On the Łojasiewicz exponent

Zbigniew Jelonek

(Received November 18, 2004)

Abstract

Let \mathbb{K} be an algebraically closed field and let $X \subset \mathbb{K}^{l}$ be an n-dimensional affine variety of degree D. We give a sharp estimation of the degree of the set of nonproperness for generically-finite separable and dominant mapping $f=\left(f_{1}, \ldots, f_{n}\right): X \rightarrow$ \mathbb{K}^{n}. We show that such a mapping must be finite, provided it has a sufficiently large geometric degree. Moreover, we estimate the Łojasiewicz exponent at infinity of a polynomial mapping $f: X \rightarrow \mathbb{K}^{m}$ with a finite number of zeroes.

Key words: polynomials, Łojasiewicz exponent, affine variety.

1. Introduction

Let \mathbb{K} be an algebraically closed field and let $X \subset \mathbb{K}^{l}$ be an affine n-dimensional variety over \mathbb{K}. Let $f: X \rightarrow \mathbb{K}^{n}$ be a generically-finite dominant polynomial mapping. We say that f is finite at a point $y \in \mathbb{K}^{n}$, if there exists a Zariski open neighborhood U of y such that the mapping $\operatorname{res}_{f^{-1}(U)} f: f^{-1}(U) \rightarrow U$ is finite.

The set S_{f} of points at which the mapping f is not finite, plays a fundamental role in the study of generically-finite morphisms of affine varieties (see [3], [4]). We say that the set S_{f} is the set of non-properness of the mapping f. In the first part of this paper we study the set S_{f}. Assume that X is of degree D, and $f=\left(f_{1}, \ldots, f_{n}\right): X \rightarrow \mathbb{K}^{n}$ is a generically-finite separable and dominant mapping. We show that the set S_{f} is a hypersurface and

$$
\operatorname{deg} S_{f} \leq \frac{D\left(\prod_{i=1}^{n} \operatorname{deg} f_{i}\right)-\mu(f)}{\min _{1 \leq i \leq n} \operatorname{deg} f_{i}}
$$

where $\mu(f)$ is the geometric degree of f. We show also that this estimation is sharp. Moreover, we prove that such a mapping must be finite provided it has a sufficiently large geometric degree.

Now assume that $f=\left(f_{1}, \ldots, f_{m}\right): X \rightarrow \mathbb{K}^{m}$ is a polynomial mapping

[^0]with a finite set (possibly empty) of zeroes. Assume that $\operatorname{deg} f_{i}=d_{i}$ and $d_{1} \geq d_{2} \geq \cdots \geq d_{m}$. Let $|\cdot|_{v}$ be any non-trivial absolute value on the field \mathbb{K} and for $a=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{K}^{m}$ define $\|a\|_{v}=\max _{i=1}^{m}\left|a_{i}\right|_{v}$. Recall that the Łojasiewicz exponent $e(f)$ of the mapping f at infinity is the number:
\[

$$
\begin{aligned}
& e(f)=\sup \{a: \text { there is a constant } C>0 \text { : } \\
& \left.\qquad\|f(x)\|_{v}>C\|x\|_{v}^{a}, \text { for } x \in X \text { and }\|x\|_{v} \gg 0\right\}
\end{aligned}
$$
\]

For $X=\mathbb{C}^{n}$ with the Euclidean norm, the estimation of the Lojasiewicz exponent has been done in [1], [6], [2]. For a sequence $d_{1} \geq d_{2} \geq \cdots \geq$ $d_{m}>0$, put $N\left(d_{1}, \ldots, d_{m} ; n\right)=\prod_{i=1}^{m} d_{i}$ for $m \leq n, N\left(d_{1}, \ldots, d_{m} ; n\right)=$ $\left(\prod_{i=1}^{n-1} d_{i}\right) d_{m}$ for $m>n>1$ and $N\left(d_{1}, \ldots, d_{m} ; n\right)=d_{m}$ for $m>n=1$. They have proved that if $f=\left(f_{1}, \ldots, f_{m}\right)$ has only finitely many zeros on \mathbb{C}^{n}, then:

$$
e(f) \geq d_{m}-N\left(d_{1}, \ldots, d_{m} ; n\right)+\sum_{f(a)=0} \mu_{a}(f)
$$

where $\mu_{a}(f)$ stands for the local multiplicity of the mapping f at a point $a \in \mathbb{C}^{n}$ (see Definition 5.3). We generalize this result (using a quite different method) on every affine variety $X \subset \mathbb{C}^{l}$ and every non-trivial absolute value $|\cdot|_{v}$. We show that, if $X \subset \mathbb{C}^{l}$ is an affine n-dimensional variety of degree D and $f=\left(f_{1}, \ldots, f_{m}\right)$ has only finitely many zeros on X, then we have

$$
e(f) \geq d_{m}-D N\left(d_{1}, \ldots, d_{m} ; n\right)+\sum_{f(a)=0} \mu_{a}(f)
$$

and this estimation is sharp. Here $\mu_{a}(f)$ stands for the local multiplicity of the mapping $\left.f\right|_{X}$ at a point a (see Definition 5.3). In particular our result (Theorem 5.6) generalizes Proposition 1.10 from [6] and Theorem 7.3 from [2]. Moreover, in the general case (of arbitrary field \mathbb{K}) we prove (Theorem 5.2) that:

$$
e(f) \geq d_{m}-D N\left(d_{1}, \ldots, d_{m} ; n\right)+\nu
$$

where ν is the number of zeroes of f. We use here the methods from our recent paper [5]. We include proofs of most results which we use and thus our exposition is self-contained.

2. Terminology

We assume that \mathbb{K} is an algebraically closed field. If $X \subset \mathbb{K}^{l}$ is an affine variety of codimension k, then by $\operatorname{deg} X$ we mean the number of common points of X and sufficiently general linear subspace M of dimension k. In particular if $X=\mathbb{K}^{l}$, then $\operatorname{deg} X=1$.

