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Long range scattering for the Wave-Schrödinger system

with large wave data and small Schrödinger data

J. Ginibre and G. Velo

(Received July 20, 2004)

Abstract. We study the theory of scattering for the Wave-Schrödinger system with

Yukawa type coupling in space dimension 3. We prove in particular the existence of

modified wave operators for that system with no size restriction on the wave data in

the framework of a direct method which requires smallness of the Schrödinger data, and

we determine the asymptotic behaviour in time of solutions in the range of the wave

operators.
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1. Introduction

This paper is devoted to the theory of scattering and more precisely
to the construction of modified wave operators for the Wave-Schrödinger
system (WS)3 in space dimension 3, namely





i∂tu = −1
2
∆u + Au

2A = −|u|2
(1.1)

where u and A are respectively a complex valued and a real valued function
defined in space time R3+1, ∆ is the Laplacian in R3 and 2 = ∂2

t −∆ is the
d’Alembertian in R3+1. That system is Lagrangian and admits a number
of formally conserved quantities, among which the L2 norm of u and the
energy

E(u, A) =
∫

dx

{
1
2
(|∇u|2 + (∂tA)2 + |∇A|2) + A|u|2

}
. (1.2)

The Cauchy problem for the (WS)3 system is known to be globally well
posed in the energy space Xe = H1 ⊕ Ḣ1 ⊕ L2 for (u, A, ∂tA) [1].
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A large amount of work has been devoted to the theory of scattering
for nonlinear equations and systems centering on the Schrödinger equation,
in particular for nonlinear Schrödinger (NLS) equations, Hartree equations,
Klein-Gordon-Schrödinger (KGS), Wave-Schrödinger (WS) and Maxwell-
Schrödinger (MS) systems. As in the case of the linear Schrödinger equation,
one must distinguish the short range case from the long range case. In
the former case, ordinary wave operators are expected and in a number of
cases proved to exist, describing solutions where the Schrödinger function
behaves asymptotically like a solution of the free Schrödinger equation. In
the latter case, ordinary wave operators do not exist and have to be replaced
by modified wave operators including a suitable phase in their definition. In
that respect, the (WS)3 system (1.1) belongs to the borderline (Coulomb)
long range case, because of the t−1 decay in L∞ norm of solutions of the
wave equation. Such is the case also for the Hartree equation with |x|−1

potential. Both are simplified models for the more complicated Maxwell-
Schrödinger system (MS)3 in R3+1, which belongs to the same case, as well
as the Klein-Gordon-Schrödinger system (KGS)2 in R2+1.

The construction of modified wave operators for the previous long range
equations and systems has been tackled by two methods. The first one was
initiated in [10] on the example of the NLS equation in R1+1 and subse-
quently applied to the NLS equation in R2+1 and R3+1 and to the Hartree
equation [2], to the (KGS)2 system [11] [12] [13] [14], to the (WS)3 system
[15] and to the (MS)3 system [16] [18]. That method is rather direct, start-
ing from the original equation or system. It will be sketched below. It is
restricted to the (Coulomb) limiting long range case, and requires a small-
ness condition on the asymptotic state of the Schrödinger function. Early
applications of the method required in addition a support condition on
the Fourier transform of the Schrödinger asymptotic state and a smallness
condition of the Klein-Gordon or Maxwell field in the case of the (KGS)2
or (MS)3 system respectively [11] [18]. The support condition was subse-
quently removed for the (KGS)2 and (MS)3 system and the method was
applied to the (WS)3 system without a support condition, at the expense
of adding a correction term to the Schrödinger asymptotic function [12] [15]
[16]. Finally the smallness condition of the KG field was removed for the
(KGS)2 system, first with and then without a support condition [13] [14].
All the previous papers on (KGS)2, (WS)3 and (MS)3 use spaces of fairly
regular solutions, with at least H2 regularity for the Schrödinger function.
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In the present paper, we reconsider the same problem for the (WS)3
system in the framework of the previous method. Our purpose is twofold.
First we show that no smallness condition is required on the wave field.
Second, we treat the problem in function spaces that are as large as possible,
namely with regularity as low as possible, and with convergence in time as
slow as possible. In particular we treat the problem with regularity of the
Schrödinger function at the level of L2 only. Furthermore, only a weak
convergence in time of the solutions to their asymptotic form is needed,
namely t−λ with λ > 3/8. Under such a weak condition, neither a support
condition nor a correction term for the asymptotic Schrödinger function
is needed, as long as λ ≤ 1/2. We also treat the same problem at the
level of H1 and H2 for the Schrödinger function. This does not require
any reinforcement of the smallness condition of the Schrödinger asymptotic
state or of the time decay.

In a subsequent paper, we shall treat the same problem for the (MS)3
system in the Coulomb gauge in the framework of the present method.
Again no smallness condition will be required for the Maxwell field, and
a weak time decay t−λ with λ > 3/8 will be sufficient, so that no support
condition or correction term will be needed. (On that problem see [16] [18]).

For completeness and although we shall not make use of that fact in
the present paper, we mention that the same problem for the Hartree equa-
tion and for the (WS)3 and (MS)3 system can also be treated by a more
complex method where one first applies a phase-amplitude separation to
the Schrödinger function. The main interest of that method is to remove
the smallness condition on the Schrödinger function, and to go beyond the
Coulomb limiting case for the Hartree equation. That method has been
applied in particular to the (WS)3 system and to the (MS)3 system in a
special case [5] [6] [7].

We now sketch briefly the method of construction of the modified wave
operators initiated in [10]. That construction basically consists in solving
the Cauchy problem for the system (1.1) with infinite initial time, namely in
constructing solutions (u, A) with prescribed asymptotic behaviour at infin-
ity in time. We restrict our attention to time going to +∞. That asymptotic
behaviour is imposed in the form of suitable approximate solutions (ua, Aa)
of the system (1.1). The approximate solutions are parametrized by data
(u+, A+, Ȧ+) which play the role of (actually would be in simpler e.g. short
range cases) initial data at time zero for a simpler evolution. One then looks
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for exact solutions (u,A) of the system (1.1), the difference of which with
the given asymptotic ones tends to zero at infinity in time in a suitable
sense, more precisely, in suitable norms. The wave operator is then defined
traditionally as the map Ω+ : (u+, A+, Ȧ+) → (u, A, ∂tA)(0). However
what really matters is the solution (u, A) in the neighborhood of infinity
in time, namely in some interval [T, ∞), and we shall restrict our attention
to the construction of such solutions. Continuing such solutions down to
t = 0 is a somewhat different question, connected with the global Cauchy
problem at finite times, which we shall not touch here. That problem is well
controlled for the (WS)3 system, but not for instance for the (MS)3 system.

The construction of solutions (u, A) with prescribed asymptotic be-
haviour (ua, Aa) is performed in two steps.

