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Spectral gaps of the one-dimensional Schrödinger operators

with periodic point interactions
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Abstract. We study the spectral gaps of the Schrödinger operators

H1 = − d2

dx2
+

∞X

l=−∞

ą
β1δ′(x− κ− 2πl) + β2δ′(x− 2πl)

ć
in L2(R),

H2 = − d2

dx2
+

∞X

l=−∞

ą
β1δ(x− κ− 2πl) + β2δ(x− 2πl)

ć
in L2(R),

where κ ∈ (0, 2π) and β1, β2 ∈ R\{0} are parameters. Given j ∈ N, we determine

whether the jth gap of Hk is absent or not for k = 1, 2.
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1. Introduction

In this note we discuss the spectral gaps of the Schrödinger operators
formally expressed as

H1 =− d2

dx2
+

∞∑

l=−∞

(
β1δ

′(x− κ− 2πl) + β2δ
′(x− 2πl)

)
in L2(R),

H2 =− d2

dx2
+

∞∑

l=−∞

(
β1δ(x− κ− 2πl) + β2δ(x− 2πl)

)
in L2(R),

where κ ∈ (0, 2π) and β1, β2 ∈ R\{0} are parameters, δ(x) stands for the
Dirac delta function at the origin, and δ′(x) is the derivative of δ(x). The
precise definitions of these operators are given through boundary conditions.
Put

Z1 = {κ}+ 2πZ, Z2 = 2πZ, Z = Z1 ∪ Z2,

and

T 1
l =

(
1 βl

0 1

)
, T 2

l =
(

1 0
βl 1

)
for l = 1, 2.
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For k = 1, 2, we define

(Hky)(x) = −y′′(x), x ∈ R\Z,

Dom(Hk) =

{
y ∈ H2(R\Z)

∣∣∣∣∣
(

y(t + 0)
y′(t + 0)

)
= T k

l

(
y(t− 0)
y′(t− 0)

)
for t ∈ Zl, l = 1, 2

}
.

It follows by [5, Theorem 3.1] that H2 is self-adjoint. The proof of the
self-adjointness of H1 is similar to that of [5, Theorem 3.1].

Since the interactions are 2π-periodic, we can utilize the Floquet-Bloch
reduction scheme (see [10, Section XIII.16]). For θ ∈ [0, 2π], we introduce
the Hilbert space

Hθ = {u ∈ L2
loc(R) | u(x + 2π) = e

√−1θu(x) a.e. x ∈ R}
equipped with the inner product

(u, v)Hθ
=

∫ 2π

0
u(x)v(x)dx, u, v ∈ Hθ.

We define the operator Hk
θ in Hθ by

(Hk
θ y)(x) = −y′′(x), x ∈ R\Z,

Dom(Hk
θ ) =

{
y ∈ Hθ

∣∣∣∣∣ y ∈ H2
(
(0, 2π)\{κ}),

(
y(t + 0)
y′(t + 0)

)
= T k

l

(
y(t− 0)
y′(t− 0)

)
for t ∈ Zl, l = 1, 2

}
.

We further introduce the unitary operator U from L2(R) onto
∫ 2π
0 ⊕Hθdθ

defined as

(Uu)(x, θ) =
1√
2π

∞∑

l=−∞
e
√−1lθu(x− 2lπ).

The operator Hk admits the direct integral representation

UHkU−1 =
∫ 2π

0
⊕Hk

θ dθ.
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For θ ∈ [0, 2π] and j ∈ N = {1, 2, . . .}, we denote by λk
j (θ) the jth eigen-

value of Hk
θ counted with multiplicity. The basic properties of λk

j (θ) and
σ(Hk) are summarized as follows.

Proposition 1 The following claims hold true.
(a) The function λk

j ( · ) is continuous on [0, 2π].
(b) We have λk

j (θ) = λk
j (2π − θ).

(c) For θ ∈ (0, π), all the eigenvalues of Hk
θ are simple.

(d) If β1β2 > 0 or k = 2, then the function λk
j (θ) is strictly monotone

increasing (respectively, decreasing) as θ varies from 0 to π for odd (respec-
tively, even) j.
(e) If β1β2 < 0 and k = 1, then the function λk

j (θ) is strictly monotone
decreasing (respectively, increasing) as θ varies from 0 to π for odd (respec-
tively, even) j.
(f) The spectrum of Hk is expressed as

σ(Hk) =
∞⋃

j=1

λk
j ([0, π])

=
∞⋃

j=1

⋃

θ∈[0, π]

{λk
j (θ)}.

