Hokkaido Mathematical Journal Vol. 35 (2006) p. 601-611

The invariant subspace structure of $L^2(\mathbb{T}^2)$ for certain von Neumann algebras

Atsushi HASEGAWA

(Received February 7, 2005; Revised May 25, 2005)

Abstract. In this note, we study invariant subspaces of $L^2(\mathbb{T}^2)$ with respect to certain von Neumann algebras. We give a characterization of Beurling-type left-invariant subspaces of $L^2(\mathbb{T}^2)$. We also give a structure theorem of a non-trivial two-sided invariant subspace of $L^2(\mathbb{T}^2)$.

Key words: von Neumann algebras, invariant subspaces, Popovici's decomposition.

1. Introduction

Let \mathbb{T}^2 be the torus that is the cartesian product of two unit circles in \mathbb{C} . Let $L^2(\mathbb{T}^2)$ and $H^2(\mathbb{T}^2)$ be the usual Lebesgue and Hardy space in the torus \mathbb{T}^2 , respectively.

A closed subspace \mathfrak{M} of $L^2(\mathbb{T}^2)$ is said to be invariant if

 $z\mathfrak{M} \subset \mathfrak{M}$ and $w\mathfrak{M} \subset \mathfrak{M}$.

There are many results about invariant subspaces of $L^2(\mathbb{T}^2)$ (cf. [2], [3], [5], [6], [7], [8], etc.). Especially, in [6] the invariant subspaces \mathfrak{M} of $L^2(\mathbb{T}^2)$ of the Beurling form were characterized as the subspaces on which multiplication operators by z and w are doubly commuting. In [3] the structural theorem of the invariant subspaces of $L^2(\mathbb{T}^2)$ is given.

Let θ be an irrational number in (0, 1). We consider the unitary operators on $L^2(\mathbb{T}^2)$ satisfying:

$$L_{z}(z^{m}w^{n}) = z^{m+1}w^{n}, \quad L_{w}(z^{m}w^{n}) = e^{-2\pi i m \theta} z^{m} w^{n+1},$$

$$R_{z}(z^{m}w^{n}) = e^{-2\pi i n \theta} z^{m+1} w^{n} \text{ and } R_{w}(z^{m}w^{n}) = z^{m} w^{n+1},$$

where $z, w \in \mathbb{C}$ such that |z| = |w| = 1. By the simple calculation, we have

$$L_z L_w = e^{2\pi i \theta} L_w L_z$$
 and $R_w R_z = e^{2\pi i \theta} R_z R_w$.

Let \mathfrak{L} (resp. \mathfrak{R}) denote the von Neumann algebra generated by L_z and L_w

²⁰⁰⁰ Mathematics Subject Classification : Primary 47A15; Secondary 46L10.

(resp. R_z and R_w), then they are II₁-factors. Moreover, \mathfrak{L} and \mathfrak{R} are the commutant of each other. So \mathfrak{L} and \mathfrak{R} are called the left von Neumann algebra and the right von Neumann algebra, respectively. They are important classes of operator algebras. More generally, let U and V be unitary operators on a Hilbert space \mathcal{H} satisfying $UV = e^{2\pi i\theta}VU$. The C^* -algebra \mathfrak{A}_{θ} generated by U and V is called an irrational rotation C^* -algebra. Then, up to unitary equivalence, there exists a unique *-representation π of \mathfrak{A}_{θ} onto $C^*(L_z, L_w)$ such that $\pi(U) = L_z$ and $\pi(V) = L_w$ (see [4]).

