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On a class of nonlinear wave equations related

to the Dirac-Klein-Gordon system

with generalized Yukawa interaction
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Abstract. We study low regularity solutions for a class of nonlinear wave equations.

We prove local existence for large data in both the subcritical and critical cases and

global existence for small data in the critical case. We apply our results to the study of

the Dirac-Klein-Gordon system with generalized Yukawa interaction.
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1. Introduction

In this paper we study low regularity local solutions of nonlinear wave
equations of the form

2u = ukDu (1)

where Du stands for any of the first order derivatives ∂tu, ∂xju, j = 1, 2, 3,
with initial data

u(0, · ) = f ∈ Hs(R3), ut(0, · ) = g ∈ Hs−1(R3) (2)

Our motivation is the following Dirac-Klein-Gordon system with gen-
eralized Yukawa interaction.

Dψ = φ(ψψ)αψ (3a)

2φ = (ψψ)β (3b)

Applying the Dirac operator on both sides of (3a) we obtain a system of
nonlinear wave equations with nonlinearities in which the main terms are
of the form ukDu.

Wave equations of the form

2u=uk (Du)l , u(0, · )= f ∈Hs(R3), ut(0, · )= g ∈Hs−1(R3) (4)
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where k and l are positive integers, l ≥ 2 and s > max{2, (5l− 7)/(2l− 2)}
have been studied by Ponce and Sideris in [15]. The most usefull case for
the Dirac-Klein-Gordon equations is l = 1, but unfortunately the proof in
[15] works only for l ≥ 2. In this paper we show how to deal with the case
l = 1 using an observation of Klainerman and a Strichartz-type estimate
due to Escobedo and Vega.

Applying the generalized energy estimate to (4) leads to a term of the
form

∫ T
0 ‖Du(t, x)‖l−1

L∞x
dt. If we use the Sobolev inequality to estimate that

L∞ norm by ‖u(t, · )‖
Hs then we must have s > 5/2. This is the content

of the classical local existence theorem for (4). Klainerman has observed in
[8] that for l = 1 it is possible to avoid the L∞ norm of the derivative and
manage with estimating only a term of the form

∫ T
0 ‖u(t, x)‖r

L∞x
dt. Classical

methods require s > 3/2, but a suitable Strichartz estimate will gain 1/2
derivatives, hence the restriction s > 1.

The Strichartz estimate we need arises from the following question. Let
φ be a solution of

2φ = 0, φ(0, · ) = f ∈ Hs(R3), φt(t, · ) = g ∈ Hs−1(R3) (5)

in three space dimensions. How large should s be so that mixed norms of
the form (

∫ ‖u(t, x)‖r
L∞x
dt)1/r can be controlled by the quantity ‖f‖

Hs +
‖g‖

Hs−1? Klainerman and Machedon in [9] have shown that if s = 1 the
estimate

(∫ ∞

0
‖u(t, x)‖2

L∞x
dt

)1/2

≤ C
[‖f‖

H1 + ‖g‖
L2

]
(6)

fails (it is true for spherically symmetric data)(see also [14]). However,
when s > 1 we gain integrability in time and we can estimate a mixed norm
(
∫ ‖u(t, x)‖r

L∞x
dt)1/r where r is allowed to take values strictly larger than

2. See Lemma 2.2 for a precise formulation.
The Dirac-Klein-Gordon system (3) with generalized Yukawa interac-

tion has been studied by Chadam in [2], and Reed in [16], and more recently
by Machihara in [12] and Machihara, Nakamura and Ozawa in [13] where
global solutions are constructed under the assumption that the initial data
are small. In this paper we study local low regularity solutions without any
smallness assumption on the data.
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2. Strichartz Estimates

In this section we collect the Strichartz-type estimates we are going to
need in our proofs.

