Spectral gaps of the one-dimensional Schrödinger operators with periodic point interactions

Kazushi Yoshitomi

(Received September 21, 2004; Revised February 16, 2005)

Abstract. We study the spectral gaps of the Schrödinger operators

$$
\begin{aligned}
& H_{1}=-\frac{d^{2}}{d x^{2}}+\sum_{l=-\infty}^{\infty} \beta_{1} \delta^{\prime}(x-\kappa-2 \pi l)+\beta_{2} \delta^{\prime}(x-2 \pi l) \quad \text { in } L^{2}(\mathbb{R}), \\
& H_{2}=-\frac{d^{2}}{d x^{2}}+\sum_{l=-\infty}^{\infty} \beta_{1} \delta(x-\kappa-2 \pi l)+\beta_{2} \delta(x-2 \pi l) \quad \text { in } L^{2}(\mathbb{R}),
\end{aligned}
$$

where $\kappa \in(0,2 \pi)$ and $\beta_{1}, \beta_{2} \in \mathbb{R} \backslash\{0\}$ are parameters. Given $j \in \mathbb{N}$, we determine whether the j th gap of H_{k} is absent or not for $k=1,2$.

Key words: Schrödinger operators, periodic point interactions, spectral gaps.

1. Introduction

In this note we discuss the spectral gaps of the Schrödinger operators formally expressed as

$$
\begin{aligned}
& H_{1}=-\frac{d^{2}}{d x^{2}}+\sum_{l=-\infty}^{\infty}\left(\beta_{1} \delta^{\prime}(x-\kappa-2 \pi l)+\beta_{2} \delta^{\prime}(x-2 \pi l)\right) \quad \text { in } L^{2}(\mathbb{R}), \\
& H_{2}=-\frac{d^{2}}{d x^{2}}+\sum_{l=-\infty}^{\infty}\left(\beta_{1} \delta(x-\kappa-2 \pi l)+\beta_{2} \delta(x-2 \pi l)\right) \quad \text { in } L^{2}(\mathbb{R})
\end{aligned}
$$

where $\kappa \in(0,2 \pi)$ and $\beta_{1}, \beta_{2} \in \mathbb{R} \backslash\{0\}$ are parameters, $\delta(x)$ stands for the Dirac delta function at the origin, and $\delta^{\prime}(x)$ is the derivative of $\delta(x)$. The precise definitions of these operators are given through boundary conditions. Put

$$
Z_{1}=\{\kappa\}+2 \pi \mathbb{Z}, Z_{2}=2 \pi \mathbb{Z}, Z=Z_{1} \cup Z_{2}
$$

and

$$
T_{l}^{1}=\left(\begin{array}{cc}
1 & \beta_{l} \\
0 & 1
\end{array}\right), T_{l}^{2}=\left(\begin{array}{cc}
1 & 0 \\
\beta_{l} & 1
\end{array}\right) \quad \text { for } \quad l=1,2
$$

[^0]For $k=1,2$, we define

$$
\begin{aligned}
\left(H_{k} y\right)(x) & =-y^{\prime \prime}(x), \quad x \in \mathbb{R} \backslash Z \\
\operatorname{Dom}\left(H_{k}\right) & =\left\{y \in H^{2}(\mathbb{R} \backslash Z) \mid\right. \\
& \left.\binom{y(t+0)}{y^{\prime}(t+0)}=T_{l}^{k}\binom{y(t-0)}{y^{\prime}(t-0)} \quad \text { for } \quad t \in Z_{l}, l=1,2\right\} .
\end{aligned}
$$

It follows by [5, Theorem 3.1] that H_{2} is self-adjoint. The proof of the self-adjointness of H_{1} is similar to that of [5, Theorem 3.1].

Since the interactions are 2π-periodic, we can utilize the Floquet-Bloch reduction scheme (see [10, Section XIII.16]). For $\theta \in[0,2 \pi]$, we introduce the Hilbert space

$$
\mathcal{H}_{\theta}=\left\{u \in L_{\mathrm{loc}}^{2}(\mathbb{R}) \mid u(x+2 \pi)=e^{\sqrt{-1} \theta} u(x) \quad \text { a.e. } \quad x \in \mathbb{R}\right\}
$$

equipped with the inner product

$$
(u, v)_{\mathcal{H}_{\theta}}=\int_{0}^{2 \pi} u(x) \overline{v(x)} d x, \quad u, v \in \mathcal{H}_{\theta}
$$

We define the operator H_{θ}^{k} in \mathcal{H}_{θ} by

$$
\begin{aligned}
&\left(H_{\theta}^{k} y\right)(x)=-y^{\prime \prime}(x), \quad x \in \mathbb{R} \backslash Z \\
& \operatorname{Dom}\left(H_{\theta}^{k}\right)=\left\{y \in \mathcal{H}_{\theta} \mid y \in H^{2}((0,2 \pi) \backslash\{\kappa\})\right. \\
&\left.\binom{y(t+0)}{y^{\prime}(t+0)}=T_{l}^{k}\binom{y(t-0)}{y^{\prime}(t-0)} \quad \text { for } \quad t \in Z_{l}, l=1,2\right\}
\end{aligned}
$$

