Backward shift invariant subspaces in the bidisc

Keiji Izuchi* and Takahiko Nakazi*

(Received July 24, 2002; Revised October 28, 2002)

Abstract. Suppose that T_{ϕ} is a Toeplitz operator with a symbol ϕ on the Hardy space H^2 on the bidisc. Let N be a backward shift invariant subspace of H^2 , that is, N is an invariant subspace under T_z^* and T_w^* . Let P be the orthogonal projection from H^2 onto N. For ϕ in H^{∞} , put $S_{\phi} = PT_{\phi}|N$. In this paper, we give a characterization of a backward shift invariant subspace which satisfies $S_z S_w^* = S_w^* S_z$.

Key words: bidisc, Hardy space, backward shift, invariant subspace, double commuting.

1. Introduction

Let T^2 be the torus that is the Cartesian product of two unit circles T in \mathbb{C} . Let p=2 or $p=\infty$. The usual Lebesgue spaces, with respect to the Haar measure m on T^2 , are denoted by $L^p=L^p(T^2)$, and $H^p=H^p(T^2)$ is the space of all f in L^p whose Fourier coefficients

$$\hat{f}(j,\ell) = \int_{T^2} f(z,w) ar{z}^j ar{w}^\ell dm(z,w)$$

are 0 as soon as at least one component of (j,ℓ) is negative. Then H^p is called the Hardy space. As $T^2=(z,T)\times (w,T)$, $H^p(z,T)$ and $H^p(w,T)$ denote the one variable Hardy spaces.

Let P_{H^2} be the orthogonal projection from L^2 onto H^2 . For ϕ in L^{∞} , the Toeplitz operator T_{ϕ} is defined by

$$T_{\phi}f = P_{H^2}(\phi f) \quad (f \in H^2).$$

A closed subspace N of H^2 is said to be backward shift invariant if

$$T_z^*N \subset N$$
 and $T_w^*N \subset N$.

A closed subspace M of H^2 is said to be shift invariant if $T_zM \subset M$ and $T_wM \subset M$. The orthogonal complement of N is shift invariant. Let P_N

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A15, 46J15; Secondary 47A20.

^{*}This research was partially supported by Grant-in-Aid for Scientic Research, Ministry of Education.

and P_M be the orthogonal projections from H^2 onto N and M, respectively. For ϕ in H^{∞} , put

$$S_{\phi} = P_N T_{\phi} P_N | N$$
 and $V_{\phi} = P_M T_{\phi} P_M | M$.

It is known in [2] that $V_zV_w^*=V_w^*V_z$ if and only if $M=qH^2$ for some inner function q in H^{∞} . In this paper, we are interested in backward shift invariant subspaces N which satisfy $S_zS_w^*=S_w^*S_z$. Let $M=H^2\ominus N$. We will write $P=P_N$ and $Q=I-P_N$, where I is the identity operator on H^2 . In this paper, we also study two operators

$$A = QT_zP$$
 and $B = PT_w^*Q$.

In §2, we show that $AB|M = V_w^*V_z - V_zV_w^*$ and $BA|N = S_zS_w^* - S_w^*S_z$. Then AB = 0 is equivalent to $V_zV_w^* = V_w^*V_z$, and BA = 0 is equivalent to $S_zS_w^* = S_w^*S_z$. Moreover we determine backward shift invariant subspaces satisfying A = 0 or B = 0. In §3, we give a characterization of backward shift invariant subspaces satisfying BA = 0, equivalently $S_zS_w^* = S_w^*S_z$. And we give simple sufficient conditions to be $S_zS_w^* = S_w^*S_z$. In §4, we give a conjecture, that is, the sufficient condition is also necessary one.

Throughout this paper, for a subset H of H^2 , $[H]_2$ denotes the closed linear span of H and [H] the linear span of H.

2. Invariant subspace with A = 0 or B = 0

Let N be a backward shift invariant subspace and M be the orthogonal complement of N in H^2 . Put $P = P_N$ and $Q = I - P_N$, then Q is the orthogonal projection from H^2 onto M.

Lemma 2.1

- (1) $AB = QT_w^*QT_zQ QT_zQT_w^*Q$ and so $AB|M = V_w^*V_z V_zV_w^*$.
- (2) $BA = PT_zPT_w^*P PT_w^*PT_zP$ and so $BA|N = S_zS_w^* S_w^*S_z$.
- (3) $\ker A = \{ f \in N : T_z f \in N \} \oplus M.$
- (4) $\ker B = \{ f \in M : T_w^* f \in M \} \oplus N.$

Proof. (1) Since
$$T_zQ = QT_zQ$$
 and $T_zT_w^* = T_w^*T_z$,

$$AB = QT_zPT_w^*Q$$

$$= QT_zT_w^*Q - QT_zQT_w^*Q$$

$$= QT_w^*QT_zQ - QT_zQT_w^*Q.$$

(2) Since $T_w^*P = PT_w^*P$ and $T_w^*T_z = T_zT_w^*$,

$$BA = PT_w^*QT_zP$$

$$= PT_w^*T_zP - PT_w^*PT_zP$$

$$= PT_zPT_w^*P - PT_w^*PT_zP.$$

The properties (3) and (4) are clear.