Lemma 2.1
1. Let T > 0 and let u be the solution of:

2u = F, u(0, · ) = f, ut(0, · ) = g. (7)

Then for any p ∈ (6, ∞),

(∫ T

0
‖u‖2p/(p−6)

Lp dt

)(p−6)/(2p)

≤ C

[
‖f‖

H1 + ‖g‖
L2 +

∫ T

0
‖F (t, · )‖

L2dt

]
(8)

where C is independent of T .
2. If u solves (7) then,

(a) for any p ∈ (6, ∞), T > 0, s ≥ 1,

(∫ T

0
‖u‖2p/(p−6)

Hs−1
p

dt

)(p−6)/(2p)

≤ C

[
Ds +

∫ T

0
‖F‖

Hs−1(R3)
dt

]
(9)

where Ds = ‖f‖
Hs(R3)

+ ‖g‖
Hs−1(R3)

and C is independent of T .
(b) for any p ∈ (6, ∞), s ≥ 1,

(∫ ∞

0
‖u‖(2p)/(p−6)

Hs−1
p

dt

)(p−6)/(2p)

≤ C

[
Ds +

∫ ∞

0
‖F‖

Hs−1(R3)
dt

]
(10)

with Ds as above.

Proof. Estimates (9) and (10) follow easily from (8). Estimate (8) is well
known, see for example [10, 11]. ¤

The next estimate is due to Escobedo and Vega [5]. A special case
appeared earlier as Lemma 9 of [1].
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Lemma 2.2 Let u be the solution of:

2u = F, u(0, · ) = f, ut(0, · ) = g

1. For any s ∈ (1, 3/2), λ ∈ (2, 1/(3/2 − s)), T > 0, there exist θ > 0
and C = C(s, λ) > 0 such that

(∫ T

0
‖u‖λ

L∞x
dt

)1/λ

≤ CT θ

[
Ds +

∫ T

0
‖F‖

Hs−1(R3)
dt

]
(11)

where Ds = ‖f‖
Hs(R3)

+ ‖g‖
Hs−1(R3)

.
2. (endpoint estimate) Let s ∈ (1, 3/2) and set λ = 1/(3/2 − s). Let I

denote either (0, ∞) or an interval of the form (0, T ) with T ∈ (0, ∞).
Then there is a positive constant C, independent of T , such that

(∫

I
‖u(t, · )‖λ

L∞(R3)
dt

)1/λ

≤ C

[
Ds +

∫

I
‖F‖

Hs−1(R3)
dt

]
(12)

where Ds is as above.

Proof. See [5]. ¤

In addition to these Strichartz estimates we shall use the following ‘frac-
tional Leibniz rules’.

Lemma 2.3 Suppose s ≥ 0, b, c ∈ [1, ∞] a, d, p ∈ (1, ∞) with 1/p =
1/a + 1/b = 1/c + 1/d. If f, g are elements of the spaces indicated in the
right-hand side of (13) then

‖fg‖
Hs

p
≤ C

[‖f‖
Hs

a
‖g‖

Lb
+ ‖f‖

Lc‖g‖Hs
d

]
(13a)

If k is a positive integer, then

‖fk‖
Hs

p
≤ C‖f‖k−1

L∞ ‖f‖
Hs

p
(13b)

Proof. For (13a) see [6] and [7]. Estimate (13b) follows easily from (13a).
¤

3. The nonlinear wave equation 2u = ukDu

3.1. The subcritical case
In this Section we study the subcritical case s > scr = 3/2 − 1/k. In

order to be able to apply Lemma 2.2 we assume k ≥ 2 so that s > 1.
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Theorem 3.1 Let f ∈ Hs(R3), g ∈ Hs−1(R3), where scr = 3/2 − 1/k <
s < 3/2 and k ≥ 2 is an integer. Fix λ ∈ (k, 1/(3/2−s)) and let p = 3/(s−
1). Let Du denote any one of the first order derivatives ∂tu, ∂xju, j =
1, 2, 3. Then there is a T > 0, depending only on the quantity Ds =
‖f‖

Hs(R3)
+ ‖g‖

Hs−1(R3)
, such that the Cauchy problem

2u = ukDu, u(0, · ) = f, ut(0, · ) = g

has a unique solution u with

u ∈ C0
(
[0, T ], Hs(R3)

) ∩ C1
(
[0, T ], Hs−1(R3)

)

and
(∫ T

0
‖u‖λ

L∞x
dt

)1/λ

+
(∫ T

0
‖u‖2p/(p−6)

Hs−1
p (R3)

dt

)(p−6)/(2p)

<∞.