Let \mathfrak{L}_+ (resp. \mathfrak{R}_+) denote the σ -weakly closed subalgebra of \mathfrak{L} (resp. \mathfrak{R}) generated by the positive powers of L_z and L_w (resp. R_z and R_w). A closed subspace \mathfrak{M} of $L^2(\mathbb{T}^2)$ is said to be *left-invariant* (resp. *right-invariant*) if $\mathfrak{L}_+\mathfrak{M} \subset \mathfrak{M}$ (resp. $\mathfrak{R}_+\mathfrak{M} \subset \mathfrak{M}$). Moreover if $\mathfrak{L}\mathfrak{M} \subset \mathfrak{M}$ (resp. $\mathfrak{R}\mathfrak{M} \subset \mathfrak{M}$), then \mathfrak{M} is said to be *left-reducing* (resp. *right-reducing*). If \mathfrak{M} contains no left-reducing (resp. right-reducing) subspace, \mathfrak{M} is said to be *left-pure* (resp. *right-pure*). If the smallest left-reducing (resp. right-reducing) subspace containing \mathfrak{M} is $L^2(\mathbb{T}^2)$, \mathfrak{M} is said to be *left-full* (resp. *right-full*). In this setting, we have an interest in the invariant subspace structure of $L^2(\mathbb{T}^2)$. If $\theta = 0$, then \mathfrak{L} and \mathfrak{R} are generated by the multiplication operators $\{M_f: f \in L^\infty(\mathbb{T}^2)\}$ on $L^2(\mathbb{T}^2)$, and the notion of invariant subspaces is that of usual invariant subspaces of $L^2(\mathbb{T}^2)$ satisfying $\mathfrak{Z}\mathfrak{M} \subset \mathfrak{M}$ and $\mathfrak{W}\mathfrak{M} \subset \mathfrak{M}$.

In this paper we obtain necessary and sufficient conditions on the leftinvariant subspace of $L^2(\mathbb{T}^2)$ to be of the form $VH^2(\mathbb{T}^2)$, where V is a unitary operator in \mathfrak{R} . A closed subspace \mathfrak{M} of $L^2(\mathbb{T}^2)$ is said to be *twosided invariant* if \mathfrak{M} is both left-invariant and right-invariant. The concept of *two-sided pure* and *two-sided full* are defined similarly. We prove that a non-trivial two-sided invariant subspace of $L^2(\mathbb{T}^2)$ is two-sided pure and two-sided full.

Let \mathfrak{M} be a non-trivial two-sided subspace of $L^2(\mathbb{T}^2)$. Put $U = (L_z L_w)|_{\mathfrak{M}}$ and $V = (R_z R_w)|_{\mathfrak{M}}$. Then \mathfrak{M} is both U-invariant and V-invariant. The couple W = (U, V) is a commuting pair of isometries on \mathfrak{M} . By Popovici's decomposition of \mathfrak{M} with respect to W, we have

$$\mathfrak{M}=\mathfrak{M}_{uu}\oplus\mathfrak{M}_{us}\oplus\mathfrak{M}_{su}\oplus\mathfrak{M}_{ws}$$

(cf. [9, Theorem 2.8]). Then we show that W is a weak bi-shift on \mathfrak{M} , that is, $\mathfrak{M} = \mathfrak{M}_{ws}$.

In §2 we study left-invariant subspaces of $L^2(\mathbb{T}^2)$. In particular we give the characterization of Beurling-type invariant subspaces of $L^2(\mathbb{T}^2)$.

In §3 we introduce the notion of two-sided invariant, two-sided pure and two-sided full. We prove that a non-trivial two-sided invariant subspace of $L^2(\mathbb{T}^2)$ is two-sided pure and two-sided full. In §4 we concern Popovici's decomposition of a non-trivial two-sided invariant subspace \mathfrak{M} with respect to a commuting pair of isometries $W = ((L_z L_w)|_{\mathfrak{M}}, (R_z R_w)|_{\mathfrak{M}})$. We prove that W is a weak bi-shift on \mathfrak{M} .

2. Beurling-type invariant subspaces of $L^2(\mathbb{T}^2)$

In this section, we show certain properties of left-invariant subspaces of $L^2(\mathbb{T}^2)$. Let θ be an irrational number in (0,1). We consider the unitary operators on $L^2(\mathbb{T}^2)$ satisfying:

$$L_{z}(z^{m}w^{n}) = z^{m+1}w^{n}, \quad L_{w}(z^{m}w^{n}) = e^{-2\pi i m \theta} z^{m} w^{n+1},$$

$$R_{z}(z^{m}w^{n}) = e^{-2\pi i n \theta} z^{m+1} w^{n} \text{ and } R_{w}(z^{m}w^{n}) = z^{m} w^{n+1},$$

where $(z, w) \in \mathbb{T}^2$. By the simple calculation, we have

$$L_z L_w = e^{2\pi i \theta} L_w L_z$$
 and $R_w R_z = e^{2\pi i \theta} R_z R_w$.

