
Hokkaido Mathematical Journal Vol. 34 (2005) p. 103–134

A hypergraph rewriting language and its semantics∗

Akira Higuchi

(Received December 26, 2002; Revised August 4, 2004)

Abstract. A resource conscious functional language is introduced based a hypergraph

rewriting scheme described by higher dimensional hypergraphs. Its operational and de-

notational semantics are given.

Key words: hypergraph rewriting, hypercategory, functional programming.

1. Introduction

1.1. Hypergraphs
Higher dimensional hypergraphs [7] are generalization of directed

graphs and multigraphs. Hypergraphs allow us to use cells of more gen-
eral shapes in describing processes than trees. For example, consider the
rewrite

s(x) + y → x + s(y)

which is a part of the rewriting rules of the system of natural numbers and
their basic functions. The both sides of the above rule consist of 1-cells s

and +. To represent the rewrite as a 1-pasting diagram directly, we need
non-restricted forms of hypergraphs.

The data of a 2-hypergraph defines a rewriting system, where 0-cells
are types, 1-cells are operators, and 2-cells are rewriting rules. Since
hypergraphs allow multiple targets (or codomains), the operators in the
rewriting system can have multiple inputs, and multiple outputs. Another
remarkable property of the rewriting system is its resource consciousness,
an important aspect which is shared by linear term rewriting systems and
Lafont’s interaction net. For example, copying must be done explicitly, by
using an operator such as

2000 Mathematics Subject Classification : 68Q10.
∗partially supported by the Japan Society for the Promotion of Science Research Fel-

lowships from 1997 to 1999

104 A. Higuchi

copy : X → X, X

which takes an object of type X, and returns two copies of it.

1.2. Computer programs and noncopyable objects
Resource conscious languages are known to be useful for representing

computer programs. Computer programs must have ability to manipulate
noncopyable objects, so that it can interact with the outside of the process.
On the other hand, mathematical objects (e.g., numbers) are stored on
memory when they are represented on a computer program, and therefore
they are copyable because we think as if a computer has virtually infinite
amount of memory. Resource conscious languages can treat both noncopy-
able and copyable objects uniformly, and have ability to represent common
algorithms that can be applied for both sorts of objects, without losing
referential transparency.

1.3. Overview
The rest of the paper is organized as follows. In section two, we review

basic concepts of higher dimensional hypergraphs [7], used to formulate
our rewriting systems in section three. In section four, we introduce a set
theoretical semantics for 1-hypergraphs and define the concept of models
of 2-hypergraphs. Finally we single out a certain class of 2-hypergraphs,
called functional, and prove the main result that functional 2-hypergraphs
have set theoretical models. In the last section, we give a sketch of a re-
source conscious language based on the class of functional 2-hypergraphs
developed here.

2. Hypergraphs

Higher dimensional hypergraphs [7] is a generalization of multigraphs.
In this paper, we use those of dimension less than or equal to 2. The
following definition of n-hypergraphs differs from that of [7] a little, so that
we can introduce set-theoretic semantics for them easily.

2.1. Preliminaries
A list over a set X is either the empty list 〈〉 or a finite ordered sequence

〈x1, . . . , xn〉 where xi ∈ X (i = 1, . . . , n) (n ≥ 1).
List(X) denotes the set of the lists over X. length is the function re-

turning the length of a list, i.e., length(〈〉)=0 and length(〈x1, . . . , xn〉)= n.
We sometimes write xi as x(i) for x = 〈x1, . . . , xn〉.

A hypergraph rewriting language and its semantics 105

2.2. 1-hypergraphs

(1-hypergraphs) A 1-hypergraph is a quadruple (Σ0,Σ1, ∗, δ), where
• Σ0 is a set of 0-cells,
• Σ1 is a set of 1-cells,
• ∗ : Σ0 t Σ1 → Σ0 t Σ1 is a bijection satisfying ∗(Σi) ⊂ Σi (i = 0, 1)

and x∗∗ = x (∀x),
• δ : Σ1 → List(Σ0) is a map compatible with ∗, namely

δ(x∗) = 〈x∗1, x∗2, . . . , x∗n〉 when δ(x) = 〈x1, x2, . . . , xn〉.
(1-pasting diagrams) A 1-pasting diagram x over a 1-hypergraph H =
(Σ0,Σ1, ∗, δ) is a pair (δx, `x), where δx is a member of List(Σ1), and
`x : N 0

x → N 0
x is an bijection satisfying

`x(`x(i)) = i (∀i ∈ N 0
x)

and

`x(i) 6= i =⇒ λ(x, `x(i)) = λ(x, i)∗ (∀i ∈ N 0
x),

where we use the following notations. N 0
x denotes the set of 0-node indexes

of x. A 0-node index is a pair of natural numbers 〈i1, i2〉 satisfying 1 ≤
i1 ≤ length(δx) and 1 ≤ i2 ≤ length(δx(i1)). We denote by N 1

x the set
of 1-node indexes of x. A 1-node index is a natural number i satisfying
1 ≤ i ≤ length(δx). We define λ(x, i) = δx(i) for i ∈ N 1

x , and λ(x, i) =
δ(δx(i1))(i2) for i = 〈i1, i2〉 ∈ N 0

x . For simplicity, we call a 1-pasting diagram
as a diagram. A diagram x is said to be closed if `x has no fixed point.

We call N 1
x and N 0

x node indexes because a 1-pasting diagram can be
represented as a labeled tree.

Fig. 1 shows the tree representation [7] of a diagram x = (δx, `x) over the
1-hypergraph H = (Σ0,Σ1,∗, δ), where Σ0 = {A,A∗,B,B∗,C,C∗} with the
obvious involution ∗, Σ1 = {foo, bar}, δ(foo) = 〈A∗,C〉, δ(bar)= 〈A,B∗,A〉,
δx = 〈foo, bar〉, `x(〈1,1〉)= 〈2,1〉, `x(〈1,2〉)= 〈1,2〉, and `x(〈2,2〉)= 〈2,3〉.
2.3. 2-hypergraphs

(2-Hypergraphs) A 2-hypergraph H is a 6-tuple (Σ0,Σ1,Σ2, ∗, δ, `) satisfy-
ing the following conditions.
• Σi is a set of i-cells (i = 0, 1, 2).
• ∗ is an bijection satisfying x ∈ Σi ⇒ x∗ ∈ Σi (i = 0, 1, 2) and x∗∗ = x.

106 A. Higuchi

barfoo

A A BBC

diagram x

21

<1,1> <2,1> <2,3><2,2><1,2>

node indexes

**

Fig. 1. tree representation of x = (δx, `x) and its node indexes

• For x ∈ Σi (i = 1, 2), δ(x) is a finite list over the set Σi−1, and the
map δ is compatible with ∗.

• For x ∈ Σ2, (δ(x), `(x)) is a closed 1-pasting diagram over
(Σ0,Σ1, ∗, δ|Σ1

).

The diagram (δ(x), `(x)) is called the boundary for x. We sometimes
identify a 2-cell x with its diagram (δ(x), `(x)), and write δ(x) and `(x)
by δx and `x respectively. This identification will not cause confusion when
2-cells with the same boundary coincide. We will hereafter assume that this
condition is satisfied, so that a 2-hypergraph is just a collection of closed
diagrams over a 1-hypergraph.

A 1-hypergraphH = (Σ0,Σ1, ∗, δ) is said to be with parity if Σi (i = 0, 1)
is the disjoint union of two sets Σ+

i and Σ−i with ∗(Σ±i) ⊂ Σ∓i . The elements
of Σ+

i and Σ−i are called positive and negative respectively. A 2-hypergraph
H = (Σ0,Σ1,Σ2, ∗, δ, `) is said to be with parity if the above condition
holds for Σ0, Σ1, and Σ2. For a 1-pasting diagram x over a 1-hypergraph
H = (Σ0,Σ1, ∗, δ), we use the following notations.
• N 1±

x =
{
i ∈ N 1

x

∣∣ λ(x, i) ∈ Σ±1
}
.

