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Tangential index of foliations with curves on surfaces

Tomoaki HONDA
{(Received April 16, 1997; Revised October 21, 2003)

Abstract. In [Brl] M. Brunella defines an index which represents how a curve and a
foliation on a complex surface intersect. In this article we give an alternative proof of the
index theorem, calculate the index in some cases and consider the behavior of the indices
under blowing-ups.
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A dimension on singular foliation on a complex surface is locally defined
by a holomorphic vector field and its singular set is defined as the union of
the zero set of the vector fields defining the foliation. For singular foliations
there exist several kinds of indices, the Poincaré-Hopf index (more generally
the Baum-Bott indices [BB]), [CLS], the Camacho-Sad index [CS], [KS],
[LS], [Ln], [Sul], [Br2] and the GSV index [GSV], [LSS], [SS]. The last two
of these indices are relative not only to foliations but also to curves in the
ambient surface. When we consider these relative indices, we assume that
the curve C is invariant by a foliation F; v(f) € (f), where v is a generator
of F, f a defining function of C, and (f) the ideal generated by f. In this
article, however, we assume that C' is not invariant; v(f) & (f).

Assuming the condition, v(f) € (f), we consider the relation between
the foliation F and the curve C. At general points of C, the leaves of F
are transverse to C, but there exist some points where the tangent space
of C coincides with the direction of the leaf. So we define the tangency set
as the union of the usual singular sets of 7 and C and the set of tangent
points of F to C, and we consider an index at each of these points which
represents the degree of tangency and study it.

In Section 1, we recall some basic definitions about singular foliations on
surfaces, define our index and prove the index formula. This index formula
was in fact proved by M. Brunella [Brl]. Here we give an alternative proof
of this formula by the method of localization of the Chern class of suitable
(virtual) bundle. Note that the index theorems of the other indices can be
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proved by this method, for examples, [KS], [LS] for Camacho-Sad index and
[LSS] for GSV index. In Section 2, we calculate the index in some simple
cases using Puiseux parametrizations. In Section 3 we consider the blowing-
ups of the singularity. We describe explicitly how the index behaves under
blowing-ups. A work on the generalization to the higher dimensional case
of the results of this article is in progress.

The author would like to thank Tatsuo Suwa and the referees for many
helpful comments.

1. Definitions and index formula

Let X be a complex manifold of dimension two. A dimension one
singular foliation F on X is determined by a triple ({Uq}, va, €ag) such
that
(1) {U4} is an open covering of X and, for each «, v, is a holomorphic

vector field on Uy,

(2) for each pair (a, B), eqp is a non-vanishing holomorphic function on
U N Ug which satisfies the cocycle condition, eqy = eqgegy on Uy N
UsgnU,,

(3) g = eqpvq on Uy NUp.

We denote the zero set of vy by S(va); S(va) = {p € Uy | va(p) = 0}.
Since eqyg is non-vanishing, S(v,) coincides S(vg) on Uy NUg. So the union
Uq S(va) is well-defined and called the singular set of the foliation F. It is
denoted by S(F). If the singular set S(F) consists of only isolated points,
the foliation F is said to be reduced. Since the system {e,p} satisfies the
cocycle condition, it defines a line bundle £ on X, which is called the tangent
bundle of the foliation F. Hereafter we consider only reduced foliations on
X.

Let C be an analytic curve on X with defining function f, on U,, where
{Uy} is an open covering of X. A curve is said to be reduced if its defining
function on each U, has no multiple factors. In this article we consider only
reduced curves. Put fog = fo/fs. Then fug is a non-vanishing holomorphic
function on Uy N Ug from the reducibility of C. Since the system {fo5} of
non-vanishing holomorphic functions satisfies the cocycle condition, fo, =
fagfay on Uy NUg N U,, it defines a line bundle N on X. The restriction
of N to the regular part of C' is isomorphic to the normal bundle of the
regular part of C; N|¢_ging(c) = Nco-sing(c)- Thus we call N a holomorphic
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extension of the normal bundle of the regular part of C, or simply the normal
bundle of C.