We further introduce the unitary operator \mathcal{U} from $L^{2}(\mathbb{R})$ onto $\int_{0}^{2 \pi} \oplus \mathcal{H}_{\theta} d \theta$ defined as

$$
(\mathcal{U} u)(x, \theta)=\frac{1}{\sqrt{2 \pi}} \sum_{l=-\infty}^{\infty} e^{\sqrt{-1} l \theta} u(x-2 l \pi)
$$

The operator H_{k} admits the direct integral representation

$$
\mathcal{U} H_{k} \mathcal{U}^{-1}=\int_{0}^{2 \pi} \oplus H_{\theta}^{k} d \theta
$$

For $\theta \in[0,2 \pi]$ and $j \in \mathbb{N}=\{1,2, \ldots\}$, we denote by $\lambda_{j}^{k}(\theta)$ the j th eigenvalue of H_{θ}^{k} counted with multiplicity. The basic properties of $\lambda_{j}^{k}(\theta)$ and $\sigma\left(H_{k}\right)$ are summarized as follows.
Proposition 1 The following claims hold true.
(a) The function $\lambda_{j}^{k}(\cdot)$ is continuous on $[0,2 \pi]$.
(b) We have $\lambda_{j}^{k}(\theta)=\lambda_{j}^{k}(2 \pi-\theta)$.
(c) For $\theta \in(0, \pi)$, all the eigenvalues of H_{θ}^{k} are simple.
(d) If $\beta_{1} \beta_{2}>0$ or $k=2$, then the function $\lambda_{j}^{k}(\theta)$ is strictly monotone increasing (respectively, decreasing) as θ varies from 0 to π for odd (respectively, even) j.
(e) If $\beta_{1} \beta_{2}<0$ and $k=1$, then the function $\lambda_{j}^{k}(\theta)$ is strictly monotone decreasing (respectively, increasing) as θ varies from 0 to π for odd (respectively, even) j.
(f) The spectrum of H_{k} is expressed as

$$
\begin{aligned}
\sigma\left(H_{k}\right) & =\bigcup_{j=1}^{\infty} \lambda_{j}^{k}([0, \pi]) \\
& =\bigcup_{j=1}^{\infty} \bigcup_{\theta \in[0, \pi]}\left\{\lambda_{j}^{k}(\theta)\right\} .
\end{aligned}
$$

We define

$$
G_{j}^{k}= \begin{cases}\left(\lambda_{j}^{k}(\pi), \lambda_{j+1}^{k}(\pi)\right) & \text { for } j \text { odd } \\ \left(\lambda_{j}^{k}(0), \lambda_{j+1}^{k}(0)\right) & \text { for } j \text { even }\end{cases}
$$

in the case that $k=2$ or $\beta_{1} \beta_{2}>0$, while we set

$$
G_{j}^{k}= \begin{cases}\left(\lambda_{j}^{k}(\pi), \lambda_{j+1}^{k}(\pi)\right) & \text { for } j \text { even } \\ \left(\lambda_{j}^{k}(0), \lambda_{j+1}^{k}(0)\right) & \text { for } j \text { odd }\end{cases}
$$

if $k=1$ and $\beta_{1} \beta_{2}<0$. We also put

$$
B_{j}^{k}=\lambda_{j}^{k}([0, \pi])
$$

The closed interval B_{j}^{k} is called the j th band of the spectrum of H_{k}, the open interval G_{j}^{k} the j th gap. The purpose of this note is to determine whether the j th gap is empty or not for a given $j \in \mathbb{N}$. Our main results are the following two theorems.

Theorem 2 Suppose $\beta_{1} \neq \beta_{2}$ and $\beta_{1}+\beta_{2} \neq-2 \pi$.
(i) If either $\beta_{1}+\beta_{2} \neq 0$ or $\kappa / \pi \notin \mathbb{Q}$ holds, then we have

$$
G_{j}^{1} \neq \emptyset \quad \text { for } \quad j \in \mathbb{N}
$$

(ii) Let $\beta_{1}+\beta_{2}=0, \kappa / \pi=m / n,(m, n) \in \mathbb{N}^{2}, \operatorname{gcd}(m, n)=1$, and $m \notin$
$2 \mathbb{N}$. Then we have

$$
\begin{array}{ll}
G_{j}^{1}=\emptyset & \text { if } \quad j-1 \in 2 n \mathbb{N} \\
G_{j}^{1} \neq \emptyset & \text { if } \\
j-1 \notin 2 n \mathbb{N}
\end{array}
$$

(iii) If $\beta_{1}+\beta_{2}=0, \kappa / \pi=m / n,(m, n) \in \mathbb{N}^{2}, \operatorname{gcd}(m, n)=1$, and $m \in 2 \mathbb{N}$, then we have

$$
\begin{array}{lll}
G_{j}^{1}=\emptyset & \text { for } & j-1 \in n \mathbb{N} \\
G_{j}^{1} \neq \emptyset & \text { for } & j-1 \notin n \mathbb{N}
\end{array}
$$

Theorem 3 Assume $\beta_{1} \neq \beta_{2}$.
(i) If either $\beta_{1}+\beta_{2} \neq 0$ or $\kappa / \pi \notin \mathbb{Q}$ holds, then we have

$$
G_{j}^{2} \neq \emptyset \quad \text { for } \quad j \in \mathbb{N}
$$

(ii) If $\beta_{1}+\beta_{2}=0, \kappa / \pi=m / n,(m, n) \in \mathbb{N}^{2}, \operatorname{gcd}(m, n)=1$ and $m \notin 2 \mathbb{N}$, then we have

$$
\begin{array}{lll}
G_{j}^{2}=\emptyset & \text { for } & j \in 2 n \mathbb{N} \\
G_{j}^{2} \neq \emptyset & \text { for } & j \notin 2 n \mathbb{N}
\end{array}
$$