If we define $JA1 = A^*1$ for all $A \in \mathfrak{L}$, then J is a conjugate linear isometry from $L^2(\mathbb{T}^2)$ onto $L^2(\mathbb{T}^2)$ and

$$J(z^m w^n) = e^{-2\pi i m n\theta} z^{-m} w^{-n}$$

Thus $JL_z J = R_z^*$, $JL_w J = R_w^*$. Let \mathfrak{L} (resp. \mathfrak{R}) denote the von Neumann algebra generated by L_z and L_w (resp. R_z and R_w), then $J\mathfrak{L}J = \mathfrak{R}$ and $J\mathfrak{R}J = \mathfrak{L}$. If we define $\tau(A) = \langle A1, 1 \rangle$ for all $A \in \mathfrak{L}$, then τ is a unique normal faithful tracial state on \mathfrak{L} . So we have

Proposition 2.1 \mathfrak{L} and \mathfrak{R} are H_1 -factors. Moreover, $\mathfrak{L} = \mathfrak{R}'$ and $\mathfrak{R} = \mathfrak{L}'$.

Thus we shall call \mathfrak{L} and \mathfrak{R} the left von Neumann algebra and the right von Neuman algebra, respectively.

Definition 2.2 Let \mathfrak{M} be a closed subspace of $L^2(\mathbb{T}^2)$. We shall say that \mathfrak{M} is; *left-invariant*, if $\mathfrak{L}_+\mathfrak{M} \subset \mathfrak{M}$; *left-reducing*, if $\mathfrak{L}\mathfrak{M} \subset \mathfrak{M}$; *left-pure*, if \mathfrak{M} contains no left-reducing subspace; *left-full*, if the smallest left-reducing subspace containing \mathfrak{M} is all of $L^2(\mathbb{T}^2)$. The right-hand versions of these concepts are defined similarly.

Remark 2.3 Let \mathfrak{M} be a closed subspace of $L^2(\mathbb{T}^2)$. Then \mathfrak{M} is leftinvariant if and only if $L_z\mathfrak{M} \subset \mathfrak{M}$ and $L_w\mathfrak{M} \subset \mathfrak{M}$, left-reducing if and only if there exists a projection $P \in \mathfrak{R}$ such that $\mathfrak{M} = PL^2(\mathbb{T}^2)$, left-pure if and only if $\bigcap_{m,n\geq 0} L_z^m L_w^n \mathfrak{M} = \{0\}$, and left-full if and only if $\bigcup_{m,n< 0} L_z^m L_w^n \mathfrak{M} = L^2(\mathbb{T}^2)$. The right-hand versions of this property hold similarly.

Our goal of this section is to characterize the Beurling-type left-invariant subspaces of $L^2(\mathbb{T}^2)$.

Lemma 2.4 Let $\mathfrak{M}_0 = \sum \bigoplus_{m,n\geq 0} L_z^m L_w^n[q]$ for some norm one element q of $L^2(\mathbb{T}^2)$. Then there exists a unitary operator $V \in \mathfrak{R}$ such that $\mathfrak{M}_0 = VH^2(\mathbb{T}^2)$.

Proof. Suppose that $\mathfrak{M}_0 = \sum \bigoplus_{m,n \ge 0} L_z^m L_w^n[q]$ for some norm one element q of $L^2(\mathbb{T}^2)$. Then we note that $\langle L_z^m L_w^n q, L_z^k L_w^l q \rangle = 0$ for all $m, n, k, l \in \mathbb{Z}$ such that $(m, n) \neq (k, l)$. Now we define an operator V by

$$V\left(\sum_{m,n\geq 0}\bigoplus \alpha_{m,n}L_z{}^mL_w{}^n1\right) = \sum_{m,n\geq 0}\bigoplus \alpha_{m,n}L_z{}^mL_w{}^nq.$$

Then V is an isometry and $VL_z = L_z V$, $VL_w = L_w V$. Hence V is in the commutant of \mathfrak{L} . That is, V is in \mathfrak{R} . Since \mathfrak{R} is a finite von Neumann algebra, V is unitary. Since q = V1, $\mathfrak{M}_0 = \sum \bigoplus_{m,n \ge 0} L_z^m L_w^n [V1] = VH^2(\mathbb{T}^2)$. This completes the proof.