We define

Gk
j =





(
λk

j (π), λk
j+1(π)

)
for j odd,

(
λk

j (0), λk
j+1(0)

)
for j even

in the case that k = 2 or β1β2 > 0, while we set

Gk
j =





(
λk

j (π), λk
j+1(π)

)
for j even,

(
λk

j (0), λk
j+1(0)

)
for j odd

if k = 1 and β1β2 < 0. We also put

Bk
j = λk

j ([0, π]).

The closed interval Bk
j is called the jth band of the spectrum of Hk, the

open interval Gk
j the jth gap. The purpose of this note is to determine

whether the jth gap is empty or not for a given j ∈ N. Our main results
are the following two theorems.
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Theorem 2 Suppose β1 6= β2 and β1 + β2 6= −2π.
(i) If either β1 + β2 6= 0 or κ/π /∈ Q holds, then we have

G1
j 6= ∅ for j ∈ N.

(ii) Let β1 + β2 = 0, κ/π = m/n, (m, n) ∈ N2, gcd(m, n) = 1, and m /∈
2N. Then we have

G1
j = ∅ if j − 1 ∈ 2nN,

G1
j 6= ∅ if j − 1 /∈ 2nN.

(iii) If β1+β2 = 0, κ/π = m/n, (m, n) ∈ N2, gcd(m, n) = 1, and m ∈ 2N,
then we have

G1
j = ∅ for j − 1 ∈ nN,

G1
j 6= ∅ for j − 1 /∈ nN.

Theorem 3 Assume β1 6= β2.
(i) If either β1 + β2 6= 0 or κ/π /∈ Q holds, then we have

G2
j 6= ∅ for j ∈ N.

(ii) If β1 + β2 = 0, κ/π = m/n, (m, n) ∈ N2, gcd(m, n) = 1 and m /∈ 2N,
then we have

G2
j = ∅ for j ∈ 2nN,

G2
j 6= ∅ for j /∈ 2nN.

(iii) Let β1 + β2 = 0, κ/π = m/n, (m, n) ∈ N2, gcd(m, n) = 1 and m ∈
2N. Then we have

G2
j = ∅ if j ∈ nN,

G2
j 6= ∅ if j /∈ nN.

The one-dimensional Schrödinger operators with periodic point inter-
actions have been studied by numerous authors; we refer to [3, 4, 6, 8] and
[1, 2] for a thorough review. R. Kronig and W. Penney were the first to
introduce such an operator; they studied in [8] the spectrum of the operator
L1 = −d2/dx2 + α

∑∞
l=−∞ δ(x− al) in L2(R), where α ∈ R\{0} and a > 0

are constants. This operator, which is called the Kronig-Penney Hamilto-
nian, serves as the most fundamental model in the modern textbooks of



Schrödinger operators with periodic point interactions 369

solid-state physics (see e.g. [7]). The Kronig-Penney Hamiltonian was ex-
tensively generalized with the advance of the theory of point interactions. In
[3, 4] F. Gesztesy, H. Holden, and W. Kirsch introduced the operator L2 =
−d2/dx2+α

∑∞
l=−∞ δ′(x−al) in L2(R) and discussed its spectral properties

in detail. Among other results they prove that every gap of σ(L2) is present
if α 6= −a and that only the first gap is absent if α = −a. In [4] it is also
showed that every gap of σ(L1) is present. In [6] R. Hughes performed the
Floquet analysis on the following operator which involved the generalized
point interaction:

(L3y)(x) = −y′′(x), x ∈ R\aZ,

Dom(L3) =

{
y ∈ H2(R\aZ)

∣∣∣∣∣
(

y(aj + 0)
y′(aj + 0)

)
= cA

(
y(aj − 0)
y′(aj − 0)

)
, j ∈ Z

}
,

where A ∈ SL2(R), c ∈ C, and |c| = 1. It is also proved in [6] that all the
gaps of σ(L3) are absent in the case that c = 1 and A = −I, where I stands
for the 2 × 2 identity matrix. We further recall the well-known fact that
every gap of the spectrum of the Mathieu operator −d2/dx2 +α cos(2πx/a)
in L2(R) is present (see [10, Section XIII.16, Example 1] and [9, Section 7]
for related topics).