If $X \subset \mathbb{K}^{l}$ is an affine variety and $g \in \mathbb{K}[X]$ is a regular function, then we put

$$
\operatorname{deg} g=\min \left\{\operatorname{deg} G: G \in \mathbb{K}\left[x_{1}, \ldots, x_{l}\right] \quad \text { and }\left.\quad G\right|_{X}=g\right\}
$$

If $f: X \rightarrow Y$ is a polynomial generically-finite mapping of affine varieties, then we define the geometric degree of f, denoted $\mu(f)$, to be the number $\left[\mathbb{K}(X): f^{*} \mathbb{K}(Y)\right]$. If the mapping f is separable, then it is wellknown that the $\mu(f)$ is equal to the number of points in a generic fiber of f.

3. Perron Theorem

We start with the following important Generalized Perron Theorem (see [5] and [10]).

Theorem 3.1 (Generalized Perron Theorem) Let \mathbb{L} be a field and let $X \subset \mathbb{L}^{k}$ be an affine variety of dimension n and of degree D. Assume that $Q_{1}, \ldots, Q_{n+1} \in \mathbb{L}[X]$ are non-constant regular functions with $\operatorname{deg} Q_{i}=d_{i}$. If the mapping $Q=\left(Q_{1}, \ldots, Q_{n+1}\right): X \rightarrow \mathbb{L}^{n+1}$ is generically finite, then there exists a non-zero polynomial $W\left(T_{1}, \ldots, T_{n+1}\right) \in \mathbb{L}\left[T_{1}, \ldots, T_{n+1}\right]$ such that
a) $W\left(Q_{1}, \ldots, Q_{n+1}\right)=0$ on X,
b) $\operatorname{deg} W\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n+1}^{d_{n+1}}\right) \leq D \prod_{j=1}^{n+1} d_{j}$.

Proof. We sketch the proof. Without loss of generality we can assume that the field \mathbb{L} is algebraically closed. Let $\tilde{X}=\left\{(x, w) \in X \times \mathbb{L}^{n+1}: Q_{i}(x)=\right.$ $\left.w_{i}^{d_{i}}+w_{i}\right\}$ (if $d_{i}=1$ we take $Q_{i}(x)=w_{i}$). Let W be an irreducible polynomial such that $W\left(Q_{1}, \ldots, Q_{n+1}\right)=0$ and take $P\left(T_{1}, \ldots, T_{n+1}\right)=W\left(T_{1}^{d_{1}}+\right.$ $\left.T_{1}, \ldots, T_{n+1}^{d_{n+1}}+T_{n+1}\right)$. Let $Y=\left\{w \in \mathbb{L}^{n+1}: P(w)=0\right\}$.

Since the polynomial W is reduced it is not difficult to check that the polynomial P is also reduced. In particular we have $\operatorname{deg} Y=\operatorname{deg} P$. The sets \tilde{X}, Y are affine sets of pure dimension n. Now consider the mapping

$$
\pi: \tilde{X} \ni(x, w) \rightarrow w \in Y
$$

It is easy to see that π is a dominant generically finite mapping. Consequently

$$
\operatorname{deg} \pi \operatorname{deg} Y \leq \operatorname{deg} \tilde{X}
$$

By the Bezout Theorem we have $\operatorname{deg} \tilde{X} \leq D \prod_{j=1}^{n+1} d_{j}$. This finishes the proof.

4. The set S_{f} for polynomial mappings

Let \mathbb{K} be an algebraically closed field and let X, Y be affine varieties over \mathbb{K}. Recall the following (see [3], [4]):

Definition 4.1 Let $f: X \rightarrow Y$ be a generically-finite dominant polynomial mapping of affine varieties. We say that f is finite at a point $y \in Y$, if there exists a Zariski open neighborhood U of y such that the mapping $\operatorname{res}_{f^{-1}(U)} f: f^{-1}(U) \rightarrow U$ is finite.

It is well-known that the set S_{f} of points at which the mapping f is not finite, is either empty or it is a hypersurface (see [3], [4] and Theorem 4.2). We say that the set S_{f} is the set of non-properness of the mapping f.

Let $X \subset \mathbb{K}^{l}$ be an affine variety of dimension n. In this section we give a sharp estimation of the degree of the hypersurface S_{f} for a generically-finite separable and dominant polynomial mapping $f=\left(f_{1}, \ldots, f_{n}\right): X \rightarrow \mathbb{K}^{n}$. As a corollary, we show that if the geometric degree $\mu(f)$ of the mapping f is sufficiently large (relatively to the degree of X and the degrees of polynomials f_{j}), then the mapping f must be finite.

First we recall our result about the set S_{f} (see [3], [4]). Let X be an affine n-dimensional variety and let $f: X \rightarrow \mathbb{K}^{n}$ be a dominant, genericallyfinite polynomial mapping. We have:

Theorem 4.2 Let $f: X \rightarrow \mathbb{K}^{n}$ be a dominant generically finite polynomial map and let $k\left(f_{1}, \ldots, f_{n}\right) \subset \mathbb{K}(X)$ be the induced field extension. Let $\mathbb{K}[X]=\mathbb{K}\left[g_{1}, \ldots, g_{r}\right]$ and

$$
t^{n_{i}}+\sum_{k=1}^{n_{i}} a_{k}^{i}(f) t^{n_{i}-k}=0
$$

where the $a_{k}^{i} \in \mathbb{K}\left(f_{1}, \ldots, f_{n}\right)$ are rational functions, be the minimal equation of g_{i} over $\mathbb{K}\left(f_{1}, \ldots, f_{n}\right)$. Let S denote the union of poles of all functions a_{k}^{i}. Then f is finite at a point y if and only if $y \in \mathbb{K}^{n} \backslash S$.