Definition 1.1 Let v be a vector field on an open set U of X, C an
analytic curve on U defined by a holomorphic function f and p € UNC.
We assume that (each component of) C' is not a separatrix at p of v, or
equivalently v(f) is not an element of the ideal (f) of O, where O, is
the ring of germs of holomorphic functions defined at p. We say that v is
tangent to C at p if v(f)(p) = 0, and in this case, we define the tangential
index I, (v, C) of v with C at p to be the intersection number of f and v(f)
at p;

IP(U’ O) = (fa U(f))p = dlmC OP/(fa 'U(f))

Remark 1.2 This index was defined by C. Camacho, A. Lins Neto and P.
Sad [CLS] and A. Lins Neto [Ln] when the curve C is smooth. The general
-definition in the above is due to M. Brunella [Brl].

Remark 1.3 The local intersection number (C, D), at p of two curves C
and D defined by holomorphic functions f and g, respectively, is represented
by the following integrals (See [GH]) Chapter 5 or [Sul));

3 1 N> [dfadg 1 dg
w’”‘”‘(%ﬁ) | e

where I' is the 2-cycle {|f| = |g| = €} with the orientation d arg f Adarg g >
0 and L is the link of C' at p with the orientation induced by the orientation
of C; L = {f =0, |g| = ¢} for a sufficiently small € > 0. We use this
representation to prove the index formula, which is stated in Theorem 1.6
below.

Note that, if C' is irreducible at p and if 7 : A — X is a parametrization
of C near p, then it can also be computed as

(C, D)p = ordg7*g.

.. For p € C\ Sing(C), v(f)(p) = 0 is equivalent to saying that v(p) € T,C
and this index I, (v, C) is zero if the integral curve of v and the curve C are
transverse at p. So we can consider that this index represents the degree of
tangency between C and v at p.

Similarly this index can be defined for foliations by using generators of
foliations on each open set as follows.
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Definition 1.4 Let F = ({Ua}, va, €ap) be a foliation and C an analytic
curve on X defined by a holomorphic function f, on U, for each a. We
denote the set of tangent points of F to C on U, by To; To = {p € CNU, |
Vo(fa)(p) = 0}. We assume that C is not a separatrix of F at p € U, N C.
Then we define the tangential index Io(F, C) of F with C by

L(F, C) = Li(va, C),
and the tangency set T'(F, C) or simply T of F to C by the union of T,.

Proposition 1.5 I,(F, C) and T(F, C) are independent of the choice of
generators.

Proof. On U, N Ug,

Ua(fa):eﬂavﬁ(faﬂfﬁ)
=epa{ve(fap)fo + fapvs(fs)},

where fo3 = fo/fs. Hence we have

Vo(fa) = egafapva(fs) on CNU,NUg.

Since egq fop is a non-vanishing function, the definition of index does not
depend on the choice of generators and we have T, N Ug = Ty N U,. So the
union J, Ty is well-defined. O

We assume T' consists of only isolated points in this article.

We have the following index formula, which is proved by M. Brunella
in [Brl] when the ambient space X is compact. Here we give an alternative
proof, which uses only the compactness of C, but not of X. We write
Joci(L) as C - L for a line bundle L and a compact curve C.

Theorem 1.6 Let C be an analytic curve which is not invariant by the
foliation F. If C is compact then

Y L(F,Cc)=C*-C-F,
peET

where F is the tangent bundle of F.

Proof. Let N denote the normal bundle of C' and consider the first Chern
class ¢ (N ® F*) of the line bundle N® F* on X. Put F = ({Ua}, Va, €ag),
T = {p1, p2, ..., pr} and suppose C is defined by f on Uy, TNUy, = {p;},
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and TNU, =0 if a & {ai1, oo, ..., a}. Let {po} be a partition of unity
subordinate to the open covering {Us} such that Dy, = {p € Uy, | po,(p) =
1} is a closed ball with a sufficiently small radius around p; for each p; € T'.