Proof. Fix two constants T ∈ (0, 1) and M > 0 to be determined in the
course of the proof. Define

X =
{
u ∈ C0

(
[0, T ];Hs(R3)

)∩C1
(
[0, T ];Hs−1(R3)

)
: |||u||| ≤M

}

where

|||u||| = Es(u) +
(∫ T

0
‖u‖λ

L∞x
dt

)1/λ

+
(∫ T

0
‖u‖(2p)/(p−6)

Hs−1
p (R3)

dt

)(p−6)/(2p)

,

Es(u) = sup
0≤t≤T

[‖u(t, · )‖
Hs(R3)

+ ‖ut(t, · )‖Hs−1(R3)

]
,

λ is a fixed number in (k, 1/(3/2 − s)) and p = 3/(s − 1). Equiped with
this norm X is complete. Consider the map F : X → X defined as follows:
Given u ∈ X, v = F(u) is the unique solution of the Cauchy problem,

2v = ukDu, v(0, · ) = f, vt(0, · ) = g.

We first need to prove that F maps X into X. So let u ∈ X and v = F(u).
The energy estimate and the Strichartz estimates (9) and (11) give

|||v||| ≤ C

[
Ds +

∫ T

0

∥∥∥ukDu
∥∥∥

Hs−1(R3)

dt

]
. (14)
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Using the Leibniz rules of Lemma 2.3 we get
∫ T

0
‖ukDu‖

Hs−1dt ≤C
∫ T

0
‖uk‖

Hs−1
p
‖Du‖

Lq dt

+ C

∫ T

0
‖u‖k

L∞x
‖Du‖

Hs−1dt

=: I + II (15)

where p = 3/(s− 1), q = 6/(5− 2s). By Sobolev embedding,

‖Du(t, · )‖
Lq ≤ C‖Du(t, · )‖

Hs−1 ≤ CEs(u) ≤ C|||u|||
and using (13b),

‖uk(t, · )‖
Hs−1

p
≤ C‖u(t, · )‖k−1

L∞ ‖u(t, · )‖
Hs−1

p

therefore

I ≤ C|||u|||
∫ T

0
‖u‖k−1

L∞x
‖u‖

Hs−1
p

dt

Observe that
k − 1
λ

+
p− 6
2p

<
k − 1
k

+
p− 6
2p

= 1− (s− scr) < 1.

Therefore there is an r such that
k − 1
λ

+
p− 6
2p

+
1
r

= 1.

Then,

I ≤C|||u|||T 1/r

(∫ T

0
‖u‖λ

L∞x
dt

)(k−1)/λ

×
(∫ T

0
‖u‖(2p)/(p−6)

Hs−1
p

dt

)(p−6)/(2p)

≤C|||u|||T 1/r|||u|||k−1|||u|||
≤C|||u|||k+1T 1/r

To estimate II use once more, ‖Du(t, · )‖
Hs−1 ≤ CEs(u) ≤ C|||u|||, to obtain

II ≤CEs(u)
∫ T

0
‖u‖k

L∞x
dt
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≤C|||u|||
(∫ T

0
‖u‖λ

L∞x
dt

)k/λ

T 1−k/λ

≤C|||u|||k+1T 1−k/λ

We conclude that
∫ T

0
‖ukDu‖

Hs−1dt ≤ C|||u|||k+1T σ (16)

where σ = min{1/r, 1− k/λ} > 0. Using (16) into (14) we obtain

|||v||| ≤ CDs + C|||u|||k+1T σ (17)

Now define M = 2CDs and choose T small enough so that CMkT σ ≤ 1/2.
Since u ∈ X we have |||u||| ≤M , therefore,

|||v||| ≤ CDs + CMk+1T σ ≤ M

2
+
M

2
= M.