(iii) Let $\beta_{1}+\beta_{2}=0, \kappa / \pi=m / n,(m, n) \in \mathbb{N}^{2}, \operatorname{gcd}(m, n)=1$ and $m \in$ $2 \mathbb{N}$. Then we have

$$
\begin{array}{ll}
G_{j}^{2}=\emptyset & \text { if } \quad j \in n \mathbb{N} \\
G_{j}^{2} \neq \emptyset & \text { if } \quad j \notin n \mathbb{N} .
\end{array}
$$

The one-dimensional Schrödinger operators with periodic point interactions have been studied by numerous authors; we refer to $[3,4,6,8]$ and $[1,2]$ for a thorough review. R. Kronig and W. Penney were the first to introduce such an operator; they studied in [8] the spectrum of the operator $L_{1}=-d^{2} / d x^{2}+\alpha \sum_{l=-\infty}^{\infty} \delta(x-a l)$ in $L^{2}(\mathbb{R})$, where $\alpha \in \mathbb{R} \backslash\{0\}$ and $a>0$ are constants. This operator, which is called the Kronig-Penney Hamiltonian, serves as the most fundamental model in the modern textbooks of
solid-state physics (see e.g. [7]). The Kronig-Penney Hamiltonian was extensively generalized with the advance of the theory of point interactions. In [3, 4] F. Gesztesy, H. Holden, and W. Kirsch introduced the operator $L_{2}=$ $-d^{2} / d x^{2}+\alpha \sum_{l=-\infty}^{\infty} \delta^{\prime}(x-a l)$ in $L^{2}(\mathbb{R})$ and discussed its spectral properties in detail. Among other results they prove that every gap of $\sigma\left(L_{2}\right)$ is present if $\alpha \neq-a$ and that only the first gap is absent if $\alpha=-a$. In [4] it is also showed that every gap of $\sigma\left(L_{1}\right)$ is present. In [6] R. Hughes performed the Floquet analysis on the following operator which involved the generalized point interaction:

$$
\begin{aligned}
& \left(L_{3} y\right)(x)=-y^{\prime \prime}(x), \quad x \in \mathbb{R} \backslash a \mathbb{Z}, \\
& \operatorname{Dom}\left(L_{3}\right)=\left\{y \in H^{2}(\mathbb{R} \backslash a \mathbb{Z}) \mid\right. \\
& \\
& \left.\quad\binom{y(a j+0)}{y^{\prime}(a j+0)}=c A\binom{y(a j-0)}{y^{\prime}(a j-0)}, \quad j \in \mathbb{Z}\right\},
\end{aligned}
$$

where $A \in \mathrm{SL}_{2}(\mathbb{R}), c \in \mathbb{C}$, and $|c|=1$. It is also proved in $[6]$ that all the gaps of $\sigma\left(L_{3}\right)$ are absent in the case that $c=1$ and $A=-I$, where I stands for the 2×2 identity matrix. We further recall the well-known fact that every gap of the spectrum of the Mathieu operator $-d^{2} / d x^{2}+\alpha \cos (2 \pi x / a)$ in $L^{2}(\mathbb{R})$ is present (see [10, Section XIII.16, Example 1] and [9, Section 7] for related topics).

In most works on the one-dimensional Schrödinger operators with periodic point interactions, the interaction support is supposed to be identically spaced lattice $a \mathbb{Z}$. On the contrast, this paper is based on an interest in the interactions supported on the non-identically spaced lattice $\{0, \kappa\}+2 \pi \mathbb{Z}$. Our main results say that some gaps of the spectrum of L_{2} (respectively, $\left.L_{1}\right)$ begin to be absent when the second interaction $-\alpha \sum_{l=-\infty}^{\infty} \delta^{\prime}(x-s-a l)$ (respectively, $-\alpha \sum_{l=-\infty}^{\infty} \delta(x-s-a l)$) with $s / a \in \mathbb{Q} \backslash \mathbb{Z}$ is turned on it.

The next section is devoted to the proof of the results. Since the proof of the assertion for $\sigma\left(H_{2}\right)$ is similar to that for $\sigma\left(H_{1}\right)$, we demonstrate only Theorem 2 and Proposition 1 for $k=1$. Let us review our idea in proving Theorem 2. The band edges are given by the zeros of the function $D(\cdot) \pm$ 2 , where D is the discriminant defined by (4). Although the discriminant is expressed in an explicit way in terms of κ and λ, the double zeros of $D(\cdot) \pm 2$ is somewhat hard to discuss directly because of the complexity of the expression of this function. We eliminate this difficulty by using
the monodromy matrix; we reduce the problem to a system of algebraic equations $(9) \sim(11)$ in the proof of Lemma 5 , which is a key lemma in proving Theorem 2. We remark that the assumptions $\beta_{1} \neq \beta_{2}$ and $\beta_{1}+$ $\beta_{2} \neq-2 \pi$ in Theorem 2 are essential; it can be showed that if $\beta_{1}+\beta_{2}=$ -2π, then one of the gaps of $\sigma\left(H_{1}\right)$ disappears at the origin.

