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Abstract. In this article we introduce the sequence space m(f, φ, ∆n, p, q), 1 ≤ p <

∞, using modulus functions. We study its different properties like completeness, solidity

etc. Also we obtain some inclusion results involving the space m(f, φ, ∆n, p, q).
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1. Introduction

Throughout the article w(X), `∞(X), `p(X) denote the spaces of all,
bounded and p-absolutely summable sequences respectively with elements in
X, where (X, q) denote a seminormed space, seminormed by q. The zero
sequence is denoted by θ̄ = (θ, θ, θ, . . .), where θ is the zero element of X.

The sequence space m(φ) was introduced by Sargent [11], who studied
some of its properties and obtained its relationship with the space `p. Later
on it was investigated from sequence space point of view by Çolak and Et
[2], Et et al. [3], Rath and Tripathy [9], Tripathy [13], Tripathy and Sen
[16] and others.

The notion of difference sequence space was introduced by Kızmaz [6]
as follows:

X(∆) = {x = (xk) ∈ w : (∆xk) ∈ X},
for X = `∞, c and c0, where ∆xk = xk − xk+1, for all k ∈ N.

The notion of difference sequence spaces was further generalized by Et
and Çolak [4] as follows:

X(∆n) = {x = (xk) ∈ w : (∆nxk) ∈ X},
for X = `∞, c and c0, where ∆nxk = ∆n−1xk −∆n−1xk+1 and ∆0xk = xk

for all k ∈ N.
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The generalized difference has the following binomial representation:

∆nxk =
n∑

v=0

(−1)v

(
n

v

)
xk+v, for all k ∈ N. (1)

Different types of difference sequence spaces have been studied by Et
and Nuray [5], Tripathy ([14],[15]) and many others.

The notion of modulus function was introduced by Ruckle [10], defined
as follows:

A real valued function f : [0, ∞) → [0, ∞) is called a modulus if
(i) f(x) ≥ 0 for each x,
(ii) f(x) = 0 if and only if x = 0,
(iii) f(x+ y) ≤ f(x) + f(y),
(iv) f is increasing and
(v) f is continuous from the right at 0.

It is immediate from (ii) and (iv) that f is continuous everywhere on
[0, ∞). Later on it was studied from sequence space point of view by Mad-
dox [7], Nuray and Savaş [8], Bilgin [1], Savaş [12] and many others.

2. Definitions and Background

Let ϕs denotes the class of all subsets of N, those do not contain more
than s elements. Throughout {φs} represents a non-decreasing sequence of
real numbers such that sφs+1 ≤ (s+ 1)φs for all s ∈ N.

The sequence space m(φ) introduced by Sargent [11] is defined as fol-
lows:

m(φ) =
{

(xk) ∈ w : ‖xk‖m(φ) = sup
s≥1, σ∈ϕs

1
φs

∑
n∈σ

|xn| <∞
}
.

In this article we introduced the following sequence space

m(f, φ, ∆n, p, q)

=

{
(xk) ∈ w(X) : sup

s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f
(
q(∆nxk)

)]p
)1/p

<∞
}
,

for 1 ≤ p <∞.

We use the following existing sequence spaces in this article
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`p(f, ∆n, q)=

{
(xk) ∈ w(X) :

∞∑

k=1

([
f
(
q(∆nx)

)]p)1/p
<∞

}
,

`∞(f, ∆n, q)=
{

(xk) ∈ w(X) : sup
k≥1

f
(
q(∆nxk)

)
<∞

}
.

A sequence space E is said to be solid (or normal) if (αnxn) ∈ E,
whenever (xn) ∈ E and for all scalars (αn) with |αn| ≤ 1 for all n ∈ N.

A sequence space is said to be monotone if it contains the canonical
preimages of all its step spaces.

A sequence space E is said to be symmetric if (xπ(n)) ∈ E, whenever
(xn) ∈ E where π (n) is a permutation of N.