Proof. \Rightarrow It is enough to prove that the mapping

$$
f: X \backslash f^{-1}(S) \rightarrow \mathbb{K}^{n} \backslash S
$$

is finite. If S is the empty set, then $\mathbb{K}\left[f_{1}, \ldots, f_{n}\right] \subset \mathbb{K}\left[g_{1}, \ldots, g_{r}\right]$ is an integral extension and the mapping f is finite. Otherwise S, and hence $f^{-1}(S)$ is a hypersurface. Let $S=\{x: A(x)=0\}$ for some polynomial A. Let $V=X \backslash f^{-1}(S)$ and let $W=\mathbb{K}^{n} \backslash S$. Then V, W are affine varieties and $\mathbb{K}[V]=\mathbb{K}\left[g_{1}, \ldots, g_{r}\right]\left[\left(A(f)^{-1}\right], \mathbb{K}[W]=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]\left[A^{-1}\right]\right.$. Hence $f_{*} \mathbb{K}[W]=\mathbb{K}\left[f_{1}, \ldots, f_{n}\right]\left[\left(A(f)^{-1}\right]\right.$. Since all functions a_{k}^{i} are regular in W we conclude that elements g_{i} are integral over $f_{*} \mathbb{K}[W]$. Of course a polynomial $A(f)^{-1}$ is also integral, and we get the integral extension $f_{*} \mathbb{K}[W] \subset \mathbb{K}[V]$.
\Leftarrow The following lemma is well-known:
Lemma 4.3 Let A, B be integral domains, $B=A\left[g_{1}, \ldots, g_{n}\right]$ such that the quotient field $B_{0}(o f B)$ is finite field extension of the quotient field A_{0} (of A). Assume that A is a normal ring.

The ring B is a finite A-module if and only if the following condition holds: if $P_{i} \in A_{0}[t]$ is the minimal monic polynomial of g_{i} over A_{0}, then $P_{i} \in A[t], i=1, \ldots, n$.

Now let f be finite over $x \in \mathbb{K}^{n}$. It means that there is a affine neighborhood U of y such that the mapping $\operatorname{res}_{f^{-1}(U)} f: f^{-1}(U) \rightarrow U$ is finite. Of course, we can assume that $U=\mathbb{K}^{n} \backslash\{x: A(x)=0\}$, where A is a polynomial. By the assumption, the ring $\mathbb{K}\left[f^{-1}(U)\right]=\mathbb{K}\left[g_{1}, \ldots, g_{r}\right]\left[\left(A(f)^{-1}\right]\right.$ is integral over the ring $f_{*} \mathbb{K}[U]=\mathbb{K}\left[f_{1}, \ldots, f_{n}\right]\left[\left(A(f)^{-1}\right]\right.$. By Lemma 4.3 we have, that the coefficients $a_{k}^{i}(f)$ of polynomials

$$
t^{n_{i}}+\sum_{k=1}^{n_{i}} a_{k}^{i}(f) t^{n_{i}-k}, \quad i=1, \ldots, m
$$

belong to the ring $\mathbb{K}\left[f_{1}, \ldots, f_{n}\right]\left[(A(f))^{-1}\right]$. Hence

$$
a_{k}^{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]\left[(A(x))^{-1}\right]
$$

and consequently they are regular in U. Thus $U \subset \mathbb{K}^{n} \backslash S$.

Corollary 4.4 Let X be an affine n-dimensional variety and let $f=$ $\left(f_{1}, \ldots, f_{n}\right): X \rightarrow \mathbb{K}^{n}$ be a generically finite mapping. Let S be a set of non-properness of the mapping f. Then for every polynomial $G \in \mathbb{K}[X]$, if $W_{G}\left(T_{1}, \ldots, T_{n}, t\right)=\sum_{i=0}^{s} a_{i}(T) t^{s-i} \in \mathbb{K}[T, t]$ is irreducible and

$$
W_{G}\left(f_{1}, \ldots, f_{n}, G\right)=0
$$

then

$$
\left\{T: a_{0}(T)=0\right\} \subset S
$$

Proof. Observe that the mapping $f: X \backslash f^{-1}(S) \rightarrow \mathbb{K}^{n} \backslash S$, is finite. Moreover, $\mathbb{K}\left[\mathbb{K}^{n} \backslash S\right]=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]_{h}$, where h is the reduced equation of S. Now Corollary 4.4 follows directly from Lemma 4.3
Corollary 4.5 Let $X \subset \mathbb{K}^{l}$ be an affine n-dimensional variety and let $f: X \rightarrow \mathbb{K}^{n}$ be a dominant generically finite and separable polynomial mapping. Assume that $p \in \mathbb{K}\left[x_{1}, \ldots, x_{l}\right]$ and that

$$
P_{p}(f, p):=\sum_{k=0}^{\mu} a_{k}(f) p^{\mu-k}=0
$$

(where $a_{k}(T) \in \mathbb{K}\left[T_{1}, \ldots, T_{n}\right]$) is the minimal irreducible equation of p over $\mathbb{K}\left[f_{1}, \ldots, f_{n}\right]$. Then there is a linear form p, such that
a) $\mu=\mu(f)$,
b) $S_{f}=\left\{T \in \mathbb{K}^{n}: a_{0}(T)=0\right\}$.

Proof. For $t \in \mathbb{K}$ let $\alpha_{t}=\sum_{i=0}^{l} t^{i} x_{i}$. Let S_{t} denote the set of poles of coefficients of the minimal equation of α_{t} over $\mathbb{K}\left(f_{1}, \ldots, f_{n}\right)$. By Theorem 4.2 we have $S_{t} \subset S_{f}$. Since the hypersurface S_{f} has only finite number of irreducible components, we have (by the Dirichlet box principle) that there is an infinite subset $T \subset \mathbb{K}$, such that if $t, t^{\prime} \in T$ then $S_{t}=S_{t^{\prime}}$.

Since the extension $\mathbb{K}(f) \subset \mathbb{K}(X)$ is separable, we have that there are a finite number of fields between $\mathbb{K}(f)$ and $\mathbb{K}(X)$. In particular, we can assume that for $t, t^{\prime} \in T$ we have $\mathbb{K}(f)\left(\alpha_{t}\right)=\mathbb{K}(f)\left(\alpha_{t^{\prime}}\right)$.