• N 0αβ
x =

{〈i1, i2〉 ∈ N 0
x

∣∣ i1 ∈ N 1α
x , `x(〈i1, i2〉)(1) ∈ N 1β

x

}
(α, β = + or −).

A hypergraph rewriting language and its semantics 107

3. Rewriting logics

In this section, we define a rewriting system based on a 2-hypergraph
with parity. Rules are the set of 2-cells of a 2-hypergraph. Rewritings are
1-pasting diagrams derived from the set of 2-cells. The main concern in this
section is to define the rewritings derived from a given set of rules.

(Identity diagrams) Let H = (Σ0,Σ1, ∗, δ) be a 1-hypergraph. A closed
diagram x = (δx, `x) over H is called an identity diagram if the following
conditions are met.
• There is a natural number m such that δx = 〈a1, . . . , am, am+1, . . . , a2m〉.
• λ(x, i) ∈ Σ−1 (∀i ∈ {1, . . . , m}).
• λ(x,m + i) = λ(x, i)∗ (∀i ∈ {1, . . . , m}).
• For 〈i1, i2〉 ∈ N 0

x satisfying i1 ∈ {1, . . . , m}, `x(〈i1, i2〉) = 〈i1 + m, i2〉.
(Disjoint sum) Let x, y be closed diagrams over a 1-hypergraph H =
(Σ0,Σ1, ∗, δ), and δx = 〈a1, . . . , am〉, δy = 〈b1, . . . , bn〉. We define a closed
diagram x⊕ y, called the disjoint sum of x and y, as follows.
• δx⊕y = 〈a1, . . . , am, b1, . . . , bn〉.
• `x⊕y(〈i1, i2〉) = 〈j1, j2〉 holds iff (i1 ≤ m) and (`x(〈i1, i2〉) = 〈j1, j2〉),

or (i1 > m) and (`y(〈i1 −m, i2〉) = 〈j1 −m, j2〉) holds.

(Pasting maps, embeddings) Let x, y be closed diagrams over a 1-hyper-
graph H = (Σ0,Σ1, ∗, δ), and δx = 〈a1, . . . , am〉, δy = 〈b1, . . . , bn〉. A pasting
map over x ⊕ y is a bijection f : N 1

x⊕y → N 1
x⊕y satisfying the following

conditions.
(PM-1) f(f(i)) = i (∀i ∈ N 1

x⊕y).
(PM-2) λ(x⊕ y, f(i)) = λ(x⊕ y, i)∗ (∀i ∈ N 1

x⊕y).
(PM-3) If i ∈ N 1

x⊕y and f(i) 6= i, then (i ≤ m)∧ (f(i) > m) or (i > m)∧
(f(i) ≤ m) holds.

(PM-4) If 〈i1, i2〉, 〈j1, j2〉∈N 0
x⊕y, f(i1) 6= i1, f(j1) 6=j1, and `x⊕y(〈i1, i2〉)=

〈j1, j2〉, then `x⊕y(〈f(i1), i2〉)=〈f(j1), j2〉 holds.
A pasting map f over x ⊕ y is called an embedding if it satisfies the

following conditions.
(E-1) f(i) = i (∀i ∈ N 1−

x).
(E-2) f(m + i) = m + i (∀i ∈ N 1+

y).
(E-3) ∀i ∈ N 1+

x (f(i) 6= i) or ∀i ∈ N 1−
y (f(m + i) 6= m + i) holds.

108 A. Higuchi

diagram x diagram y

diagram x y

b
�

a
�

c
�

d
�

c
�

d
�

e
�

A
�

B
�

B
�

A
�

C
�

B
�

B
�

C
�

B
�

B
�

A
�

C
�

A
�

B
�

B
�

C
�

A
�

B
�

B
�

A
�

C
�

B
�

B
�

C
�

B
�

B
�

A
�

C
�

A
�

B
�

B
�

C
�

c
�

d
�

e
�

b
�

a
�

c
�

d
�

Fig. 2. disjoint sum

(Binary composition) Let x, y be closed diagrams over a 1-hypergraph
H = (Σ0,Σ1, ∗, δ), and f be a pasting map over x ⊕ y. Let f0 : N 0

x⊕y →
N 0

x⊕y be the bijection defined by

f0(〈i1, i2〉) = 〈f(i1), i2〉.

Let fix(f0) be the set of fixed points of f0, and `f
x⊕y : fix(f0) → fix(f0)

a map defined as

`f
x⊕y(i) =

{
`x⊕y(i) if `x⊕y(i) ∈ fix(f0)

`f
x⊕y(f0(`x⊕y(i))) otherwise

.

A hypergraph rewriting language and its semantics 109

pasting map f

map f0

yxmap

yxmap
f

map h f

binary composition of x and y with pasting map f

A
�

B
�

B
�

B
�

B
�

A
�

A
�

C
�

C
�

A
�

B
�

B
�

B
�

B
�

C
�

C
�

A
�

B
�

B
�

B
�

B
�

A
�

A
�

C
�

C
�

A
�

B
�

B
�

B
�

B
�

C
�

C
�

A
�

B
�

B
�

B
�

B
�

A
�

A
�

C
�

C
�

A
�

B
�

B
�

B
�

B
�

C
�

C
�

b
�

a
�

c
�

d
�

c
�

d
�

e
�

b
�

a
�

c
�

d
�

c
�

d
�

e
�

b
�

a
�

e
�

b
�

a
�

e
�

A
�

B
�

A
�

C
�

B
�

C
�

Fig. 3. binary composition

110 A. Higuchi

Note that `f
x⊕y is well-defined. Let hf : {1, . . . , k} → fix(f) be the monotone

bijection, where fix(f) is the set of fixed points of f and k = |fix(f)|. Then,
we define the binary composition z of x and y with the pasting map f as
the following closed diagram:
• δz = 〈λ(x⊕ y, hf (1)), . . . , λ(x⊕ y, hf (k))〉.
• `z(〈i1, i2〉) = 〈j1, j2〉 iff `f

x⊕y(〈hf (i1), i2〉) = 〈hf (j1), j2〉.
(Isomorphic diagrams) Closed diagrams x and y over a 1-hypergraph H
are said to be isomorphic if there is a pasting map over x⊕ y which has no
fixed point.

(Rewrites) Let H be a 2-hypergraph with parity. The rewrites of H are
the 1-pasting diagrams defined as follows.
• The boundary of a positive 2-cell of H is a rewrite of H.
• An identity diagram of H is a rewrite of H.
• If x, y are rewrites of H, and f is a embedding over x ⊕ y, then the

binary composition of x and y with pasting map f is also a rewrite
of H.

• If x is a rewrite of H, y is a closed diagram over H, and y is isomorphic
to x, then y is also a rewrite of H.

4. Set theoretic interpretations of 1-Hypergraphs

(Set theoretic interpretation) Let H = (Σ0,Σ1, ∗, δ) be a 1-hypergraph
with parity. A map [[·]] which assigns a family of sets

{
[[x]]

∣∣x ∈ Σ0 ∪ Σ1

}
is called a set theoretic interpretation of H = (Σ0,Σ1, ∗, δ) if it satisfies
[[x]] ⊂ [[x1]] × · · · × [[xm]] with δx = 〈x1, . . . , xm〉 for x ∈ Σ1, and [[x∗]] = [[x]]
for x ∈ Σ0 ∪ Σ1.

