⇒ (5). Suppose

M =
∑

m,n≥0

⊕
Vz

mVw
n(Fz ∩ Fw).

We shall now prove that Fz∩Fw is one-dimensional. Suppose dim(Fz∩Fw) >

1, and fix norm one orthogonal elements q1, q2 in Fz ∩ Fw. Let

M1 =
∑

m,n≥0

⊕
Lz

mLw
n[q1] and M2 =

∑

m,n≥0

⊕
Lz

mLw
n[q2].

By Lemma 2.4 there exists unitary operators U1 and U2 in R such that

M1 = U1H
2(T2) and M2 = U2H

2(T2).

Since q1 ⊥ q2, we have

U1H
2(T2) ⊥ U2H

2(T2).

Putting U0 = U1
∗U2, then U0 is a unitary operator in R. Moreover we have

H2(T2) ⊥ U0H
2(T2).
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So we see that Lz
mLw

n1 ⊥ U0H
2(T2) for all m, n ∈ Z. Therefore we see

L2(T2) ⊥ U0H
2(T2).

That is U0H
2(T2) = {0}, a contradiction. So we have norm one element q

in Fz∩Fw. Again from Lemma 2.4 we have M = V H2(T2) for some unitary
operator V ∈ R. This completes the proof. ¤

3. Two-sided invariant subspaces of L2(T2)

In this section we shall study about two-sided invariant subspaces of
L2(T2).

Definition 3.1 Let M be a closed subspace of L2(T2). We shall say that
M is; two-sided invariant, if M is both left-invariant and right-invariant;
two-sided reducing, if M is both left-reducing and right-reducing, two-sided
pure, if M is both left-pure and right-pure; two-sided full, if M is both
left-full and right-full.

To prove the theorem about two-sided invariant subspaces of L2(T2), we
need the following lemma.

Lemma 3.2 If M is a left-invariant (resp. right-invariant) subspace of
L2(T2) and a right-reducing (resp. left-reducing) subspace of L2(T2), then
M is either {0} or L2(T2).

Proof. Let P be the projection with range M. Then since M is right
reducing, P belongs to L. Since M is left-invariant, we have LzPL∗z ≤ P . It
is easy to see LzPL∗z ∼ P . Since L is a finite von Neumann algebra, we have
LzPL∗z = P , that is, LzP = PLz. Similarly, we have LwP = PLw. Hence
P lies in L′. Therefore P belongs to the center of L. Since L is a factor, P
is either 0 or 1. This completes the proof. ¤

Remark 3.3 If θ = 0, then the assumption of the above lemma is that
M is reducing (zM = M, wM = M). In this case M is of the form
χEL2(T2).

Theorem 3.4 A non-trivial two-sided invariant subspace of L2(T2) is
two-sided pure and two-sided full.

Proof. Let M be a non-trivial two-sided invariant subspace of L2(T2).
Put M∞ =

⋂
m,n≥0 Lm

z Ln
wM and let P∞ be the projection from L2(T2)
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onto M∞. Then we have that P∞ 6= I and M∞ is right-invariant and
left-reducing. From Lemma 3.2 we have M∞ = {0}. Thus M is left-pure.

The right-pureness is similarly proved by considering a projection from
L2(T2) onto

⋂
m,n≥0 Rm

z Rn
wM. The left-fullness and the right-fullness is

similarly proved by cosidering projections onto
⋃

m,n<0 Lm
z Ln

wM and onto⋃
m,n<0 Rm

z Rn
wM respectively. This completes the proof. ¤

4. Popovici’s decomposition

In this section we shall characterize two-sided invariant subspaces of
L2(T2) by using Popovici’s decomposition with respect to a bi-isometry
(a commuting pair of isometries).

Definition 4.1 Let S be an isometry on L2(T2) and M be a closed sub-
space of L2(T2). We shall say that M is; S-invariant, if SM ⊂ M.

Let M be a non-trivial two-sided invariant subspace of L2(T2). Put U =
(LzLw)|M and V = (RzRw)|M. Then we note that M is both U -invariant
and V -invariant. The couple W = (U, V ) is a bi-isometry on M.

By Popovici’s decomposition of M with respect to W , we have

M = Muu ⊕Mus ⊕Msu ⊕Mws

such that W |Muu is a bi-unitary (that is, both U |Muu and V |Muu are uni-
tary operators), W |Mus is a unitary-shift (that is, U |Mus is a unitary and
V |Mus is a shift), W |Msu is a shift-unitary (that is, U |Msu is a shift and
V |Msu is a unitary) and W |Mws is a weak bi-shift (that is, U |∩i≥0 ker V ∗U i ,
V |∩j≥0 ker U∗V j and (U |Mws)(V |Mws) are shift operators).

We have the following:

Theorem 4.2 Let M be a non-trivial two-sided invariant subspace of
L2(T2). Then the couple W = (U, V ) is a weak bi-shift on M, that is,
M = Mws.

Proof. Both U and V are unitary on Muu, thus Muu is two-sided reducing
by [5, Proposition 1]. By Lemma 3.2, we have that Muu = {0}. Since M is
U -invariant, we have the Wold-type decomposition of M with respect to U

as follows;

M =
⋂

n∈Z
UnM⊕

∑

n≥0

⊕
UnFU ,
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where FU = MªUM. Define MU
u =

⋂
n∈Z UnM and MU

s =
∑⊕

n≥0 UnFU .
Then it is clear that MU

u is right-invariant.
For each n ∈ Z, we have

Lz(LzLw)n = Lz(e2πiθLwLz)n

= e2πinθ(LzLw)nLz.

Since M is two-sided invariant, we have

LzM
U
u =

⋂

n∈Z
Lz(LzLw)nM

=
⋂

n∈Z
(LzLw)nLzM

⊂
⋂

n∈Z
UnM

= MU
u .

Similarly we see LwMU
u ⊂ MU

u . On the other hand, for each n ∈ Z, we have

L∗z(LzLw)n = L∗z(LzLw)(LzLw)n−1

= Lw(LzLw)n−1.

Thus we have

L∗zM
U
u =

⋂

n∈Z
L∗z(LzLw)n

= Lw

⋂

n∈Z
(LzLw)n−1M

= LwMU
u

⊂ MU
u .

Moreover we have

L∗w(LzLw)n = L∗w(LzLw)(LzLw)n−1

= L∗w(e2πiθLwLz)(LzLw)n−1

= e2πiθLz(LzLw)n−1.

It follows L∗wMU
u ⊂ MU

u . Thus MU
u is right-invariant and left-reducing. By

Lemma 3.2 and the assumption, MU
u = {0}. Similarly, if we consider the

Wold-type decomposition M = MV
u ⊕MV

s of M with respect to V , then we
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have MV
u = {0}. As in the proof of [9, Theorem 2.8], we have

Mus ⊂ MU
u ∩MV

s and Msu ⊂ MU
s ∩MV

u .

It follows Muu ⊕Mus ⊕Msu = {0} and so M = Mws. This completes the
proof. ¤
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