Since the line bundle N ® F™ is defined by the cocycle {f,ses,} and on
UsNUgnC

Ua_faﬁeﬂa'uﬁ(fﬁ)

dlog(fapepa)= dva((fia)) Cij;ﬁ(gc];ﬁ)),

ci(N ® F*) is represented by the following differential forms;

C1 (N ® F*)IUaﬂC’:% Zd(p,@dlog(fﬁaeaﬁ))

xS SH)

va(/3)
v—1 dvﬂ fg dva
- 27 deﬂ va(f dz "
8
2n < vs(fp)
When a ¢ {oq, a9, ..., ar}, C N U, is non-singular. So we can take a

coordinate system (4, o) on Uy such that CNU, = {p € U, | ya(p) = 0},
or equivalently fo = yo. Then we can assume v4(yo) = 1 since v, (yy) is
non-vanishing. Thus

dve, (fo,)
1(N ® F¥)|y, no = dpa, A Lestei),
1( )|U ZﬂC poc ’Uai(fai)
Note that c1(N ® F*)|ly,nc =0if o & {1, ag, ..., ar}. Therefore
d'U (foi)
ca(N®F*) = / M AL YA
/C’ 1 Z amc Vo (fos)

Omit the suffix ¢ for simplicity,

dva(fa) dva(fa)
d o - d «
/UaﬂC’ Pa Vo (fa) /(UQ—D)nC Poc Vol fa)
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/ dva(fa))
(Vo D)ﬂC’ 'Ua(fa)
/ dva(fa)
d{(Ua—D)NC} pe Va(fa)
dva (fa) dva(fa)
/ “ Vo (fa) /6{(Uaﬂc)}pa Va(fa)
:_/ e (fa)
—1 Ya(fa)’
where L is the link of C at p. Hence we get

/61N®F* > L(F, C)
C

peT

On the other hand,
/ a(N®F*)=C?~F-C.
c

This completes the proof. O

In [Brl] this formula is used to deduce some inequalities among Chern
numbers and in [Ln] to define the degree of a foliation on the complex
projective plane.

A singular foliation can be also defined in terms of differential forms as
follows. A codimension on singular foliation is a triple £ = ({Ua}, Wa, gag)
such that
(1) {U,} is an open covering of X and, for each o, w, is a holomorphic

1-form on U,,

(2) for each pair (o, ), gap is a non-vanishing holomorphic function on
Uy N Upg which satisfies the cocycle condition, gay = gaggsy on Uy N
UgNU,,

(3) wg = gapwa on Uy NUs.

The singular set of £ is the union of the zeros of w, similarly to the
case of vector fields. A foliation & is said to be reduced if the singular set
consists of only isolated points. The cocycle {gnp} defines a line bundle,
which is called the conormal bundle of £ and is denoted by F.

The above definition is equivalent to the previous definition, as long as
we consider only reduced foliations, in the sense that there is a natural one-
to-one correspondence between the reduced dimension one foliations and the
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reduced codimension one foliations ([Su2]). In fact, let F = ({Us}, va, €ag)
be a reduced dimension one foliation, then the correspondence is given by
assigning F to the reduced codimension one foliation £ = ({Us}, was 9ap)
with (va, wa) = 0 on each U, and vice versa. Note that in this correspon-
dence we have S(F) = S(€) and the integral curves of the vector field v,
coincide with the solutions of the differential equation w, = 0 on each U,,.

Let Kx be the canonical bundle of the ambient space X. Calculating
the systems of transition functions of E, F and Kx, we get £ = Kx ® F.
(See [Brl], [HS].) Then

C*>-F . C=C"+Kx-C—-E-C.
From the adjunction formula ([K]), we have
C*—F-C=> 1p(C)—x(C)-E-C,
peT

‘where p,(C) is the Milnor number of C' at p and x(C) is the Euler-Poincaré
characteristic of C'.

Corollary 1.7 In the above situation,

S (L(F, €)= 1(C)) = —x(C) — E - C.
peT

2. Values of tangential indices in some situations

We can calculate the tangential index I,(v, C) explicitly in some simple
situations, namely, when the vector field v is non-singular at p or v is simple
at p.