Theorem 2.2

- (1) A = 0 if and only if $N = H^2$ or $N = H^2 \ominus qH^2$ where q is a one variable inner function with q = q(w).
- (2) B = 0 if and only if M = [0] or $M = qH^2$ where q is a one variable inner function with q = q(z).
 - (3) A = B = 0 if and only if N = [0] or $N = H^2$.

Proof. (2) follows from (1). We will show (1). We have $H^2 = N \oplus M$ and $T_zM \subset M$. Suppose A = 0. By Lemma 2.1(3), $T_zN \subset N$. Put $N_0 = N \ominus T_zN$ and $M_0 = M \ominus T_zM$. Then

$$H^{2} = \sum_{n=0}^{\infty} \bigoplus (N_{0} \oplus M_{0})z^{n} = \sum_{n=0}^{\infty} \bigoplus H^{2}(w,T)z^{n}$$

because $zH^2 = zN \oplus zM$ and so $N_0 \oplus M_0 = H^2(w,T)$. By Lemma 2.1 (1), $V_w^*V_z = V_zV_w^*$ and so $V_z^*V_w = V_wV_z^*$ because AB = 0. Hence $V_w(\ker V_z^*) \subseteq \ker V_z^*$ and $\ker V_z^* = M_0$. Therefore by a theorem of Beurling [1], if $M_0 \neq [0]$, $M_0 = qH^2(w,T)$ and q is a one variable inner function with q = q(w). Hence $M = qH^2$ and so $N = H^2 \ominus qH^2$. If $M_0 = [0]$, then M = [0], and so $N = H^2$.

3. Invariant subspace with AB = 0 or BA = 0

Suppose that N is a backward shift invariant subspace and $M=H^2\ominus N$. By Lemma 2.1, AB=0 if and only if $V_w^*V_z=V_zV_w^*$, and BA=0 if and only if $S_zS_w^*=S_w^*S_z$. Hence we know (see [2], [3], [4]) that AB=0 if and only if $M=qH^2$ for some inner function q. In this section, we study N when BA=0, that is, $S_zS_w^*=S_w^*S_z$.

Lemma 3.1

$$[\operatorname{ran} A]_2 = \{M \ominus zM\} \ominus \{H^2(w, T) \cap M\}$$

and

$$\ker B = \{H^2(z,T) \cap M\} \oplus wM \oplus N.$$

Proof. Since $(T_w^*f, g) = (f, wg)$ if $f, g \in H^2$,

$$\{f\in M;\; T_w^*f\in M\}=M\cap\{H^2\ominus wN\}=\{H^2(z,T)\cap M\}\oplus wM,$$

because $H^2\ominus wN=(H^2\ominus wH^2)\oplus w(H^2\ominus N)$ and $N=H^2\ominus M$. Hence by Lemma 2.1 (4), $\ker B=\{f\in M;\ T_w^*f\in M\}\oplus N=\{H^2(z,T)\cap M\}\oplus wM\oplus N$. By the same argument, $\ker A^*=\{H^2(w,T)\cap M\}\oplus zM\oplus N$ and so

$$\begin{split} [\operatorname{ran} A]_2 &= H^2 \ominus \ker A^* \\ &= \{M \ominus zM\} \ominus \{H^2(w,T) \cap M\}. \end{split}$$

Lemma 3.2

- (1) A = 0 if and only if $M = \{H^2(w, T) \cap M\} \oplus zM$.
- (2) B = 0 if and only if $M = \{H^2(z, T) \cap M\} \oplus wM$.
- (3) BA = 0 if and only if $\{H^2(z,T) \cap M\} \oplus wM \supseteq \{M \ominus zM\} \ominus \{H^2(w,T) \cap M\}$.

Proof. These follow from Lemma 3.1.

For a subset H of H^2 , let $H_k = \sum_{i+j=k} z^i w^j H$ for $k \ge 0$.

Theorem 3.3 Let N be a backward shift invariant subspace of H^2 and M its orthogonal complement. Suppose $N \neq H^2$.