A sequence space E is said to be convergence free if (yn) ∈ E, whenever
(xn) ∈ E and yn = 0 when xn = 0.

The following results will be used for establishing some results of this
article.

Lemma 1 (Tripathy and Sen [16], Proposition 5) m(φ, p) ⊆ m(ψ, p) if
and only if sups≥1 φs/ψs <∞.

Lemma 2 (Tripathy and Sen [16], Theorem 7) `p ⊆ m(φ, p) ⊆ `∞ for all
φ in Φ.

Lemma 3 (Tripathy and Sen [16], Proposition 8) m(φ, p) = `p if and
only if sups≥1 φs <∞ and sups≥1 φ

−1
s <∞.

Lemma 4 (Tripathy and Sen [16], Proposition 9) If p < q, then
m(φ, p) ⊂ m(φ, q).

Lemma 5 (Tripathy and Sen [16], Proposition 10) m(φ, p) ⊆ m(ψ, q).
If p < q and sups≥1 φs/ψs <∞.

3. Main Results

In this article we prove some results involving the sequence space
m(f, φ, ∆n, p, q).

Theorem 1 The space m(f, φ, ∆n, p, q) is a linear space.

Proof. Let (xk), (yk) ∈ m(f, φ, ∆n, p, q). Then we have

sup
s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f
(
q(∆nxk)

)]p
)1/p

<∞
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and

sup
s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f
(
q(∆nyk)

)]p
)1/p

<∞.

Let α, β ∈ C. Now
{∑

k∈σ

[
f
(
q
(
∆n(αxk +βyk)

))]p
}1/p

≤
{∑

k∈σ

[
f
(|α|q(∆nxk)+ |β|q(∆nyk)

)]p
}1/p

≤
{∑

k∈σ

[
f
(|α|q(∆nxk)

)]p
}1/p

+
{∑

k∈σ

[
f
(|β|q(∆nyk)

)]p
}1/p

≤(1+[α])
{∑

k∈σ

[
f
(
q(∆nxk)

)]p
}1/p

+(1+[β])
{∑

k∈σ

[
f
(
q(∆nyk)

)]p
}1/p

,

where [α] and [β] denote the integer part of |α| and |β|.

⇒ sup
s≥1, σ∈ϕs

1
φs

{∑

k∈σ

[
f
(
q
(
∆n(αxk + βyk)

))]p
}1/p

<∞

⇒ (αxk + βyk) ∈ m(f, φ, ∆n, p, q).

Thus m(f, φ, ∆n, p, q) is a linear space. ¤

Theorem 2 The space m(f, φ, ∆n, p, q) is a paranormed space, para-
normed by

g∆(x) =
n∑

k=1

q(xk) + sup
s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f
(
q(∆nxk)

)]p
)1/p

.

Proof. Clearly g∆(x) = g∆(−x) for all x ∈ m(f, φ, ∆n, p, q) and g∆(θ̄) =
0, where θ̄ = (θ, θ, θ, . . .). Subadditivity of g∆ follows from Theorem 1,
Minkowski’s inequality and the definition of f .

Next let λ be a non-zero scalar. The continuity of scalar multiplication
follows from the equality.

g∆(λx) =
n∑

k=1

q(λxk) + sup
s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f
(
q(∆nλxk)

)]p
)1/p
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= |λ|
n∑

k=1

q(xk) + sup
s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f
(|λ|q(∆nxk)

)]p
)1/p

.

This completes the proof of the theorem. ¤

Theorem 3 Let n ≥ 1. Then m(f, φ, ∆n−1, p, q) ⊂ m(f, φ, ∆n, p, q).
In general, m(f, φ, ∆i, p, q) ⊂ m(f, φ, ∆n, p, q) for i = 0, 1, 2, . . . , n− 1.

Proof. Let (xk) ∈ m(f, φ, ∆n−1, p, q). Then

sup
s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f
(
q(∆n−1xk)

)]p
)1/p

<∞.