Step 1. One looks for (u, A) in the form (u, A) = (ua + v, Aa + B). The
system satisfied by (v, B) is





i∂tv = −1
2
∆v + Av + Bua −R1

2B = −(|v|2 + 2Re uav)−R2

(1.3)

where the remainders R1, R2 are defined by




R1 = i∂tua +
1
2
∆ua −Aaua

R2 = 2Aa + |ua|2.
(1.4)

It is technically useful to consider also the partly linearized system for func-
tions (v′, B′)





i∂tv
′ = −1

2
∆v′ + Av′ + Bua −R1

2B′ = −(|v|2 + 2Re uav)−R2.
(1.5)

The first step of the method consists in solving the system (1.3) for (v, B),
with (v, B) tending to zero at infinity in time in suitable norms, under
assumptions on (ua, Aa) of a general nature, the most important of which
being decay assumptions on the remainders R1 and R2. That can be done
as follows. One first solves the linearized system (1.5) for (v′, B′) with given
(v, B) and initial data (v′, B′)(t0) = 0 for some large finite t0. One then
takes the limit t0 →∞ of that solution, thereby obtaining a solution (v′, B′)
of (1.5) which tends to zero at infinity in time. That construction defines



Long range scattering for the Wave-Schrödinger system 265

a map φ : (v, B) → (v′, B′). One then shows by a contraction method that
the map φ has a fixed point. That first step will be performed in Section 2.

Step 2. The second step of the method consists in constructing approxi-
mate asymptotic solutions (ua, Aa) satisfying the general estimates needed
to perform Step 1. With the weak time decay allowed by our treatment of
Step 1, one can take the simplest version of the asymptotic form used in
previous works [5] [6] [15]. Thus we choose

ua = MD exp(−iϕ)w+ (1.6)

where

M ≡ M(t) = exp
(

ix2

2t

)
, (1.7)

D(t) = (it)−3/2D0(t), (D0(t)f)(x) = f

(
x

t

)
, (1.8)

ϕ is a real phase to be chosen below and w+ = Fu+. We furthermore choose
Aa so that R2 = 0, namely Aa = A0 + A1 where A0 is the solution of the
free wave equation 2A0 = 0 given by

A0 = cos ωtA+ + ω−1 sinωtȦ+ (1.9)

where ω = (−∆)1/2, and where

A1(t) =
∫ ∞

t
dt′ω−1 sin(ω(t− t′))|ua(t′)|2. (1.10)

Substituting (1.6) into (1.10) yields

A1(t) = t−1D0(t)Ã1 (1.11)

where

Ã1 = −
∫ ∞

1
dνν−3ω−1 sin(ω(ν − 1))D0(ν)|w+|2. (1.12)

In particular Ã1 is constant in time. We finally choose ϕ by imposing ∂tϕ =
t−1Ã1, ϕ(1) = 0, namely

ϕ = (`nt)Ã1. (1.13)

We shall show in Section 3 that the previous choice fulfills the condi-
tions needed for Step 1, under suitable assumptions on the asymptotic state



266 J. Ginibre and G. Velo

(u+, A+, Ȧ+).

In order to state our results we introduce some notation. We denote by
F the Fourier transform and by ‖ · ‖r the norm in Lr ≡ Lr(R3), 1 ≤ r ≤ ∞.
For any nonnegative integer k and for 1 ≤ r ≤ ∞, we denote by W k

r the
Sobolev spaces

W k
r =

{
u : ‖u;W k

r ‖ =
∑

α : 0≤|α|≤k

‖∂α
x u‖r < ∞

}

where α is a multiindex, so that Hk = W k
2 . We shall need the weighted

Sobolev spaces Hk,s defined for k, s ∈ R by

Hk,s =
{
u : ‖u;Hk,s‖ = ‖(1 + x2)s/2(1−∆)k/2u‖2 < ∞}

so that Hk = Hk,0. For any interval I, for any Banach space X and for
any q, 1 ≤ q ≤ ∞, we denote by Lq(I, X) (resp. Lq

loc(I, X)) the space of
Lq integrable (resp. locally Lq integrable) functions from I to X if q < ∞
and the space of measurable essentially bounded (resp. locally essentially
bounded) functions from I to X if q = ∞. For any h ∈ C([1, ∞), R+), non
increasing and tending to zero at infinity and for any interval I ⊂ [1, ∞),
we define the spaces

X(I) =
{
(v, B) : v ∈ C(I, L2), ‖(v, B);X(I)‖ ≡ Sup

t∈I
h(t)−1

(‖v(t)‖2 + ‖v;L8/3(J, L4)‖
+ ‖B;L4(J, L4)‖) < ∞}

, (1.14)

X1(I) =
{
(v, B) : v ∈ C(I, H1), ∇B, ∂tB ∈ C(I, L2),

‖(v, B);X1(I)‖ ≡ Sup
t∈I

h(t)−1
(‖v(t);H1‖

+ ‖v;L8/3(J, W 1
4 )‖+ ‖B;L4(J, L4)‖

+ ‖∇B(t)‖2 + ‖∂tB(t)‖2

)
< ∞}

, (1.15)

X2(I) =
{
(v, B) : v ∈ C(I, H2) ∩ C1(I, L2), ∇B, ∂tB ∈ C(I, L2),

‖(v, B);X2(I)‖ ≡ Sup
t∈I

h(t)−1
(‖v(t);H2‖

+ ‖∂tv(t)‖2 + ‖v;L8/3(J, L4)‖
+ ‖∂tv;L8/3(J, L4)‖+ ‖B;L4(J, L4)‖
+ ‖∇B(t)‖2 + ‖∂tB(t)‖2

)
< ∞}

(1.16)
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where J = [t, ∞) ∩ I.
We can now state our results.

Proposition 1.1 Let h(t) = t−1/2. Let ua be defined by (1.6) with w+ =
Fu+ ∈ L4 and c4 = ‖w+‖4 sufficently small and with ϕ defined by (1.12)
(1.13). Let Aa be defined by Aa = A0 + A1 with A0 and A1 defined by (1.9)
and (1.10)-(1.12).
(1) Let u+ ∈ H0,2, let A+, ω−1Ȧ+ ∈ L2 and ∇2A+, ∇Ȧ+ ∈ L1. Then

there exists T , 1 ≤ T < ∞ and there exists a unique solution (u, A)
of the system (1.1) such that (u− ua, A−Aa) ∈ X([T, ∞)).

(2) Let u+ ∈ H0,3 ∩H1,2, let A+, ω−1Ȧ+ ∈ H1 and ∇2A+, ∇Ȧ+ ∈ W 1
1 .

Then there exists T , 1 ≤ T < ∞, and there exists a unique solution
(u, A) of the system (1.1) such that (u − ua, A − Aa) ∈ X1([T, ∞)).
Furthermore A satisfies the estimate

‖∇(A−Aa)(t)‖2 ∨ ‖∂t(A−Aa)(t)‖2 ≤ Ct−3/4 (1.17)

for some constant C and for all t ≥ T .
(3) Let u+ ∈ H1,3 ∩H2,2, let A+, ω−1Ȧ+ ∈ H1 and ∇2A+, ∇Ȧ+ ∈ W 1

1 .
Then there exists T , 1 ≤ T < ∞ and there exists a unique solution
(u, A) of the system (1.1) such that (u − ua, A − Aa) ∈ X2([T, ∞)).
Furthermore u − ua ∈ L8/3([T, ∞), W 2

4 ) and (u, A) satisfies the esti-
mates (1.17) and

‖∆(u− ua);L8/3([t, ∞), L4)‖ ≤ Ct−1/2 (1.18)

for some constant C and for all t ≥ T .

Remark 1.1 The only smallness condition bears on c4 and appears at the
level of the L2 theory in Part (1) of Proposition 1.1. In particular there is no
smallness condition on Aa. Furthermore no additional smallness condition
is required for the theories at the level of H1 and H2.