- (1) $S_z S_w^* = S_w^* S_z$ if and only if $M = H + M_1$ and if and only if $M = \sum_{j=0}^{k-1} H_j + M_k$ for any $k \ge 1$, where $H = H_0 = H^2(z,T) \cap M + H^2(w,T) \cap M$. If $S_z S_w^* = S_w^* S_z$, then $H \ne [0]$.
- (2) When $M \cap H^2(z,T) = [0]$ or $M \cap H^2(w,T) = [0]$, $S_z S_w^* = S_w^* S_z$ if and only if $M = qH^2 + M_k$ for any $k \geq 1$ where q is a one variable inner function such that $M \cap H^2(z,T) = qH^2(z,T)$ or $M \cap H^2(w,T) = qH^2(w,T)$.
- (3) When $M \cap H^2(z,T) \neq [0]$ and $M \cap H^2(w,T) \neq [0]$, $S_z S_w^* = S_w^* S_z$ if and only if $M = q_1 H^2 + q_2 H^2 + M_k$ for any $k \geq 1$ where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are one variable inner functions such that $M \cap H^2(z,T) = q_1 H^2(z,T)$ and $M \cap H^2(w,T) = q_2 H^2(w,T)$.

- Proof. (1) Since $S_z S_w^* = S_w^* S_z$ is equivalent to BA = 0, $S_z S_w^* = S_w^* S_z$ if and only if $M = H + M_1$ by Lemma 3.2 (3). It is easy to see that $M = H + M_1 = \sum_{j=0}^{k-1} H_j + M_k$ for any $k \ge 1$. If H = [0], then $M = M_k$ and hence M = [0]. This contradicts $N \ne H^2$.
- (2) We may assume that $M \cap H^2(z,T) = [0]$ and $M \cap H^2(w,T) \neq [0]$. By a theorem of Beurling [1], $M \cap H^2(w,T) = qH^2(w,T)$ for some one variable inner function q = q(w). By (1), $S_z S_w^* = S_w^* S_z$ if and only if $M = qH^2(w,T) + M_1$ if and only if

$$M = q \sum_{i=0}^{k-1} \oplus H^2(w, T) z^j + M_k$$

for any $k \geq 1$. This is equivalent to $M = qH^2 + M_k$ for any $k \geq 1$. For, $M_k \supset qz^kH^2$.

(3) By a theorem of Beurling, $M \cap H^2(z,T) = q_1H^2(z,T)$ and $M \cap H^2(w,T) = q_2H^2(w,T)$ where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are one variable inner functions. By (1), $S_zS_w^* = S_w^*S_z$ if and only if $M = q_1H^2(z,T) + q_2H^2(w,T) + M_1$ if and only if

$$M = q_1 \sum_{j=0}^{k-1} \oplus H^2(z, T) w^j + q_2 \sum_{j=0}^{k-1} \oplus H^2(w, T) z^j + M_k$$

for any $k \geq 1$. This is equivalent to $M = q_1 H^2 + q_2 H^2 + M_k$ for any $k \geq 1$. For, $M_k \supseteq q_1 w^k H^2 + q_2 z^k H^2$.

Corollary 3.4

- (1) AB = BA = 0 if and only if A = 0 or B = 0.
- (2) If $N = H^2 \ominus qH^2$ and q is an inner function and $S_zS_w^* = S_w^*S_z$, then q is a one variable.
- *Proof.* (1) If AB = BA = 0, then by Lemma 2.1 (1) $V_w^*V_z = V_zV_w^*$ and so $M = qH^2$ for some inner function q (see [2], [4]). On the other hand, by Theorem 3.3 (1), $M \cap H^2(z,T) \neq [0]$ or $M \cap H^2(w,T) \neq [0]$ because $S_zS_w^* = S_w^*S_z$. Hence q is one variable. By Theorem 2.2, A = 0 or B = 0.

(2) is clear by (1).
$$\Box$$

Corollary 3.5 Let N be a backward shift invariant subspace and $N \neq H^2$.

(1) If $S_z S_w^* = S_w^* S_z$, then $N \subseteq H^2 \ominus qH^2$ for some one variable inner function q.

- (2) If $N = H^2 \ominus qH^2$ for some one variable inner function q, then $S_z S_w^* = S_w^* S_z$.
- *Proof.* (1) By Theorem 3.3, if $S_z S_w^* = S_w^* S_z$ then $M \supseteq qH^2$ for some one variable inner function q. Hence $N \subseteq H^2 \ominus qH^2$.

(2) is clear by Theorem
$$3.3(3)$$
.

Corollary 3.6 Suppose that $A \neq 0$ and $B \neq 0$.

- (1) If $S_zS_w^* = S_w^*S_z$, then $N \subseteq (H^2 \ominus q_1H^2) \cap (H^2 \ominus q_2H^2)$ where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are one variable inner functions.
- (2) If $N = (H^2 \ominus q_1 H^2) \cap (H^2 \ominus q_2 H^2)$ where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are one variable inner functions, then $S_z S_w^* = S_w^* S_z$.