Since f is non-decreasing and satisfies triangular inequality,
(∑

k∈σ

[
f
(
q(∆nxk)

)]p
)1/p

≤
(∑

k∈σ

[
f
(
q(∆n−1xk)

)]p
)1/p

+
(∑

k∈σ

[
f
(
q(∆n−1xk+1)

)]p
)1/p

⇒ sup
s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f
(
q(∆nxk)

)]p
)1/p

<∞

⇒ (xk) ∈ m(f, φ, ∆n, p, q).

Hence m(f, φ, ∆n−1, p, q) ⊂ m(f, φ, ∆n, p, q).
Proceeding inductively we have

m(f, φ, ∆i, p, q) ⊂ m(f, φ, ∆n, p, q) for i = 0, 1, 2, . . . , n− 1.

The above inclusion is strict. For that consider the following example. ¤

Example 1 Let X = `∞, φk = 1 for all k ∈ N. Let n = 1, f(x) = x and
p = 1. For xk = (xi

k) ∈ `∞, for all k ∈ N, let q(xk) = supi≥2 |xi
k|. Define

the sequence (xi
k)
∞
i=1 = (1), for all k ∈ N. Then (xk) ∈ m(f, φ, ∆n, p, q)

but (xk) /∈ m(f, φ, ∆n−1, p, q).

Theorem 4 Let (X, q) be complete, then m(f, φ, ∆n, p, q) is also com-
plete.

Proof. Let (xi) be a Cauchy sequence in m(f, φ, ∆n, p, q), where xi =
(xi

k) = (xi
1, x

i
2, x

i
3, . . .) ∈ m(f, φ, ∆n, p, q) for each i ∈ N. Then for a
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given ε > 0, there exists n0 ∈ N such that g∆(xi− xj) < ε, for all i, j > n0.

⇒
n∑

k=1

q(xi
k−xj

k)+ sup
s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f
(
q
(
∆n(xi

k−xj
k)

))]p
)1/p

<ε,

for all i, j >n0. (2)

We have for all i, j > n0,
∑n

k=1 q(x
i
k − xj

k) < ε. Hence (xi
k)
∞
i=1 is a Cauchy

sequence in (X, q), for all k = 1, 2, 3, . . . , n. Thus (xi
k)
∞
i=1 is convergent

for all k = 1, 2, 3, . . . , n. Let

lim
i→∞

xi
k = xk, for k = 1, 2, 3, . . . , n. (3)

Again from (2) we have

sup
s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f
(
q
(
∆n(xi

k − xj
k)

))]p
)1/p

< ε,

for all i, j ≥ n0 and k ∈ N

⇒ f
(
q(∆nxi

k −∆nxj
k)

)
< εφ1 = ε1, for all i, j ≥ n0 and k ∈ N

⇒ f
(
q(∆nxi

k −∆nxj
k)

)
< f(ε2)

⇒ q(∆nxi
k −∆nxj

k) < ε2, by the continuity of f.

⇒ (∆nxi
k)
∞
i=1 is a Cauchy sequence in (X, q), so it is convergent.

Let

lim
i→∞

∆xi
k = yk for each k ∈ N. (4)

Now from (1), (3) and (4) we have limi→∞ xi
k+1 = xk+1 for k ∈ N. Pro-

ceeding in this way we get limi→∞ xi
k = xk in X. Taking limit as j →∞ in

(2), we get
n∑

k=1

q(xi
k − xk) + sup

s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f
(
q
(
∆n(xi

k − xk)
))]p

)1/p

< ε

⇒ (xi
k − xk) ∈m(f, φ, ∆n, p, q), for all i > n0.

Since m(f, φ, ∆n, p, q) is linear and (xi
k) and (xi

k − xk) are in
m(f, φ, ∆n, p, q), so it follows that

(xk) = (xi
k) + (xi

k − xk) ∈ m(f, φ, ∆n, p, q).
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Hence m(f, φ, ∆n, p, q) is complete. This completes the proof of the theo-
rem. ¤

The following result is straightforward in view of the techniques applied
for establishing the above result.