Proposition 2.1 Let v be a vector field near o € C? and C a curve near
0. If 0 is a tangent point and v is non-singular at O, then

Io('U, C) = (L’ C)O -+ NO(C) -1,

where L is the integral curve of v through 0, uo(C) is the Milnor number of
C at 0 and (L, C)g is the intersection number of L and C at 0.

Proof. At first, assume that C' is irreducible at 0. Since the vector field v is
non-singular at 0, the Frobenius Theorem allows us to take the coordinate
system (z, y) near 0 such that v = 8/9z. Let f be a defining function of
C near 0. Note that L is defined by y in this coordinate system, and we
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can assume that f and 9f/9z are relatively prime at 0, i.e. there exist no
non-trivial common factors, since f is reduced and regular in y; f(z, 0) 2 0.
Thus

Io(v, ©) = (£, v(f)), = <f, f>0_

For a sufficiently small e > 0, put A = {t € C | [t| < ¢}. Let 7: A — C2 be
the Puiseux parametrization of C such that m(0) = (z(0), y(0)) = 0. Then

0 dz d
Ip(v, C)=ordy (3£< (t))) + ordg T ordg d;f

““Ol"d()(gf (W(t)) fg) (z, flo+ 1.

Now we have f(m(t)) =0 for any ¢t € A since 7(t) = (x(t), y(t)) is the
parametrization of C'. So

df _dfds  Ofdy
0= dt((t))—%ﬁ By dt

Therefore we have
In(v, C)=ordy <_a_fd_y> (@, [lo+1
2 (a(6) u(®)o +orco 2 — 3, Fro+1

(f, of )0 (@, fo+ (L, Ch.

On the other hand, from [Ln|, we have

@) = (£, f) @ No+1

Consequently we have

IO(Ua C)=(L, O)O + wo(C) — 1,

=0rd0

when C is irreducible at 0.
Next we probe the general case. Let f = fifa--- fi be the irreducible
decomposition of f at 0 and C; the curve defined by each f;.

Io(v, O)=(fif2 - fe,v(fifz -+ fr)),
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—Z (fz, Zfl fw(fj))

k

—Z (For oo e v(£2))g

=1

—i (Z G G+ (f v(57))

=1 “j#i
k
=2 > (C:Cy) ZLC + 1o(Cy) — 1)
1<i<j<k j=1
=(L, CO"‘ZMO )+2 Z (CZ‘Cj)o—
j=1 1<i<j<k

On the other hand, from [Sul], we have

k
C)ZZMO(Q)-!-Z Z (Cs, Cj)o—k+1.

1<i<i<k

Therefore in general
Io(v, C) = (L, C)p + po(C) — 1.
O

Proposition 2.2 Let v = A\z0/0z + uyd/0y be a vector field near the
origin 0 € C? such that \/u is not a positive rational number, S1 and Sa
the y-azis and x-axis, respectively, C a curve irreducible at 0 such that the
intersection numbers (C, S1)o and (C, Sa)o are relatively prime. Then we
have

Io(’U, C) = (C, Sl)O . (C’, Sg)o.

Proof. Put k= (C, S1)p and | = (C, S2)o. From the Weierstrass prepara-
tion theorem there exist a holomorphic function u € Oy and a Weierstrass
polynomial w(z, y) € C{z}[y] such that

fz, y)=ulz, y)w(z, y), u(0,0)#0
w(z, y)=y* + a1 (@)y* " + - + ap_1(2)y + ax(z)
ordga;(z) > 1 for each 1.
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We may assume that f = w without loss of generality. Then

k—1 k-1
o(f) =Xz ai(@)y* T + Aeaj(z) + pkyF + p > (k- dai(z)yF
i=1 i=1

Setting ordg a;(z) = I; and a;(z) = ag,z"% + higher order terms, and substi-
tuting this, we have

v(f)=Aaglz’ + higher order terms in z

+ pky®
k—1 | |
+ Z(Aaililix“yk_z + (higher order terms in m)yk“z)
i=1
+ Z — d)ay,xty" " + (higher order terms in x)yk“i)_

=1

Note that Iy = 1.