Take $t_{1}, \ldots, t_{l} \in T$, where $t_{i} \neq t_{j}$ for $i \neq j$. It is easy to check that linear forms $\alpha_{t_{i}}, i=1, \ldots, l$ generates the algebra $\mathbb{K}[X]$. By Theorem 4.2, we have $S_{f}=\bigcup_{j=1}^{l} S_{t_{j}}$. Since $S_{t_{i}}=S_{t_{j}}$ we have in fact that $S_{f}=S_{t_{i}}$. Moreover, since $\mathbb{K}(f)\left(\alpha_{t}\right)=\mathbb{K}(f)\left(\alpha_{t^{\prime}}\right)$ for $t \in T$, we obtain that $\mathbb{K}(f)\left(\alpha_{t}\right)=$ $\mathbb{K}(X)$. In particular if we take $p=\alpha_{t}$ (where $t \in T$), we have $\mu=\mu(f)$ and $S_{f}=\left\{T \in \mathbb{K}^{n}: a_{0}(T)=0\right\}$ 。

The following result gives a (sharp) estimation of the degree of the set S_{f} :

Theorem 4.6 Let $X \subset \mathbb{K}^{l}$ be an affine n-dimensional variety of degree D and let $f=\left(f_{1}, \ldots, f_{n}\right): X \rightarrow \mathbb{K}^{n}$ be a generically finite dominant and separable mapping. Then the set S_{f} of non-properness of the mapping f is a hypersurface (or the empty set) and

$$
\operatorname{deg} S_{f} \leq \frac{D\left(\prod_{i=1}^{n} \operatorname{deg} f_{i}\right)-\mu(f)}{\min _{1 \leq i \leq n} \operatorname{deg} f_{i}}
$$

where $\mu(f)$ is the geometric degree of f.
Proof. Let p be a linear form as in Corollary 4.5. Consider the mapping

$$
\Phi: X \ni x \rightarrow\left(f_{1}(x), \ldots, f_{n}(x), p(x)\right) \in \mathbb{K}^{n+1}
$$

Let $\operatorname{deg} f_{i}=d_{i}$. By the Generalized Perron Theorem (Theorem 3.1) there exists a non-zero polynomial $W\left(T_{1}, \ldots, T_{n}, Y\right) \in \mathbb{K}\left[T_{1}, \ldots, T_{n}, Y\right]$ such that
a) $W\left(f_{1}, \ldots, f_{n}, p\right)=0$ on X,
b) $\quad \operatorname{deg} W\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n}^{d_{n}}, Y\right) \leq D \prod_{j=1}^{n} d_{j}$.

Let

$$
P_{p}=\sum_{k=0}^{\mu} a_{k}(f) p^{\mu-k}=0
$$

where the $a_{k} \in \mathbb{K}\left[f_{1}, \ldots, f_{n}\right]$, be the minimal irreducible equation of p over $\mathbb{K}\left[f_{1}, \ldots, f_{n}\right]$. By the minimality of P_{p} we have

$$
P_{p}(T, Y) \mid W(T, Y),
$$

in particular $\operatorname{deg} P_{p}\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n}^{d_{n}}, Y\right) \leq D \prod_{j=1}^{n} d_{j}$. Thus

$$
\operatorname{deg} a_{0}\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n}^{d_{n}}\right) Y^{\mu(f)} \leq D \prod_{j=1}^{n} d_{j}
$$

This means that

$$
\operatorname{deg} a_{0}\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n}^{d_{n}}\right) \leq D \prod_{j=1}^{n} d_{j}-\mu(f)
$$

Clearly $\operatorname{deg} a_{0}\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n}{ }^{d_{n}}\right) \geq\left(\min _{1 \leq i \leq n} d_{i}\right)\left(\operatorname{deg} a_{0}\right)$. Finally by Cor-
ollary 4.5 we have

$$
\operatorname{deg} S_{f} \leq \frac{D\left(\prod_{i=1}^{n} \operatorname{deg} f_{i}\right)-\mu(f)}{\min _{1 \leq i \leq n} \operatorname{deg} f_{i}} .
$$

Corollary 4.7 Let $X \subset \mathbb{K}^{l}$ be an affine n-dimensional variety of degree D and let $f=\left(f_{1}, \ldots, f_{n}\right): X \rightarrow \mathbb{K}^{n}$ be a generically finite, separable and dominant mapping. If

$$
\mu(f)>D\left(\prod_{i=1}^{n} \operatorname{deg} f_{i}\right)-\min _{1 \leq i \leq n} \operatorname{deg} f_{i},
$$

then the mapping f is finite.
Example 4.8 Let $n \geq 2$ and set $\Gamma_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}: \prod_{i=1}^{n} x_{i}=1\right\}$. Take $f: \Gamma_{n} \ni\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbb{K}^{n-1}$. It is easy to see that

$$
\operatorname{deg} \Gamma_{n}=n \quad \text { and } \quad S_{f}=\bigcup_{i=1}^{n-1}\left\{x: x_{i}=0\right\} .
$$

Thus deg $S_{f}=n-1$. On the other hand $\operatorname{deg} f_{i}=1$ and $\mu(f)=1$. Hence

$$
D\left(\prod_{i=1}^{n} \operatorname{deg} f_{i}\right)-\mu(f)=n-1=\operatorname{deg} S_{f}
$$

This means that our estimation is sharp.

5. On the Lojasiewicz exponent

We begin with the folowing important fact (see also [5]):
Theorem 5.1 Let \mathbb{K} be an algebraically closed field and take $m \leq n$. Let $f_{1}, \ldots, f_{m} \in \mathbb{K}\left[x_{1}, \ldots, x_{l}\right]$ be polynomials with $\operatorname{deg} f_{i}=d_{i}$ and let $X \subset \mathbb{K}^{l}$ be an affine algebraic n-dimensional variety of degree D. Assume that the set $V\left(f_{1}, \ldots, f_{m}\right) \cap X$ is finite. If we take a sufficiently general system of coordinates $\left(x_{1}, \ldots, x_{l}\right)$, then there exist polynomials $g_{i j} \in \mathbb{K}\left[x_{1}, \ldots, x_{l}\right]$ and non-zero polynomials $\phi_{i}\left(x_{i}\right) \in \mathbb{K}\left[x_{i}\right]$, such that
a) $\operatorname{deg} g_{i j} f_{j} \leq D N\left(d_{1}, \ldots, d_{m} ; n\right)$,
b) $\quad \phi_{i}\left(x_{i}\right)=\sum_{j=1}^{m} g_{i j} f_{j}$ for every $i=1, \ldots, l($ on $X)$.