Proposition 5 The space m(f, φ, ∆n, p, q) is a K-space.

Theorem 6 Let f, f1 and f2 be moduli. Then
(i) m(f1, φ, ∆n, p, q) ⊆ m(f ◦ f1, φ, ∆n, p, q),
(ii) m(f1, φ, ∆n, p, q) ∩m(f2, φ, ∆n, p, q) ⊆ m(f1 + f2, φ, ∆n, p, q).

Proof. (i) Let (xk) ∈ m(f1, φ, ∆n, p, q). Then

sup
s≥1, σ∈ϕs

1
φs

∑

k∈σ

[
f1

(
q(∆nxk)

)]p
<∞.

Let ε > 0 and choose δ with 0 < δ < 1 such that f(t) < ε for 0 ≤ t ≤ δ.
Write tk = f1

(
q(∆nxk)

)
and for any σ ∈ ϕs consider

∑

k∈σ

[f(tk)]p =
∑

1

[f(tk)]p +
∑

2

[f(tk)]p,

where the first summation is over tk ≤ δ and the second summation is over
tk > δ. Since f is continuous, we have

∑

1

[f(tk)]p < εpφ1 (5)

and for tk > δ we use the fact that

tk <
tk
δ
< 1 +

[ tk
δ

]
.

By the definition of f we have for tk > δ,

f(tk) ≤ f(1)
(
1 +

[ tk
δ

])
< 2f(1)

tk
δ
.

Hence
∑

2

[f(tk)]p < (2f(1)δ−1)p
∑

[f(tk)]p. (6)

By (5) and (6) we have m(f1, φ, ∆n, p, q) ⊂ m(f ◦ f1, φ, ∆n, p, q).
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(ii) Let (xk) ∈ m(f1, φ, ∆n, p, q) ∩m(f2, φ, ∆n, p, q). Then

sup
s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f1

(
q(∆nxk)

)]p
)1/p

<∞

and

sup
s≥1, σ∈ϕs

1
φs

(∑

k∈σ

[
f2

(
q(∆nxk)

)]p
)1/p

<∞.

The rest of the proof follows from the equality
(∑

k∈σ

[(
f1 + f2

)(
q(∆nxk)

)]p
)1/p

≤
(∑

k∈σ

[
f1

(
q(∆nxk)

)]p
)1/p

+
(∑

k∈σ

[
f2

(
q(∆nyk)

)]p
)1/p

.

Using the same technique of Theorem 6 (i) it can be shown that
m(φ, ∆n, p, q) ⊆ m(f, φ, ∆n, p, q). ¤

Proposition 7 The space m(f, φ, ∆n, p, q) is not monotone, for n ≥ 1.

Proof. This result follows from the following example. ¤

Example 2 Let X = `∞, φk = k for all k ∈ N. Let n = 1, f(x) = x and
p = 1. For xk = (xi

k) ∈ `∞, for all k ∈ N, let q(xk) = supi≥2 |xi
k|. Define

the sequence (xi
k) = (k), for all k ∈ N, i ∈ N. Consider the step-space E of

m(f, φ, ∆n, p, q), defined as:
Let (xk) ∈ m(f, φ, ∆n, p, q), the (yk) ∈ E implies

yk =
{
xk, for k even
0, otherwise.

Then (yk) /∈ m(f, φ, ∆n, p, q). Hence m(f, φ, ∆n, p, q) is not monotone.

Following result follows from the above result.

Corollary 8 The space m(f, φ, ∆n, p, q) is not solid, for n ≥ 1.

Proposition 9 The space m(f, φ, ∆n, p, q) is not symmetric in general.