(Assignment) Let [[·]] be a set theoretic interpretation ofH = (Σ0,Σ1, ∗, δ),
y a closed diagram over H, and N a subset of N 0

y . An assignment
to y over N with respect to [[·]] is a map s : N → ⋃

x∈Σ0
[[x]] satisfying

s(i) ∈ [[λ(y, i)]] (∀i ∈ N), and s(i) = s(`y(i)) if both sides are defined.
Asgn(y, [[·]], N) denotes the set of assignments to y over N with respect
to [[·]].
(Valid assignment) Let N be a subset of N 0

y , and M a subset of N 1
y . An

assignment s to y over N with respect to [[·]] is said to be valid over M if it
satisfies, for k ∈ M ,

〈
s(〈k, 1〉), . . . , s(〈k, m〉)〉 ∈ [[λ(y, k)]] if all the compo-

A hypergraph rewriting language and its semantics 111

nents are defined. VAsgn(y, [[·]], N,M) denotes the set of assignments to y

over N with respect to [[·]] which are valid over M .

(Union of assignments) Let N1, N2 ⊂ N 0
y , and s1, s2 be assignments to y

over N1, N2 respectively, with respect to [[·]]. Assume s1(i) = s2(i) for
∀i ∈ N1 ∩N2. Then we define a map s1 ∪ s2, the union of s1 and s2, as

(s1 ∪ s2)(i) =

{
s1(i) if i ∈ N1

s2(i) if i ∈ N2

.

Note that if both N1 and N2 are closed with respected to the map `y, the
map s1 ∪ s2 is an assignment to y over N1 ∪N2 with respect to [[·]].
(Interpretation satisfying an equation) Let [[·]] be a set theoretic interpre-
tation of H = (Σ0,Σ1, ∗, δ), y a closed diagram over H. The interpreta-
tion [[·]] is said to satisfy the equation y if, for any assignment s to y over
N 0−+

y ∪N 0+−
y with respect to [[·]],

∃t1 ∈ Asgn(y, [[·]],N 0−−
y)

(
(s ∪ t1) ∈ VAsgn(y, [[·]], N1,N 1−

y)
)

⇐⇒
∃t2 ∈ Asgn(y, [[·]],N 0++

y)
(
(s ∪ t2) ∈ VAsgn(y, [[·]], N2,N 1+

y)
)

holds, where N1 = N 0−−
y ∪N 0−+

y ∪N 0+−
y , N2 = N 0++

y ∪N 0−+
y ∪N 0+−

y .

(Models) Let H2 = (Σ0,Σ1,Σ2, ∗, δ, `) be a 2-hypergraph. A set theoretic
interpretation [[·]] is said to be a model of H2 if [[·]] satisfies all the equations{
(δx, `x)

∣∣ x ∈ Σ2

}
.

Lemma 1 Let x, y be closed diagrams over a 1-hypergraph H =
(Σ0,Σ1, ∗, δ), f an embedding over x ⊕ y, and z the binary composition
of x and y with pasting map f . If [[·]] is a set theoretic interpretation of H
satisfying equations x and y, then [[·]] satisfies the equation z also.

Proof. We prove the lemma in the case that the latter condition of (E-3)
holds. Let MA = N 1−

x , MB = N 1+
x ∩ fix(f), MC = N 1+

x \ MB, M ′
C =

f(MC), and MD =
{
i + m

∣∣ i ∈ N 1+
y

}
. Because we assume that the latter

condition of (E-3) holds, M ′
C =

{
i + m

∣∣ i ∈ N 1−
y

}
, MA ⊆ fix(f), and

MD ⊆ fix(f) holds (Fig. 4). Let

I1 = {〈i1, i2〉 ∈ N 0+−
x | i1 ∈ MB}

112 A. Higuchi

I2 = {〈i1, i2〉 ∈ N 0+−
x | i1 ∈ MC}

I3 = {〈i1, i2〉 ∈ N 0++
x | i1 ∈ MC , `x⊕y(〈i1, i2〉)(1) ∈ MB}

NA = N 0−−
x

NB = {〈i1, i2〉 ∈ N 0++
x | i1 ∈ MB, `x⊕y(〈i1, i2〉)(1) ∈ MB}

NC = {〈i1, i2〉 ∈ N 0++
x | i1 ∈ MC , `x⊕y(〈i1, i2〉)(1) ∈ MC}.

���

���

��� ��� � ���

	

�

�

���

���

���

diagram x diagram y

diagram z

	

�

Fig. 4. binary composition, when the latter condition of (E-3) holds

Let PA, PB, PC , PD, and P ′
C be predicates defined as follows. Let

V =
∏

i∈I1
[[λ(x⊕y, i)]], W =

∏
i∈I2

[[λ(x⊕y, i)]], and U =
∏

i∈I3
[[λ(x⊕y, i)]].

For v ∈ V , w ∈ W , u ∈ U ,

PA(v, w)

⇐⇒ ∃t1 ∈ Asgn(x, [[·]], NA)
(
(s1 ∪ t1) ∈ VAsgn(x, [[·]], N1,MA)

)

where N1 = N 0−−
x ∪ N 0−+

x ∪ N 0+−
x , and s1 is defined by 〈s1(i)〉i∈I1 =

〈s1(`x⊕y(i))〉i∈I1 = v, 〈s1(i)〉i∈I2 = 〈s1(`x⊕y(i))〉i∈I2 = w.

PB(v, u)

⇐⇒ ∃t2 ∈ Asgn(x, [[·]], NB)
(
(s2 ∪ t2) ∈VAsgn(x, [[·]], N2,MB)

)

A hypergraph rewriting language and its semantics 113

where N2 = NB∪I1∪`x⊕y(I1)∪I3∪`x⊕y(I3), and s2 is defined by 〈s2(i)〉i∈I1 =
〈s2(`x⊕y(i))〉i∈I1 = v, 〈s2(i)〉i∈I3 = 〈s2(`x⊕y(i))〉i∈I3 = u.

PC(w, u)

⇐⇒ ∃t3 ∈ Asgn(x, [[·]], NC)
(
(s3 ∪ t3) ∈ VAsgn(x, [[·]], N3,MC)

)

where N3 = NC∪I2∪`x⊕y(I2)∪I3∪`x⊕y(I3), and s3 is defined by 〈s3(i)〉i∈I2 =
〈s3(`x⊕y(i))〉i∈I2 = w, 〈s3(i)〉i∈I3 = 〈s3(`x⊕y(i))〉i∈I3 = u.

PD(w,u)

⇐⇒∃t4∈Asgn(y, [[·]],N 0++
y)

(
(s4∪ t4)∈VAsgn(y, [[·]],N4,N 1+

y)
)

where N4 = N 0++
y ∪N 0−+

y ∪N 0+−
y , and s4 is defined by

〈s4(〈f(i1)−m, i2〉)〉〈i1,i2〉∈I2 = 〈s4(`y(〈f(i1)−m, i2〉))〉〈i1,i2〉∈I2 = w,
〈s4(〈f(i1)−m, i2〉)〉〈i1,i2〉∈I3 = 〈s4(`y(〈f(i1)−m, i2〉))〉〈i1,i2〉∈I3 = u.

P ′
C(w,u)

⇐⇒∃t5∈Asgn(y, [[·]],N 0−−
y)

(
(s5∪ t5)∈VAsgn(y, [[·]],N5,N 1−

y)
)

where N5 = N 0−−
y ∪N 0−+

y ∪N 0+−
y , and s5 is defined by

〈s5(〈f(i1)−m, i2〉)〉〈i1,i2〉∈I2 = 〈s5(`y(〈f(i1)−m, i2〉))〉〈i1,i2〉∈I2 = w,
〈s5(〈f(i1)−m, i2〉)〉〈i1,i2〉∈I3 = 〈s5(`y(〈f(i1)−m, i2〉))〉〈i1,i2〉∈I3 = u.