In most works on the one-dimensional Schrödinger operators with peri-
odic point interactions, the interaction support is supposed to be identically
spaced lattice aZ. On the contrast, this paper is based on an interest in the
interactions supported on the non-identically spaced lattice {0, κ} + 2πZ.
Our main results say that some gaps of the spectrum of L2 (respectively,
L1) begin to be absent when the second interaction −α

∑∞
l=−∞ δ′(x−s−al)

(respectively, −α
∑∞

l=−∞ δ(x− s− al)) with s/a ∈ Q\Z is turned on it.
The next section is devoted to the proof of the results. Since the proof

of the assertion for σ(H2) is similar to that for σ(H1), we demonstrate only
Theorem 2 and Proposition 1 for k = 1. Let us review our idea in proving
Theorem 2. The band edges are given by the zeros of the function D( · )±
2, where D is the discriminant defined by (4). Although the discriminant
is expressed in an explicit way in terms of κ and λ, the double zeros of
D( · ) ± 2 is somewhat hard to discuss directly because of the complexity
of the expression of this function. We eliminate this difficulty by using



370 K. Yoshitomi

the monodromy matrix; we reduce the problem to a system of algebraic
equations (9) ∼ (11) in the proof of Lemma 5, which is a key lemma in
proving Theorem 2. We remark that the assumptions β1 6= β2 and β1 +
β2 6= −2π in Theorem 2 are essential; it can be showed that if β1 + β2 =
−2π, then one of the gaps of σ(H1) disappears at the origin.

2. Proof of the results

Let us consider the equation




−y′′(x) = λy(x) on R\Z,
(

y(t + 0)
y′(t + 0)

)
=

(
1 βl

0 1

)(
y(t− 0)
y′(t− 0)

)
for t ∈ Zl, l = 1, 2,

(1)

where λ is a real parameter. By y1(x, λ) and y2(x, λ) we denote the solu-
tions of this equation subject to the initial conditions

(
y1(+0, λ), y′1(+0, λ)

)
= (1, 0) (2)

and
(
y2(+0, λ), y′2(+0, λ)

)
= (0, 1), (3)

respectively. Let D(λ) be the discriminant of the equation (1):

D(λ) = y1(2π + 0, λ) + y′2(2π + 0, λ). (4)

The sequence {λ1
j (0)}∞j=1 gives all the zeros of the function D( · )−2 counted

with multiplicity, while the sequence {λ1
j (π)}∞j=1 provides all the zeros of the

function D( · ) + 2 repeated according to multiplicity. We further introduce
the monodromy matrix of (1):

M(λ) =
(

m11(λ) m12(λ)
m21(λ) m22(λ)

)
=

(
y1(2π + 0, λ) y2(2π + 0, λ)
y′1(2π + 0, λ) y′2(2π + 0, λ)

)
.

Put τ = 2π − κ. By a straightforward computation, we obtain

m11(λ) = cos τ
√

λ cos κ
√

λ

− (β1 + β2)
√

λ cos τ
√

λ sinκ
√

λ

− β2

√
λ sin τ

√
λ cos κ

√
λ

+ (β1β2λ− 1) sin τ
√

λ sin κ
√

λ, (5)
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m12(λ) = (β1 + β2) cos τ
√

λ cos κ
√

λ

+
( 1√

λ
− β1β2

√
λ
)

sin τ
√

λ cos κ
√

λ

+
1√
λ

cos τ
√

λ sinκ
√

λ− β2 sin τ
√

λ sinκ
√

λ, (6)

m21(λ) = −
√

λ sin τ
√

λ cos κ
√

λ + β1λ sin τ
√

λ sinκ
√

λ

−
√

λ cos τ
√

λ sinκ
√

λ, (7)

m22(λ) = cos τ
√

λ cos κ
√

λ− β1

√
λ sin τ

√
λ cos κ

√
λ

− sin τ
√

λ sinκ
√

λ (8)

for λ 6= 0, where we fix the branch of the square root as

arg
√

λ ∈
{

0,
π

2

}

for the sake of definiteness. Besides, we have

m11(0) = 1, m12(0) = β1 + β2 + 2π, m21(0) = 0, m22(0) = 1.

First, we prove the following implication.