2. Proof of the results

Let us consider the equation

$$
\begin{cases}-y^{\prime \prime}(x)=\lambda y(x) & \text { on } \quad \mathbb{R} \backslash Z, \tag{1}\\
\binom{y(t+0)}{y^{\prime}(t+0)}=\left(\begin{array}{cc}
1 & \beta_{l} \\
0 & 1
\end{array}\right)\binom{y(t-0)}{y^{\prime}(t-0)} & \text { for } \quad t \in Z_{l}, l=1,2,\end{cases}
$$

where λ is a real parameter. By $y_{1}(x, \lambda)$ and $y_{2}(x, \lambda)$ we denote the solutions of this equation subject to the initial conditions

$$
\begin{equation*}
\left(y_{1}(+0, \lambda), y_{1}^{\prime}(+0, \lambda)\right)=(1,0) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(y_{2}(+0, \lambda), y_{2}^{\prime}(+0, \lambda)\right)=(0,1) \tag{3}
\end{equation*}
$$

respectively. Let $D(\lambda)$ be the discriminant of the equation (1):

$$
\begin{equation*}
D(\lambda)=y_{1}(2 \pi+0, \lambda)+y_{2}^{\prime}(2 \pi+0, \lambda) . \tag{4}
\end{equation*}
$$

The sequence $\left\{\lambda_{j}^{1}(0)\right\}_{j=1}^{\infty}$ gives all the zeros of the function $D(\cdot)-2$ counted with multiplicity, while the sequence $\left\{\lambda_{j}^{1}(\pi)\right\}_{j=1}^{\infty}$ provides all the zeros of the function $D(\cdot)+2$ repeated according to multiplicity. We further introduce the monodromy matrix of (1):

$$
M(\lambda)=\left(\begin{array}{ll}
m_{11}(\lambda) & m_{12}(\lambda) \\
m_{21}(\lambda) & m_{22}(\lambda)
\end{array}\right)=\left(\begin{array}{ll}
y_{1}(2 \pi+0, \lambda) & y_{2}(2 \pi+0, \lambda) \\
y_{1}^{\prime}(2 \pi+0, \lambda) & y_{2}^{\prime}(2 \pi+0, \lambda)
\end{array}\right)
$$

Put $\tau=2 \pi-\kappa$. By a straightforward computation, we obtain

$$
\begin{align*}
m_{11}(\lambda)= & \cos \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda} \\
& -\left(\beta_{1}+\beta_{2}\right) \sqrt{\lambda} \cos \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda} \\
& -\beta_{2} \sqrt{\lambda} \sin \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda} \\
& +\left(\beta_{1} \beta_{2} \lambda-1\right) \sin \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda}, \tag{5}
\end{align*}
$$

$$
\begin{align*}
m_{12}(\lambda)= & \left(\beta_{1}+\beta_{2}\right) \cos \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda} \\
& +\left(\frac{1}{\sqrt{\lambda}}-\beta_{1} \beta_{2} \sqrt{\lambda}\right) \sin \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda} \\
& +\frac{1}{\sqrt{\lambda}} \cos \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda}-\beta_{2} \sin \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda}, \tag{6}\\
m_{21}(\lambda)= & -\sqrt{\lambda} \sin \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda}+\beta_{1} \lambda \sin \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda} \\
& -\sqrt{\lambda} \cos \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda}, \tag{7}\\
m_{22}(\lambda)= & \cos \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda}-\beta_{1} \sqrt{\lambda} \sin \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda} \\
& -\sin \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda} \tag{8}
\end{align*}
$$

for $\lambda \neq 0$, where we fix the branch of the square root as

$$
\arg \sqrt{\lambda} \in\left\{0, \frac{\pi}{2}\right\}
$$

for the sake of definiteness. Besides, we have

$$
m_{11}(0)=1, \quad m_{12}(0)=\beta_{1}+\beta_{2}+2 \pi, \quad m_{21}(0)=0, \quad m_{22}(0)=1 .
$$

First, we prove the following implication.
Lemma 4 We have $M(\lambda)=I($ respectively, $M(\lambda)=-I)$ if and only if λ is a double eigenvalue of H_{0}^{1} (respectively, H_{π}^{1}).

Proof. Assume that λ is a double eigenvalue of H_{0}^{1}. Let $\left\{w_{1}(x), w_{2}(x)\right\}$ be a basis of $\operatorname{Ker}\left(H_{0}^{1}-\lambda\right)$. Since $w_{1}(x)$ and $w_{2}(x)$ are linearly independent solutions of (1), we see that $y_{1}(x)$ and $y_{2}(x)$ are linear combinations of $w_{1}(x)$ and $w_{2}(x)$. Thus we get $y_{1}, y_{2} \in \operatorname{Dom}\left(H_{0}^{1}\right)$. This together with (2) and (3) implies $M(\lambda)=I$.

Next we prove the converse. Assume that $M(\lambda)=I$. This combined with (2) and (3) yields $y_{1}, y_{2} \in \operatorname{Dom}\left(H_{0}^{1}\right)$. Since $y_{1}(x)$ and $y_{2}(x)$ solve the equation (1), we have $y_{1}, y_{2} \in \operatorname{Ker}\left(H_{0}^{1}-\lambda\right)$. Since y_{1} and y_{2} are linearly independent, we infer that λ is a double eigenvalue of H_{0}^{1}.