Since 2v = ukDu ∈ L1([0, T ];Hs−1) (see (16)) it follows from linear theory
that v ∈ C0

(
[0, T ], Hs(R3)

) ∩ C1
(
[0, T ], Hs−1(R3)

)
. This completes the

proof that v ∈ X whenever u ∈ X.
Next, we need to show that F defines a contraction on X. Let u1, u2 ∈

X and set v1 = F(u1), v2 = F(u2). An argument similar to the one we
have just presented shows that

|||v1 − v2||| ≤ C(M)T θ|||u1 − u2|||
where C(M) is a constant depending only on M = 2CDs and θ is some
positive number. Thus, if T <

(
1/C(M)

)1/θ =
(
1/C ′(Ds)

)1/θ then L =
C(M)T θ < 1 as required. Uniqueness follows along the same lines. Observe
that the T we have used depends only on the quantity Ds. ¤

3.2. The critical case
We now consider the critical case s = scr = 3/2− 1/k > 1. We use the

endpoint estimate (12) in Lemma 2.2.

Theorem 3.2 Let k > 2 be an integer and let s = scr = 3/2 − 1/k. Let
f ∈ Hs(R3), g ∈ Hs−1(R3). Let p = 3/(s− 1).
1. There is a T > 0, depending only on f and g, and a unique solution

u ∈ C0
(
[0, T ], Hs(R3)

) ∩ C1
(
[0, T ], Hs−1(R3)

)
of

2u = ukDu, u(0, · ) = f, ut(0, · ) = g
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with
(∫ T

0
‖u(t, · )‖k

L∞dt

)1/k

+
(∫ T

0
‖u(t, · )‖2p/(p−6)

Hs−1
p

dt

)(p−6)/(2p)

<∞.

2. If, moreover, Ds = ‖f‖
Hs(R3)

+‖g‖
Hs−1(R3)

is small enough, the solution
exists globally in time.

Proof. We prove part 2 first. Suppose Ds is small. The precise smallness
condition on Ds will be determined in the course of the proof. Fix a positive
number M , to be determined later, and define

X =
{
u ∈ C0

(
[0, ∞), Ḣs(R3)

) ∩ C1
(
[0, ∞), Ḣs−1(R3)

)
:

|||u||| ≤ M
}

where

|||u||| = Ė1(u) + Ės(u) +
(∫ ∞

0
‖u(t, · )‖k

L∞dt

)1/k

+
(∫ ∞

0
‖u(t, · )‖2p/(p−6)

Hs−1
p

dt

)(p−6)/(2p)

,

and Ės is the homogeneous s-energy,

Ės(u) = sup
t∈[0,∞)

[‖u(t, · )‖
Ḣs(R3)

+ ‖ut(t, · )‖Ḣs−1(R3)

]
.

Note that in the critical case we have
2p
p− 6

=
1

3/2− s
= k.

We consider the same map F : X → X as before and show first that it
maps X into X. Let u ∈ X, v = F(u). By energy estimates, the Strichartz
estimate (10) and the second part of Lemma 2.2 we have

|||v||| ≤ C

[
Ds +

∫ ∞

0
‖ukDu‖

Hs−1dt

]
(18)

where the constant C is independent of time (we have to use the homo-
geneous version of the energy here because the nonhomogeneous energy
estimate gives a constant which depends on T ). We estimate the last term
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in the right-hand side of (18) as follows.
∫ ∞

0
‖ukDu‖

Hs−1dt ≤C
∫ ∞

0
‖uk‖

Hs−1
p
‖Du‖

Lq dt

+ C

∫ ∞

0
‖uk‖

L∞‖Du‖Hs−1dt

=:A+B (19)

where p = 3/(s− 1) and q = 6/(5− 2s). To estimate the integral A observe
that ‖Du‖

Lq ≤ C‖Du‖
Ḣs−1 ≤ CĖs(u). Using this, the Leibniz rule (13b)

and the fact that
k − 1
k

+
p− 6
2p

= 1− (s− scr) = 1

we have,

A≤C
∫ ∞

0
‖u‖k−1

L∞x
‖u‖

Hs−1
p
‖Du‖

Lq dt

≤CĖs(u)
(∫ ∞

0
‖u‖k

L∞x
dt

)(k−1)/k (∫ ∞

0
‖u‖2p/(p−6)