On the other hand, let 7 (¢ ) (z(t ) be the Puiseux parametriza-
tion of C at 0 such that z(t) = t* and y( ) t4(t), §(0) # 0. Put 8 = §(0).
Then we have

F(m(t))=8*t*" + higher order terms
k-1
+ Z(ailiﬂk_itkli"'l(k_i) + higher order terms)
i=1

+ akltkl

+ higher order terms.

Now we consider the Newton polygon of f. The edge of this polygon is
aline z/l+y/k—1=0. A point (l;, k—1) is in the interior of the polygon.
Hence ;/l+ (k—¢)/k—1 >0 1ie. kl; +1(k — 1) > kl. Thus we get

F(r(t)) = (6% 4 ag)t* + higher order terms.
Since f(n(t)) = 0, we have B¥ = —ay,. Therefore

v()(7(t))=(Narl + pkB*)tH + higher order terms
=ay (M — pk)t® + higher order terms.

Recall that ag; # 0 and /A is not rational. Thus we get
Io(v, C)=ordo v(f)(n(t))



Tangential index of foliations with curves on surfaces 265

=kl
=(C, S1)o - (C, S2)o.

O

Remark 2.3 In Proposition 2.2, the assumption that (C,S;)o and (C, S2)o
are relatively prime is necessary. In fact, let C be the curve defined by

w(z, y) =1° - 2(1 + z)z’y® + ™.

Then it can be shown that it is irreducible at 0. However, we have (C, S1)o =
6 and (C, S2)o = 10. Let v be a vector field as in the proposition. Then,
using the parametrization

x=t6,

2., 1
y:t10<1+%——t3+§t6+~->

of C, we compute Io{v, C) =63 # (C, S1) - (C, S2)o.

The author would like to thank the referee for pointing out an error in
the previous version of this paper and for providing this example.

In the rest of this section, we consider singular foliations defined by
meromorphic functions, following [HS].

Let ¢ be a meromorphic function on X, {U,} a coordinate covering of
X on which the differential dy of ¢ is written as dy = puws, Where @, is
a meromorphic function on U, and wg is a holomorphic 1-form on U, with
isolated zeros. Then the system ({Ua}, wa, @a/@s) defines a codimension
one reduced foliation £ on X and its conormal bundle F is defined by the
cocycle {pq/ps}. We denote the zero and pole divisor of ¢ by D and
D) respectively. Let D(®) = i1 miDZgoo) be the irreducible decompo-
sition of D(%) with positive integers m;. For a divisor D on X, we denote
the support and associated line bundle of D by |D] and [D], respectively.

We assume that the critical points of ¢ in X\|D{®)| are all isolated
through this section. Under this assumption we have

E= [— Z(m + 1)D§°°)} :

i=1

and the foliation £ is generated by
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near p € |D(*)|, where ¢ = h/g and g = g™ --- g™ is the irreducible
decomposition of g. (See [HS] Lemma (2.1)).

Definition 2.4 Let C be a reduced curve in the ambient space X and
a holomorphic function near p € C. Assume that v is not constant on C.
Then we define an integer pp(¢, C) by (L, C), — 1, where L is the level set
of ¢ through p;

(¥, C) = (L, C)p — 1.

Lemma 2.5 Let C = CyU---UCY is the irreducible decomposition of C
at p € C. Then we have

k
(W, C) =D pp(¥h, Ci) +k— 1.
i=1

Proof.
pp(h, C)=(L, C)p — 1

k

=Y (L,Cyp—1
=1
k

=> up(, Ci) +k—1
=1

0

Proposition 2.6 Let C be a reduced curve in X. Assume that ¢ is not
constant on C. If p € CN (X\|D)]), we have

I(F, C) = (e, C) + pp(C),
where F s the annihilator of £.