In a similar way, we claim that $M(\lambda)=-I$ if and only if λ is a double eigenvalue of H_{π}^{1}.

To prove Theorem 2 we need the assumption
(A.1) $\beta_{1} \neq \beta_{2}$ and $\beta_{1}+\beta_{2} \neq-2 \pi$.

The following lemma plays the most important role in the demonstration
of Theorem 2.
Lemma 5 Suppose (A.1). If $M(\lambda)=I$ or $M(\lambda)=-I$, then we have $\sin \tau \sqrt{\lambda}=\sin \kappa \sqrt{\lambda}=0, \lambda \neq 0$, and $\beta_{1}+\beta_{2}=0$.

Proof. Suppose that $M(\lambda)=I$ or $M(\lambda)=-I$. First, we prove that $\sin \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda}=0$. Seeking a contradiction, we assume that

$$
\sin \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda} \neq 0
$$

We define $x_{1}=\cot \kappa \sqrt{\lambda}, x_{2}=\cot \tau \sqrt{\lambda}$, and $C_{l}=\beta_{l} \sqrt{\lambda}$ for $l=1,2$. Inserting (5) $\sim(8)$ into the equalities

$$
\begin{aligned}
& m_{11}(\lambda)-m_{22}(\lambda)=0 \\
& \sqrt{\lambda} m_{12}(\lambda)=0 \\
& \frac{1}{\sqrt{\lambda}} m_{21}(\lambda)=0
\end{aligned}
$$

and dividing those by $\sin \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda}$, we have

$$
\begin{align*}
& \left(C_{1}-C_{2}\right) x_{1}-\left(C_{1}+C_{2}\right) x_{2}+C_{1} C_{2}=0 \tag{9}\\
& \left(C_{1}+C_{2}\right) x_{2} x_{1}+\left(1-C_{1} C_{2}\right) x_{1}+x_{2}-C_{2}=0 \tag{10}\\
& -x_{1}-x_{2}+C_{1}=0 \tag{11}
\end{align*}
$$

respectively. Using (9), (11), and $C_{1} \neq 0$, we get

$$
\begin{equation*}
x_{1}=x_{2}=\frac{C_{1}}{2} \tag{12}
\end{equation*}
$$

Plugging this into (10), we infer that

$$
\left(C_{1}-C_{2}\right)\left(\frac{1}{4} C_{1}^{2}+1\right)=0
$$

Since $\beta_{1} \neq \beta_{2}$ and $\lambda \neq 0$, we have $C_{1}-C_{2} \neq 0$ and hence $C_{1}^{2}=-4$. By (12) we arrive at

$$
x_{1}=x_{2}= \pm \sqrt{-1}
$$

However, this violates the fact that $\cot z \neq \pm \sqrt{-1}$ for all $z \in \mathbb{C}$. Hence we have

$$
\sin \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda}=0
$$

namely,

$$
\begin{equation*}
\sin \tau \sqrt{\lambda}=0 \quad \text { or } \quad \sin \kappa \sqrt{\lambda}=0 \tag{13}
\end{equation*}
$$

Next we prove that $\lambda \neq 0$. Since $\beta_{1}+\beta_{2} \neq-2 \pi$ by assumption, we have

$$
m_{12}(0)=2 \pi+\beta_{1}+\beta_{2} \neq 0
$$

This together with $m_{12}(\lambda)=0$ implies that $\lambda \neq 0$.
In the former case of (13), we claim by $m_{21}(\lambda)=0$ and (7) that

$$
m_{21}(\lambda)=-\sqrt{\lambda} \cos \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda}=0
$$

and thus $\sin \kappa \sqrt{\lambda}=0$. In the latter case of (13), we infer by (5), (8), and $m_{11}(\lambda)-m_{22}(\lambda)=0$ that

$$
m_{11}(\lambda)-m_{22}(\lambda)=\left(\beta_{1}-\beta_{2}\right) \sqrt{\lambda} \sin \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda}=0
$$

and hence $\sin \tau \sqrt{\lambda}=0$. Therefore, we get

$$
\sin \tau \sqrt{\lambda}=\sin \kappa \sqrt{\lambda}=0
$$

in each case of (13). Combining this with $m_{12}(\lambda)=0$ and (6), we get

$$
m_{12}(\lambda)=\left(\beta_{1}+\beta_{2}\right) \cos \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda}=0
$$

and thus $\beta_{1}+\beta_{2}=0$.
We prove Proposition 1 at the very end of this section. Assuming this fact for the moment, we complete the proof of Theorem 2.

Proof of Theorem 2 (i). Since $\{z \in \mathbb{C} \mid \sin z=0\}=\pi \mathbb{Z}$ and since $\tau=$ $2 \pi-\kappa$, we infer that the following two statements are equivalent.

- There exists $\lambda \neq 0$ such that $\sin \tau \sqrt{\lambda}=\sin \kappa \sqrt{\lambda}=0$.
- $\kappa \in \pi \mathbb{Q}$.

This together with Lemma 5 and Proposition 1 yields the conclusion.
Next we turn to the proofs of Theorem 2 (ii) and (iii). We assume
(A.2) $\quad \beta_{1}+\beta_{2}=0, \kappa / \pi=m / n,(m, n) \in \mathbb{N}^{2}$, and $\operatorname{gcd}(m, n)=1$.