2. The Cauchy problem at infinite initial time

In this section we perform the first step of the construction of solutions
of the system (1.1) as described in the introduction, namely we construct
solutions (v, B) of the system (1.3) defined in a neighborhood of infinity
in time and tending to zero at infinity under suitable regularity and decay
assumptions on the asymptotic functions (ua, Aa) and on the remainders Ri.
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As mentioned in the introduction, we offer three theories with u (or v) at the
level of regularity of L2, H1 and H2 respectively. As a preliminary to that
study, we need to solve the Cauchy problem with finite initial time for the
linearized system (1.5). That system consists of two independent equations.
The second one is simply a wave equation with an inhomogeneous term
and the Cauchy problem with finite or infinite initial time for it is readily
solved under suitable assumptions on the inhomogeneous term, which will
be fulfilled in the applications. The first one is a Schrödinger equation with
time dependent real potential and time dependent inhomogeneity which we
rewrite in a more concise form and with slightly different notation as

i∂tv = −1
2
∆v + V v + f. (2.1)

We first give some preliminary results on the Cauchy problem with
finite initial time for that equation at the level of regularity of L2, H1 and
H2. Those results rely in an essential way on the well known Strichartz
inequalities for the Schrödinger equation [3] [9] [19] which we recall for
completeness. We define

U(t) = exp
(

i
( t

2

)
∆

)
. (2.2)

A pair of Hölder exponents (q, r) will be called admissible if 0 ≤ 2/q =
3/2− 3/r ≤ 1. For any r, 1 ≤ r ≤ ∞, we define r by 1/r + 1/r = 1.

Lemma 2.1 The following inequalities hold.
(1) For any admissible pair (q, r) and for any u ∈ L2

‖U(t)u;Lq(R, Lr)‖ ≤ C‖u‖2. (2.3)

(2) Let I be an interval and let t0 ∈ I. Then for any admissible pairs
(qi, ri), i = 1, 2,

∥∥∥∥
∫ t

t0

dt′U( · − t′)f(t′);Lq1(I, Lr1)
∥∥∥∥ ≤ C‖f ;Lq2(I, Lr2)‖. (2.4)

The basic result on the Cauchy problem for (2.1) can be stated as
follows.

Proposition 2.1 Let I be an interval and let t0 ∈ I.
(1) Let V ∈ L1

loc(I, L∞) + Lp
loc(I, Ls) + L∞loc(I, L3/2+ε) for some p, 1 ≤

p < ∞ with 2/p = 2−3/s and for some ε > 0, and let f ∈ L1(I, L2)+
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L2(I, L6/5). Let v0 ∈ L2. Then there exists a unique solution v of
(2.1) with v(t0) = v0 such that v ∈ Lq

loc(I, Lr) for all admissible pairs
(q, r). Furthermore v ∈ C(I, L2) and for all t ∈ I, v satisfies the
equality

‖v(t)‖2
2 − ‖v0‖2

2 =
∫ t

t0

dt′2 Im〈v(t′), f(t′)〉. (2.5)

(2) Let V and f satisfy the assumptions of Part (1) and in addition ∇V ∈
L1

loc(I, L3 +L∞)+L4
loc(I, L6/5) and ∇f ∈ L1

loc(I, L2)+L2
loc(I, L6/5).

Let v0 ∈ H1. Then the solution v of (2.1) obtained in Part (1) satisfies
in addition ∇v ∈ Lq

loc(I, Lr) for all admissible pairs (q, r). Further-
more v ∈ C(I, H1) and for all t ∈ I, v satisfies the equality

‖∇v(t)‖2
2 − ‖∇v0‖2

2

=
∫ t

t0

dt′2 Im〈∇v(t′), (∇V )(t′)v(t′) +∇f(t′)〉. (2.6)

(3) Let V satisfy V ∈ C(I, L2+L∞), ∂tV ∈ L1
loc(I, L2+L∞)+L2

loc(I, L6/5),
and let f satisfy f ∈ C(I, L2), ∂tf ∈ L1

loc(I, L2) + L2
loc(I, L6/5). Let

v0 ∈ H2. Then the solution v of (2.1) obtained in Part (1) satisfies in
addition ∂tv ∈ Lq

loc(I, Lr) for all admissible pairs (q, r). Furthermore
v ∈ C(I, H2) ∩ C1(I, L2) and for all t ∈ I, v satisfies the equality

‖∂tv(t)‖2
2 −

∥∥∥∥−
1
2
∆v0 + V (t0)v0 + f(t0)

∥∥∥∥
2

2

=
∫ t

t0

dt′2 Im〈∂tv(t′), (∂tV )(t′)v(t′) + ∂tf(t′)〉. (2.7)

If in addition V ∈ Lq0

loc(I, Lr0 + L∞) and f ∈ Lq0

loc(I, Lr0) for some
admissible pair (q0, r0), then ∆v ∈ Lq

loc(I, Lr) for all admissible pairs
(q, r) with 2 ≤ r ≤ r0.

The proof is a variation of that given in [8] [19], using extensively
Lemma 2.1.

For any interval J , let

Z(J) = C(J, L2) ∩ L2(I, L6). (2.8)

The local Cauchy problem for (2.1) is treated by a contraction method
applied to the integral equation associated with (2.1). The relevant spaces
for the contraction have v ∈ Z(J) for Part (1), v, ∇v ∈ Z(J) for Part (2)
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and v, ∂tv ∈ Z(J), v ∈ C(J, H2) for Part (3), for suitable small J . The
extension of local solutions to global ones is easy because the problem is
linear.

We now begin the construction of solutions of the system (1.3). For
any T , t0 with 1 ≤ T < t0 ≤ ∞, we denote by I the interval I = [T, t0] and
for any t ∈ I, we denote by J the interval J = [t, t0]. In all this section,
we denote by h a function in C([1, ∞), R+) such that for some λ > 0, the
function h(t) ≡ tλh(t) is non increasing and tends to zero as t →∞.

We shall make repeated use of the following lemma.

Lemma 2.2 Let 1 ≤ q, qk ≤ ∞ (1 ≤ k ≤ n) be such that

µ ≡ 1
q
−

∑

k

1
qk
≥ 0.

Let fk ∈ Lqk(I) satisfy

‖fk;Lqk(J)‖ ≤ Nkh(t) (2.9)

for 1 ≤ k ≤ n, for some constants Nk and for all t ∈ I.
Let ρ ≥ 0 be such that nλ + ρ > µ. Then the following inequality holds

for all t ∈ I

∥∥∥∥
(∏

k

fk

)
t−ρ;Lq(J)

∥∥∥∥ ≤ C

(∏

k

Nk

)
h(t)ntµ−ρ (2.10)

where

C =
(
1− 2−q(nλ+ρ−µ)

)−1/q
. (2.11)

Proof. For t ∈ I, we define Ij = [t2j , t2j+1] ∩ I so that J =
⋃

j≥0 Ij . We
then rewrite Lq(J) = `q

j(L
q(Ij)). We estimate

∥∥∥∥
(∏

k

fk

)
t−ρ;Lq(J)

∥∥∥∥≤
∥∥∥∥
(∏

k

‖fk;Lqk(Ij)‖
)
‖t−ρ;L1/µ(Ij)‖; `q

j

∥∥∥∥

≤
(∏

k

Nk

)
‖h(t2j)n(t2j)−ρ+µ; `q

j‖

≤
(∏

k

Nk

)
h(t)nt−nλ−ρ+µ‖2j(−nλ−ρ+µ); `q

j‖

from which (2.10) follows. ¤
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Remark 2.1 In some special cases, the dyadic decomposition is not needed
for the proof of Lemma 2.2. For instance if all the qk are infinite, one can
estimate

‖h(t)nt−ρ‖q ≤ h(t)n‖t−ρ−nλ‖q

≤Ch(t)nt−ρ−nλ+1/q = Ch(t)nt−ρ+µ (2.12)

by a direct application of Hölder’s inequality in J . The same situation
occurs if ρ > µ.