Because [[·]] satisfies x and y,

∀v ∈ V ∀w ∈ W
(
PA(v, w) ⇔ ∃u ∈ U(PB(v, u) ∧ PC(w, u))

)

and

∀w ∈ W ∀u ∈ U
(
PD(w, u) ⇔ P ′

C(w, u)
)

hold. Because f is an embedding, PC is equivalent to P ′
C . Therefore we

have

∀v ∈ V ∀w ∈ W
(
PA(v, w) ⇔ ∃u ∈ U(PB(v, u) ∧ PD(w, u))

)
,

which means that [[·]] satisfies z.

Proposition 1 Let H be a 2-hypergraph, and [[·]] a model of H. Then [[·]]
satisfies the equation r for any rewrite r of H.

114 A. Higuchi

5. Functional hypergraphs

In general, 2-hypergraphs can not be interpreted as systems of sets and
functions. In this section, we introduce some conditions for 2-hypergraphs
so that they can be interpreted as systems of sets and functions.

(Functional hypergraphs) A 2-hypergraph H = (Σ0,Σ1,Σ2, ∗, δ, `) is called
functional if the following conditions are met.
(F-1) Σ0, Σ1, and Σ2 are finite.
(F-2) H is with parity, and Σ+

1 is the disjoint union of two sets Σ+
c

and Σ+
d , called positive constructors and destructors. Σ−1 likewise,

and Σ−c =
{
x∗

∣∣ x ∈ Σ+
c

}
, Σ−d =

{
x∗

∣∣ x ∈ Σ+
d

}
hold.

(F-3) For x ∈ Σ+
c , δx(1) is positive and δx(i) negative for i ∈ {2, 3, . . . }.

When δx(1) = t, x is called a constructor for t.
(F-4) For x ∈ Σ+

d , δx(1) is negative (but δx(i) need not to be positive for
i ∈ {2, 3, . . . }). When δx(1) = t, x is called a destructor for t.

(F-5) If t is a positive 0-cell, x1 a positive constructor for t, and x2 a pos-
itive destructor for t, then there is exactly one 2-cell y ∈ Σ+

2 such that
δy(1) = x∗1, δy(2) = x∗2, δy(k) is positive for all k ∈ {3, . . . , length(δy)},
`y(〈1, 1〉) = 〈2, 1〉, and N 0−−

y =
{〈1, 1〉, 〈2, 1〉}.

(F-6) all the 2-cells in Σ+
2 are of the form (F-5).

(F-7) For x ∈ Σ+
2 , the shape graph of x has no cycle. The shape graph

of x is a directed graph (E, V) defined as follows.
• V is the set of pairs 〈i1, i2〉 of 0-node indexes of the diagram

(δx, `x), such that i1 is positive, i2 negative and `x(i1) = i2.
• 〈〈i1, i2〉, 〈j1, j2〉〉 ∈ E iff there is a 1-node index k such that

k = i1(1) = j2(1) and δx(k) ∈ Σ−1 , or k = i2(1) = j1(1) and
δx(k) ∈ Σ+

1 .

Example 1 The following is a functional 2-hypergraph H =
(Σ0,Σ1,Σ2, ∗, δ, `) which expresses the system of natural numbers.
Fig. 5 is the tree representations of zeroadd+, succadd+, zeroid+, and
succid+.
• Σ+

0 = {Nat+}, Σ−0 = {Nat−}.
• Σ+

c = {zero+, succ+}, Σ−c = {zero−, succ−}, Σ+
d = {add+, id+},

Σ−d = {add−, id−}.
• Σ+

2 = {zeroadd+, succadd+, zeroid+, succid+},
Σ−2 = {zeroadd−, succadd−, zeroid+, succid−}.

A hypergraph rewriting language and its semantics 115

zeroadd
�

zero
�

add
�

Nat
�

Nat
�

Nat
�

Nat
�

id
�

Nat
�

Nat
�

succ
�

add
�

Nat
�

Nat
�

Nat
�

Nat
�

Nat
�

Nat
�

Nat
�

Nat
�

Nat
�

Nat
�

succ
�

add
�

succadd
�

zero
�

Nat
�

id
�

Nat
�

Nat
�

zero
�

Nat
�

succ
�

Nat
�

Nat
�

Nat
�

Nat
�

succ
�

id
�

Nat
�

Nat
�

zeroid
�

succid
�

Fig. 5. zeroadd+, succadd+, zeroid+, and succid+

• (Nat+)∗ = Nat−, (zero+)∗ = zero−, (succ+)∗ = succ−,
(add+)∗ = add−, (id+)∗ = id−.

• δzero+ = 〈Nat+〉, δsucc+ = 〈Nat+,Nat−〉, δadd+ = 〈Nat−,Nat−,Nat+〉,
δid+ = 〈Nat−,Nat+〉.

• δzeroadd+ = 〈zero−,add−, id+〉, δsuccadd+ = 〈succ−,add−, succ+,add+〉,
δzeroid+ =〈zero−, id−, zero+〉, δsuccid+ =〈succ−, id−, succ+〉.

• `zeroadd+ =





〈1, 1〉 ↔ 〈2, 1〉
〈2, 2〉 ↔ 〈3, 1〉
〈2, 3〉 ↔ 〈3, 2〉

116 A. Higuchi

• `succadd+ =





〈1, 1〉 ↔ 〈2, 1〉
〈1, 2〉 ↔ 〈4, 1〉
〈2, 2〉 ↔ 〈3, 2〉
〈2, 3〉 ↔ 〈4, 3〉
〈3, 1〉 ↔ 〈4, 2〉

• `zeroid+ =

{
〈1, 1〉 ↔ 〈2, 1〉
〈2, 2〉 ↔ 〈3, 1〉

• `succid+ =





〈1, 1〉 ↔ 〈2, 1〉
〈1, 2〉 ↔ 〈3, 2〉
〈2, 2〉 ↔ 〈3, 1〉

6. Models of functional hypergraphs

In this section, we give a set-theoretic model D[[·]] of a functional
2-hypergraph H = (Σ0,Σ1,Σ2, ∗, δ, `). At first, we define an interpreta-
tion T [[·]] for 0-cells and constructors, so that (T [[Σ+

0]], T [[Σ+
c]]) forms a term

algebra. D[[·]] is defined as an extension to T [[·]], and defined for destructors
also.

(Definition of T [[·]] for 0-cells) We define a sequence of interpretations
T [[·]]k. T [[x]]0 = ∅ for all x ∈ Σ0. For x ∈ Σ0, T [[x]]k+1 is defined by

T [[x]]k+1 =
{〈ci, v1, . . . , vm(i)〉

∣∣ i ∈ {1, . . . , n},
vj ∈ T [[(yj

i)
∗]]k (∀j ∈ {1, . . . , m(i)})}

where c1, . . . , cn are the constructors for x, and the natural number m(i) and
the sequence {yj

i } are defined by 〈x, y1
i , . . . , y

m(i)
i 〉 = δ(ci) for i ∈ {1, . . . , n}.

When m(i) = 0, the list 〈ci, v1, . . . , vm(i)〉 means 〈ci〉, and the condition
vj ∈ T [[(yj

i)
∗]]k (∀j ∈ {1, . . . , m(i)}) is always true. The interpretation T [[x]]

is defined by

T [[x]] =
∞⋃

k=0

T [[x]]k

for all x ∈ Σ+
0 .

A hypergraph rewriting language and its semantics 117

(Definition of T [[·]] for constructors) For z ∈ Σ+
c , T [[z]] is defined by

T [[z]] =
{〈〈z, v1, . . . , vm〉, v1, . . . , vm〉

∣∣ vi ∈ [[yi]] (∀i ∈ {1, . . . , m})}

where m and the sequence {yi} are defined by 〈x, y1, . . . , ym〉 = δ(z).