Proof. Let $V\left(f_{1}, \ldots, f_{m}\right)=\left\{a_{1}, \ldots, a_{r}\right\}$. The mapping

$$
\Phi: X \times \mathbb{K} \ni(x, z) \rightarrow\left(x, f_{1}(x) z, \ldots, f_{m}(x) z\right) \in \mathbb{K}^{l} \times \mathbb{K}^{m}
$$

is a (non-closed) embedding outside the set $\left\{a_{1}, \ldots, a_{r}\right\} \times \mathbb{K}$. Take $\Gamma=$ $c l(\Phi(X \times \mathbb{K}))$. Let $s=l+m$ and $\pi: \Gamma \rightarrow \mathbb{K}^{n+1}$ be a generic projection of the form

$$
\pi: X \ni\left(x_{1}, \ldots, x_{s}\right) \rightarrow\left(\sum_{j=1}^{s} a_{1 j} x_{j}, \sum_{j=2}^{s} a_{2 j} x_{j}, \ldots, \sum_{j=n}^{s} a_{n j} x_{j}\right) \in \mathbb{K}^{n}
$$

Hence π is a finite mapping. Define $\Psi:=\pi \circ \Phi(x, z)$. We have

$$
\begin{aligned}
& \Psi=\left(\sum_{j=1}^{m} \gamma_{1 j} f_{j} z+l_{1}(x), \ldots, \sum_{j=n}^{m} \gamma_{n j} f_{j} z+l_{n}(x), l_{n+1}(x)\right) \\
& :=\left(\Psi_{1}(x, z), \ldots, \Psi_{n+1}(x, z)\right)
\end{aligned}
$$

where l_{1}, \ldots, l_{n+1} are generic linear forms. In particular we can assume that l_{n+1} is a variable x_{1} in a generic system of coordinates.

Apply the Generalized Perron Theorem to $\mathbb{L}=\mathbb{K}(z)$, polynomials $\Psi_{1}, \ldots, \Psi_{n+1} \in \mathbb{L}[x]$ and to the variety X considered over \mathbb{L}. Thus there exists a non-zero polynomial $W\left(T_{1}, \ldots, T_{n+1}\right) \in \mathbb{L}\left[T_{1}, \ldots, T_{n+1}\right]$ such that $W\left(\Psi_{1}, \ldots, \Psi_{n+1}\right)=0$ on X, and

$$
\operatorname{deg} W\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n+1}^{d_{n+1}}\right) \leq D \prod_{j=1}^{n} d_{j} .
$$

Since coefficients of a polynomial W are in $\mathbb{K}(z)$, we obtain that there is a non-zero polynomial $\tilde{W} \in \mathbb{K}\left[T_{1}, \ldots, T_{n+1}, Y\right]$, such that
a) $\tilde{W}\left(\Psi_{1}(x, z), \ldots, \Psi_{n+1}(x, z), z\right)=0$,
b) $\operatorname{deg}_{T} \tilde{W}\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n+1}{ }^{d_{n+1}}, Y\right) \leq D \prod_{j=1}^{n} d_{j}$, where deg_{T} denotes the degree with respect to variables $T=\left(T_{1}, \ldots, T_{n+1}\right)$.
Note that the mapping $\Psi=\left(\Psi_{1}, \ldots, \Psi_{n+1}\right): X \times \mathbb{K} \rightarrow \mathbb{K}^{n+1}$ is finite outside the set $\bigcup_{j=1}^{r}\left\{T \in \mathbb{K}^{n}: T_{n+1}=a_{j 1}\right\}$, where $a_{j 1}$ is the first coordinate of a_{j} (recall that we consider a generic system of coordinates in which $x_{1}=$ $l_{n+1}!$). In particular the set of non-properness of the mapping Ψ is contained in the hypersurface $S=\left\{T \in \mathbb{K}^{n+1}: \prod_{j=1}^{r}\left(T_{n+1}-a_{j 1}\right)=0\right\}$.

Since the mapping $\Psi=\left(\Psi_{1}, \ldots, \Psi_{n+1}\right): X \times \mathbb{K} \rightarrow \mathbb{K}^{n+1}$ is finite outside S, for every polynomial $G \in \mathbb{K}\left[x_{1}, \ldots, x_{n}, z\right]$ there is a minimal polynomial $P_{G}(T, Y) \in \mathbb{K}\left[T_{1}, \ldots, T_{n+1}\right][Y]$, such that $P_{G}\left(\Psi_{1}, \ldots, \Psi_{n+1}, G\right)=$
$\sum_{i=0}^{s} b_{i}\left(\Psi_{1}, \ldots, \Psi_{n+1}\right) G^{s-i}=0$ and the coefficient b_{0} satisfies $\left\{T: b_{0}(T)=\right.$ $0\} \subset S$ (see Corollary 4.4).

Take here $G=z$. By the minimality of P_{z}, we have

$$
P_{z}(T, Y) \mid \tilde{W}(T, Y)
$$

in particular $\operatorname{deg}_{T} P_{z}\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n+1}{ }^{d_{n+1}}, z\right) \leq D \prod_{j=1}^{n} d_{j}$. Let N be the degree of P_{z} with respect to Y. Add all terms of the form $z^{N} Q(x)$ which occur in the expression $P_{z}\left(\Psi_{1}, \ldots, \Psi_{n+1}, z\right)$. It is easy to see that Q must be either equal to $b_{0}\left(x_{1}\right)$ or must be of a form $f_{1}^{s_{1}} \cdots f_{n}^{s_{n}} P(x)$, where $\sum s_{i}>0$ and $\operatorname{deg} f_{1}^{s_{1}} \cdots f_{n}^{s_{n}} P(x) \leq D \prod_{j=1}^{n} d_{j}$. Thus we have the equality $b_{0}\left(x_{1}\right)+\sum f_{i} g_{i}=0$, where $\operatorname{deg} f_{i} g_{i} \leq D \prod_{j=1}^{n} d_{j}$. Take $\phi_{1}=b_{0}$. By the construction the polynomial ϕ_{1} has zeroes only in $a_{11}, \ldots, a_{r 1}$.

Further, since the form l_{n+1} was generic, we can find n forms of this type which are linearly independent. Hence in a similar way as above we can construct polynomials $\phi_{i}\left(x_{i}\right), i=2, \ldots, l$ as in b).