In addition to the Strichartz inequalities for the Schrödinger equation
(Lemma 2.1), we shall need special cases of the Strichartz inequalities for
the wave equation [4] [9]. Let I be an interval, let t0 ∈ I and let B(t0) =
∂tB(t0) = 0. Then

‖B;L4(I, L4)‖ ≤ C‖2B;L4/3(I, L4/3)‖, (2.13)

Sup
t∈I

(‖∇B(t)‖2 ∨ ‖∂tB(t)‖2) ≤ ‖2B;L1(I, L2)‖. (2.14)

We now construct solutions of the system (1.3) at the level of regularity
of L2 for v. The result can be stated as follows.

Proposition 2.2 Let h be defined as above with λ = 3/8 and let X( · ) be
defined by (1.14). Let ua ∈ L∞([1, ∞), L4), Aa ∈ L∞([1, ∞), L∞), R1 ∈
L∞([1, ∞), L2) and R2 ∈ L4/3([1, ∞), L4/3) satisfy the estimates

‖ua(t)‖4 ≤ c4t
−3/4, (2.15)

‖Aa(t)‖∞ ≤ at−1, (2.16)

‖R1;L1([t, ∞), L2)‖ ≤ r1h(t), (2.17)

‖R2;L4/3([t, ∞), L4/3)‖ ≤ r2h(t), (2.18)

for some constants c4, a, r1, r2 with c4 sufficiently small and for all t ≥ 1.
Then there exists T , 1 ≤ T < ∞ and there exists a unique solution (v, B)
of the system (1.3) in the space X([T, ∞)).

Proof. We follow the sketch given in the introduction. Let 1 ≤ T < ∞
and let (v, B) ∈ X([T, ∞)). In particular (v, B) satisfies

‖v(t)‖2 ≤ N0h(t) (2.19)

‖v;L8/3([t, ∞), L4)‖ ≤ N1h(t) (2.20)

‖B;L4([t, ∞), L4)‖ ≤ N2h(t) (2.21)
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for some constants Ni and for all t ≥ T . We first construct a solution
(v′, B′) of the system (1.5) in X([T, ∞)). For that purpose, we take t0,
T < t0 < ∞ and we solve the system (1.5) in X(I) where I = [T, t0] with
initial condition (v′, B′)(t0) = 0. Let (v′t0 , B′

t0) be the solution thereby
obtained. The existence of v′t0 follows from Proposition 2.1, part (1) with
V = A and f = Bua − R1. We want to take the limit of (v′t0 , B′

t0) as
t0 → ∞ and for that purpose we need estimates of (v′t0 , B′

t0) in X(I) that
are uniform in t0. Omitting the subscript t0 for brevity we define

N ′
0 = Sup

t∈I
h(t)−1‖v′(t)‖2 (2.22)

N ′
1 = Sup

t∈I
h(t)−1‖v′;L8/3(J, L4)‖ (2.23)

N ′
2 = Sup

t∈I
h(t)−1‖B′;L4(J, L4)‖ (2.24)

where J = [t, ∞) ∩ I. We first estimate N ′
0. From (2.5) we obtain

‖v′(t)‖2≤‖Bua −R1;L1(J, L2)‖
≤

∥∥‖B‖4‖ua‖4 + ‖R1‖2;L1(J)
∥∥

≤C0(c4N2 + r1)h(t) (2.25)

by Lemma 2.2, so that

N ′
0 ≤ C0(c4N2 + r1). (2.26)

We next estimate N ′
1. By Lemma 2.1

‖v′;L8/3(J, L4)‖ ≤ C
(‖Aav

′;L1(J, L2)‖+ ‖Bv′;L8/5(J, L4/3)‖
+ ‖Bua −R1;L1(J, L2)‖). (2.27)

The last norm has already been estimated by (2.25) while

‖Aav
′;L1(J, L2)‖ ≤ ∥∥‖Aa‖∞‖v′‖2;L1(J)

∥∥
≤ CaN ′

0h(t),

‖Bv′;L8/5(J, L4/3)‖ ≤ ∥∥‖B‖4‖v′‖2;L8/5(J)
∥∥

≤ CN2N
′
0h(t)h(t) (2.28)

by Lemma 2.2. Substituting (2.28) into (2.27) and using (2.26), we obtain

N ′
1 ≤ C1 (c4N2 + r1)

(
1 + a + N2h(T )

)
. (2.29)
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We finally estimate N ′
2. From (2.13), we obtain

‖B′;L4(J, L4)‖≤C‖|v|2 + 2Re uav + R2;L4/3(J, L4/3)‖
≤C

(∥∥‖v‖2 (‖v‖4 + ‖ua‖4) ; L4/3(J)
∥∥ + r2h(t)

)

≤C2

(
c4N0 + r2 + N0N1h(t)

)
h(t) (2.30)

by Lemma 2.2, so that

N ′
2 ≤ C2

(
c4N0 + r2 + N0N1h(T )

)
. (2.31)

It follows from (2.26) (2.29) and (2.31) that (v′, B′) is bounded in X(I)
uniformly in t0.

We now take the limit t0 → ∞ of (v′t0 , B′
t0), restoring the subscript t0

for that part of the argument. Let T < t0 < t1 < ∞ and let (v′t0 , B′
t0)

and (v′t1 , B′
t1) be the corresponding solutions of (1.5). From the L2 norm

conservation of the difference v′t0 − v′t1 and from (2.25), it follows that for
all t ∈ [T, t0]

‖v′t0(t)− v′t1(t)‖2 = ‖v′t1(t0)‖2 ≤ C0(c4N2 + r1)h(t0) (2.32)

while from (2.13) (2.30) and the initial conditions

‖B′
t0 −B′

t1 ;L
4([T, t0], L4)‖

≤ C‖|v|2 + 2Re uav + R2;L4/3([t0, t1], L4/3)‖
≤ C2

(
c4N0 + r2 + N0N1h(T )

)
h(t0). (2.33)

It follows from (2.32) (2.33) that there exists (v′, B′) ∈ L∞loc([T, ∞), L2)⊕
L4

loc([T, ∞), L4) such that (v′t0 , B′
t0) converges to (v′, B′) in that space

when t0 → ∞. From the uniformity in t0 of the estimates (2.25) (2.30),
it follows that (v′, B′) satisfies the same estimates in [T, ∞) namely that
(v′, B′) satisfies (2.26) (2.31) with N ′

i defined by (2.22)-(2.24) with I =
[T, ∞). Furthermore it follows from (2.29) by a standard compactness
argument that (v′, B′) ∈ X([T, ∞)) and that v′ also satisfies (2.29). Clearly
(v′, B′) satisfies the system (1.5).