Proof. The result follows from the following example. ¤
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Example 3 Let X = C, φk = k−1 for all k ∈ N. Let n = 1, q(x) = |x|,
f(x) = x and p = 1. Let us consider the sequence (xk) defined by xk = k,
for all k ∈ N. Then (xk) ∈ m(f, φ, ∆n, p, q). Consider the rearrangement
of (xk) defined as follows:

yk=(x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, x49, x10, x64, . . .).

Then (yk) /∈ m(f, φ, ∆n, p, q). Hence m(f, φ, ∆n, p, q) is not symmetric.

Remark The space m(f, φ, p, q) is solid, monotone as well as symmetric.

Taking yk = f
(
q(∆nxk)

)
for all k ∈ N, we have the following results

those follows from the Lemmas listed in Section 2.

Proposition 10 m(f, φ, ∆n, p, q) ⊆ m(f, ψ, ∆n, p, q) if and only if
sup
s≥1

φs/ψs <∞.

Corollary 11 m(f, φ, ∆n, p, q) = m(f, ψ, ∆n, p, q) if and only if

sup
s≥1

φs

ψs
<∞ and sup

s≥1

ψs

φs
<∞.

Proposition 12 `p(f, ∆n, q) ⊆ m(f, φ, ∆n, p, q) ⊆ `∞(f, ∆n, q).

Proposition 13 m(f, φ, ∆n, p, q) = `p(f, ∆n, q) if and only if

sup
s≥1

φs <∞ and sup
s≥1

φ−1
s <∞.

Proposition 14 If p1 < p2, then m(f, φ, ∆n, p1, q)⊂m(f, φ, ∆n, p2, q).

The following result follows from the above result.

Corollary 15 m(f, φ, ∆n, q) ⊂ m(f, φ, ∆n, p, q).

Proposition 16 m(f, φ, ∆n, p1, q) ⊂ m(f, ψ, ∆n, p2, q) if p1 < p2 and
sups≥1 φs/ψs <∞.

Corollary 17 m(f, φ, ∆n, p, q) = `∞(f, ∆n, q) if sups≥1 s/ψs <∞.

Proof. m(f, φ, ∆n, p, q) = `∞(f, ∆n, q) if p = 1 and φk = k, (k =
1, 2, 3, . . .). Hence from Proposition 14 it follows that `∞(f, ∆n, q) ⊆
m(f, φ, ∆n, p, q) if sups≥1 s/ψs <∞. This completes the proof. ¤

The proof of the following result is straightforward.
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Proposition 18 Let f be a modulus function q1 and q2 be seminorms.
Then
(i) m(f, φ, ∆n, p, q1) ∩m(f, φ, ∆n, p, q2) ⊆ m(f, φ, ∆n, p, q1 + q2),
(ii) If q1 is stronger than q2, then m(f, φ, ∆n, p, q1) ⊂ m(f, φ, ∆n, p, q2),
(iii) `∞(f, ∆n, q1) ∩ `∞(f, ∆n, q2) ⊆ `∞(f, ∆n, q1 + q2),
(iv) If q1 is stronger than q2, then `∞(f, ∆n, q1) ⊂ `∞(f, ∆n, q2),
(v) `p(f, ∆n, q1) ∩ `p(f, ∆n, q2) ⊆ `p(f, ∆n, q1 + q2)
(vi) If q1 is stronger than q2, then `p(f, ∆n, q1) ⊂ `p(f, ∆n, q2).

Proposition 19 The space m(f, φ, ∆n, p, q) is not convergence free.

Proof. The result follows from the following example. ¤

Example 4 Let X = `∞, φk = k−1, for all k ∈ N. Let n = 2, f(x) = x

and p = 2. For xk = (xi
k) ∈ `∞, for all k ∈ N, let q(xk) = supi≥2 |xi

k|.
Define the sequence (xi

k) as follows:

xk =
{
k−1, for k even
0, for k odd

Then (xk) ∈ m(f, φ, ∆n, p, q).
Let the sequence (yk) be defined as

yk =
{
k2, for k even
0, for k odd

Then (yk) /∈ m(f, φ, ∆n, p, q).
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