Lemma 4 We have M(λ) = I (respectively, M(λ) = −I) if and only if λ

is a double eigenvalue of H1
0 (respectively, H1

π).

Proof. Assume that λ is a double eigenvalue of H1
0 . Let {w1(x), w2(x)}

be a basis of Ker(H1
0 − λ). Since w1(x) and w2(x) are linearly independent

solutions of (1), we see that y1(x) and y2(x) are linear combinations of w1(x)
and w2(x). Thus we get y1, y2 ∈ Dom(H1

0 ). This together with (2) and (3)
implies M(λ) = I.

Next we prove the converse. Assume that M(λ) = I. This combined
with (2) and (3) yields y1, y2 ∈ Dom(H1

0 ). Since y1(x) and y2(x) solve the
equation (1), we have y1, y2 ∈ Ker(H1

0 − λ). Since y1 and y2 are linearly
independent, we infer that λ is a double eigenvalue of H1

0 .
In a similar way, we claim that M(λ) = −I if and only if λ is a double

eigenvalue of H1
π. ¤

To prove Theorem 2 we need the assumption

(A.1) β1 6= β2 and β1 + β2 6= −2π.

The following lemma plays the most important role in the demonstration
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of Theorem 2.

Lemma 5 Suppose (A.1). If M(λ) = I or M(λ) = −I, then we have
sin τ

√
λ = sin κ

√
λ = 0, λ 6= 0, and β1 + β2 = 0.

Proof. Suppose that M(λ) = I or M(λ) = −I. First, we prove that
sin τ

√
λ sinκ

√
λ = 0. Seeking a contradiction, we assume that

sin τ
√

λ sinκ
√

λ 6= 0.

We define x1 = cot κ
√

λ, x2 = cot τ
√

λ, and Cl = βl

√
λ for l = 1, 2.

Inserting (5) ∼ (8) into the equalities

m11(λ)−m22(λ) = 0,√
λm12(λ) = 0,

1√
λ

m21(λ) = 0,

and dividing those by sin τ
√

λ sinκ
√

λ, we have

(C1 − C2)x1 − (C1 + C2)x2 + C1C2 = 0, (9)

(C1 + C2)x2x1 + (1− C1C2)x1 + x2 − C2 = 0, (10)

− x1 − x2 + C1 = 0, (11)

respectively. Using (9), (11), and C1 6= 0, we get

x1 = x2 =
C1

2
. (12)

Plugging this into (10), we infer that

(C1 − C2)
(1

4
C2

1 + 1
)

= 0.

Since β1 6= β2 and λ 6= 0, we have C1 − C2 6= 0 and hence C2
1 = −4. By

(12) we arrive at

x1 = x2 = ±√−1.

However, this violates the fact that cot z 6= ±√−1 for all z ∈ C. Hence we
have

sin τ
√

λ sinκ
√

λ = 0,
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namely,

sin τ
√

λ = 0 or sinκ
√

λ = 0. (13)

Next we prove that λ 6= 0. Since β1 + β2 6= −2π by assumption, we
have

m12(0) = 2π + β1 + β2 6= 0.

This together with m12(λ) = 0 implies that λ 6= 0.
In the former case of (13), we claim by m21(λ) = 0 and (7) that

m21(λ) = −
√

λ cos τ
√

λ sinκ
√

λ = 0

and thus sinκ
√

λ = 0. In the latter case of (13), we infer by (5), (8), and
m11(λ)−m22(λ) = 0 that

m11(λ)−m22(λ) = (β1 − β2)
√

λ sin τ
√

λ cos κ
√

λ = 0

and hence sin τ
√

λ = 0. Therefore, we get

sin τ
√

λ = sin κ
√

λ = 0

in each case of (13). Combining this with m12(λ) = 0 and (6), we get

m12(λ) = (β1 + β2) cos τ
√

λ cos κ
√

λ = 0

and thus β1 + β2 = 0. ¤

We prove Proposition 1 at the very end of this section. Assuming this
fact for the moment, we complete the proof of Theorem 2.

Proof of Theorem 2 (i). Since {z ∈ C | sin z = 0} = πZ and since τ =
2π − κ, we infer that the following two statements are equivalent.

• There exists λ 6= 0 such that sin τ
√

λ = sin κ
√

λ = 0.
• κ ∈ πQ.