From now on, I denotes the interval [T, ∞). The previous construction
defines a map φ : (v, B) → (v′, B′) from X(I) to itself. The next step
consists in proving that the map φ is a contraction on a suitable closed
bounded set R of X(I). We define R by the conditions (2.19)-(2.21) for
some constants Ni and for all t ∈ I. We first show that for a suitable choice
of Ni and for sufficiently large T , the map φ maps R into R. By (2.26)
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(2.29) (2.31) it suffices for that purpose that




(N ′
0 ≤)C0 (c4N2 + r1) ≤ N0

(N ′
1 ≤)C1 (c4N2 + r1)

(
1 + a + N2h(T )

) ≤ N1

(N ′
2 ≤)C2

(
c4N0 + r2 + N0N1h(T )

) ≤ N2.

(2.34)

We fulfill those conditions by choosing the Ni according to




N0 = C0 (c4N2 + r1)

N1 = C1 (c4N2 + r1) (2 + a)

N2 = C2 (c4N0 + r2 + 1)

(2.35)

which is possible under the smallness condition C0C2c
2
4 < 1, and by taking

T sufficiently large so that

N2h(T ) ≤ 1, N0N1h(T ) ≤ 1. (2.36)

We next show that the map φ is a contraction on R. Let (vi, Bi) ∈ R,
i = 1, 2, and let (v′i, B′

i) = φ
(
(vi, Bi)

)
. For any pair of functions (f1, f2)

we define f± = (1/2)(f1 ± f2) so that (fg)± = f+g± + f−g∓. In particular
u+ = ua + v+, u− = v−, A+ = Aa + B+ and A− = B−. Corresponding to
(1.5), (v′−, B′−) satisfies the system





i∂tv
′− = −1

2
∆v′− + A+v′− + B−ua + B−v′+

2B′− = −2Re (ua + v+) v−.
(2.37)

Since R is convex and stable under φ, (v+, B+) and (v′+, B′
+) belong to R,

namely satisfy (2.19)-(2.21). Let Ni− and N ′
i− be the seminorms of (v−, B−)

and (v′−, B′−) corresponding to (2.22)-(2.24), namely the constants obtained
by replacing (v′, B′, N ′

i) by (v−, B−, Ni−) and (v′−, B′−, N ′
i−) in (2.22)-

(2.24). We have to estimate the N ′
i− in terms of the Ni− . The estimates are

essentially the same as those of N ′
i in terms of Ni with minor differences:

the contribution of the remainders disappear, the linear terms are the same,
and the quadratic terms are in general obtained by polarization. The only
exceptions to that rule are the B−v′+ term in the estimate of N ′

0− and the
v+v− term in the estimate of N ′

2− . Those terms are estimated as follows

‖B−v′+;L1(J, L2)‖ ≤
∥∥‖B−‖4‖v′+‖4;L1(J)

∥∥
≤ CN2−N1h(t)h(t), (2.38)
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‖v+v−;L4/3(J, L4/3)‖ ≤
∥∥‖v+‖4‖v−‖2;L4/3(J)

∥∥
≤ CN1N0−h(t)h(t). (2.39)

We finally obtain




N ′
0− ≤ C0

(
c4 + N1h(T )

)
N2−

N ′
1− ≤ C

(
(c4 + N1h(T ))N2− + (a + N2h(T ))N ′

0−
)

≤ C1

(
c4 + N1h(T )

) (
1 + a + N2h(T )

)
N2−

N ′
2 ≤ C2

(
c4 + N1h(T )

)
N0− .

(2.40)

It follows from (2.40) that the map φ is a contraction for the pair of
semi norms N0− , N2− under the condition C0C2(c4 + N1h(T ))2 < 1 which
is the combination of a smallness condition for c4 together with a condition
that T be sufficiently large. The semi norm N1− does not take part in
the contraction, but is controlled separately by the previous ones. The
constants C0 and C2 appearing in (2.40) can be taken to be the same as
in (2.34) because they are determined by the linear terms, which are the
same in both cases. There might occur additional constants coming from
the nonlinear terms. They have been omitted. This completes the proof of
the existence part of the Proposition. Uniqueness follows from (2.40) with
N ′

i− = Ni− . ¤

We now turn to the construction of solutions of the system (1.3) at the
level of regularity of H1 for v. The result can be stated as follows.

Proposition 2.3 Let h be defined as previously with λ = 3/8 and let
X1( · ) be defined by (1.15). Let ua, Aa, R1, R2 satisfy the conditions (2.15)-
(2.18) and in addition

‖ua(t)‖∞ ≤ ct−3/2, ‖∇ua(t)‖4 ≤ ct−3/4, (2.41)

‖∇Aa‖∞ ≤ at−1, (2.42)

‖∇R1;L1([t, ∞), L2)‖ ≤ r1h(t), (2.43)

‖R2;L1([t, ∞), L2)‖ ≤ r2t
−1/2h(t) (2.44)

for some constants c4, c, a, r1, r2 with c4 sufficiently small and for all t ≥ 1.
Then there exists T , 1 ≤ T < ∞ and there exists a unique solution (v, B)
of the system (1.3) in the space X1([T, ∞)). Furthermore B satisfies the
estimate
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‖∇B(t)‖2 ∨ ‖∂tB(t)‖2 ≤ C
(
t−1/2 + t1/4h(t)

)
h(t) (2.44e)

for some constant C and for all t ≥ T .

Proof. The proof follows closely that of Proposition 2.2. Let 1 ≤ T < ∞
and let (v, B) ∈ X1([T, ∞)). In particular (v, B) satisfies (2.19)-(2.21) and
in addition

‖∇v(t)‖2 ≤ N3h(t) (2.45)

‖∇v;L8/3([t, ∞), L4)‖ ≤ N4h(t) (2.46)

‖∇B(t)‖2 ∨ ‖∂tB(t)‖2 ≤ N5h(t) (2.47)

for some constants Ni and for all t ≥ T . We first construct a solution
(v′, B′) of the system (1.5) in X1([T, ∞)). For that purpose, we take t0,
T < t0 < ∞ and we solve the system (1.5) in X1(I) where I = [T, t0] with
initial condition (v′, B′)(t0) = 0. Let (v′t0 , B′

t0) be the solution thereby
obtained. The existence of v′t0 follows from Proposition 2.1, part (2) with
V = A, and f = Bua −R1. We want to take the limit of (v′t0 , B′

t0) as t0 →
∞ and for that purpose we need estimates of (v′t0 , B′

t0) in X1(I) that are
uniform in t0. Omitting the subscript t0 for brevity we define N ′

i , 0 ≤ i ≤ 5,
by (2.22)-(2.24) and by

N ′
3 = Sup

t∈I
h(t)−1‖∇v′(t)‖2 (2.48)

N ′
4 = Sup

t∈I
h(t)−1‖∇v′;L8/3(J, L4)‖ (2.49)

N ′
5 = Sup

t∈I
h(t)−1

(‖∇B′(t)‖2 ∨ ‖∂tB
′(t)‖2

)
(2.50)

where J = [t, ∞) ∩ I. We have already estimated N ′
i , 0 ≤ i ≤ 2, in the

proof of Proposition 2.2. We next estimate ∇v′, starting from the equation

i∂t∇v′ = −1
2
∆∇v′ + A∇v′ + (∇A)v′

+ B∇ua + (∇B)ua −∇R1. (2.51)