Example 2 Suppose H = (Σ0,Σ1,Σ2, ∗, δ, `) is defined as the same as the
previous example. The 0-cell Nat+ is interpreted by T [[·]]k (k = 0, 1, 2, 3, . . .)
as

T [[Nat+]]0 = ∅
T [[Nat+]]1 = {〈zero+〉} ∪ {〈succ+, y〉 | y ∈ T [[Nat+]]0}

= {〈zero+〉}
T [[Nat+]]2 = {〈zero+〉} ∪ {〈succ+, y〉 | y ∈ T [[Nat+]]1}

= {〈zero+〉, 〈succ+, 〈zero+〉〉}
T [[Nat+]]3 = {〈zero+〉} ∪ {〈succ+, y〉 | y ∈ T [[Nat+]]2}

= {〈zero+〉, 〈succ+, 〈zero+〉〉, 〈succ+, 〈succ+, 〈zero+〉〉〉}
...

and so on, therefore

T [[Nat+]] =
∞⋃

k=0

T [[Nat+]]k

= {〈zero+〉, 〈succ+, 〈zero+〉〉, 〈succ+, 〈succ+, 〈zero+〉〉〉, . . . }
holds. For the constructors zero+ and succ+,

T [[zero+]] = {〈〈zero+〉〉}
T [[succ+]] = {〈〈succ+, v〉, v〉 | v ∈ T [[Nat+]]}

holds. As a result, we have

T [[Nat+]] = Nat

T [[zero+]] = {〈zero〉}
T [[succ+]] =

{〈succ(v), v〉
∣∣ v ∈ Nat

}

where Nat =
{
(

k︷ ︸︸ ︷
succ ◦ · · · ◦ succ)(zero)

∣∣ k ∈ {0, 1, . . . }}, zero = 〈zero+〉
and succ(x) = 〈succ+, x〉.

118 A. Higuchi

Proposition 2 For all x ∈ Σ+
c , the relation T [[x]] is a function from∏

i∈I−x T [[δx(i)]] to
∏

i∈I+
x
T [[δx(i)]], where I±x =

{
i | δx(i) ∈ Σ±0

}
.

Proposition 3
(T [[Σ+

0]], T [[Σ+
c]]

)
is a term algebra.

(Definition of D[[·]]) We define a sequence of interpretations D[[·]]k as

D[[x]]0 =





T [[x]] if x ∈ Σ+
0 ∪ Σ+

c

T [[x∗]] if x ∈ Σ−0 ∪ Σ−c
∅ if x ∈ Σd

and

D[[x]]k+1 =





D[[x]]k if x∈Σ0 ∪Σc{〈
s(〈2,1〉), . . . , s(〈2,m〉)〉 ∣∣ y ∈Σ2, δy(2)= x, s∈V k

y

}

if x∈Σd

where m = length(δx) and V k
y = VAsgn(y,D[[·]]k,N 0

y ,N 1
y \ {2}). D[[·]] is

defined by

D[[x]] =
∞⋃

k=0

D[[x]]k

for all x ∈ Σ0 ∪ Σ1.

Example 3 Suppose H = (Σ0,Σ1,Σ2, ∗, δ, `) is defined as in the exam-
ples 1 and 2. By definition, we have

D[[Nat+]]k =D[[Nat−]]k =T [[Nat+]]=Nat

D[[zero+]]k =D[[zero−]]k =T [[zero+]]={〈zero〉}
D[[succ+]]k =D[[succ−]]k =T [[succ+]]=

{〈succ(v), v〉
∣∣v∈T [[Nat+]]

}

for all k ∈ {0, 1, 2, . . . }. By definition, D[[id+]]0 = ∅, and

D[[id+]]k+1 =
{〈s1(〈2, 1〉), s1(〈2, 2〉)〉

∣∣ s1 ∈ V k
zeroid+

}

∪ {〈s2(〈2, 1〉), s2(〈2, 2〉)〉
∣∣ s2 ∈ V k

succid+

}

where V k
y = VAsgn(y,D[[·]]k,N 0

y ,N 1
y \ {2}). Because s1 is an assignment

to zeroid+ over N 0
zeroid+ , s1(〈1, 1〉) = s1(〈2, 1〉) and s1(〈2, 2〉) = s1(〈3, 1〉)

hold. Because s1 is valid over {1, 3}, we have s1(〈1, 1〉) ∈ D[[zero−]]k and

A hypergraph rewriting language and its semantics 119

s1(〈3, 1〉) ∈ D[[zero+]]k. Therefore
{〈s1(〈2, 1〉), s1(〈2, 2〉)〉

∣∣ s1 ∈ V k
zeroid+

}
=

{〈zero, zero〉}.

Similarly, we have s2(〈1, 1〉) = s2(〈2, 1〉), s2(〈1, 2〉) = s2(〈3, 2〉), s2(〈2, 2〉) =
s2(〈3, 1〉),

〈s2(〈1, 1〉), s2(〈1, 2〉)〉 ∈ {〈succ(v), v〉 ∣∣ v ∈ D[[Nat+]]
}
,

and

〈s2(〈3, 1〉), s2(〈3, 2〉)〉 ∈ {〈succ(v), v〉
∣∣ v ∈ D[[Nat+]]

}
,

whence
{〈s2(〈2, 1〉), s2(〈2, 2〉)〉

∣∣ s2 ∈ V k
succid+

}

=
{〈succ(v), succ(v)〉

∣∣ v ∈ Nat
}
.

We have

D[[id+]]k+1 =
{〈zero, zero〉} ∪ {〈succ(v), succ(v)〉 ∣∣ v ∈ D[[Nat+]]

}

for all k ∈ {0, 1, 2, . . . }, which implies

D[[id+]] =
{〈v, v〉

∣∣ v ∈ Nat
}
.

The interpretation for add+ is defined similarly as follows. By definition,
D[[add+]]0 = ∅, and

D[[add+]]k+1 =
{〈

s3(〈2, 1〉), s3(〈2, 2〉), s3(〈2, 3〉)〉
∣∣ s3 ∈ V k

zeroadd+

}

∪ {〈
s4(〈2, 1〉), s4(〈2, 2〉), s4(〈2, 3〉)〉

∣∣ s4 ∈ V k
succadd+

}

where V k
y = VAsgn(y,D[[·]]k,N 0

y ,N 1
y \{2}). We have s3(〈1, 1〉) = s3(〈2, 1〉),

s3(〈2, 2〉) = s3(〈3, 1〉), s3(〈2, 3〉) = s3(〈3, 2〉),
〈s3(〈1, 1〉)〉 ∈ D[[zero+]]k =

{〈zero〉},

and

〈s3(〈3, 1〉), s3(〈3, 2〉)〉 ∈ D[[id+]]k =
{〈v, v〉

∣∣ v ∈ Nat
}
,

whence
{〈

s3(〈2, 1〉), s3(〈2, 2〉), s3(〈2, 3〉)〉
∣∣ s3 ∈ V k

zeroadd+

}

=
{〈zero, v, v〉

∣∣ v ∈ Nat
}
.

120 A. Higuchi

Similarly, we have

s4(〈1, 1〉) = s4(〈2, 1〉), s4(〈1, 2〉) = s4(〈4, 1〉),
s4(〈2, 2〉) = s4(〈3, 2〉), s4(〈2, 3〉) = s4(〈4, 3〉), s4(〈3, 1〉) = s4(〈4, 2〉),
〈s4(〈1, 1〉), s4(〈1, 2〉)〉 ∈ {〈succ(v), v〉

∣∣ v ∈Nat
}
,

〈s4(〈3, 1〉), s4(〈3, 2〉)〉 ∈ {〈succ(v), v〉
∣∣ v ∈Nat

}
,

and
〈
s4(〈4, 1〉), s4(〈4, 2〉), s4(〈4, 3〉)〉 ∈ D[[add+]]k,

whence
{〈

s4(〈2, 1〉), s4(〈2, 2〉), s4(〈2, 3〉)〉 ∣∣ s4 ∈ V k
succadd+

}

=
{〈succ(v1), v2, v3〉

∣∣ 〈v1, succ(v2), v3〉 ∈ D[[add+]]k
}
.