We note that subspaces of the form $VH^2(\mathbb{T}^2)$ can be represented:

$$VH^2(\mathbb{T}^2) = \sum_{m,n\ge 0} \bigoplus L_z{}^m L_w{}^n[V1]$$
(2.1)

where V is a partial isometry in the commutant \Re of \mathfrak{L} . From above lemmas we now get the following Beurling-type theorem.

Let \mathfrak{F} be a closed subspace of $L^2(\mathbb{T}^2)$. We shall say that \mathfrak{F} is a wandering subspace, if $L_z^m L_w^n \mathfrak{F}$ and $L_z^{m'} L_w^{n'} \mathfrak{F}$ are orthogonal for any different (m, n) and (m', n') in \mathbb{Z}^2 .

Theorem 2.5 Let \mathfrak{M} be a left-invariant subspace of $L^2(\mathbb{T}^2)$ and put $V_z = L_z|_{\mathfrak{M}}, V_w = L_w|_{\mathfrak{M}}, \mathfrak{F}_z = \mathfrak{M} \ominus V_z \mathfrak{M}$ and $\mathfrak{F}_w = \mathfrak{M} \ominus V_w \mathfrak{M}$. Then the following statements are equivalent:

(1) There exists a wandering subspace \mathfrak{F} such that $\mathfrak{M} = \sum \bigoplus_{m,n>0} V_z^m V_w^n \mathfrak{F}$,

Invariant subspace structure of $L^2(\mathbb{T}^2)$

- (2) V_z , V_w are shift operators on \mathfrak{M} and $V_w V_z^* = e^{2\pi i \theta} V_z^* V_w$,
- (3) V_w is a shift operator on \mathfrak{M} and $\mathfrak{F}_w = \sum \bigoplus_{n \ge 0} V_z^n (\mathfrak{F}_z \cap \mathfrak{F}_w)$, or
- $V_z \text{ is a shift operator on } \mathfrak{M} \text{ and } \mathfrak{F}_z = \sum \bigoplus_{m \ge 0} V_w^m (\mathfrak{F}_z \cap \mathfrak{F}_w),$ $(4) \mathfrak{F}_z \cap \mathfrak{F}_w \text{ is a wandering subspace and } \mathfrak{M} = \sum \bigoplus_{m,n \ge 0} V_z^m V_w^n (\mathfrak{F}_z \cap \mathfrak{F}_w),$ (5) \mathfrak{M} is of the form $VH^2(\mathbb{T}^2)$, where V is a unitary operator in \mathfrak{R} .

Proof. (1) \Rightarrow (2). Let \mathfrak{F} be a wandering subspace such that $\mathfrak{M} =$ $\sum \bigoplus_{m,n>0} V_z^m V_w^n \mathfrak{F}$. We define

$$\mathfrak{F}_{z}{}' = \sum_{m \ge 0} \bigoplus V_{w}{}^{m} \mathfrak{F} \text{ and } \mathfrak{F}_{w}{}' = \sum_{n \ge 0} \bigoplus V_{z}{}^{n} \mathfrak{F}.$$

Since

$$\mathfrak{M} = \sum_{n \ge 0} \bigoplus V_z^{\ n} \mathfrak{F}_z^{\ \prime} = \sum_{m \ge 0} \bigoplus V_w^{\ m} \mathfrak{F}_w^{\ \prime},$$

 V_z and V_w are shift operators. It follows that $\mathfrak{F}_z = \mathfrak{F}_z'$ and $\mathfrak{F}_w = \mathfrak{F}_w'$. Now we shall show $V_w V_z^* = e^{2\pi i \theta} V_z^* V_w$. If $x \in \mathfrak{M}$, then $x = \sum_{m \ge 0} V_z^m x_m$, where $x_m \in \mathfrak{F}_z$. Then we have

$$V_{z}^{*}V_{w}x = \sum_{m \ge 0} V_{z}^{*}V_{w}V_{z}^{m}x_{m} = \sum_{m \ge 0} e^{-2\pi i m \theta}V_{z}^{*}V_{z}^{m}V_{w}x_{m}$$
$$= \sum_{m \ge 1} e^{-2\pi i m \theta}V_{z}^{m-1}V_{w}x_{m} + V_{z}^{*}V_{w}x_{0}$$

