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On an F -algebra of holomorphic functions

on the upper half plane

Yasuo Iida

(Received April 24, 2003; Revised March 13, 2006)

Abstract. In this paper, we shall consider the class Np(D) (p > 1) of holomorphic

functions on the upper half plane D := {z ∈ C | Im z > 0} satisfying sup
y>0

Z

R

ą
log(1 +

|f(x + iy)|)ćp
dx < ∞. We shall prove that Np(D) is an F -algebra with respect to

a natural metric on Np(D). Moreover, a canonical factorization theorem for Np(D) will

be given.

Key words: Nevanlinna-type spaces, Nevanlinna class, Smirnov class, Np, Hardy spaces.

0. Introduction

Let U and T denote the unit disk and the unit circle in C, respectively.
For p > 1, we denote by Np(U) the class of functions f holomorphic on U

and satisfying

sup
0<r<1

∫

T

(
log(1+|f(rζ)|))p

dσ(ζ) < +∞,

where dσ denotes normalized Lebesgue measure on T . Letting p = 1, we
have the Nevanlinna class N(U). It is well-known that each function f in
N(U) has the nontangential limit f∗(ζ) = lim

r→1−
f(rζ) (a.e. ζ ∈ T ) and that

log(1 + |f |) (and hence, (log(1 + |f |))p for p > 1) is subharmonic if f is
holomorphic.

We denote the Smirnov class by N∗(U), which consists of all holomor-
phic functions f on U such that log(1 + |f(z)|) 5 Q[φ](z) (z ∈ U) for some
φ ∈ L1(T ), φ = 0, where the right side denotes the Poisson integral of φ

on U .
It is well-known that Hq(U) ⊂ Np(U) ⊂ N∗(U) ⊂ N(U) (0 < q 5 ∞,

p > 1), where Hq(U) denotes the Hardy space on U . These inclusion
relations are proper. Stoll [11] introduced the class Np(U). This was further
studied by several authors (see [1] and [2]). The spaces N(U), N∗(U) and
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Np(U) are called Nevanlinna-type spaces.
Mochizuki [7] introduced the Nevanlinna class N0(D) and the Smirnov

class N∗(D) on the upper half plane D := {z ∈ C | Im z > 0}: the class
N0(D) is the set of all holomorphic functions f on D satisfying

d(f, 0) := sup
y>0

∫

R
log

(
1+|f(x+iy)|) dx < +∞

and N∗(D) the set of all holomorphic functions f on D satisfying
log(1 + |f(z)|) 5 P [φ](z) (z ∈ D) for some φ ∈ L1(R), φ = 0, where
the right side denotes the Poisson integral of φ on D.

In this paper, we shall define a new class Np(D), analogous to Np(U);
i.e., we denote by Np(D) (p > 1) the set of all holomorphic functions f

on D such that

[dp(f, 0)]p := sup
y>0

∫

R

(
log(1+|f(x+iy)|))p

dx < +∞.

Hardy spaces on D, Hq(D) (0 < q < ∞), are defined by Lq(dx)-
boundedness of holomorphic functions f(x+iy). Although N∗(D) ⊂ N0(D),
we have, in contrast to the open unit disc U , that Hp(D) 6⊂ N0(D) and
Np(D) 6⊂ N0(D) (p > 1). In fact, if p−1 < α < 1, then (z + i)−α ∈ Hp(D)
and (z + i)−α ∈ Np(D) but (z + i)−α /∈ N0(D) (see [7, Remark]).

First we obtain a factorization theorem for the class Np(D), as
Mochizuki [7] does for the class N0(D). Moreover, we show that Np(D)
becomes an F -algebra, in the sense that Np(D) is a complete linear metric
space with multiplication continuous.

1. Preliminaries

Let ν be a real measure on T . Set Ψ(z) = (z− i)/(z + i) (z ∈ D). Then
there corresponds a finite real measure µ on R such that

∫

R
h(t) dµ(t) =

∫

T ∗
(h◦Ψ−1)(η) dν(η) (h ∈ Cc(R)),

where T ∗ = T \{1}. Let H(w, η) = (η+w)/(η−w) ((w, η) ∈ U×T ). There
holds

1
i

∫

R

1 + tz

t− z
dµ(t) =

∫

T ∗
H(Ψ(z), η) dν(η) (1)
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=
∫

T
H(Ψ(z), η) dν(η)− iαz (z ∈ D),

where α = −ν({1}). We write the Poisson integrals of measures µ on R
and ν on T as follows:

P [µ](z) =
1
π

∫

R

y

(x− t)2 + y2
dµ(t) (z = x + iy ∈ D),

Q[ν](w) =
∫

T

1− |w|2
|η − w|2 dν(η) (w ∈ U).