This together with Lemma 5 and Proposition 1 yields the conclusion. ¤

Next we turn to the proofs of Theorem 2 (ii) and (iii). We assume

(A.2) β1 + β2 = 0, κ/π = m/n, (m, n) ∈ N2, and gcd(m, n) = 1.

The following lemma provides the double eigenvalues of H1
0 or H1

π.
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Lemma 6 Suppose (A.2). If m /∈ 2N, then we have

{λ ∈ R | M(λ) = I or M(λ) = −I} = {j2n2 | j ∈ N}. (14)

If m ∈ 2N, then we get

{λ ∈ R | M(λ) = I or M(λ) = −I} =
{

j2n2

4

∣∣∣∣ j ∈ N
}

. (15)

Proof. First, we discuss the case that m /∈ 2N. Suppose that M(λ) = I

or M(λ) = −I. Then we infer by Lemma 5 that sin τ
√

λ = sin κ
√

λ = 0
and λ 6= 0. Combining this with τ = 2π − κ, κ/π = m/n, (m, n) ∈ N2,
gcd(m, n) = 1, and m /∈ 2N, we infer that there exists a j ∈ N for which
λ = n2j2. On the other hand, we claim by (5) ∼ (8) that M(n2i2) = I for
i ∈ N. Hence, we obtain (14). The proof of (15) is similar. ¤

Let us demonstrate the following claim.

Lemma 7 Suppose (A.2) and j ∈ N ∪ {0}. If m /∈ 2N, then the func-
tion D( · ) admits exactly 2n zeros inside the interval (n2j2, n2(j + 1)2).
If m ∈ 2N, then the function D( · ) has exactly n zeros inside the interval
(n2j2/4, n2(j + 1)2/4).

Proof. Since β1 + β2 = 0, we have

D(λ) = 2 cos τ
√

λ cos κ
√

λ− (β2
1λ + 2) sin τ

√
λ sinκ

√
λ

=
√

β2
1λ + 2 sin τ

√
λ cos κ

√
λ

×
(

2√
β2

1λ + 2
cot τ

√
λ−

√
β2

1λ + 2 tan κ
√

λ

)
. (16)

We fix j ∈ N ∪ {0}. First, we demonstrate the assertion for m /∈ 2N. We
define

f1(λ) =
√

β2
1λ + 2 tan κ

√
λ, f2(λ) =

2√
β2

1λ + 2
cot τ

√
λ,

P1 =
{

λ ∈ (n2j2, n2(j + 1)2)
∣∣∣ κ
√

λ ∈
{π

2

}
+ πZ

}
,

P2 = {λ ∈ (n2j2, n2(j + 1)2) | τ
√

λ ∈ πZ},
P = P1 ∪ P2,

S = {λ ∈ (n2j2, n2(j + 1)2) | D(λ) = 0},
S1 = {λ ∈ (n2j2, n2(j + 1)2)\P | f1(λ) = f2(λ)},
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S2 = {λ ∈ (n2j2, n2(j + 1)2) | sin τ
√

λ = cos κ
√

λ = 0}.
By (16) we have

S = S1 ∪ S2.

Put

q1, k =
(

1
κ

(
mjπ +

π

2
(2k − 1)

))2

for k = 1, 2, . . . , m,

q2, l =
(1

τ

(
(2n−m)jπ + lπ

))2
for l = 1, 2, . . . , 2n−m− 1,

r = ]{(k, l) ∈ N2 | k ≤ m, l ≤ 2n− 2m− 1, q1, k = q2, l}.
We obtain

P1 =
m⋃

k=1

{q1, k}, P2 =
2n−m−1⋃

l=1

{q2, l},

]S2 = r, ]P = 2n− r − 1.