We have

D[[add+]]k+1 =
{〈zero, v, v〉 ∣∣ v ∈Nat

}

∪{〈succ(v1), v2, v3〉
∣∣ 〈v1, succ(v2), v3〉 ∈D[[add+]]k

}

=
{〈succ i(zero), v, succ i(v)〉

∣∣ i∈{0,1, . . . , k}, v ∈Nat
}

where succ i =
i︷ ︸︸ ︷

succ ◦ · · · ◦ succ, which implies

D[[add+]] =
{〈succ i(zero), v, succ i(v)〉

∣∣ i ∈ {0, 1, . . . }, v ∈ Nat
}
.

Theorem 1 The interpretation D[[·]] is a model of the 2-hypergraph H.

Proof. Let y ∈ Σ+
2 . We show that D[[·]] satisfies the equation y. Let s be

an assignment to y over N 0+−
y ∪N 0−+

y with respect to D[[·]].
Suppose t1 ∈ Asgn(y,D[[·]],N 0−−

y) satisfies

s ∪ t1 ∈ VAsgn(y,D[[·]], N1,N 1−
y)

where N1 = N 0−−
y ∪ N 0−+

y ∪ N 0+−
y . Let x = δy(2). Because t1 is valid

over {2},
〈
t1(〈2, 1〉), . . . , t1(〈2,m〉)〉 ∈ D[[x]]

holds where m = length(δx). There is a natural number k ≥ 1 such that
〈
t1(〈2, 1〉), . . . , t1(〈2,m〉)〉 ∈ D[[x]]k.

A hypergraph rewriting language and its semantics 121

By the definition of D[[·]]k, there are z ∈ Σ+
2 and

t2 ∈ VAsgn(z,D[[·]]k−1,N 0
z ,N 1

z \ {2})
such that δz(2) = x and t2(〈2, i〉) = t1(〈2, i〉) for 1 ≤ i ≤ m. By the
definition of D[[·]],

t2 ∈ VAsgn(z,D[[·]],N 0
z ,N 1

z \ {2})
holds. Because

t2(〈1, 1〉) = t2(〈2, 1〉) = t1(〈2, 1〉) = t1(〈1, 1〉)
and δy(1) is a constructor, we have δy(1) = δz(1), which implies y = z

by (F-5). Moreover, we have t2(〈1, i〉) = t1(〈1, i〉) for i ≥ 2 by Proposition 3.
Because t2(j) = t1(j) for j ∈ N 0−+

y and t1 is an assignment over N 0
y ,

s(j) = t2(j) holds for j ∈ N 0−+
y ∪ N 0+−

y . Let t′2 = t2|N 0++
y

. We have
t′2 ∈ Asgn(y,D[[·]],N 0++

y) and s ∪ t′2 ∈ VAsgn(y,D[[·]], N2,N 1+
y), where

N2 = N 0++
y ∪N 0−+

y ∪N 0+−
y .

Conversely suppose t2 ∈ Asgn(y,D[[·]],N 0++
y) satisfies

s ∪ t2 ∈ VAsgn(y,D[[·]], N2,N 1+
y)

where N2 = N 0++
y ∪N 0−+

y ∪N 0+−
y . There is a natural number k ≥ 1 such

that

s ∪ t2 ∈ VAsgn(y,D[[·]]k, N2,N 1+
y).

Let t1 be an assignment defined by

t1(〈1, 1〉) = t1(〈2, 1〉) =
〈
δy(1), s(〈1, 2〉), . . . , s(〈1,m〉)〉

where m = length(δz), z = δy(1). s ∪ t1 is a valid assignment over {1}
with respect to D[[·]]. By the definition of D[[·]]k+1, s ∪ t1 is a valid as-
signment over {2} with respect to D[[·]]k+1. Therefore we have s ∪ t1 ∈
VAsgn(y,D[[·]], N1,N 1−

y) where N1 = N 0−−
y ∪N 0−+

y ∪N 0+−
y .

Lemma 2 For all x ∈ Σ+
d and k ≥ 0, the relation D[[x]]k is a function from∏

i∈I−x D[[δx(i)]] to
∏

i∈I+
x
D[[δx(i)]], where I±x =

{
i
∣∣ δx(i) ∈ Σ±0

}
.

Proof. By induction. When k = 0, D[[x]]k = ∅. Suppose k ≥ 1. Let p, q ∈
D[[x]]k, p = 〈p1, . . . , pm〉, q = 〈q1, . . . , qm〉, where m = length(δx). Suppose
pi = qi for i ∈ I−x . We show that pi = qi for i ∈ I+

x . Since p, q ∈ D[[x]]k,

122 A. Higuchi

there are y1, y2 ∈ Σ+
2 ,

s1 ∈ VAsgn(y1,D[[·]]k−1,N 0
y1

,N 1
y1
\ {2}),

and

s2 ∈ VAsgn(y2,D[[·]]k−1,N 0
y2

,N 1
y2
\ {2})

satisfying

δy1(2) = x, δy2(2) = x, s1(〈2, i〉) = pi, s2(〈2, i〉) = qi

for 1 ≤ i ≤ m. Because
(T [[Σ+

0]], T [[Σ+
c]]

)
is a term algebra and p1 = q1

holds, we have δy1(1) = δy2(1). By (F-5) and (F-6), we have y1 = y2. From
s1(〈2, 1〉) = s2(〈2, 1〉) it follows s1(〈1, 1〉) = s2(〈1, 1〉). Because D[[δy1(1)]] is
an injection by Proposition 3, we have s1(〈1, i〉) = s2(〈1, i〉) for 2 ≤ i ≤
length(δy1). Let N1 = {`y1(j) | j ∈ J−x } and N2 = {`y1(〈2, i〉) | i ∈ I+

x }
where

J−x =
{〈1, i〉

∣∣ 2 ≤ i ≤ length(δy1)
} ∪ {〈2, i〉 | i ∈ I−x

}
.

Note that N 0+−
y1

= N1 ∪N2 holds. By the induction hypothesis and (F-7),

s1(j) = s2(j) (∀j ∈ N1) =⇒ s1(j) = s2(j) (∀j ∈ N2)

holds. We already have s1(〈1, i〉) = s2(〈1, i〉) for 2 ≤ i ≤ length(δy1) and
s1(〈2, i〉) = s2(〈2, i〉) for i ∈ I−x . Therefore we have s1(j) = s2(j) for j ∈ N2,
which implies pi = qi for i ∈ I+

x .

Theorem 2 For all x ∈ Σ+
1 , the relation D[[x]] is a function from∏

i∈I−x D[[δx(i)]] to
∏

i∈I+
x
D[[δx(i)]], where I±x =

{
i
∣∣ δx(i) ∈ Σ±0

}
.

7. Sample language

In this section, we show how a 2-hypergraph can represent interactions
between noncopyable objects, using a realistic example. We define a simple
language whose syntax elements correspond to 0, 1, and 2-cells of a func-
tional 2-hypergraph.

7.1. Syntax summary
7.1.1. Types

A type definition has the following syntax. The following code defines
a type Nat whose constructors are zero and succ.

A hypergraph rewriting language and its semantics 123

.datatype Nat: zero, succ;
zero : -> Nat();
succ : Nat() -> Nat();

7.1.2. Type-parameterized types
A type can have type parameters. The following code defines a type

List which has a type parameter t.