Hs−1
p

dt

)(p−6)/(2p)

≤C|||u|||k+1

We estimate B as follows:

B≤C
(∫ ∞

0
‖u‖k

L∞x
dt

)
sup

t
‖Du(t, · )‖

Hs−1

≤C|||u|||k[Ė1(u) + Ės(u)
]

≤C|||u|||k+1

Therefore∫ ∞

0
‖ukDu‖

Hs−1dt ≤ C|||u|||k+1 (20)

and using this into (18) we obtain:

|||v||| ≤ C1Ds + C2|||u|||k+1 (21)

where C1 and C2 are absolute constants. Since u ∈ X we have |||u||| ≤
M , therefore |||v||| ≤ C1Ds + C2M

k+1. Choose M = 2C1Ds and make the
smallness assumtion C2M

k+1 ≤M/2 (equivalently: Ds ≤ 1/
(
2C1(2C2)1/k

)
)

to get |||v||| ≤ M/2 +M/2 = M . Thus v ∈ X whenever u ∈ X. Similarly
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one can show that F is a contraction and thus construct a solution u in the
space X. Since 2u = ukDu ∈ L1([0, ∞), Hs−1), linear theory guarantees
that actually u ∈ C0([0, ∞), Hs) ∩ C1([0, ∞), Hs−1).

We turn now to part 1. In this case we can’t use the approach of the
proof of Theorem 3.1, because it gives an estimate similar to (17) but with
σ = 0 (this is due to the fact that s = scr). Neither can we use the approach
of part 2 that we have just discussed because Ds is no longer assumed to be
small. To come up with a small quantity we introduce the modified s-energy
Em

s . Given any φ ∈ C0
(
[0, T ];Hs(R3)

) ∩ C1
(
[0, T ];Hs−1(R3)

)
we define

Em
s (φ) = sup

0≤t≤T

[‖φ(t, · )− f‖
Hs(R3)

+ ‖∂tφ(t, · )− g‖
Hs−1(R3)

]
(22)

Observe that Em
s (φ) ≤ Es(φ−ψ)+Em

s (ψ), Es ≤ Em
s +Ds and Em

s ≤ Es +
Ds, where Es is the standard s-energy,

Es(u) = sup
0≤t≤T

[‖u(t, · )‖
Hs(R3)

+ ‖ut(t, · )‖Hs−1(R3)

]

and Ds = ‖f‖
Hs + ‖g‖

Hs−1 . We also introduce the solution w of the homo-
geneous Cauchy problem

2w = 0, w(0, x) = f(x), wt(x, 0) = g(x)

By linear theory,

Em
s (w) → 0, as T → 0. (23)

By Strichartz,
∫∞
0 ‖w‖2p/(p−6)

Hs−1
p

dt <∞, therefore,

(∫ T

0
‖w‖2p/(p−6)

Hs−1
p

dt

)(p−6)/(2p)

→ 0, as T → 0. (24a)

By (12),
∫∞
0 ‖w(t, · )‖k

L∞x
dt <∞, therefore,

(∫ T

0
‖w(t, · )‖k

L∞x
dt

)1/k

→ 0, as T → 0. (24b)

Now fix two positive constants T ∈ (0, 1) and M , to be determined later,
and define

X =
{
u ∈ C0

(
[0, T ];Hs(R3)

) ∩ C1
(
[0, T ];Hs−1(R3)

)
: |u| ≤M

}
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where

|u| = Em
s (u) +

(∫ T

0
‖u(t, · )‖k

L∞dt

)1/k

+
(∫ T

0
‖u(t, · )‖2p/(p−6)

Hs−1
p

dt

)(p−6)/(2p)

,

and p = 3/(s − 1) (hence 2p/(p − 6) = 1/(3/2 − s) = k). Note that | · | is
not a norm. We equip X as usual with

|||u||| = Es(u) +
(∫ T

0
‖u(t, · )‖k

L∞dt

)1/k

+
(∫ T

0
‖u(t, · )‖2p/(p−6)

Hs−1
p

dt

)(p−6)/(2p)

.