Taking the real parts in (1), we have

P [π(1+t2) dµ(t)](z) = Q[ν](Ψ(z))+α·Im z (z ∈ D). (2)

When f ∈ L1(R, (1 + t2)−1dt) and g ∈ L1(T ), we write P [f ] and Q[g]
instead of P [f(t) dt] and Q[gσ], respectively. If g ∈ L1(T ), then we have
g ◦Ψ ∈ L1(R, (1 + t2)−1dt) and

P [g ◦Ψ](z) = Q[g](Ψ(z)). (2)′

2. Some properties on Np(U)

In this section, we shall summarize some properties on Np(U) (p > 1).
For the following results, the reader refers to [1], [2] and [11].

Proposition 2.1 Let f ∈ Np(U) (p > 1), f 6= 0. Then, log |f∗| ∈ L1(T )
and log(1 + |f∗|) ∈ Lp(T ). Moreover, f can be uniquely factored as follows,

f(z) = aB(z)F (z)S(z),

where a ∈ T is a constant, B(z) = zm
∞∏

n=1

|an|
an

an − z

1− anz
(z ∈ U) is a Blaschke

product with respect to the zeros of f , F (z) = exp
(∫

T

ζ+z

ζ−z
log |f∗(ζ)| dσ(ζ)

)

and S(z) = exp
(
−

∫

T

ζ + z

ζ − z
dν(ζ)

)
, where ν is a positive singular measure.

Proposition 2.2 Let f ∈ N(U) and p > 1. Then f ∈ Np(U) if and only
if (log(1 + |f |))p has a harmonic majorant.

Proposition 2.3 Let f ∈ Np(U), p > 1. Then (log(1 + |f |))p has the
least harmonic majorant Q[(log(1 + |f∗|))p].
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3. A factorization theorem for the class Np(D)

Let f ∈ Np(D), p > 1. Then we easily have the following proposition
by [9, Chapter II, Theorem 4.6].

Proposition 3.1 Let p > 1 and f ∈ Np(D). Then,
(i) (log(1+|f |))p has the least harmonic majorant P [g], where g ∈ Lp(dx).
(ii) ‖g‖p 5 dp(f, 0).
(iii) Let Dδ = {z ∈ C | Im z > δ}. Then log(1 + |f(z)|) → 0 as |z| → +∞

provided z ∈ Dδ, for each δ > 0.

Using the above proposition, we have the following characterization of
function f in Np(D).

Theorem 3.2 Let p > 1. A function f ∈ Np(D) has the following prop-
erties:
(i) f ◦Ψ−1 ∈ Np(U).
(ii) The nontangential limit f∗(x) exists a.e. for x ∈ R.

(iii) sup
y>0

∫

R

(
log(1 + |f(x + iy)|))p

dx = lim
y→0+

∫

R

(
log(1 + |f(x + iy)|))p

dx

=
∫

R

(
log(1 + |f∗(x)|))p

dx

Proof. Suppose f ∈ Np(D). Then it is seen that f ◦ Ψ−1 ∈ Np(U) by
Proposition 2.2 and part (i) in Proposition 3.1. Hence, (i) and (ii) hold. We
have

sup
y>0

∫

R

(
log(1+|f(x+iy)|))p

dx = lim
y→0+

∫

R

(
log(1+|f(x+iy)|))p

dx

by part (iii) in Proposition 3.1 and [3, Theorem 1]. By Proposition 3.1, the
least harmonic majorant of (log(1+|f |))p is the form P [g], where g ∈ Lp(R);
and it follows that

‖g‖p
p 5 sup

y>0

∫

R

(
log(1 + |f(x + iy)|))p

dx

5 sup
y>0

∫

R

(
P [g](x + iy)

)p
dx 5 ‖g‖p

p.

Here, the last inequality holds by [4, inequality (3.5)]. Since f◦Ψ−1∈Np(U),
the least harmonic majorant P [g] of (log(1 + |f |))p is also given by
P [(log(1 + |f∗|))p] by Proposition 2.3. Therefore, g = log(1 + |f∗|))p. This



On an F -algebra of holomorphic functions on the upper half plane 491

shows part (iii). ¤

Theorem 3.3 Let p > 1. f ∈ Np(D), f 6= 0, is factorized in the form

f(z) = aeiαzb(z)d(z)g(z) (z ∈ D), (3)

where the factors above have the following properties:
(i) a ∈ T , α = 0.
(ii) b(z) is the Blaschke product with respect to the zeros of f .