.datatype List : nil, cons;
nil : -> List(t);
cons : t, List(t) -> List(t);

7.1.3. Rewriting rules
Rewriting rules are defined with the following syntax.

add (x, y -> z)
{

zero() = x;
z = y;

|
succ(xp) = x;
ys = succ(y);
z = add(xp, ys);

}

A function defined in this way corresponds to a destructor of a func-
tional 2-hypergraph. The above code defines two unnamed rewriting
rules. The former block defines add(zero(), y) → y, and the latter defines
add(succ(xp), y) → add(xp, succ(y)). Variables such as x, y, z, xp, and ys
correspond to pairs of node indexes connected by the bijection (Fig. 6). The
first line of each block must be of the form

constructor_name(variable) = variable

where the right hand side is the first argument for add , so that the
2-hypergraph becomes functional. The expression z = y is a short for
z = id(y) where id is the identity function.

7.1.4. Compositions
A function can be defined by a composition of functions. The following

code defines a function baz by a composition of foo and bar .

124 A. Higuchi

zeroadd
�

zero
�

add
�

Nat
�

Nat
�

Nat
�

Nat
�

id
�

Nat
�

Nat
�

succ
�

add
�

Nat
�

Nat
�

Nat
�

Nat
�

Nat
�

Nat
�

Nat
�

Nat
�

Nat
�

Nat
�

succ
�

add
�

succadd
�

zyx
x

xp

y

z

ys

Fig. 6. variables correspond to connections between node indexes

baz(x, y -> z)
{

w = foo(x);
z = bar(w, y);

}

A function definition in this way does not correspond to a rewriting
rule of a functional 2-hypergraph. Instead, in this example we think that
such a function is just a macro expands to a composition of functions.

7.1.5. External abstract types and external functions
External abstract types and external functions can be used for import-

ing types and functions without knowing their details.

.external_abstract_type Sys;

.external_abstract_type RFileDescriptor;

.external open_rfile;
open_rfile : Sys(), String()

-> Sys(), Maybe(RFileDescriptor());

The above code declares two external abstract types Sys and
RFileDescriptor , and an external function open rfile. Because their details
are defined by the operating system, we have no idea of what are construc-
tors of Sys and RFileDescriptor, whether open rfile is a constructor or not,
and what are rewriting rules related to open rfile.

A hypergraph rewriting language and its semantics 125

7.1.6. Generic functions and type classes
The following code declares two generic functions ˜and !. The function˜

takes an object of type t and returns nothing. That is, the function ˜ deletes
an object of type t. Likewise, the function ! copies an object of type t.

~ : t -> : ~[t];
! : t -> t, t : ![t];

For each generic function g, there is a type class g[t1, . . . , tn] where
t1, . . . , tn are the type variables occurred in the boundary of g. In the above
code, there are two type classes [̃t] of deletable types and ![t] of copyable
types. An n-tuple 〈T1, . . . , Tn〉 of types belongs to g[t1, . . . , tn] iff there is an
instance f of g such that the boundary of f matches the boundary of g. If
a function f is an instance of a generic function g and g is called (invoked)
with arguments whose types match the boundary of f , the function f is
called instead.

.instance ~b8 : ~;

.instance !b8 : !;

The former line declares that the function b̃8 is an instance of the
generic function g, that is, the type of the first argument for b̃8 belongs
to the type class [̃t]. Likewise, the latter line declares that the type of the
first argument for !b8 belongs to the type class ![t].

~list : List(t) -> : ~[t];
!list : List(t) -> List(t), List(t) : ![t];

The former line declares that the function l̃ist takes an object of type
List(t) where t belongs to the type class [̃t], i.e., the first argument for
the function l̃ist must be a list of deletable objects. Likewise, the latter
line declares that the first argument for the function !list must be a list of
copyable ones.

7.2. Example
At first, we declare two generic functions ˜ and !.

~ : t -> : ~[t];
! : t -> t, t : ![t];

.datatype B1 : false, true;
false : -> B1();
true : -> B1();

126 A. Higuchi

~b1 (x ->)
{

false() = x;
|

true() = x;
}

!b1 (x -> a, b)
{

false() = x;
a = false();
b = false();

|
true() = x;
a = true();
b = true();

}

The type B1 is a 2-valued boolean algebra1. It has two constructors
true and false.

.datatype B2 : b2;
b2 : B1(), B1() -> B2();

~b2 (x ->)
{

b2(h, l) = x;
~b1(h);
~b1(l);

}

!b2 (x -> a, b)
{

b2(h, l) = x;
h1, h2 = !b1(h);
l1, l2 = !b1(l);
a = b2(h1, l1);

1The boolean operations are not defined here because they are not used in the example.

A hypergraph rewriting language and its semantics 127

b = b2(h2, l2);
}

.datatype B4 : b4;
b4 : B2(), B2() -> B4();

~b4 (x ->)
{

b4(h, l) = x;
~b2(h);
~b2(l);

}

!b4 (x -> a, b)
{

b4(h, l) = x;
h1, h2 = !b2(h);
l1, l2 = !b2(l);
a = b4(h1, l1);
b = b4(h2, l2);

}

.datatype B8 : b8;
b8 : B4(), B4() -> B8();

.instance ~b8 : ~;

.instance !b8 : !;

~b8 (x ->)
{

b8(h, l) = x;
~b4(h);
~b4(l);

}

!b8 (x -> a, b)
{

b8(h, l) = x;

128 A. Higuchi

h1, h2 = !b4(h);
l1, l2 = !b4(l);
a = b8(h1, l1);
b = b8(h2, l2);

}

The types B2, B4, and B8 are 4-valued, 16-valued, and 256-valued
boolean algebras. The functions b̃8 and !b8 are declared as instances of the
generic functions ˜ and !.

.datatype List : nil, cons;
nil : -> List(t);
cons : t, List(t) -> List(t);

~list : List(t) -> : ~[t];
!list : List(t) -> List(t), List(t) : ![t];

~list (a ->)
{

nil() = a;
|

cons(hd, tl) = a;
~(hd);
~list(tl);

}

!list (x -> a, b)
{

nil() = x;
a = nil();
b = nil();

|
cons(hd, tl) = x;
h1, h2 = !(hd);
t1, t2 = !list(tl);
a = cons(h1, t1);
b = cons(h2, t2);

}

A hypergraph rewriting language and its semantics 129

The type List(t) is the finite lists over t. The function l̃ist deletes an
object of type List(t), and is available only if t is a deletable type. Likewise,
the function !list copies an object of type List(t), and is available only if
t is a copyable type.

.datatype String : string;

string : List(B8()) -> String();

.instance ~string : ~;

.instance !string : !;

~string (x ->)
{

string(bl) = x;
~list(bl);

}

!string (x -> a, b)
{

string(bl) = x;
bl1, bl2 = !list(bl);
a = string(bl1);
b = string(bl2);

}

The type String is simply the finite lists over B8. Because the func-
tion l̃ist calls the generic function ,̃ the expression l̃ist(bl) requires that
B8 is deletable. Likewise, the expression !list(bl) requires B8 is copyable2.
Both requirements are satisfied because b̃8 and !b8 are instances of ˜ and !
respectively.

.datatype Maybe : just, nothing;

just : t -> Maybe(t);
nothing : -> Maybe(t);

2The function !string is not used in this example.

130 A. Higuchi

~maybe : Maybe(t) -> : ~[t];

~maybe (mx ->)
{

nothing() = mx;
|

just(x) = mx;
~(x);

}

A value of type Maybe(t) is either nothing() or just(x), where x is of
type t. The type Maybe(t) is used for error handling in this example.