Now we are in a position to prove:
Theorem 5.2 Let \mathbb{K} be an algebraically closed field with a non-trivial absolute value $|-|_{v}: \mathbb{K} \rightarrow \mathbb{R}$. Let $X \subset \mathbb{K}^{l}$ be an affine n-dimensional variety of degree D. Assume that $f_{1}, \ldots, f_{m} \in \mathbb{K}\left[x_{1}, \ldots, x_{l}\right]$ have only finite number $\nu($ possibly $\nu=0)$ of zeros on X. Let $d_{i}=\operatorname{deg} f_{i}$ (where $d_{1} \geq d_{2} \geq \cdots \geq$ $\left.d_{m}>0\right)$. Put $f=\left(f_{1}, \ldots, f_{m}\right)$. Then there is a constant $C>0$, such that for $x \in X$

$$
\|f(x)\|_{v} \geq C\|x\|_{v}^{d_{m}-D N\left(d_{1}, \ldots, d_{m} ; n\right)+\nu}
$$

if $\|x\|_{v}$ is sufficiently large.
Proof. Take a general linear combination:

$$
F_{1}=f_{1}, F_{i}=\sum_{j=i}^{m} \gamma_{i j} f_{j}, i=2, \ldots, n,\left(\text { or } F_{1}=f_{m} \text { for } n=1\right)
$$

Since the number of zeroes of F_{1}, \ldots, F_{n} is finite and greater or equal to ν, we can assume that $m \leq n$. We can also assume that $f_{i}=F_{i}$. Now Theorem 5.2 is a consequence of the Elimination Theorem (Theorem 5.1). Indeed, we can assume that the system of coordinates is sufficiently generic and there exist polynomials $g_{i j} \in \mathbb{K}\left[x_{1}, \ldots, x_{l}\right]$ and polynomials $\phi_{i}\left(x_{i}\right) \in$ $\mathbb{K}\left[x_{i}\right]$, such that
a) $\operatorname{deg} g_{i j} f_{j} \leq D N\left(d_{1}, \ldots, d_{m} ; n\right)$,
b) $\phi_{i}\left(x_{i}\right)=\sum_{j=1}^{m} g_{i j} f_{j}$,

Observe that we have $\operatorname{deg} \phi_{i} \geq \nu$ (we can assume that all zeroes of f_{1}, \ldots, f_{n} have all different coordinates!). Further, if $G\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{l}\right]$ is a polynomial of degree at most d, then

$$
|G(x)|_{v}<C\|x\|_{v}^{d}
$$

for large $\|x\|_{v}$. On the other hand if $\phi(t)$ is a polynomial of one variable t of degree at least ν, then $|\phi(t)|_{v}>C^{\prime}|t|_{v}^{\nu}$ for large $|t|_{v}$. In particular from b) we get

$$
A\|x\|_{v}^{D N\left(d_{1}, \ldots, d_{m} ; n\right)-d_{m}}\|f(x)\|>B\|x\|_{v}^{\nu}
$$

and consequently

$$
\|f(x)\|_{v} \geq C\|x\|_{v}^{d_{m}-D N\left(d_{1}, \ldots, d_{m} ; n\right)+\nu}
$$

for $\|x\|_{v}$ sufficiently large.
Now we can prove our main result. First we introduce the notion of a local multiplicity:

Definition 5.3 Let $X \subset \mathbb{C}^{l}$ be an affine variety and let $f: X \rightarrow \mathbb{C}^{m}$ be a polynomial mapping. Assume that the fiber $f^{-1}(0)$ is finite and nonempty and let $a \in f^{-1}(0)$. Let $Y=c l(f(X))$ and let $\mathbf{Y}_{\mathbf{0}}=\bigcup_{j=1}^{l} \mathbf{Y}_{\mathbf{j}}$ be a decomposition of the analytic germ of Y at 0 into irreducible components. We define the local multiplicity of the mapping f at the point a, denoted $\mu_{a}(f)$, to be the number of points in $U \cap\left(\bigcup_{j=1}^{l} f^{-1}\left(y_{j}\right)\right)$, where U is a sufficiently small neighborhood of a (in the classical topology) and $y_{j} \in \mathbf{Y}_{\mathbf{j}}$ are sufficiently general points.

Remark 5.4 If $m=\operatorname{dim} X$, then $\mu_{a}(f)$ is the standard multiplicity, see e.g., [9].

We need also the following:
Lemma 5.5 Let $\Delta \subset \mathbb{C}^{l}$ be a polydisc and let $Y \subset \Delta$ be an analytic set of pure dimension n. Let $F_{k}: Y \rightarrow \mathbb{C}^{n}, k=1,2, \ldots$ be holomorphic mappings and assume that F_{k} converges to F almost uniformly on Y. If the fiber $F^{-1}(0)$ is finite and non-empty, then there exists a number k_{0} and an open neighborhood U of 0 and an open neighborhood V of $F^{-1}(0)$ such that all
mappings

$$
F_{k}: V \cap F_{k}^{-1}(U) \rightarrow U, \quad k \geq k_{0},
$$

are proper. Moreover, we can take V and U as small as we want.
Proof. Let V be a relatively compact neighborhood of $F^{-1}(0)$. Let U_{i} be a ball around 0 of radius $1 / i$. Assume that Lemma does not hold. Then for every i we find an arbitrary large number n_{i} such that the mapping $F_{n_{i}}: V \cap F_{n_{i}}^{-1}\left(U_{i}\right) \rightarrow U_{i}$ is not proper. Since \bar{V} is compact, this means that the set $(\bar{V} \backslash V) \cap F_{n_{i}}^{-1}\left(U_{i}\right)$ is not empty, e.g., it contains a point $x_{i} \in \bar{V} \backslash V$. Hence we have a sequence of points $x_{i} \in \bar{V} \backslash V$, such that $F_{n_{i}}\left(x_{i}\right) \in U_{i}$. Since the set $\bar{V} \backslash V$ is compact, we can assume that the sequence $x_{i}, i=1,2, \ldots$ has a limit x_{0} in $\bar{V} \backslash V$. Moreover, we can assume that $n_{1}<n_{2}<n_{3}<\cdots$ Now we have $0=\lim F_{n_{i}}\left(x_{i}\right)=F\left(x_{0}\right)$. Thus $x_{0} \in F^{-1}(0)$. Since $x_{0} \notin V$, it is a contradiction.