(iii) d(z) = exp
(

1
πi

∫

R

1 + tz

t− z

1
1 + t2

log h(t) dt

)
,

where h(t) = 0, log h ∈ L1(R, (1 + t2)−1dt) and log(1 + h) ∈ Lp(R).

(iv) g(z) = exp
(
−1

i

∫

R

1 + tz

t− z
dµ(t)

)
, where µ is a finite nonnegative mea-

sure on R, singular with respect to Lebesgue measure, and such that∫

R
(1 + t2) dµ(t) < +∞.

If f is expressed in the form (3), then f ∈ Np(D).

The proof of this theorem needs the following:

Lemma 3.4 Let Np (p > 1) be the class of all holomorphic functions on D

which satisfy

sup
y>0

∫

R

(
log+ |f(x+iy)|)p

dx < +∞

(Letting p = 1, we have the Nevanlinna class N introduced by Krylov [6]).
Then the following including relations hold,

Np(D) ⊂ Np ⊂ N.

Proof. It is easy to see that the first containment holds. The fact that
Np ⊂ N for p > 1 is a consequence of [5, Remark]. ¤

Proof of Theorem 3.3. Let f ∈ Np(D), f 6= 0. Then

(f ◦Ψ−1)(w) = aB(w)F (w)S(w) (w ∈ U)

by Theorem 3.2 (i) and Proposition 2.1. Now, in the factorization f(z) =
aB(Ψ(z))F (Ψ(z))S(Ψ(z)) (z ∈ D), b(z) := B(Ψ(z)) is the Blaschke prod-
uct formed from the zeros of f , and by changing the variables η = Ψ(t)
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(t ∈ R), we shall show that d(z) := F (Ψ(z)) is of the form (iii). Since
log |(f ◦ Ψ−1)∗| ∈ L1(T ), we have log |f∗| ∈ L1(R, (1 + t2)−1dt) by (2)′.
Theorem 3.2 shows log(1 + |f∗|) ∈ Lp(R). Setting α = ν({1}), we have
S(Ψ(z)) := S1(Ψ(z)) = g(z)eiαz, where g is of the form (iv). Moreover, it

follows from (2) that
∫

R
(1 + t2) dµ(t) < ∞.

Conversely, suppose that f is of the form (3). Then

|f(z)| = |eiαz| |b(z)| exp
(
P [log h− π(1 + t2) dµ(t)](z)

)

5 exp(P [log h](z)).

Since log+ |(f ◦ Ψ−1)(w)| 5 Q[log+(h ◦ Ψ−1)](w), we have f ◦ Ψ−1 ∈
Np(U). Letting y → 0+ in |f(x+iy)|, we have |f∗(x)| = h(x) for a.e. x ∈ R.

Furthermore, (log(1+ |f ◦Ψ−1|))p has the least harmonic majorant v′ =
Q[(log(1+|(f◦Ψ−1)∗|))p] by Proposition 2.3, v := v′◦Ψ is the least harmonic
majorant of (log(1 + |f |))p: i.e., (log(1 + |f(z)|))p 5 P [(log(1 + |f∗|))p](z).
Integrating the both sides, we have f ∈ Np(D). ¤

4. The class Np(D) as an F -algebra

For f, g ∈ Np(D), p > 1, let dp(f, g) = dp(f − g, 0). By Theorem 3.2,

dp(f, g) =
{∫

R

(
log(1+|f∗(x)−g∗(x)|))p

dx

}1/p

.

The above definition of dp has been motivated by the metric on N0(D),
which was introduced by Mochizuki [7].

We see that dp defines a translation invariant metric on Np(D). In fact,
we obtain the following theorem.

Theorem 4.1 Let p > 1. The space (Np(D), dp) is an F -algebra, that is,
a complete linear metric space with multiplication continuous.

Proof. We shall prove the theorem using the idea due to Stoll [10; 11,
Theorem 4.2]. The inequalities

log(1 + |x + y|) 5 log(1 + |x|) + log(1 + |y|),
log(1 + |xy|) 5 log(1 + |x|) + log(1 + |y|) and

log(1 + |cx|) 5 max(1, |c|) log(1 + |x|)
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imply

dp(f + g, 0) 5 dp(f, 0) + dp(g, 0),

dp(fg, 0) 5 dp(f, 0) + dp(g, 0) and

dp(cf, 0) 5 max(1, |c|) dp(f, 0) (c ∈ C).