.external_abstract_type Sys;

.external_abstract_type RFileDescriptor;

.external_abstract_type WFileDescriptor;

.external_abstract_type RFile;

.external_abstract_type WFile;

.external open_rfile, attach_rfile, detach_rfile, close_rfile;

.external read_b8;

.external open_wfile, attach_wfile, detach_wfile, close_wfile;

.external write_b8;

open_rfile : Sys(), String()
-> Sys(), Maybe(RFileDescriptor());

attach_rfile : Sys(), RFileDescriptor() -> RFile();
detach_rfile : RFile() -> Sys(), RFileDescriptor();
close_rfile : Sys(), RFileDescriptor() -> Sys();
read_b8 : RFile() -> RFile(), Maybe(B8());
open_wfile : Sys(), String()

-> Sys(), Maybe(WFileDescriptor());
attach_wfile : Sys(), WFileDescriptor() -> WFile();
detach_wfile : WFile() -> Sys(), WFileDescriptor();
close_wfile : Sys(), WFileDescriptor() -> Sys(), B1();
write_b8 : WFile(), B8() -> WFile();

write_string (str, wf -> wf_r)

A hypergraph rewriting language and its semantics 131

{
string(bl) = str;
wf_r = write_b8list(bl, wf);

}

write_b8list (bl, wf -> wf_r)
{

nil() = bl;
wf_r = wf;

|
cons(b, bl_tail) = bl;
wf_r = write_b8list(bl_tail, write_b8(wf, b));

}

An object of type Sys holds the status of the operating system. Because
the internals of the type Sys and related types/functions are defined by the
operating system, they are declared as external abstract types and external
functions (Section 7.1.5). The open rfile function opens a file for reading3.
It returns just(x) on success, where x is a file descriptor which can be used
for reading data from the file. The type RFile is simply the product of Sys
and RFileDescriptor , and the attach file function converts a pair of Sys
and RFileDescriptor to a single object of type RFile. The read b8 function
reads a byte from the file. It returns just(x) on success, and nothing() if an
error occurs or the end of file is reached. The detach file convert RFile back
to Sys and RFileDescriptor . The close rfile function closes a file descriptor.
The type WFile and related functions are defined likewise.

main : Sys(), List(String()),
RFileDescriptor(), WFileDescriptor(), WFileDescriptor()
-> Sys(), B1();

main (sys, args, stdin, stdout, stderr -> sys_r, errflag)
{

~list(args);
sys1, err_errfd = close_wfile(sys, stderr);
~b1(err_errfd);

3open rfile, open wfile, and write string are not used in this example.

132 A. Higuchi

sys_r, errflag = echo(sys1, stdin, stdout);
}

echo (sys, stdin, stdout -> sys_r, e)
{

rf = attach_rfile(sys, stdin);
rf1, mb8 = read_b8(rf);
sys1, stdin1 = detach_rfile(rf1);
sys_r, e = echo_cond(mb8, sys1, stdin1, stdout);

}

echo_cond (mb8, sys1, stdin1, stdout -> sys_r, e)
{

nothing() = mb8;
sys2 = close_rfile(sys1, stdin1);
sys_r, e = close_wfile(sys2, stdout);

|
just(c) = mb8;
c1, c2 = !b8(c);
wf = attach_wfile(sys1, stdout);
wf1 = write_b8(wf, c1);
wf2 = write_b8(wf1, c2);
sys2, stdout1 = detach_wfile(wf2);
sys_r, e = echo(sys2, stdin1, stdout1);

}

The main function is the entrance of a program. It receives a Sys,
a list of argument strings, the standard input, the standard output, and the
standard error. In this example, the main function simply calls the echo
function after deleting some unnecessary objects4. The echo function reads
a byte from the standard input, and calls the echo cond function. The mb8
variable becomes just(c) if the read b8 function successfully reads a byte
from the standard input, and nothing() if the end of file is reached. If the
mb8 variable is just(c), the echo cond function creates two copies of the
c object, writes them to the standard output, and calls echo recursively.
This recursion ends when mb8 becomes nothing(), i.e., the standard input

4main and echo are defined by compositions of functions (Section 7.1.4).

A hypergraph rewriting language and its semantics 133

reaches to the end of file. As a result, this sample program reads a byte
from the standard input, writes it to the standard output twice, and repeats
them until the end of file is reached.

8. Concluding remarks

Recently more “interaction” aspects occurring in the real world are
taken into consideration in modeling computation especially in the study of
parallel and distributed systems [6, 3, 10, 8]. Although the concept of graph
rewriting has potential ability to describe intricate combinatorial structures
of microscopic interaction and there are large research activities [4, 14]
around graph rewriting, there are few which intend to focus on the inter-
action aspect, except for such frameworks as the interaction nets [9, 2, 5],
Milner’s π-calculus [11]. In the latter, the agents exchange link informa-
tion during the interaction so that the topology of the net change globally,
whereas in the former one, the net evolves asynchronously by succession
of local interactions between two agents at specific ports of complementary
type. The latter property is retained in our 2-hypergraph formulation. In
fact one of our contributions is to formulate a mathematical theory which
expresses atomic interactions explicitly as 2-cells of a 2-hypergraph, which
opens a way to give direct semantics of such computational models as inter-
action nets via the theory of 1-hypercategories [7].

Our mathematical model of computation supports a functional pro-
gramming language which has common features with the language
Clean [1, 12, 13] in the referential transparency and the laziness of eval-
uation, although there exist radical differences. For example, in Clean,
data which are not copyable must be declared so explicitly, whereas in our
language, the procedure of copying must be given explicitly for copyable
data. This aspect is useful in synthesizing actual systems reactive with the
real world, where most objects are not copyable.

Acknowledgements
I would like to thank people in graduate school of Mathematics,

Hokkaido University for their support during the preparation of this pa-
per and Toru Tsujishita for his help and advice.

I am deeply indebted to the Japan Society for the Promotion of Science
for the JSPS Research Fellowships from 1997 to 1999 which supported my
research activity in that period.

134 A. Higuchi

References

[1] Achten P.M., et al., High level specification of I/O in functional languages. In

Launchbury J. et al., editor, Proceedings Glasgow Workshop on Functional Pro-

gramming, Springer Verlag, New York, NY, 1993.

[2] Banach R., The algebraic theory of interaction nets. 1995.

[3] Berry G. and Boudol G., The chemical abstract machine. Theoretical Computer

Science, 96 (1992), 217–248.

[4] Ehrig H. and Taentzer G., Computing by graph transformation, A survey and anno-

tated bibliography. Bulletin of the European Association for Theoretical Computer

Science, 59 (1996), 182–226. Bibliographies.

[5] Fernandez M. and Mackie I., A calculus for interaction nets. In Principles and

Practice of Declarative Programming, 1999, pp. 170–187.

[6] Girard J.-Y., Towards a geometry of interaction. In Categories in Computer Science,

vol. 92 of Contemporary Mathematics, AMS, 1987, pp. 69–108.

[7] Higuchi A., Miyoshi H., and Tsujishita T., Strict n-hypercategories. Hokkaido Math.

J. 31 (2002), 469–511.

[8] König B., A general framework for types in graph rewriting. Lecture Notes in Com-

puter Science, vol. 1974, 2000, p. 373.

[9] Lafont Y., From proof nets to interaction nets. In Girard J.-Y., Lafont Y., and

Regnier L., editors, Advances in Linear Logic, Cambridge University Press, 1995,

pp. 225–247. London Mathematical Society Lecture Note Series 222, Proceedings of

the 1993 Workshop on Linear Logic, Cornell University, Ithaca.

[10] Milner R., Calculi for interaction. Acta Informatica, 33 (1996), 707–737.

[11] Milner R., Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-

versity Press, 1999.

[12] Nocker E., Smetsers S., van Eekelen M. and Plasmeijer R., Concurrent clean. In

Leeuwen Aarts and Rem, editors, Proc. of Parallel Architectures and Languages

Europe (PARLE ’91), vol. 505, Springer-Verlag, 1991, pp. 202–219.

[13] Plasmeijer M. and van Eekelen M., Language report concurrent clean, 1998.

[14] van Eekelen M.C.J.D., Smetsers S. and Plasmeijer M.J., Graph rewriting semantics

for functional programming languages. In CSL, 1996, pp. 106–128.

Kita 12 Nishi 3-5-217

Kita-ku, Sapporo 001-0012, Japan