We first estimate N ′
3. From (2.6) we obtain

‖∇v′(t)‖2
2 ≤

∥∥‖∇v′‖2(‖∇Aa‖∞‖v′‖2 + ‖B‖4‖∇ua‖4

+ ‖∇B‖2‖ua‖∞ + ‖∇R1‖2)

+ ‖∇v′‖4‖∇B‖2‖v′‖4;L1(J)
∥∥
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≤ C
(
N ′

3

(
aN ′

0 + cN2 + cN5t
−1/2 + r1

)

+N ′
4N5N

′
1t
−1/8h(t)

)
h(t)2 (2.52)

by Lemma 2.2, so that

N ′
3 ≤ C3

(
aN ′

0 + cN2 + cN5T
−1/2 + r1

+
(
N ′

1N
′
4N5T

−1/8h(T )
)1/2)

. (2.53)

We next estimate N ′
4. From Lemma 2.1, we obtain

‖∇v′;L8/3(J, L4)‖
≤ C

(‖Aa∇v′ + (∇Aa)v′ + B∇ua + (∇B)ua −∇R1;L1(J, L2)‖
+ ‖B∇v′ + (∇B)v′;L8/5(J, L4/3)‖)

≤ C
(∥∥‖Aa‖∞‖∇v′‖2 + ‖∇Aa‖∞‖v′‖2 + ‖B‖4‖∇ua‖4

+ ‖∇B‖2‖ua‖∞ + ‖∇R1‖2;L1(J)
∥∥

+
∥∥‖B‖4‖∇v′‖2 + ‖∇B‖2‖v′‖4;L8/5(J)

∥∥)
(2.54)

so that by Lemma 2.2

N ′
4 ≤ C4

(
a(N ′

3 + N ′
0) + c(N2 + N5T

−1/2)

+ r1 + N2N
′
3h(T ) + N5N

′
1T

−1/8h(T )
)
. (2.55)

We finally estimate N ′
5. From (2.14) we obtain

‖∇B(t′)‖2 ∨ ‖∂tB(t′)‖2

≤ ‖|v|2 + 2Re uav + R2;L1(J, L2)‖
≤

∥∥‖v‖2
4 + 2‖ua‖∞‖v‖2 + ‖R2‖2;L1(J)

∥∥
≤ C5

(
(cN0 + r2)t−1/2 + N2

1 t1/4h(t)
)
h(t) (2.56)

by Lemma 2.2 so that

N ′
5 ≤ C5

(
(cN0 + r2)T−1/2 + N2

1 T−1/8h(T )
)
. (2.57)

We next take the limit t0 →∞ in the same way as in Proposition 2.2.
From now on we take I = [T, ∞).

From the previous estimates it follows that the map φ defined in Propo-
sition 2.2, when restricted to X1(I) and more precisely to the subset R1 of
X1(I) defined by (2.19)-(2.21) and (2.45)-(2.47) satisfies the estimates (2.53)
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(2.55) (2.57) in addition to the previous estimates (2.26) (2.29) (2.31) for
(v′, B′) = φ((v, B)) with (v, B) ∈ R1. We next show that for a suitable
choice of the Ni, 0 ≤ i ≤ 5, and for T sufficiently large, φ maps R1 into
itself. We have already chosen N0, N1, N2. We now have to choose N3, N4,
N5 so as to ensure that the RHS of (2.53) (2.55) (2.57) do not exceed N3,
N4 and N5 respectively. We choose





N3 = C3 (aN0 + cN2 + r1 + 1)

N4 = C4 (a (N3 + N0) + cN2 + r1 + 1)

N5 = C5

(2.58)

and we take T sufficiently large so that the terms not considered in the
RHS of (2.53) (2.55) (2.57) do not exceed 1. Since R1 is closed in the
topology of X(I), φ has a fixed point in R1 by the contraction argument of
Proposition 2.2. Finally the estimate (2.44e) follows from (2.56). ¤

We finally turn to the construction of solutions of the system (1.3) at
the level of regularity of H2 for v. The result can be stated as follows.

Proposition 2.4 Let h be defined as previously with λ = 3/8 and let
X2( · ) be defined by (1.16). Let ua, Aa, R1, R2 satisfy the conditions (2.15)-
(2.18) and in addition

‖ua(t)‖∞ ≤ ct−3/2, ‖∂tua(t)‖4 ≤ ct−3/4, (2.59)

‖∂tAa‖∞ ≤ at−1, (2.60)

‖∂tR1;L1([t, ∞), L2)‖ ≤ r1h(t), (2.61)

‖R2;L1([t, ∞), L2)‖ ≤ r2t
−1/2h(t) (2.44) ≡ (2.62)

for some constants c4, c, a, r1, r2 with c4 sufficiently small and for all t ≥ 1.
Then there exists T , 1 ≤ T < ∞ and there exists a unique solution (v, B)
of the system (1.3) in the space X2([T, ∞)). Furthermore B satisfies the
estimate (2.44e). If in addition R1 satisfies the estimate

‖R1;L8/3([t, ∞), L4)‖ ≤ r1h(t) (2.63)

for all t ≥ 1, then ∆v ∈ L8/3([T, ∞), L4) and v satisfies the estimate

‖∆v;L8/3([t, ∞), L4)‖ ≤ Ch(t) (2.64)

for some constant C and for all t ≥ T .
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Proof. The proof is essentially the same as that of Proposition 2.3 with
∇v and ∇v′ replaced everywhere by ∂tv and ∂tv

′ and with additional esti-
mates of ∆v′. The existence of v′t0 with the required properties follows from
Proposition 2.1, part (3) and the subset R2 of X2(I) invariant under φ is
now defined by the conditions (2.19)-(2.21) and in addition

‖∂tv(t)‖2 ≤ N3h(t) (2.65)

‖∂tv;L8/3([t, ∞), L4)‖ ≤ N4h(t) (2.66)

‖∇B(t)‖2 ∨ ‖∂tB(t)‖2 ≤ N5h(t) (2.47) ≡ (2.67)

‖∆v(t)‖2 ≤ N6h(t) (2.68)

for all t ∈ I. The estimates associated with (2.65) (2.66) (2.67) are again
(2.53) (2.55) (2.57) except for the fact that we have to estimate in addition

‖∂tv
′(t0)‖2 = ‖(Bua −R1)(t0)‖2. (2.69)

For that purpose, we need pointwise estimates in time of R1 and B. From
(2.61) it follows that R1 ∈ C([1, ∞), L2) and that

‖R1(t)‖2 ≤ ‖∂tR1;L1([t, ∞), L2)‖ ≤ r1 h(t) (2.70)

for all t ≥ 1, while by the definition of R2 and by Lemma 2.2

‖B(t)‖3
3 ≤ 3

∥∥‖B‖2
4‖∂tB‖2;L1(J)

∥∥ ≤ CN2
2 N5t

1/2h(t)3 (2.71)

since ‖B(t)‖3 → 0 as t → ∞, which can be proved by using a finite time
version of (2.71) together with the fact that ‖B(t)‖6 → 0 as t → ∞ by
(2.47). Therefore

‖B(t)‖3 ≤ Ñ2t
1/6h(t) (2.72)

for all t ∈ I, with Ñ2 = CN
2/3
2 N

1/3
5 .