The following lemma provides the double eigenvalues of H_{0}^{1} or H_{π}^{1}.

Lemma 6 Suppose (A.2). If $m \notin 2 \mathbb{N}$, then we have

$$
\begin{equation*}
\{\lambda \in \mathbb{R} \mid M(\lambda)=I \quad \text { or } \quad M(\lambda)=-I\}=\left\{j^{2} n^{2} \mid j \in \mathbb{N}\right\} . \tag{14}
\end{equation*}
$$

If $m \in 2 \mathbb{N}$, then we get

$$
\begin{equation*}
\{\lambda \in \mathbb{R} \mid M(\lambda)=I \quad \text { or } \quad M(\lambda)=-I\}=\left\{\left.\frac{j^{2} n^{2}}{4} \right\rvert\, j \in \mathbb{N}\right\} \tag{15}
\end{equation*}
$$

Proof. First, we discuss the case that $m \notin 2 \mathbb{N}$. Suppose that $M(\lambda)=I$ or $M(\lambda)=-I$. Then we infer by Lemma 5 that $\sin \tau \sqrt{\lambda}=\sin \kappa \sqrt{\lambda}=0$ and $\lambda \neq 0$. Combining this with $\tau=2 \pi-\kappa, \kappa / \pi=m / n,(m, n) \in \mathbb{N}^{2}$, $\operatorname{gcd}(m, n)=1$, and $m \notin 2 \mathbb{N}$, we infer that there exists a $j \in \mathbb{N}$ for which $\lambda=n^{2} j^{2}$. On the other hand, we claim by (5) $\sim(8)$ that $M\left(n^{2} i^{2}\right)=I$ for $i \in \mathbb{N}$. Hence, we obtain (14). The proof of (15) is similar.

Let us demonstrate the following claim.
Lemma 7 Suppose (A.2) and $j \in \mathbb{N} \cup\{0\}$. If $m \notin 2 \mathbb{N}$, then the function $D(\cdot)$ admits exactly $2 n$ zeros inside the interval $\left(n^{2} j^{2}, n^{2}(j+1)^{2}\right)$. If $m \in 2 \mathbb{N}$, then the function $D(\cdot)$ has exactly n zeros inside the interval $\left(n^{2} j^{2} / 4, n^{2}(j+1)^{2} / 4\right)$.
Proof. Since $\beta_{1}+\beta_{2}=0$, we have

$$
\begin{align*}
D(\lambda)= & 2 \cos \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda}-\left(\beta_{1}^{2} \lambda+2\right) \sin \tau \sqrt{\lambda} \sin \kappa \sqrt{\lambda} \\
= & \sqrt{\beta_{1}^{2} \lambda+2} \sin \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda} \\
& \times\left(\frac{2}{\sqrt{\beta_{1}^{2} \lambda+2}} \cot \tau \sqrt{\lambda}-\sqrt{\beta_{1}^{2} \lambda+2} \tan \kappa \sqrt{\lambda}\right) . \tag{16}
\end{align*}
$$

We fix $j \in \mathbb{N} \cup\{0\}$. First, we demonstrate the assertion for $m \notin 2 \mathbb{N}$. We define

$$
\begin{aligned}
& f_{1}(\lambda)=\sqrt{\beta_{1}^{2} \lambda+2} \tan \kappa \sqrt{\lambda}, \quad f_{2}(\lambda)=\frac{2}{\sqrt{\beta_{1}^{2} \lambda+2}} \cot \tau \sqrt{\lambda}, \\
& P_{1}=\left\{\lambda \in\left(n^{2} j^{2}, n^{2}(j+1)^{2}\right) \left\lvert\, \kappa \sqrt{\lambda} \in\left\{\frac{\pi}{2}\right\}+\pi \mathbb{Z}\right.\right\}, \\
& P_{2}=\left\{\lambda \in\left(n^{2} j^{2}, n^{2}(j+1)^{2}\right) \mid \tau \sqrt{\lambda} \in \pi \mathbb{Z}\right\}, \\
& P=P_{1} \cup P_{2}, \\
& S=\left\{\lambda \in\left(n^{2} j^{2}, n^{2}(j+1)^{2}\right) \mid D(\lambda)=0\right\}, \\
& S_{1}=\left\{\lambda \in\left(n^{2} j^{2}, n^{2}(j+1)^{2}\right) \backslash P \mid f_{1}(\lambda)=f_{2}(\lambda)\right\},
\end{aligned}
$$

$$
S_{2}=\left\{\lambda \in\left(n^{2} j^{2}, n^{2}(j+1)^{2}\right) \mid \sin \tau \sqrt{\lambda}=\cos \kappa \sqrt{\lambda}=0\right\}
$$

By (16) we have

$$
S=S_{1} \cup S_{2}
$$

Put

$$
\begin{aligned}
& q_{1, k}=\left(\frac{1}{\kappa}\left(m j \pi+\frac{\pi}{2}(2 k-1)\right)\right)^{2} \text { for } k=1,2, \ldots, m \\
& q_{2, l}=\left(\frac{1}{\tau}((2 n-m) j \pi+l \pi)\right)^{2} \text { for } \quad l=1,2, \ldots, 2 n-m-1, \\
& r=\sharp\left\{(k, l) \in \mathbb{N}^{2} \mid k \leq m, l \leq 2 n-2 m-1, q_{1, k}=q_{2, l}\right\} .
\end{aligned}
$$