Finally we have our main result:
Theorem 5.6 Let $X \subset \mathbb{C}^{l}$ be an affine n-dimensional variety of degree D. Let $|-|_{v}: \mathbb{C} \rightarrow \mathbb{R}$ be a non-trivial absolute value. Assume that $f_{1}, \ldots, f_{m} \in$ $\mathbb{C}\left[x_{1}, \ldots, x_{l}\right]$ have only finite set (possibly empty) of zeros on X. Let $d_{i}=$ $\operatorname{deg} f_{i}$ (where $d_{1} \geq d_{2} \geq \cdots \geq d_{m}>0$) and put $f=\left(f_{1}, \ldots, f_{m}\right)$. Then there is a constant $C>0$, such that for $x \in X$

$$
\|f(x)\|_{v} \geq C\|x\|_{v}^{d_{m}-D N\left(d_{1}, \ldots, d_{m} ; n\right)+\sum_{f(a)=0} \mu_{a}(f)}
$$

if $\|x\|_{v}$ is sufficiently large.
Proof. Taking a general linear combination as before, it is not difficult to check that we can assume $m \leq n$. If $m<n$, then $V\left(f_{1}, \ldots, f_{m}\right)=\emptyset$ and Theorem 5.6 follows directly from Theorem 5.2. Hence we can assume that $m=n$ and $V\left(f_{1}, \ldots, f_{n}\right) \neq \emptyset$.

Arguing as in the proof of Theorem 5.2, we see that it is enough to prove that $\operatorname{deg} \phi_{i} \geq \sum_{f(a)=0} \mu_{a}(f)$ (the notation is as in Theorem 5.2). Let $V\left(f_{1}, \ldots, f_{n}\right)=\left\{a_{1}, \ldots, a_{r}\right\}$ and let $a_{i}=\left(a_{i 1}, \ldots, a_{i l}\right)$.

Consider polynomials ϕ_{i} as in Theorem 5.1. Take $\phi_{1}=\phi$. From the proof of Theorem 5.1 we have the equality:

$$
\phi\left(x_{1}\right) z^{s}+\sum_{j=1}^{s} a_{j}\left(\sum_{j=1}^{n} \gamma_{1 j} f_{j} z+l_{1}(x), \ldots,\right.
$$

$$
\begin{equation*}
\left.\sum_{j=n}^{n} \gamma_{n j} f_{j} z+l_{n}(x), x_{1}\right) z^{s-j}=0 \tag{5.1}
\end{equation*}
$$

where $a_{j} \in \mathbb{K}\left[T_{1}, \ldots, T_{n+1}\right]$. In particular

$$
\begin{equation*}
\phi\left(x_{1}\right)=-\left(\sum_{j=1}^{s} a_{j}\left(F_{1}(x) z+l_{1}(x), \ldots, F_{n}(x) z+l_{n}(x), x_{1}\right) z^{-j}\right) \tag{5.2}
\end{equation*}
$$

where $F_{i}=\sum_{j=i}^{n} \gamma_{i j} f_{j}$. Take $\bar{a}_{j}(T)=a_{j}\left(T_{1}, \ldots, T_{n+1}\right)-a_{j}\left(0, \ldots, 0, T_{n+1}\right)$ and $\psi\left(x_{1}, z\right)=\sum_{j=1}^{s} a_{j}\left(0, \ldots, 0, x_{1}\right) z^{s-j}$. We have

$$
\begin{align*}
& \phi\left(x_{1}\right)+\frac{\psi\left(x_{1}, z\right)}{z^{s}}=-\left(\sum _ { j = 1 } ^ { s } \overline { a } _ { j } \left(F_{1}(x) z+l_{1}(x), \ldots,\right.\right. \\
&\left.\left.F_{n}(x) z+l_{n}(x), x_{1}\right) z^{-j}\right), \tag{5.3}
\end{align*}
$$

where $\bar{a}_{j}\left(0, \ldots, 0, x_{1}\right) \equiv 0$ and $\psi\left(x_{1}, z\right) / z^{s}$ tends to 0 almost uniformly, when $|z|$ tends to the infinity.

Let $z_{i} \rightarrow \infty$. From the proof of Theorem 5.1 it follows that we can modify the linear forms l_{i} by adding any constant c_{i} i.e., without any change we can consider $l_{i}+c_{i}$ as a new l_{i}. Take $c=\left(c_{1}, \ldots, c_{n}\right)$ in this way that c is a regular value of every mapping $F_{z_{k}}=z_{k}\left(F_{1}+l_{1} / z_{k}, \ldots, F_{n}+l_{n} / z_{k}\right)$. Such a c does exist, because a countable union of hypersurfaces in \mathbb{C}^{n} is a nowhere dense subset of \mathbb{C}^{n}. Now change l_{i} by $l_{i}+c_{i}$. Thus for every k we have that $F_{z_{k}}$ have only smooth simple zeroes.

Let $\Delta\left(a_{1}, r\right)$ be a polydisc around the point a_{1} such that the point a_{1} is the unique zero of the mapping $F=\left(F_{1}, \ldots, F_{n}\right)$ in $\Delta\left(a_{1}, r\right)$. Take $F_{k}=$ $F_{z_{k}} / z_{k}$ and use Lemma 5.5 to the sequence F_{k} and $Y=X \cap \Delta(a, r)$. Hence we have a neighborhood V of a_{1} and a neighborhood U of 0 , such that $F_{k}: V \cap F_{k}^{-1}(U) \rightarrow U$ are proper mappings. We can assume that V is so small that $\sharp\left(V \cap F^{-1}(c)\right)=\mu_{a_{1}}(F)=\mu_{a_{1}}(f)$ for generic small $c \in U$. In fact we can choose $c \in U$ such that the fiber $F^{-1}(c)$ consists of smooth points of X and $\sharp\left(V \cap F^{-1}(c)\right)=\mu_{a_{1}}(F)$ and $\sharp\left(V \cap F_{k}^{-1}(c)\right)=\sharp\left(V \cap F_{k}^{-1}(0)\right)$ for large k (note that F_{k} has only smooth simple zeroes). Let $G \subset V \cap(X \backslash \operatorname{Sing}(X))$ be a small open neighborhood of $F^{-1}(c)$. By the Rouche Theorem for large k mappings $F_{k}-c$ and $F-c$ have the same number of zeroes in G. This means that F_{k} has at least $\mu_{a_{1}}(F)=\mu_{a_{1}}(f)$ different zeroes in V. Since $F_{z_{k}}=z_{k} F_{k}$, we have that $F_{z_{k}}$ also have at least $\mu_{a_{1}}(f)$ different zeroes in
V.
Let $\pi: \mathbb{C}^{m} \ni\left(x_{1}, \ldots, x_{m}\right) \rightarrow x_{1} \in \mathbb{C}$ be a projection. Let S be a small disc around a_{11} which contains $\pi(V)$. Note that for $|z| \gg 0$, we have by the Rouche Theorem that the polynomial $\phi\left(x_{1}\right)$ has in S the same number of zeroes (equal to $\mu_{a_{11}}(\phi)$) as the polynomial $\phi\left(x_{1}\right)+\psi\left(x_{1}, z\right) / z^{s}$.