Let {rs}2n−r−1
s=1 be the rearrangement of the elements of P such that rs <

rs+1 for s = 1, 2, . . . , 2n − r − 2. We define r0 = q2, 0 = n2j2 and r2n−r =
q2, 2n−m = n2(j + 1)2. Notice that

f1(λ) → ∓∞ as λ → q1, k ± 0 for k = 1, 2, . . . , m,

f2(λ) → ±∞ as λ → q2, l ± 0 for l = 0, 1, . . . , 2n−m,

and that the function fs(λ) is continuous on (n2j2, n2(j + 1)2)\Ps for s =
1, 2. Furthermore, we have

f ′1(λ) =
1

2
√

β2
1λ + 2 cos2 κ

√
λ

(1
2
β2

1 sin 2κ
√

λ + β2
1κ
√

λ +
2κ√
λ

)

≥ κ√
λ
√

β2
1λ + 2 cos2 κ

√
λ

> 0

on (n2j2, n2(j + 1)2)\P1, because sin t + t ≥ 0 for t ≥ 0. Likewise, we get
f ′2(λ) < 0 on (n2j2, n2(j+1)2)\P2. Thus, we infer that the equation f1(λ) =
f2(λ) admits exactly one root on (rs, rs+1) for each s = 0, 1, . . . , 2n−r−1.
So we get ]S1 = 2n− r and hence ]S = 2n. Therefore we get the assertion
for m /∈ 2N. In a similar way, we get the conslusion for m ∈ 2N. ¤
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We further need the following implication.

Lemma 8 Suppose (A.2). The function D( · ) admits a unique zero in the
interval (−∞, 0].

Proof. Put

h1(λ) =
2

β2
1λ + 2

, h2(λ) = − tanh τ
√
−λ tanhκ

√
−λ for λ ≤ 0.

By (16) we have

D(λ) = cos τ
√

λ cos κ
√

λ
(
2− (β2

1λ + 2) tan τ
√

λ tanκ
√

λ
)

= (β2
1λ + 2) cos τ

√
λ cos κ

√
λ
(
h1(λ)− h2(λ)

)
.

Note that h2(λ) is a continuous, non-positive, strictly monotone increasing
function on (−∞, 0]. Note also that h1(λ) is a continuous function on
(−∞, −2/β2

1) ∪ (−2/β2
1 , 0] and that

h′1(λ) < 0 on
(
−∞, − 2

β2
1

)
∪

(
− 2

β2
1

, 0
]
,

lim
λ→−∞

h1(λ) = 0, lim
λ→−2/β2

1−0
h1(λ) = −∞,

h1(λ) > 0 on
(
− 2

β2
1

, 0
]
.

Thus the equation h1(λ) = h2(λ) admits a unique root on (−∞, −2/β2
1)

and has no root on (−2/β2
1 , 0]. This together with D(−2/β2

1) 6= 0 yields
the conclusion. ¤

Now we are ready to prove (ii) and (iii) of Theorem 2.

Proof of Theorem 2 (ii), (iii). Note that all the zeros of D(·) are given by
the sequence {λ1

j (π/2)}∞j=1 and that β1β2 < 0. This together with Proposi-
tion 1 and Lemmas 6, 7, and 8 implies the assertions. ¤

While the proof of Proposition 1 is almost same as those of [10, Theo-
rems XIII.89 and XIII.90], we demonstrate this proposition for the sake of
completeness.

Proof of Proposition 1. Now we suppose only β1, β2 ∈ R\{0}. A subtlety
arises only in (d) and (e). First we discuss (e). Suppose β1β2 < 0. By (4),
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(5), and (8) we have

lim
λ→−∞

D(λ) = −∞. (17)

Note that λ is an eigenvalue of H1
θ if and only if D(λ) = 2 cos θ. This

combined with (17) implies that

D(λ) < −2 for λ < λ1
1(π), (18)

λ1
1(θ) ≥ λ1

1(π) for θ ∈ [0, π]. (19)

Let us prove that λ1
1(π) is a simple eigenvalue. Seeking a contradiction, we

assume that λ1
1(π) is a double eigenvalue. Since

D(λ1
j (θ)) = 2 cos θ for θ ∈ [0, π] and j ∈ N, (20)

we claim by (19) that

λ1
1

(π

2

)
> λ1

1(π) = λ1
2(π). (21)

By (c) we have

λ1
1

(π

2

)
< λ1

2

(π

2

)
.

This combined with (21) and (a) implies that there exists a θ0 ∈ (π/2, π)
for which

λ1
2(θ0) = λ1

1

(π

2

)
.

However, this violates (20). So we conclude that λ1
1(π) is a simple eigen-

value. Thus we get the assertion in (e) by mimicking the arguments in the
proof of [10, TheoremXIII.89(e)], (see also the proof of [6, Theorem 2]). We
also obtain the claim in (d) by noticing

lim
λ→−∞

D(λ) = +∞ if β1β2 > 0.

¤
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