We obtain

$$
\begin{aligned}
& P_{1}=\bigcup_{k=1}^{m}\left\{q_{1, k}\right\}, \quad P_{2}=\bigcup_{l=1}^{2 n-m-1}\left\{q_{2, l}\right\}, \\
& \sharp S_{2}=r, \quad \sharp P=2 n-r-1 .
\end{aligned}
$$

Let $\left\{r_{s}\right\}_{s=1}^{2 n-r-1}$ be the rearrangement of the elements of P such that $r_{s}<$ r_{s+1} for $s=1,2, \ldots, 2 n-r-2$. We define $r_{0}=q_{2,0}=n^{2} j^{2}$ and $r_{2 n-r}=$ $q_{2,2 n-m}=n^{2}(j+1)^{2}$. Notice that

$$
\begin{aligned}
& f_{1}(\lambda) \rightarrow \mp \infty \quad \text { as } \quad \lambda \rightarrow q_{1, k} \pm 0 \quad \text { for } \quad k=1,2, \ldots, m \\
& f_{2}(\lambda) \rightarrow \pm \infty \quad \text { as } \quad \lambda \rightarrow q_{2, l} \pm 0 \quad \text { for } \quad l=0,1, \ldots, 2 n-m
\end{aligned}
$$

and that the function $f_{s}(\lambda)$ is continuous on $\left(n^{2} j^{2}, n^{2}(j+1)^{2}\right) \backslash P_{s}$ for $s=$ 1, 2. Furthermore, we have

$$
\begin{aligned}
f_{1}^{\prime}(\lambda) & =\frac{1}{2 \sqrt{\beta_{1}^{2} \lambda+2} \cos ^{2} \kappa \sqrt{\lambda}}\left(\frac{1}{2} \beta_{1}^{2} \sin 2 \kappa \sqrt{\lambda}+\beta_{1}^{2} \kappa \sqrt{\lambda}+\frac{2 \kappa}{\sqrt{\lambda}}\right) \\
& \geq \frac{\kappa}{\sqrt{\lambda} \sqrt{\beta_{1}^{2} \lambda+2} \cos ^{2} \kappa \sqrt{\lambda}} \\
& >0
\end{aligned}
$$

on $\left(n^{2} j^{2}, n^{2}(j+1)^{2}\right) \backslash P_{1}$, because $\sin t+t \geq 0$ for $t \geq 0$. Likewise, we get $f_{2}^{\prime}(\lambda)<0$ on $\left(n^{2} j^{2}, n^{2}(j+1)^{2}\right) \backslash P_{2}$. Thus, we infer that the equation $f_{1}(\lambda)=$ $f_{2}(\lambda)$ admits exactly one root on $\left(r_{s}, r_{s+1}\right)$ for each $s=0,1, \ldots, 2 n-r-1$. So we get $\sharp S_{1}=2 n-r$ and hence $\sharp S=2 n$. Therefore we get the assertion for $m \notin 2 \mathbb{N}$. In a similar way, we get the conslusion for $m \in 2 \mathbb{N}$.

We further need the following implication.
Lemma 8 Suppose (A.2). The function $D(\cdot)$ admits a unique zero in the interval $(-\infty, 0]$.
Proof. Put

$$
h_{1}(\lambda)=\frac{2}{\beta_{1}^{2} \lambda+2}, \quad h_{2}(\lambda)=-\tanh \tau \sqrt{-\lambda} \tanh \kappa \sqrt{-\lambda} \quad \text { for } \lambda \leq 0
$$

By (16) we have

$$
\begin{aligned}
D(\lambda) & =\cos \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda}\left(2-\left(\beta_{1}^{2} \lambda+2\right) \tan \tau \sqrt{\lambda} \tan \kappa \sqrt{\lambda}\right) \\
& =\left(\beta_{1}^{2} \lambda+2\right) \cos \tau \sqrt{\lambda} \cos \kappa \sqrt{\lambda}\left(h_{1}(\lambda)-h_{2}(\lambda)\right)
\end{aligned}
$$

Note that $h_{2}(\lambda)$ is a continuous, non-positive, strictly monotone increasing function on $(-\infty, 0]$. Note also that $h_{1}(\lambda)$ is a continuous function on $\left(-\infty,-2 / \beta_{1}^{2}\right) \cup\left(-2 / \beta_{1}^{2}, 0\right]$ and that

$$
\begin{aligned}
& h_{1}^{\prime}(\lambda)<0 \quad \text { on } \quad\left(-\infty,-\frac{2}{\beta_{1}^{2}}\right) \cup\left(-\frac{2}{\beta_{1}^{2}}, 0\right] \\
& \lim _{\lambda \rightarrow-\infty} h_{1}(\lambda)=0, \quad \lim _{\lambda \rightarrow-2 / \beta_{1}^{2}-0} h_{1}(\lambda)=-\infty \\
& h_{1}(\lambda)>0 \quad \text { on } \quad\left(-\frac{2}{\beta_{1}^{2}}, 0\right] .
\end{aligned}
$$

Thus the equation $h_{1}(\lambda)=h_{2}(\lambda)$ admits a unique root on $\left(-\infty,-2 / \beta_{1}^{2}\right)$ and has no root on $\left(-2 / \beta_{1}^{2}, 0\right]$. This together with $D\left(-2 / \beta_{1}^{2}\right) \neq 0$ yields the conclusion.