We then estimate

‖Bua‖2 ≤ ‖B‖3‖ua‖6 ≤ cÑ2t
−5/6h(t). (2.73)

From (2.69) (2.70) (2.73) and the preceding remarks, it follows that N ′
3 now

defined by

N ′
3 = Sup

t∈I
h(t)−1‖∂tv

′(t)‖2

satisfies an estimate obtained from (2.53) by adding an extra term cÑ2T
−5/6.
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We have in addition to estimate ∆v′. From (1.5) we obtain

‖∆v′‖r ≤ 2
(‖∂tv

′‖r + ‖Aa‖∞‖v′‖r

+ ‖Bv′‖r + ‖Bua‖r + ‖R1‖r

)
. (2.74)

For r = 2, we estimate

‖Bv′‖2≤C‖B‖3‖v′‖1/2
2 ‖∆v′‖1/2

2

≤ 1
4
‖∆v′‖2 + CÑ2

2 N ′
0t

1/3h(t)3

so that from (2.74) with r = 2 and from (2.70) (2.73)

‖∆v′‖2 ≤ 4
(
N ′

3 + at−1N ′
0 + r1

+ cÑ2t
−5/6 + CÑ2

2 N ′
0t

1/3h(t)2
)
h(t) (2.75)

which suffices for the needs of the proof.
If R1 satisfies (2.63), we can in addition derive (2.64) for v′. We estimate

‖Bua;L8/3(J, L4)‖ ≤ c‖B;L4(J, L4)‖‖t−3/2‖8

≤ cN2t
−11/8h(t)

(2.76)

‖Bv′;L8/3(J, L4)‖ ≤ ‖B;L4(J, L4)‖‖v′;L8(J, L∞)‖
≤ C‖B;L4(J, L4)‖‖v′;L8(J, L2)‖1/24

×‖v′;L8/3(J, L4)‖1/3‖∆v′;L∞(J, L2)‖5/8.

(2.77)

From (2.74) with r = 4 and from (2.76) (2.77), we obtain

‖∆v′;L8/3(J, L4)‖ ≤ 2
(
N ′

4 + at−1N ′
1 + r1 + cN2t

−11/8

+ CN2N
′1/24
0 N

′1/3
1 N ′

6h(t)2
)
h(t) (2.78)

where in the same way as before

N ′
6 = Sup

t∈I
h(t)−1‖∆v′(t)‖2.

and N ′
6 is estimated by (2.75). ¤

Remark 2.2 There is some flexibility in the choice of the function spaces
used here. For instance we have included the Strichartz norms Lq(Lr) in
the restricted range 2 ≤ r ≤ 4. One could equally well use the full range
2 ≤ r ≤ 6. Conversely one could omit the L2 norm of ∂tB in the H1
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theory of Proposition 2.3 and/or the L2 norm of ∇B in the H2 theory of
Proposition 2.4.

3. Remainder estimates and completion of the proof

In this section we first prove that the choice of the asymptotic func-
tions (ua, Aa) made in the introduction satisfies the assumptions of Propo-
sitions 2.2-2.4 under suitable assumptions on the asymptotic state (u+, A+,
Ȧ+). We then combine those results with those of Section 2 to complete
the proof of Proposition 1.1.

We first supplement the definition of (ua, Aa) with some additional
properties of a general character. In addition to the representation (1.11)
(1.12) for A1, we need a representation of ∂tA1. From (1.10) it follows that

∂tA1(t) =
∫ ∞

t
dt′ cos

(
ω(t− t′)

) |ua(t′)|2 (3.1)

so that upon substitution of (1.6) we obtain

∂tA1(t) = t−2D0(t)
˜̃
A1 (3.2)

where

˜̃
A1 =

∫ ∞

1
dνν−3 cos(ω(ν − 1))D0(ν)|w+|2. (3.3)

On the other hand from (1.11)

∇A1(t) = t−2D0(t)∇Ã1. (3.4)

We shall also need the commutation relations

∇MD = MD
(
ix + t−1∇)

(3.5)

i∂tMD = MD

(
1
2
x2 + i∂t − it−1

(
x · ∇+

3
2

))
(3.6)

(
i∂t +

1
2
∆

)
MD = MD

(
i∂t + (2t2)−1∆

)
. (3.7)

From (3.5) (3.6) and (1.13), it follows that

∇ua = MD exp(−iϕ)
(
ixw+ + t−1∇w+ − it−1`nt(∇Ã1)w+

)
(3.8)

∂tua = MD exp(−iϕ)
(1

2
x2w+ − it−1

(
x · ∇+

3
2

)
w+
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+ t−1Ã1w+ − t−1`nt(x · ∇Ã1)w+

)
. (3.9)

We now consider the remainder R1 defined by (1.4). (We recall that the
choice (1.9) (1.10) yields R2 = 0). From (3.7) (1.13) we obtain

R1 = MD exp(−iϕ)R̃1 −A0ua (3.10)

where

R̃1 = (2t2)−1
(
∆w+ − i`nt(2(∇Ã1) · ∇w+ + (∆Ã1)w+)

− (`nt)2|∇Ã1|2w+

)
. (3.11)

From (3.5) (3.6) (3.10) and (1.13) we obtain

∇R1 = MD exp(−iϕ)(ix + t−1∇− it−1`nt∇Ã1)R̃1

−∇(A0ua) (3.12)

i∂tR1 = MD exp(−iϕ)
(1

2
x2 + i∂t − it−1

(
x · ∇+

3
2

)

+ t−1Ã1 − t−1`nt(x · ∇Ã1)
)
R̃1 − i∂t(A0ua). (3.13)

Finally, since Ã1 is independent of t, ∂tR̃1 takes the explicit form

∂tR̃1 = t−3
(
−∆w+ + i

(
`nt− 1

2

)(
2(∇Ã1) · ∇w+ + (∆Ã1)w+

)

+`nt(`nt− 1)|∇Ã1|2w+

)
. (3.14)

In order to ensure the assumptions of Propositions 2.2-2.4 on ua, Aa,
R1, we shall use a number of general norm estimates. We first consider ua.
From (1.6) (3.8) (3.9) we obtain

‖ua‖r ≤ t−δ(r)‖w+‖r, (3.15)

‖∇ua‖r ≤ t−δ(r)
(‖xw+‖r + t−1‖∇w+‖r

+t−1`nt‖∇Ã1‖∞‖w+‖r

)
, (3.16)

‖∂tua‖r ≤ t−δ(r)
(1

2
‖x2w+‖r + t−1‖x · ∇w+‖r

+t−1
(
‖Ã1‖∞ +

3
2

)
‖w+‖r + t−1`nt‖∇Ã1‖∞‖xw+‖r

)
(3.17)

where δ(r) = 3/2− 3/r.