Proof. The foliation £ is defined by dy near p. Hence, if (z, y) is a coordi-
nate system near p such that p = (0, 0), F is defined by v = (8¢/0y)0/0x —
(0p/02)0/0y.

At first we assume that C is irreducible at p. Let n(¢) = (z(¢), y(t))
be the Puiseux parametrization of C at p and f a defining function of C.
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Similarly to the proof of Proposition (2.1), we have

Op 0 Op 0
L(F, C)=(f, o()), = (f, b “ai)
p

~orto (525 = 32 ) 70
(

_ Opdfdxr 0Opdfdx dz

=\ Gy s st dwoyar) TV

_ Opdz | Opdy of dx
=ordp Frari By di + ordp 3y (m(¢)) — ordg i

_ordo;i (r()) + <f, 35)})—@, P +1

=p(p, C) + pp(C).

Now we consider the case where C is reducible at p. Let C'= C1U---Cy,
be the irreducible decomposition of C' at p. From the proof of Proposition
(2.1) and Lemma (2.5), we have

k
IP(]:7 C):Z(Oh Cj)p + ij(jra Cz)
i i=1
=> (G, Cy) +Z/~Lp +Zup (o, C

J#
=up(C) +k—1+ Zﬂp(% Ci)
=1
=:U‘P(C) -+ /f'p(cp’ C)'
O

Proposition 2.7 Let C be a reduced curve on which ¢ is not constant. If
p € CN|D®)|, then

L(F, C) = +Z () )+ 1p(C) — 1

Proof. The foliation F is defined by v = ad/0z + bd/dy near p, where
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Similarly to the previous proposition, at first, we assume that C is
irreducible at p and let f be a defining function of C, (z, y) a coordinate
system near p such that p = (0, 0) and #(¢t) = (z(¢), y(¢)) the Puiseux
parametrization of C.

L(F, C):ordo< of + b%> (r(t))

“oz " oy
:ordo( or i ?%) (m(t)) — ordy &
—ordg (a% - b‘Zf (r(t)) + ( : ?)pﬂ  Pp—1
—orda 0(n(0) -7 (1) - 7 (1) + ulC)

=(DO, ), + > (DI, C)p + pp(C) — 1.
i=1

We consider the case where C is not irreducible at p. Let C = C; U
-+ U Cg be the irreducible decomposition of C' at p. Then we have

k

Ip(}—’ C)ZZ(Oh Cj)p + pr(}-7 Ci)
j#i i=1

r k
=D, ), + S(D, )+ 3" 1p(C)
i=1 3

=1
+ Z(Ch Cj)p —k
J#i
=(DO, C)p + > (D, C)p + 1p(C) — 1.

i=1
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We denote
(DO, )+ Y (D, C)p — 1

i=1
by pp(ep, C) for p € CN|D)|. From Corollary (1.7) we get the following.
Corollary 2.8 If C is compact,

> i, €)= =x(C) + Y _(mi +1)C- DI,
i=1

p€ET

3. Invariant curves and the tangential index

Let v be a holomorphic vector field which defines a foliation F near
0 € C? with an isolated singularity at 0 and C a smooth curve defined by
f =0 near 0 € C?,

o
UZG(Q’," y)’%‘ + b(CB, y)a_ya
a(z, y)= Y ayz'y, bz, y)= > bija'y,
it+j>1 i+5>1
f(z, y)=az + By + higher order terms.

We consider the tangential index Io(F, C).
We define the order ordg(v) of a vector field v at 0 by

ordg(v) = min{ordg a, ordg b}

and let p(t) = (Bt, —at + higher order terms) be the Puiseux parametriza-
tion of C. Put n = ordy(v) and

Io(v, C)=(v(f). f)

0

—ord v(f) (¢(t))

=ord0({a Z az’jﬁi(—a)j-i-ﬁ Z bijﬂi(—oz)j}tn
i+j=n i+j=n

+higher order terms.>

We take a homogeneous polynomial P(z, y) = zbn(, y) — yan(z, y), where
an = D itjmn aijzty? and by, D itjen bijz'yl. If the polynomial P(z, y) =
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0, then the singularity O of v is said to be dicritical and otherwise to be
non-dicritical. (See also [CLS] or [CS].) If 0 is a non-dicritical singularity,
the tangential index of v with a smooth curve C at the singularity 0 of v is
equal to the order of v at 0 in general. However it is larger than the order if
C is tangent to a line whose direction is given by the equation P(z, y) = 0.