Then (X, ||| · |||) is complete. Let F be defined as usual. We show first
that F maps X into X.

Let u ∈ X and let v = F(u). We wish to show that |v| ≤M . Using

Em
s (v) ≤ Em

s (w) + Es(v − w)

we obtain

|v| ≤ |w|+ |||v − w||| (25)

Observe that (23) and (24) give

|w| → 0 as T → 0. (26)

As before,

|||v − w||| ≤ C

[
‖(v − w)(0)‖

Hs + ‖(v − w)t(0)‖
Hs−1

+
∫ T

0
‖2(v − w)‖

Hs−1dt

]

However (v − w)(0) = (v − w)t(0) = 0 and 2w = 0 therefore

|||v − w||| ≤
∫ T

0
‖2v‖

Hs−1dt =
∫ T

0
‖ukDu‖

Hs−1dt
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hence

|v| ≤ |w|+
∫ T

0
‖ukDu‖

Hs−1dt (27)

Estimates similar to the ones we have employed earlier show that
∫ T

0
‖ukDu‖

Hs−1dt ≤ C(|u|+Ds)|u|k (28)

hence

|v| ≤ |w|+ C(|u|+Ds)|u|k ≤ |w|+ C(M +Ds)Mk

We can choose T small enough so that C(2|w|+Ds)(2|w|)k−1 ≤ 1/2 (thanks
to (26)). Set M = 2|w|. Then C(M+Ds)Mk ≤M/2. With these choices of
T and M we obtain |v| ≤M/2 +M/2 = M . The rest of the proof proceeds
as usual. ¤

Remarks It is clear from our proofs that both in Theorem 3.1 and in
Theorem 3.2 we can replace the right hand side by a linear combination of
terms of the form ukDu. Moreover, both theorems are true for systems of
the form 2ui = ciαµνuk

α∂µuν , where the ciαµν are constants.
We have assumed k to be an integer for the sake of simplicity. With

suitable modifications our proofs can be made to work for non-integral val-
ues of k too.

The restriction s < 3/2 is not essential and can easily be removed.

3.3. The Dirac-Klein-Gordon equations with generalized Yukawa
interaction

The Dirac-Klein-Gordon equations with generalized Yukawa interaction
are:

Dψ = φ(ψψ)αψ (29a)

2φ = (ψψ)β (29b)

where φ is a scalar field, ψ is a 4-spinor field D = iγµ∂µ is the Dirac operator,
γµ are the Dirac matrices, ψψ = |ψ1|2 + |ψ2|2 − |ψ3|2 − |ψ4|2, and α and
β are positive integers. As a consequence of γµγν + γνγµ = 2gµνI, where
(gµν) is the Minkowski metric, we have D2 = 2. We have taken the mass to
be zero for simplicity. The mass terms can easily be incorporated in local
existence theorems. They are vital only for global existence results. We use
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the standard summation notation with Greek indices summed from 0 to 3
and Latin indices summed from 1 to 3.

If we apply the Dirac operator to both sides of (29a) we obtain a wave
equation of the form:

2ψ = ∂µφγ
µF (ψ, ψ) + Fµ(φ, ψ, ψ)∂µψ (30a)

where F (ψ, ψ) = i(ψψ)αψ and Fµ(φ, ψ, ψ) are homogeneous polynomials
of degree 2α + 1. The method we used earlier in the paper can be used to
study this equation coupled with the following generalization of (29b):

2φ = G(ψ, ψ) (30b)

where G is a smooth real valued map which ‘behaves like’ |ψ|2β. We pre-
scribe initial data

φ(0, · ) = φ0, φt(0, · ) = φ1, ψ(0, · ) = ψ0 (30c)

Equations (30) form a system of non-linear wave equations with nonlinear-
ities which are linear combinations of terms of the form ukDu and powers
uq, schematically 2u = ukDu + uq. The nonlinearities of the form ukDu

were studied above in part 3. Now we have to make sure that the method
we used there can accommodate the extra terms of the form uq.