On the other hand, we have

$$V_w V_z^* x = \sum_{m \ge 0} V_w V_z^* V_z^m x_m = \sum_{m \ge 1} V_w V_z^{m-1} x_m + V_w V_z^* x_0$$
$$= e^{2\pi i \theta} \sum_{m \ge 1} e^{-2\pi i m \theta} V_z^{m-1} V_w x_m + V_w V_z^* x_0.$$

Since $V_z^* V_w x_0 = 0$ and $V_w V_z^* x_0 = 0$, we have $V_w V_z^* = e^{2\pi i \theta} V_z^* V_w$. (2) \Rightarrow (3). We shall prove that $\mathfrak{F}_w = \sum \bigoplus_{n \ge 0} V_z^n (\mathfrak{F}_z \cap \mathfrak{F}_w)$. The second assertion can be obtained in the same way. First we notice that \mathfrak{F}_w reduces V_z . Hence for all $n \ge 0$,

$$V_z^n(\mathfrak{F}_z\cap\mathfrak{F}_w)\subset\mathfrak{F}_w.$$

Evidently $\mathfrak{F}_z \cap \mathfrak{F}_w$ is a wandering subspace for V_z . Then we have

$$\sum_{n\geq 0} \bigoplus V_z^{\ n}(\mathfrak{F}_z \cap \mathfrak{F}_w) \subset \mathfrak{F}_w.$$

Let $\mathfrak{F}_0 = \mathfrak{F}_w \ominus V_z \mathfrak{F}_w$. If we prove that $\mathfrak{F}_0 \subset \mathfrak{F}_z \cap \mathfrak{F}_w$, then we get

$$\mathfrak{F}_w = \sum_{n \ge 0} \bigoplus V_z^n \mathfrak{F}_0 \subset \sum_{n \ge 0} \bigoplus V_z^n (\mathfrak{F}_z \cap \mathfrak{F}_w) \subset \mathfrak{F}_w,$$

which finishes this part of the proof. Suppose that $x \in \mathfrak{F}_0$. Then $x \perp V_z \mathfrak{F}_w$ and consequently $V_z^* x \perp \mathfrak{F}_w$. On the other hand $x \in \mathfrak{F}_w$. Since \mathfrak{F}_w reduces V_z , we have $V_z^* x \in \mathfrak{F}_w$. This implies that $V_z^* x = 0$ and so $x \in \mathfrak{F}_z$. Since $x \in \mathfrak{F}_w$, our proof is complete.

(3) \Rightarrow (4). Suppose that the first condition of (3) is fullfilled. Since V_w is a shift, we have $\mathfrak{M} = \sum_{m>0} \bigoplus V_w{}^m \mathfrak{F}_w$. Then

$$\mathfrak{M} = \sum_{m \ge 0} \bigoplus V_w^m \left(\sum_{n \ge 0} \bigoplus V_z^n (\mathfrak{F}_z \cap \mathfrak{F}_w) \right)$$
$$= \sum_{m,n \ge 0} \bigoplus V_z^m V_w^n (\mathfrak{F}_z \cap \mathfrak{F}_w).$$

In the second case the proof is the same.

 $(4) \Rightarrow (1)$. (1) follows (4) immediately.

 $(5) \Rightarrow (2)$. It is clear from (2.1).

 $(4) \Rightarrow (5)$. Suppose

$$\mathfrak{M} = \sum_{m,n \ge 0} \bigoplus V_z{}^m V_w{}^n (\mathfrak{F}_z \cap \mathfrak{F}_w).$$

We shall now prove that $\mathfrak{F}_z \cap \mathfrak{F}_w$ is one-dimensional. Suppose dim $(\mathfrak{F}_z \cap \mathfrak{F}_w) > 1$, and fix norm one orthogonal elements q_1, q_2 in $\mathfrak{F}_z \cap \mathfrak{F}_w$. Let

$$\mathfrak{M}_1 = \sum_{m,n \ge 0} \bigoplus L_z^m L_w^n[q_1] \text{ and } \mathfrak{M}_2 = \sum_{m,n \ge 0} \bigoplus L_z^m L_w^n[q_2].$$

By Lemma 2.4 there exists unitary operators U_1 and U_2 in \Re such that

$$\mathfrak{M}_1 = U_1 H^2(\mathbb{T}^2)$$
 and $\mathfrak{M}_2 = U_2 H^2(\mathbb{T}^2).$