Hence, Np(D) forms an algebra.
Next, we show that multiplication is continuous. Let cn, c ∈ C and

fn, gn, f, g ∈ Np(D). Suppose |cn−c| → 0, dp(fn, f) → 0 and dp(gn, g) → 0.
Obviously, dp((fn + gn) − (f + g), 0) → 0 and dp(cfn − cf, 0) → 0. In
order to see dp(cnf − cf, 0) → 0, we may assume |cn − c| 5 1. Then,
log(1 + |cnf − cf |) 5 log(1 + |f |). Since log(1 + |f |) ∈ Lp(R), the Lebesgue
dominated convergence theorem yields dp(cnf − cf, 0) → 0. Since

fngn−fg = (fn−f)(gn−g)+(fgn−fg)+(gfn−gf),

we have

dp(fngn, fg) 5 dp(fn, f)+dp(gn, g)+dp(fgn, fg)+dp(gfn, gf).

Therefore, it is suffice to see that, for all g∈Np(D), gfn→ gf if fn→ f .
Fix g ∈ Np(D) and let α = lim sup

n→∞
dp(gfn, gf). We only have to show that

α = 0. Replacing {fn} by a subsequence, if necessary, we may assume that
dp(gfn, gf) → α. It is easy to see the following weak-type inequality

(log(1+ε))p

∫

{x; |f |=ε}
dx 5

∫

R

(
log(1+|f |))p

dx = dp(f, 0).

Since dp(fn − f, 0) → 0, we see that fn coverges to f in measure. Hence,
there exists a subsequence {f∗nk

} of {f∗n} such that f∗nk
→ f∗ a.e. on R.

Thus, log(1 + |g∗f∗nk
− g∗f∗|) → 0 a.e. on R. It follows that

{
log(1 + |g∗f∗nk

− g∗f∗|)}p

5
{
log(1 + |g∗|) + log(1 + |f∗nk

− f∗|)}p

5 2p
{
(log(1 + |g∗|))p + (log(1 + |f∗nk

− f∗|))p
}
.

Note that the term in the right of the above inequality converges a.e. to
2p(log(1 + |g∗|))p. Then

α = lim
n→∞ dp(gfn, gf) = lim

k→∞

{∫

R

(
log(1 + |g∗f∗nk

− g∗f∗|))p
dx

}1/p
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=
{∫

R
lim

k→∞
(
log(1 + |g∗f∗nk

− g∗f∗|))p
dx

}1/p

= 0,

where we use a generalization of Lebesgue’s dominated convergence theo-
rem [8, p.270]. Therefore we have lim

n→∞ dp(gnfn, gf) = 0, which proves the
multiplication continuous.

Next we show the completeness. Suppose {fn} is a Cauchy sequence in
Np(D). Since the function (log(1 + |fm − fn|))p is subharmonic, we have,
by [4, p.39],

(
log(1 + |fm(x + iy)− fn(x + iy)|))p

5 2
πy

sup
η>0

∫

R

(
log(1 + |fm(ξ + iη)− fn(ξ + iη)|))p

dξ

(z = x + iy, y > 0).

Then, for z = x + iy ∈ Dδ,

log(1+|fm(z)−fn(z)|) 5
(

2
πδ

)1/p

dp(fm−fn, 0).

The right side of the above inequality tends to zero as m, n →∞, so fn(z)
converges uniformly on every compact subset on D to a holomorphic func-
tion f(z). Since {fn} is a Cauchy sequence in Np(D), we have dp(fn, 0) 5 C,
where C is a positive constant. Therefore,

∫

I

(
log(1 + |f(x + iy)|))p

dx = lim
n→∞

∫

I

(
log(1 + |fn(x + iy)|))p

dx

5 Cp (y > 0)

for each finite interval I on R. This shows that f ∈ Np(D).
It remains to be shown that dp(fn, f) → 0. We obtain

∫

I

(
log(1 + |fn(x + iy)− f(x + iy)|))p

dx

5 lim
m→∞

∫

R

(
log(1 + |fn(x + iy)− fm(x + iy)|))p

dx

5 lim
m→∞[dp(fm, fn)]p (y > 0).

Therefore we have dp(fn, f) 5 lim
m→∞ dp(fm, fn), which shows dp(fn, f) → 0.

This finishes the proof. ¤
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