Theorem 3.3 Let k and q be positive integers with q ≤ 1 + 2k. Let G be
a smooth function with |G(u)| ≤ C|u|q and |G′(u)| ≤ C|u|q−1. Let D stand
for any of the first order derivatives ∂t, ∂xj , j = 1, 2, 3. Consider initial
data f ∈ Hs(R3), g ∈ Hs−1(R3).
1. (subcritical case) Suppose k ≥ 2 and s > 3/2− 1/k. Fix

λ ∈ (k, 1/(3/2 − s)) and let p = 3/(s − 1). Then there is a T > 0,
depending only on the quantity Ds = ‖f‖

Hs + ‖g‖
Hs−1 , and a unique

solution u of the Cauchy problem

2u = ukDu+G(u) , u(0, · ) = f , ut(0, · ) = g (31)

with

u ∈ C0
(
[0, T ];Hs(R3)

) ∩ C1
(
[0, T ];Hs−1(R3)

)
(∫ T

0
‖u‖λ

L∞x
dt

)1/λ

+
(∫ T

0
‖u‖2p/(p−6)

Hs−1
p

dt

)(p−6)/(2p)

<∞
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2. (critical case) Suppose k > 2 and s = 3/2 − 1/k. Let p = 3/(s − 1).
Then there is a T > 0, depending only on the initial data f and g, and
a unique solution u of the Cauchy problem

2u = ukDu+G(u), u(0, · ) = f, ut(0, · ) = g (32)

with

u ∈ C0
(
[0, T ];Hs(R3)

) ∩ C1
(
[0, T ];Hs−1(R3)

)
(∫ T

0
‖u‖k

L∞x
dt

)1/k

+
(∫ T

0
‖u‖2p/(p−6)

Hs−1
p

dt

)(p−6)/(2p)

<∞

If, moreover, q = 1 + 2k and Ds = ‖f‖
Hs + ‖g‖

Hs−1 is small, then the
solution exists globally in time.

Proof. 1. We only deal with the case q = 1 + 2k. Smaller values of q are
easier to handle. We define (X, ||| · |||) and F as in the proof of Theorem
3.1. Then (14) becomes

|||v||| ≤ C

[
Ds +

∫ T

0
‖ukDu‖

Hs−1dt+
∫ T

0
‖G(u)‖

Hs−1dt

]
(33)

We already know from (16) that
∫ T

0
‖ukDu‖

Hs−1dt ≤ C|||u|||k+1T σ (34)

for some positive σ. The new term to be estimated is
∫ T
0 ‖G(u)‖

Hs−1dt. We
have

∫ T

0
‖G(u)‖

Hs−1dt≤
∫ T

0
‖G(u)‖

L2dt+
∫ T

0
‖G(u)‖

Ḣs−1dt := I + II

To estimate II choose µ with k < µ < min{2k, λ} and proceed as follows:

II ≤C
∫ T

0
‖G′(u)‖

L3‖u‖Ḣs−1
6

dt

≤C
∫ T

0
‖|u|q−1‖

L3‖u‖Hsdt

≤CEs(u)
∫ T

0

∥∥|u|µ∥∥
L∞

∥∥|u|q−1−µ
∥∥

L3
dt
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≤C|||u||| sup
0≤t≤T

‖u‖q−1−µ

L3(q−1−µ)

∫ T

0
‖u‖µ

L∞dt

where we have used the ‘fractional chain rule’ of Proposition 25, p. 48 of [3]
in the first line and the Sobolev embedding theorem Hs(R3) ↪→ Hs−1

6 (R3)
in the second line. Observe now that 3(q−1−µ) = 3(2k−µ) < 3k < 6/(3−
2s) therefore ‖u‖