Proof. By Theorem 2.2, we can prove (1) as in the proof of Corollary 3.5 (1).

(2) Since $q_1H^2 + q_2H^2 = [q_1, q_2] + (q_1H_1^2 + q_2H_1^2)$, $M = [q_1, q_2] + (zM + wM) = q_1H^2 + q_2H^2 + M_k$ for any $k \ge 1$. It is easy to see that $M \cap H^2(z,T) = q_1H^2(z,T)$ and $M \cap H^2(w,T) = q_2H^2(w,T)$. Hence by Theorem 3.3 (3) $S_zS_w^* = S_w^*S_z$.

4. Conjecture

By Corollary 3.5 (2) and Corollary 3.6, if $N = H^2$, $N = H^2 \oplus qH^2$ for some one variable inner function q or $N = (H^2 \oplus q_1H^2) \cap (H^2 \oplus q_2H^2)$ for some one variable inner functions $q_1 = q_1(z)$ and $q_2 = q_2(w)$, then $S_z S_w^* = S_w^* S_z$. Because of Theorem 3.3, we have the following conjecture. In this section, we study this conjecture.

Conjecture If $S_z S_w^* = S_w^* S_z$, then $N = H^2$, $N = H^2 \ominus qH^2$ for some one variable inner function q or $N = (H^2 \ominus q_1 H^2) \cap (H^2 \ominus q_2 H^2)$, where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are one variable inner functions.

Proposition 4.1 If $M = q_1H^2 + q_2H^2 + M_k$ for any $k \ge 1$, where $M \cap H^2(z,T) = q_1H^2(z,T)$ and $M \cap H^2(w,T) = q_2H^2(w,T)$, then $M = q_1(H^2 \ominus w^kH^2) + q_2(H^2 \ominus w^kH^2) + w^kM$ for any $k \ge 1$. The converse is also true.

Proof. Since $wM \supseteq q_2wH^2(w,T)$, by Lemma 3.2 (3) and Theorem 3.3 (3),

$$q_1H^2(z,T) \oplus wM \supseteq K_2 \oplus q_2wH^2(w,T),$$

where $M \ominus zM = K_2 \oplus q_2H^2(w,T)$. Thus

$$q_1H^2(z,T) \oplus wM \supseteq \sum_{j=0}^{\infty} \oplus \{K_2 \oplus q_2wH^2(w,T)\}z^j.$$

Since

$$M = \sum_{j=0}^{\infty} \bigoplus (M \ominus zM)z^j = \sum_{j=0}^{\infty} \bigoplus \{K_2 \bigoplus q_2H^2(w,T)\}z^j,$$

we have

$$q_1 H^2(z, T) + q_2 H^2(z, T) + wM \supseteq M.$$

Hence $M = q_1 H^2(z, T) + q_2 H^2(z, T) + wM$. This leads our assertion.

Corollary 4.2 If $M = qH^2 + M_k$ for any $k \ge 1$ where $M \cap H^2(z,T) = qH^2(z,T)$ and $M \cap H^2(w,T) = [0]$, then $M = qH^2$.

Proof. By Proposition 4.1 and its proof, $M = q(H^2 \ominus w^k H^2) + w^k M$ for any $k \ge 1$. This implies that $M = qH^2$, because $q(H^2 \ominus w^k H^2)$ is orthogonal to $w^k M$.

It is not difficult to prove that $q_1H^2+q_2H^2$ is closed when $q_1=q_1(z)$ and $q_2=q_2(w)$ are one variable. Hence our conjecture is equivalent to the following one. If $S_zS_w^*=S_w^*S_z$, then $M=[0],\ M=qH^2$ or $M=q_1H^2+q_2H^2$. Even if N is of finite dimension, $S_zS_w^*\neq S_w^*S_z$ may happen. In fact, $N=\{1,z,w\}$ is such an example.

References

- [1] Beurling A., On two problems concerning linear transformations in Hilbert space. Acta Math. 81 (1949), 239-255.
- [2] Mandrekar V., The validity of Beurling theorems in polydiscs. Proc. Amer. Math. Soc. 103 (1988), 145-148.
- [3] Nakazi T., Certain invariant subspaces of H² and L² on a bidisc. Can. J. Math. XL (1988), 1272-1280.
- [4] Nakazi T., Invariant subspaces in the bidisc and commutators. J. Austral. Math. Soc. (Series A) 56 (1994), 232–242.

Keiji Izuchi
Department of Mathmatics
Faculty of Science
Niigata University
Niigata 950-2181, Japan
E-mail: izuchi@scux.sc.niigata-u.ac.jp

Takahiko Nakazi
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
E-mail: nakazi@math.sci.hokudai.ac.jp