Long range scattering for the Wave-Schrödinger system 283

We next turn to A1. From (1.11) (3.4) (3.2) we obtain

‖A1‖∞ = t−1‖Ã1‖∞, (3.18)

‖∇A1‖∞ = t−2‖∇Ã1‖∞, (3.19)

‖∂tA1‖∞ = t−2‖ ˜̃
A1‖∞. (3.20)

The L∞ estimates of Ã1 and ˜̃
A1 will be obtained through Sobolev inequal-

ities from the L2 estimates

‖ωm+1Ã1‖2 ∨ ‖ωm ˜̃
A1‖2≤

∫ ∞

1
dνν−3/2−m‖ωm|w+|2‖2

=
(
m +

1
2

)−1
‖ωm|w+|2‖2 (3.21)

which follow readily from (1.12) (3.3). Finally we shall estimate R1 and its
derivatives as follows:

‖R1‖2 ≤ ‖R̃1‖2 + t−3/2‖A0‖2‖w+‖∞ (3.22)

where we have used (3.15) and where

‖R̃1‖2 ≤ (2t2)−1
(‖∆w+‖2 + `nt(2‖∇Ã1‖6‖∇w+‖3

+ ‖∆Ã1‖2‖w+‖∞) + (`nt)2‖∇Ã1‖2
6‖∇w+‖6

)
, (3.23)

‖∇R1‖2 ≤ ‖xR̃1‖2 + t−1‖∇R̃1‖2 + t−1`nt‖∇Ã1‖∞‖R̃1‖2

+t−3/2‖∇A0‖2‖w+‖∞ + ‖A0‖2‖∇ua‖∞, (3.24)

‖∂tR1‖2 ≤ 1
2
‖x2R̃1‖2 + ‖∂tR̃1‖2 + t−1‖x · ∇R̃1‖2

+ t−1
(
‖Ã1‖∞ +

3
2

)
‖R̃1‖2 + t−1`nt‖∇Ã1‖∞‖xR̃1‖2

+ t−3/2‖∂tA0‖2‖w+‖∞ + ‖A0‖2‖∂tua‖∞, (3.25)

where ∇ua and ∂tua are estimated in L∞ by (3.16) (3.17) with r = ∞.
In order to estimate A0, we need some general estimates of solutions of

the free wave equation.

Lemma 3.1 Let A0 be defined by (1.9). Let k ≥ 0 be an integer. Let A+

and Ȧ+ satisfy the conditions

A+, ω−1Ȧ+ ∈ Hk, ∇2A+, ∇Ȧ+ ∈ W k
1 . (3.26)
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Then A0 satisfies estimates
{
‖A0(t);W k

r ‖ ≤ a0t
−1+2/r,

‖∂tA0(t);W k−1
r ‖ ≤ a0t

−1+2/r for k ≥ 1.
(3.27)

for 2 ≤ r ≤ ∞ and for all t ∈ R, where a0 depends on A+, Ȧ+ through the
norms associated with (3.26).

A proof can be found in [17].
We are now in a position to derive the estimates required in Proposi-

tions 2.2-2.4. We recall that w+ = Fu+ and that δ(r) = 3/2− 3/r.

Proposition 3.1
(1) Let u+ ∈ H0,2 and let (A+, Ȧ+) satisfy (3.26) with k = 0. Then the

following estimates hold

‖ua‖r ≤ t−δ(r)‖Fu+‖r for 2 ≤ r ≤ ∞, (3.28)

‖Aa(t)‖∞ ≤ at−1, (3.29)

‖R1(t)‖2 ≤ r1t
−3/2. (3.30)

(2) Let u+ ∈ H0,3∩H1,2 and let (A+, Ȧ+) satisfy (3.26) with k = 1. Then
the estimates (3.28)-(3.30) hold and in addition

‖∇ua‖r ≤ ct−δ(r) for 2 ≤ r ≤ ∞, (3.31)

‖∇Aa(t)‖∞ ≤ at−1, (3.32)

‖∇R1(t)‖2 ≤ r1t
−3/2. (3.33)

(3) Let u+ ∈ H1,3∩H2,2 and let (A+, Ȧ+) satisfy (3.26) with k = 1. Then
the estimates (3.28)-(3.33) hold and in addition

‖∂tua‖r ≤ ct−δ(r) for 2 ≤ r ≤ ∞, (3.34)

‖∂tAa(t)‖∞ ≤ at−1, (3.35)

‖∂tR1(t)‖2 ≤ r1t
−3/2. (3.36)

Proof. Part (1). The assumption on u+ is equivalent to w+ ∈ H2, which
by (3.21) implies that ∇Ã1 ∈ H2. The estimate (3.28) is a rewriting of
(3.15) and is ensured by the fact that H2 ⊂ L∞. The estimate (3.29)
follows from (3.27) as regards the A0 part and from (3.18) and the previous
remarks as regards the A1 part. Finally (3.30) follows from (3.22) (3.23)
(3.27) and Sobolev inequalities.
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Part (2). The assumption on u+ is equivalent to w+ ∈ H3 ∩ H2,1

which by (3.21) implies that ∇Ã1 ∈ H3. Then (3.31) follows from (3.16)
while (3.32) follows from (3.27) as regards the A0 part and from (3.19)
and the previous remarks as regards the A1 part. Finally (3.33) follows
from (3.24). In fact, in addition to terms previously estimated, we have to
estimate ‖xR̃1‖2 and ‖∇R̃1‖2. The estimate of xR̃1 is obtained from (3.23)
by replacing ∆w+, ∇w+ and w+ by x∆w+, x∇w+ and xw+ respectively.
The estimate of ∇R̃1 is obtained from (3.23) by distributing ∇ among Ã1

and w+, thereby generating norms which are controlled by the assumption
w+ ∈ H3.

Part (3). The assumption on u+ is equivalent to w+ ∈ H3,1 ∩ H2,2

which by (3.21) implies that ∇Ã1 ∈ H3 and ˜̃
A1 ∈ H2. Then (3.34) follows

from (3.17) while (3.35) follows from (3.27) as regards the A0 part and
from (3.20) and the previous remarks as regards the A1 part. Finally (3.36)
follows from (3.25). In fact, in addition to terms previously estimated, we
have to estimate ‖x2R̃1‖2, ‖x · ∇R̃1‖2 and ‖∂tR̃1‖2. In the same way as
in the proof of Part (2), the first two estimates are obtained from that of
‖R̃1‖2 by absorbing x2 or x by w and distributing the gradient among w+

and Ã1, while ‖∂tR̃1‖2 is estimated in the same way as ‖R̃1‖2 from the
explicit expression (3.14). ¤

We can now complete the proof of Proposition 1.1.

Proof of Proposition 1.1. From Parts (1), (2) and (3) of Proposition 3.1,
together with the fact that R2 = 0, it follows that the assumptions of
Propositions 2.2, 2.3 and 2.4 respectively are satisfied with h(t) = t−1/2

and c4 = ‖w+‖4. In particular (3.30) (3.33) imply (2.63) since

‖R1(t)‖4 ≤ C‖R1(t);H1‖ ≤ Ct−3/2 (3.37)

so that

‖R1;L8/3([t, ∞), L4‖ ≤ Ct−9/8. (3.38)

The estimate (1.17) follows from (2.44e) with h(t) = t−1/2. ¤

Remark 3.1 The t−3/2 decay of R1 comes from the free wave term A0ua.
That term could be partly cancelled by the correcting term used in [15],
thereby producing a t−2(`nt)2 decay of R1 allowing for h(t) = t−1(`nt)2.
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Remark 3.2 The regularity assumptions on u+ or w+ are dictated by the
term ∆w+ in R̃1. They could be somewhat weakened by eliminating that
term through the choice

w(t) = U
(1

t

)∗
w+

but that choice would either generate a more complicated and less explicit
ϕ or produce a non vanishing R2.
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