Since $q_1 \perp q_2$, we have

$$U_1 H^2(\mathbb{T}^2) \perp U_2 H^2(\mathbb{T}^2)$$

Putting $U_0 = U_1^* U_2$, then U_0 is a unitary operator in \mathfrak{R} . Moreover we have

$$H^2(\mathbb{T}^2) \perp U_0 H^2(\mathbb{T}^2)$$

So we see that $L_z^m L_w^n 1 \perp U_0 H^2(\mathbb{T}^2)$ for all $m, n \in \mathbb{Z}$. Therefore we see

$$L^2(\mathbb{T}^2) \perp U_0 H^2(\mathbb{T}^2)$$

That is $U_0H^2(\mathbb{T}^2) = \{0\}$, a contradiction. So we have norm one element q in $\mathfrak{F}_z \cap \mathfrak{F}_w$. Again from Lemma 2.4 we have $\mathfrak{M} = VH^2(\mathbb{T}^2)$ for some unitary operator $V \in \mathfrak{R}$. This completes the proof.

3. Two-sided invariant subspaces of $L^2(\mathbb{T}^2)$

In this section we shall study about two-sided invariant subspaces of $L^2(\mathbb{T}^2)$.

Definition 3.1 Let \mathfrak{M} be a closed subspace of $L^2(\mathbb{T}^2)$. We shall say that \mathfrak{M} is; two-sided invariant, if \mathfrak{M} is both left-invariant and right-invariant; two-sided reducing, if \mathfrak{M} is both left-reducing and right-reducing, two-sided pure, if \mathfrak{M} is both left-pure and right-pure; two-sided full, if \mathfrak{M} is both left-full and right-full.

To prove the theorem about two-sided invariant subspaces of $L^2(\mathbb{T}^2)$, we need the following lemma.

Lemma 3.2 If \mathfrak{M} is a left-invariant (resp. right-invariant) subspace of $L^2(\mathbb{T}^2)$ and a right-reducing (resp. left-reducing) subspace of $L^2(\mathbb{T}^2)$, then \mathfrak{M} is either $\{0\}$ or $L^2(\mathbb{T}^2)$.

Proof. Let P be the projection with range \mathfrak{M} . Then since \mathfrak{M} is right reducing, P belongs to \mathfrak{L} . Since \mathfrak{M} is left-invariant, we have $L_z PL_z^* \leq P$. It is easy to see $L_z PL_z^* \sim P$. Since \mathcal{L} is a finite von Neumann algebra, we have $L_z PL_z^* = P$, that is, $L_z P = PL_z$. Similarly, we have $L_w P = PL_w$. Hence P lies in \mathfrak{L}' . Therefore P belongs to the center of \mathfrak{L} . Since \mathfrak{L} is a factor, P is either 0 or 1. This completes the proof.

Remark 3.3 If $\theta = 0$, then the assumption of the above lemma is that \mathfrak{M} is reducing $(z\mathfrak{M} = \mathfrak{M}, w\mathfrak{M} = \mathfrak{M})$. In this case \mathfrak{M} is of the form $\chi_E L^2(\mathbb{T}^2)$.

Theorem 3.4 A non-trivial two-sided invariant subspace of $L^2(\mathbb{T}^2)$ is two-sided pure and two-sided full.

Proof. Let \mathfrak{M} be a non-trivial two-sided invariant subspace of $L^2(\mathbb{T}^2)$. Put $\mathfrak{M}_{\infty} = \bigcap_{m,n>0} L_z^m L_w^n \mathfrak{M}$ and let P_{∞} be the projection from $L^2(\mathbb{T}^2)$

onto \mathfrak{M}_{∞} . Then we have that $P_{\infty} \neq I$ and \mathfrak{M}_{∞} is right-invariant and left-reducing. From Lemma 3.2 we have $\mathfrak{M}_{\infty} = \{0\}$. Thus \mathfrak{M} is left-pure.

The right-pureness is similarly proved by considering a projection from $L^2(\mathbb{T}^2)$ onto $\bigcap_{m,n>0} R_z^m R_w^n \mathfrak{M}$. The left-fullness and the right-fullness is similarly proved by cosidering projections onto $\bigcup_{m,n<0} L_z^m L_w^n \mathfrak{M}$ and onto $\overline{\bigcup_{m n < 0}} R_z^m R_w^n \mathfrak{M}$ respectively. This completes the proof.