Since the coordinates are generic, we have by (5.3), that for a large k a polynomial $\phi\left(x_{1}\right)+\psi\left(x_{1}, z_{k}\right) / z_{k}^{s}$ has at least $\mu_{a_{1}}(f)$ different zeroes in S. Thus $\mu_{a_{11}}(\phi) \geq \mu_{a_{1}}(f)$. In the same way we have that ϕ has multiplicity $\mu_{a_{i 1}}(\phi) \geq \mu_{a_{i}}(f)$ at every point $a_{i 1}$. Thus $\operatorname{deg} \phi \geq \sum_{f(a)=0} \mu_{a}(f)$. Similarly $\operatorname{deg} \phi_{i} \geq \sum_{f(a)=0} \mu_{a}(f)$ for every i.
Example 5.7 We show that Theorem 5.6 is sharp, i.e., for every D, d_{1}, \ldots, d_{m} (where $d_{1} \geq d_{2} \cdots \geq d_{m}>0$), there exists an n-dimensional affine variety $X \subset \mathbb{K}^{l}$ of degree D and polynomials $f_{i} \in \mathbb{K}[X]$ of degrees d_{1}, \ldots, d_{m} such that $e\left(\left(f_{1}, \ldots, f_{m}\right)\right)=d_{m}-D N\left(d_{1}, \ldots, d_{m} ; n\right)+\sum_{f(a)=0} \mu_{a}(f)$. Moreover, we show this for mappings with non-empty fiber $f^{-1}(0)$ as well as for mappings with empty fiber $f^{-1}(0)$.
a) First we consider the case $f^{-1}(0) \neq \emptyset$. Then $m \geq n$. Take $X=$ $\left\{x \in \mathbb{C}^{n+1}: \sum_{i=1}^{n} a_{i} x_{i}=x_{n+1}^{D}\right\}$, where $a_{i} \in \mathbb{C}$ are sufficiently general numbers. Let

$$
\begin{aligned}
& f: X \ni\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \rightarrow\left(x_{1}^{d_{1}}-1, \ldots, x_{n-1}^{d_{n-1}}-1,\right. \\
& \left.\quad\left(x_{n}^{d_{m}}-1\right) x_{n}^{d_{n}-d_{m}}, \ldots,\left(x_{n}^{d_{m}}-1\right) x_{n}^{d_{m-1}-d_{m}}, x_{n}^{d_{m}}-1\right) \in \mathbb{C}^{m} .
\end{aligned}
$$

It is easy to see that $D N\left(d_{1}, \ldots, d_{m} ; n\right)=\sum_{f(a)=0} \mu_{a}(f)$ and consequently

$$
e(f)=d_{m}=d_{m}-D N\left(d_{1}, \ldots, d_{m} ; n\right)+\sum_{f(a)=0} \mu_{a}(f) .
$$

(we left details to the reader).
b) Now we consider the case $f^{-1}(0)=\emptyset$. We modify Kollár's Example 2.3 from [6]. Take $X=\left\{x \in \mathbb{C}^{n+1}: x_{n} x_{n+1}^{D-1}=1\right\}$. For $m \leq$ $s \leq n$ set $f_{s}=x_{1}^{d_{s}}$. Further take $f_{n-1}=x_{1} x_{n+1}^{d_{n-1}-1}-x_{2}^{d_{n-1}}, f_{n-2}=$ $x_{2} x_{n+1}^{d_{2}-1}-x_{3}^{d_{2}}, \ldots, f_{1}=x_{n-1} x_{n+1}^{d_{1}-1}-x_{n}^{d_{1}}$. Clearly $\operatorname{deg} f_{i}=d_{i}$. Put $f=\left(f_{1}, \ldots, f_{m}\right)$. It is easy to check that $f^{-1}(0)=\emptyset$ and

$$
e(f)=d_{m}-D N\left(d_{1}, \ldots, d_{m} ; n\right)
$$

(we left details to the reader).

References

[1] Brownawell W.D., Bound for the degree in the Nulstellensatz. Annals of Math. 126 (1987), 577-591.
[2] Cygan E., Krasiński T. and Tworzewski P., Separation of algebraic sets and the Łojasiewicz exponent of polynomial mappings. Invent. Math. 136 (1999), 75-88.
[3] Jelonek Z., Testing sets for properness of polynomial mappings. Math. Ann. 315 (1999), 1-35.
[4] Jelonek Z., Topological characterization of finite mappings. Bull. Polish Acad. Sci. Math. 49 (2001), 375-379.
[5] Jelonek Z., On the effective Nullstellensatz. Invent. Math. 162 (2005), 1-17.
[6] Kollár J., Sharp effective Nulstellensatz. J. Amer. Math. Soc. 1 (1998), 963-975.
[7] Kollár J., Effective Nulstellensatz for arbitrary ideals. 0 J. Eur. Math. Soc. 1 (1999), 313-337.
[8] Lojasiewicz S., Ensembles semi-analytiques. IHES, Bures-sur-Yvette, 1965.
[9] Mumford, D, Algebraic Geometry I. Springer, Berlin, 1995.
[10] Perron O., Algebra I (Die Grundladen). Göschens Lehrbücherei, Berlin und Leipzig, 1932.

Instytut Matematyczny
Polska Akademia Nauk
Św. Tomasza 30, 31-027 Kraków
Poland
E-mail: najelone@cyf-kr.edu.pl

[^0]: 1991 Mathematics Subject Classification : 14A10, 14Q20, 14R99.
 Partially supported by the grant of Polish KBN.