Now we are ready to prove (ii) and (iii) of Theorem 2.
Proof of Theorem 2 (ii), (iii). Note that all the zeros of $D(\cdot)$ are given by the sequence $\left\{\lambda_{j}^{1}(\pi / 2)\right\}_{j=1}^{\infty}$ and that $\beta_{1} \beta_{2}<0$. This together with Proposition 1 and Lemmas 6, 7, and 8 implies the assertions.

While the proof of Proposition 1 is almost same as those of $[10$, Theorems XIII. 89 and XIII.90], we demonstrate this proposition for the sake of completeness.

Proof of Proposition 1. Now we suppose only $\beta_{1}, \beta_{2} \in \mathbb{R} \backslash\{0\}$. A subtlety arises only in (d) and (e). First we discuss (e). Suppose $\beta_{1} \beta_{2}<0$. By (4),
(5), and (8) we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow-\infty} D(\lambda)=-\infty \tag{17}
\end{equation*}
$$

Note that λ is an eigenvalue of H_{θ}^{1} if and only if $D(\lambda)=2 \cos \theta$. This combined with (17) implies that

$$
\begin{align*}
& D(\lambda)<-2 \quad \text { for } \quad \lambda<\lambda_{1}^{1}(\pi) \tag{18}\\
& \lambda_{1}^{1}(\theta) \geq \lambda_{1}^{1}(\pi) \quad \text { for } \quad \theta \in[0, \pi] \tag{19}
\end{align*}
$$

Let us prove that $\lambda_{1}^{1}(\pi)$ is a simple eigenvalue. Seeking a contradiction, we assume that $\lambda_{1}^{1}(\pi)$ is a double eigenvalue. Since

$$
\begin{equation*}
D\left(\lambda_{j}^{1}(\theta)\right)=2 \cos \theta \quad \text { for } \quad \theta \in[0, \pi] \text { and } j \in \mathbb{N} \tag{20}
\end{equation*}
$$

we claim by (19) that

$$
\begin{equation*}
\lambda_{1}^{1}\left(\frac{\pi}{2}\right)>\lambda_{1}^{1}(\pi)=\lambda_{2}^{1}(\pi) \tag{21}
\end{equation*}
$$

By (c) we have

$$
\lambda_{1}^{1}\left(\frac{\pi}{2}\right)<\lambda_{2}^{1}\left(\frac{\pi}{2}\right)
$$

This combined with (21) and (a) implies that there exists a $\theta_{0} \in(\pi / 2, \pi)$ for which

$$
\lambda_{2}^{1}\left(\theta_{0}\right)=\lambda_{1}^{1}\left(\frac{\pi}{2}\right)
$$

However, this violates (20). So we conclude that $\lambda_{1}^{1}(\pi)$ is a simple eigenvalue. Thus we get the assertion in (e) by mimicking the arguments in the proof of [10, TheoremXIII.89(e)], (see also the proof of [6, Theorem 2]). We also obtain the claim in (d) by noticing

$$
\lim _{\lambda \rightarrow-\infty} D(\lambda)=+\infty \quad \text { if } \quad \beta_{1} \beta_{2}>0
$$

Acknowledgment The author thanks the referee for his/her useful comments which improved the original manuscript.

References

[1] Albeverio S., Gesztesy F., Høegh-Krohn R. and Holden H., Solvable Models in Quantum Mechanics. Springer, Heidelberg, 1988.
[2] Albeverio S. and Kurasov P., Singular Perturbations of Differential Operators. London Mathematical Society Lecture Note Series, vol. 271, Cambridge Univ. Press, Cambridge, 1999.
[3] Gesztesy F. and Holden H., A New Class of Solvable Models in Quantum Mechanics Describing Point Interactions on the Line. J. Phys. A Math. Gen. 20 (1987), 51575177.
[4] Gesztesy F., Holden H. and Kirsch W., On Energy Gaps in a New Type of Analytically Solvable Model in Quantum Mechanics. J. Math. Anal. Appl. 134 (1988), 9-29.
[5] Gesztesy F. and Kirsch W., One-dimensional Schrödinger operators with interactions singular on a discrete set. J. Reine Angew. Math. 362 (1985), 28-50.
[6] Hughes R., Generalized Kronig-Penney Hamiltonians. J. Math. Anal. Appl. 222 (1998), 151-166.
[7] Kittel C., Introduction to Solid State Physics. Wiley, New York, 1986.
[8] Kronig R. and Penney W., Quantum Mechanics in Crystal Lattices. Proc. Royal Soc. London 130 (1931), 499-513.
[9] Magnus W. and Winkler S., Hill's Equation. Wiley, New York, 1966.
[10] Reed M. and Simon B., Methods of Modern Mathematical Physics, IV. Analysis of Operators. Academic Press, New York, 1978.

Department of Mathematics
Tokyo Metropolitan University
Minami-Ohsawa 1-1, Hachioji-shi
Tokyo 192-0397, Japan
E-mail: yositomi@comp.metro-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : 34L40, 34B30, 34B37, 34D08.