4. Popovici's decomposition

In this section we shall characterize two-sided invariant subspaces of $L^2(\mathbb{T}^2)$ by using Popovici's decomposition with respect to a bi-isometry (a commuting pair of isometries).

Definition 4.1 Let S be an isometry on $L^2(\mathbb{T}^2)$ and \mathfrak{M} be a closed subspace of $L^2(\mathbb{T}^2)$. We shall say that \mathfrak{M} is: *S*-invariant, if $S\mathfrak{M} \subset \mathfrak{M}$.

Let \mathfrak{M} be a non-trivial two-sided invariant subspace of $L^2(\mathbb{T}^2)$. Put U = $(L_z L_w)|_{\mathfrak{M}}$ and $V = (R_z R_w)|_{\mathfrak{M}}$. Then we note that \mathfrak{M} is both U-invariant and V-invariant. The couple W = (U, V) is a bi-isometry on \mathfrak{M} .

By Popovici's decomposition of \mathfrak{M} with respect to W, we have

$$\mathfrak{M}=\mathfrak{M}_{uu}\oplus\mathfrak{M}_{us}\oplus\mathfrak{M}_{su}\oplus\mathfrak{M}_{ws}$$

such that $W|_{\mathfrak{M}_{uu}}$ is a bi-unitary (that is, both $U|_{\mathfrak{M}_{uu}}$ and $V|_{\mathfrak{M}_{uu}}$ are unitary operators), $W|_{\mathfrak{M}_{us}}$ is a unitary-shift (that is, $U|_{\mathfrak{M}_{us}}$ is a unitary and $V|_{\mathfrak{M}_{us}}$ is a shift), $W|_{\mathfrak{M}_{su}}$ is a shift-unitary (that is, $U|_{\mathfrak{M}_{su}}$ is a shift and $V|_{\mathfrak{M}_{su}}$ is a unitary) and $W|_{\mathfrak{M}_{ws}}$ is a weak bi-shift (that is, $U|_{\cap_{i>0} \ker V^* U^i}$, $\begin{array}{l} V|_{\cap_{j\geq 0}\ker U^*V^j} \text{ and } (U|_{\mathfrak{M}_{ws}})(V|_{\mathfrak{M}_{ws}}) \text{ are shift operators}).\\ \text{We have the following:} \end{array}$

Theorem 4.2 Let \mathfrak{M} be a non-trivial two-sided invariant subspace of $L^2(\mathbb{T}^2)$. Then the couple W = (U, V) is a weak bi-shift on \mathfrak{M} , that is, $\mathfrak{M} = \mathfrak{M}_{ws}.$

Proof. Both U and V are unitary on \mathfrak{M}_{uu} , thus \mathfrak{M}_{uu} is two-sided reducing by [5, Proposition 1]. By Lemma 3.2, we have that $\mathfrak{M}_{uu} = \{0\}$. Since \mathfrak{M} is U-invariant, we have the Wold-type decomposition of \mathfrak{M} with respect to U as follows;

$$\mathfrak{M} = \bigcap_{n \in \mathbb{Z}} U^n \mathfrak{M} \oplus \sum_{n \ge 0} \bigoplus U^n \mathfrak{F}^U,$$

where $\mathfrak{F}^U = \mathfrak{M} \ominus U \mathfrak{M}$. Define $\mathfrak{M}^U_u = \bigcap_{n \in \mathbb{Z}} U^n \mathfrak{M}$ and $\mathfrak{M}^U_s = \sum \bigoplus_{n \ge 0} U^n \mathfrak{F}^U$. Then it is clear that \mathfrak{M}^U_u is right-invariant. For each $n \in \mathbb{Z}$, we have

$$L_z (L_z L_w)^n = L_z (e^{2\pi i \theta} L_w L_z)^n$$
$$= e^{2\pi i n \theta} (L_z L_w)^n L_z.$$

Since \mathfrak{M} is two-sided invariant, we have

$$L_{z}\mathfrak{M}_{u}^{U} = \bigcap_{n \in \mathbb{Z}} L_{z}(L_{z}L_{w})^{n}\mathfrak{M}$$
$$= \bigcap_{n \in \mathbb{Z}} (L_{z}L_{w})^{n}L_{z}\mathfrak{M}$$
$$\subset \bigcap_{n \in \mathbb{Z}} U^{n}\mathfrak{M}$$
$$= \mathfrak{M}_{u}^{U}.$$

Similarly we see $L_w \mathfrak{M}_u^U \subset \mathfrak{M}_u^U$. On the other hand, for each $n \in \mathbb{Z}$, we have

$$L_z^* (L_z L_w)^n = L_z^* (L_z L_w) (L_z L_w)^{n-1}$$

= $L_w (L_z L_w)^{n-1}$.