L3(q−1−µ)
≤ C‖u‖

Hs ≤ C|||u|||. Thus,

II ≤C|||u|||q−µ

∫ T

0
‖u‖µ

L∞dt

≤C|||u|||q−µ

(∫ T

0
‖u‖λ

L∞dt

)µ/λ

T 1−µ/λ

≤C|||u|||qT 1−µ/λ

To estimate I choose ν such that ν < λ, ν < q and 2(q − ν) ≤ 6/(3 − 2s).
Then

I ≤C
∫ T

0
‖u‖ν

L∞‖u‖q−ν

L2(q−ν)
dt

≤C sup
0≤t≤T

‖u(t, · )‖q−ν

L2(q−ν)

∫ T

0
‖u‖ν

L∞dt

≤CEs(u)q−ν

(∫ T

0
‖u‖λ

L∞dt

)ν/λ

T 1−ν/λ

≤C|||u|||qT 1−ν/λ

Therefore
∫ T

0
‖G(u)‖

Hs−1dt ≤ C|||u|||qT δ (35)

for some positive δ. From (33), (34) and (35),

|||v||| ≤ C
[
Ds + |||u|||k+1T σ + |||u|||qT δ

]

The rest of the proof is similar to that of Theorem 3.1.
2. Again we consider only the largest value of q, q = 1+2k. We define

X, F , | · | and ||| · ||| as in the proof of part 1 of Theorem 3.2. Let u ∈ X
and set v = F(u). Then, as in (27),

|v| ≤ |w|+
∫ T

0
‖ukDu‖

Hs−1dt+
∫ T

0
‖G(u)‖

Hs−1dt
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where w is the solution of the Cauchy problem

2w = 0, w(0, · ) = f, wt(0, · ) = g.

The new term to be estimated here is
∫ T
0 ‖G(u)‖

Hs−1dt. This is done as
follows. Recall that |G′(u)| ≤ C|u|q−1 = C|u|2k. Also observe that 3k =
6/(3− 2s), therefore, ‖u(t, · )k‖

L3 = ‖u(t, · )‖k
L3k

≤ C‖u(t, · )‖k
Hs ≤ Es(u)k,

hence,
∫ T

0
‖G(u)‖

Hs−1dt≤C
∫ T

0
‖G′(u)‖

L3‖u‖Hs−1
6

dt

≤CEs(u)
∫ T

0
‖uk‖

L∞‖uk‖
L3dt

≤CEs(u)k+1

∫ T

0
‖u‖k

L∞dt

≤C(
Em

s (u) +Ds

)k+1|u|k

≤C(|u|+Ds

)k+1|u|k (36)

and we continue as in the proof of part 1 of Theorem 3.2.
If Ds is small, we follow the proof of part 2 of Theorem 3.2. The extra

term now is
∫∞
0 ‖G(u)‖

Hs−1dt and it can be treated using estimates similar
to the ones leading to (36). ¤

As a consequence of Theorem 3.3 and the discussion preceding it we
obtain the following result for local low regularity solutions of the Dirac-
Klein-Gordon equations with generalized Yukawa interaction.

Theorem 3.4 Let α and β be positive integers with 2β ≤ 4α+3. Consider
initial data φ0 ∈ Hs(R3 → R), φ1 ∈ Hs−1(R3 → R), ψ0 ∈ Hs(R3 → C4).
1. If s > 3/2 − 1/(2α + 1) then there is a T > 0, depending only on the

quantity Ds = ‖φ0‖Hs + ‖φ1‖Hs−1 + ‖ψ0‖Hs , and a unique solution
(φ, ψ) of the Cauchy problem (30) with

φ ∈ C0
(
[0, T ];Hs

) ∩ C1
(
[0, T ];Hs−1

)
, ψ ∈ C0

(
[0, T ];Hs

)

2. If s = 3/2 − 1/(2α + 1) then there is a T > 0, depending only on the
initial data φ0, φ1 and ψ0, and a unique solution (φ, ψ) of the Cauchy
problem (30) with

φ ∈ C0
(
[0, T ];Hs

) ∩ C1
(
[0, T ];Hs−1

)
, ψ ∈ C0

(
[0, T ];Hs

)
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