Now consider the blowing up of a singular foliation F at the singularity
0. ([CS] or [CLS]) Let v be a holomorphic vector field which generates the
foliation F and w: U — U the proper map of the blowing up at 0, where U
is a neighborhood of 0. Let D be an exceptional divisor, w an annihilator of
v; w = b(z, y)dz — a(z, y)dy and m = 7|y , T3 = 7|z, the restrictions of 7
to Uy and Us, respectively, where U; and U, are coordinate neighborhoods
of U.

Since we can write m1: (z, n) — (z, zn) and m2: (&, y) — (£y, y), the
pull backs of w can be written as follows;

wa:{m"P(l, 77) + xn+1R1(x> W)}dm - £L'n+1Q1(.’E, n)dna
myw=y"Qa(€, y)dé + {y"P(€, 1) + y" Ra(€, y) bdy.

Then we define the blowing up F of Fat 0 by the foliation generated by
the following vector fields on U if 0 is a non-dicritical singularity of v;

i=0@s(@, Wz + (PUL, ) + 2Rala 1) 5
dr=(P(€, 1) + yRalE, y))a% Qe y>a%-

If 0 is a dicritical singularity, then the generators of the blowing up F of F
are

- 15} 0
=01 (z, 77)% + Ry (z, 77)8_77’

0 0
8_6 - Q2(§> y)gg

Note that F is reduced in both cases.

Assume that 0 is a non-dicritical singularity. The singularities of the
blowing up F of F are given by the solution of the homogeneous polynomial
P(z, y) = 0. These singularities are on the exceptional divisor and indicate
the directions of the tangent cones of the invariant curves of F at 0. On
the other hand the tangential index of F with smooth curve which has a

Up=Ro (57 y)
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tangent line with the direction given by P(z, y) = 0 are not general value.
So we can say this index can catch the directions of invariant curve of F.

Here is an explicit formula which describes how the tangential indices
behave under blowing up.

Proposition 3.1 Let C be an analytic curve of order m at 0 and F a
foliation with a singularity 0. Then

Y L(F,C)+(m+v-1)C-D

peTND

where C is the proper transform of C, T the set of tangent points of F to
C and v = ordpv if p is dicritical, v = (ordpv) + 1 if p is non-dicritical.

Proof. Let E be the conormal bundle of the annihilator £ of F, € the
blowing up of £ at 0, E the conormal bundle of £ and w;, which is an
annihilator of v;, a generator of £ on U;. Since njw = mhw on Uy N Uy,
2w = mjw and y*wy = miw, we have

AN
w1 = (x) wa-
This means that 7*E = [-vD] ® E. Similarly we have 7*N = [mD] ® N,

where N is the normal bundle of C in the sense of Section 1. Moreover
K3 =m"Kx ®][ - D] (See [GH]). Note that F = F' ® Kx. Therefore

T e1(N @ F*) = (N ® F*) + (m + v — 1)e1 (D).
From the proof of the index formula, we have

I(F, C) = / (N ® FY),
uncC

where p € C, U is an open neighborhood of p, i.e. the tangential index is a
localization of the Chern class ¢ (NN @ F*). Hence we have

In(F, C)=/Unccl(N®F*)

=/ el (N @ F*)
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=Y Ii(F C)+(m+v-1)CD.
pelnD
O

After the preparation of the manuscript, the author was informed of a
preprint [Me]. In this paper, a fact similar to Proposition (3.1) is described
under the assumption that the ambient space is compact.

[BB]
[Brl]

[Br2]
[CLS]
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