Thus we have

$$L_z^* \mathfrak{M}_u^U = \bigcap_{n \in \mathbb{Z}} L_z^* (L_z L_w)^n$$
$$= L_w \bigcap_{n \in \mathbb{Z}} (L_z L_w)^{n-1} \mathfrak{M}$$
$$= L_w \mathfrak{M}_u^U$$
$$\subset \mathfrak{M}_u^U.$$

Moreover we have

$$L_w^* (L_z L_w)^n = L_w^* (L_z L_w) (L_z L_w)^{n-1}$$

= $L_w^* (e^{2\pi i \theta} L_w L_z) (L_z L_w)^{n-1}$
= $e^{2\pi i \theta} L_z (L_z L_w)^{n-1}$.

It follows $L_w^* \mathfrak{M}_u^U \subset \mathfrak{M}_u^U$. Thus \mathfrak{M}_u^U is right-invariant and left-reducing. By Lemma 3.2 and the assumption, $\mathfrak{M}_u^U = \{0\}$. Similarly, if we consider the Wold-type decomposition $\mathfrak{M} = \mathfrak{M}_u^V \oplus \mathfrak{M}_s^V$ of \mathfrak{M} with respect to V, then we

have $\mathfrak{M}_{n}^{V} = \{0\}$. As in the proof of [9, Theorem 2.8], we have

$$\mathfrak{M}_{us} \subset \mathfrak{M}_{u}^{U} \cap \mathfrak{M}_{s}^{V}$$
 and $\mathfrak{M}_{su} \subset \mathfrak{M}_{s}^{U} \cap \mathfrak{M}_{u}^{V}$.

It follows $\mathfrak{M}_{uu} \oplus \mathfrak{M}_{us} \oplus \mathfrak{M}_{su} = \{0\}$ and so $\mathfrak{M} = \mathfrak{M}_{ws}$. This completes the proof.

Acknowledgements The author wishes to thank professors K.-S. Saito, G. Ji and T. Ohwada for their suggestions and encouragement. The author is also grateful to the referee for pointing out some misprints to make this paper more readable.

References

- Davidson K.R., C*-Algebras by example. The Fields Institute for Research in Mathematical Sciences 6, Amer. Math. Soc. (1996).
- [2] Gaspar D. and Suciu N., On invariant subspaces in the bitorus. J. Operator Theory 30 (1933), 227–241.
- [3] Ghatage P. and Mandrekar V., On Beurling type invariant subspaces of L²(T²) and their equivalence. J. Operator Theory 20 (1988), 31–38.
- [4] Han D., Wandering vectors for irrational rotation unitary systems. Trans. Amer. Math. Soc. 350 (1998), 309–320.
- [5] Ji G., Ohwada T. and Saito K.-S., Certain invariant subspace structure of L²(T²). Proc. Amer. Math. Soc. **126** (1998), 2361–2368.
- [6] Mandrekar R., The validty of Beurling theorems in polidisc. Proc. Amer. Math. Soc. 103 (1988), 145–148.
- [7] Nakazi T., Certain invariant subspaces of H^2 and L^2 on a bidisc. Canadian J. Math. 40 (1988), 1272–1280.
- [8] Nakazi T., Invariant subspaces in the bidisc and commutators. J. Austral. Math. Soc. 56 (1994), 232–242.
- [9] Popovici D., A Wold-type decomposition for commuting isometric pairs. Proc. Amer. Math. Soc. 132 (2004), 2303–2314.

Department of Mathematical Science Graduate School of Science and Technology Niigata University Niigata, 950-2181, Japan E-mail: hasegawa@m.sc.niigata-u.ac.jp

Current address: Disco Co., Ltd. 2-15-1, Kohraku, Bunkyo-ku Tokyo, 112-8515, Japan E-mail:atsushi.hasegawa@disc.co.jp