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Asymptotic behavior of positive solutions of

x′′ = −tαλ−2x1+α with α < 0 and λ < −1 or λ > 0

Ichiro Tsukamoto

(Received May 29, 2006)

Abstract. In this paper, we consider an initial value problem of the differential equation

written in the title under an initial condition x(T ) = A, x′(T ) = B (0 < T < ∞, 0 <

A < ∞, −∞ < B < ∞). In the case λ > 0, we conclude that if T and A are fixed

arbitrarily, then there exists a number B1 such that in every case of B = B1, B > B1,

and B < B1, we get analytical expressions of the solution of the initial value problem

valid in the neighborhoods of the ends of the domain of the solution. Moreover we treat

the case λ < −1. This case connects with the boundary layer theory of viscous fluids.

The conclusions of this case are got directly from those of the case λ > 0. Finally we

discuss the case T = 0 and λ < −1.

Key words: asymptotic behavior, an initial value problem, the analytical expressions, a

first order rational differential equation, a two dimensional autonomous system.

1. Introduction

Let us consider a second order nonlinear differential equation

x′′ = −tαλ−2x1+α

(
′ =

d

dt

)
(E)

in a domain

0 < t < ∞, 0 < x < ∞.

Here α and λ are parameters and

α < 0, λ < −1 or λ > 0.

Notice that pr (p > 0, r ∈ R) takes its positive branch throughout this
paper.

(E) is a useful equation to various fields. Indeed if α = −2 and λ =
−3/2 in particular, then (E) is easily deduced from a nonlinear singular
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boundary value problem

g(u)
d2g(u)
du2

+ 2u = 0, 0 < u < 1

dg(0)
du

= 0, g(1) = 0

which expresses a boundary layer problem of viscous fluids called the Blasius
problem (cf. [2] and [3]). Moreover in dynamics (E) is an equation of motion
in a potential field and so Euler’s equation of a variational problem. In the
theory of partial differential equations, (E) is an equation which positive
radial solutions of a nonlinear elliptic partial differential equation satisfy.

In many papers, (E) has been considered. Taking [7], [9], and [10] from
references of [8] for example, solutions continuable to ∞ of a differential
equation with more general form than (E) are treated there. However we
have not solved an initial value problem of (E) and so shall consider this in
the present paper. The initial condition is denoted as

x(T ) = A, x′(T ) = B (I)

where 0 ≤ T < ∞, A > 0, and B ∈ R. The case 0 < T < ∞ will be treated
in Sections 1 through 5 and the case T = 0, in Section 6 as a supplement.
The method which we shall adopt was originally used in [12] and [13], and
applied in [14] through [22]. Following this method, we shall first transform
(E) into a first order rational differential equation and rewrite this as a two
dimensional autonomous system. From considering these, we shall obtain
analytical expressions of a solution of (E) valid in neighborhoods of ends
of its domain. The analytical expressions just mentioned will show the
asymptotic behavior of the solutions of the initial value problem (E) and
(I).

2. Statement of our main conclusions

In Sections 1 through 5, we suppose that T > 0 in the initial condition
(I). Moreover, fix T and A arbitrarily and let x(t) be a solution of an initial
value problem (E) and (I).

First, suppose λ > 0. Then we conclude the following:
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Theorem 2.1 There exists a number B1 such that if B = B1, then x(t)
is defined for (ω−, ∞) (0 < ω− < ∞) and has a representation

x(t) = K

(
1 +

∞∑

n=1

xntαλn

)
(2.1)

in the neighborhood of t = ∞. Here K and xn are constants.

In the neighborhood of t = ω−, x(t) has various representations de-
pending on α as follows:

Theorem 2.2 If B = B1, then we get

x(t) = Γ(t− ω−)

×
{

1 +
∑

`+m+n>0

d`mn(t− ω−)`(t− ω−)−αm/2(t− ω−)(α+2)n/2

}

if − 2 < α < 0, (2.2)
x(t) = {λ(λ + 1)}−1/2t−λU1−G(U, C)eCG(U, C) if α = −2, (2.3)

where

U ∼
√

2λ(λ + 1) log
t

ω−
as t → ω−,

G(U, C) =
1
2
(C − log U)−1 log(C − log U)

+
∑

`+m+n≥2

g`mn{U(C − log U)2}`(C − log U)−m/2

× {(C − log U)−1 log(C − log U)}n,

x(t) =
{
−2(α + 2)

α2ωαλ−2
−

}1/α

(t− ω−)−2/α

×
{

1 +
∑

m+n>0

xmn(t− ω−)m(t− ω−)2(α+2)n/α

}

if α < −4 or − 4 < α < −2, (2.4)

and

x(t) =

√
2

ω2λ+1
−

(t− ω−)1/2

×
{

1 +
∑

m>0

(t− ω−)mpm(log(t− ω−))
}

if α = −4 (2.5)
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in the neighborhood of t = ω−. Here Γ, C, d`mn, g`mn, and xmn are con-
stants and pm are polynomials whose degrees are not greater than m.

In the case B 6= B1, the following theorems are valid:

Theorem 2.3 If B > B1, then x(t) is defined for (ω−, ∞) (0 < ω− < ∞).
Moreover x(t) has representations (2.2) through (2.5) in the neighborhood
of t = ω− and

x(t) = Kt

(
1 +

∑

m+n>0

xmntα(λ+1)m−n

)
if − 1

α(λ + 1)
/∈ N

x(t) = Kt

{
1 +

∞∑

k=1

tα(λ+1)kpk(log t)
}

if − 1
α(λ + 1)

∈ N

(2.6)

in the neighborhood of t = ∞ where K and xmn are constants and pk are
polynomials whose degrees are not greater than [−α(λ + 1)k] ([ ] denotes
Gaussian symbol).

Theorem 2.4 If B < B1, then x(t) is defined for (ω−, ω+) (0 < ω− <

ω+ < ∞). Furthermore x(t) has representations (2.2) through (2.5) in the
neighborhood of t = ω− and

x(t) = Γ(ω+ − t)
{

1 +
∑

`+m+n>0

d`mn(ω+ − t)`(ω+ − t)−αm/2

× (ω+ − t)(α+2)n/2

}
if − 2 < α < 0, (2.7)

x(t) = {λ(λ + 1)}−1/2t−λU1−G(U, C)eCG(U, C) if α = −2 (2.8)

where

U ∼ −
√

2λ(λ + 1) log
t

ω+
as t → ω+

and G(U, C) has the same form as of (2.3),

x(t) =
{
−2(α + 2)

α2ωαλ−2
+

}1/α

(ω+ − t)−2/α

×
{

1 +
∑

m+n>0

xmn(ω+ − t)m(ω+ − t)2(α+2)n/α

}

if α < −4 or − 4 < α < −2 (2.9)
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and

x(t) =

√
2

ω2λ+1
+

(ω+ − t)1/2

×
{

1 +
∑

m>0

(ω+ − t)mpm(log(ω+ − t))
}

if α = −4 (2.10)

in the neighborhood of t = ω+. Here Γ, C, d`mn, xmn, and pm are the same
as in Theorem 2.1.

Next, suppose λ < −1. Then we have the following:

Theorem 2.5 There exists a number B2 such that if B = B2, then x(t)
is defined for (0, ω+) (0 < ω+ < ∞) and has representations

x(t) = Kt

{
1 +

∞∑

n=1

xntα(λ+1)n

}
(2.11)

in the neighborhood of t = 0 and (2.7) through (2.10) in the neighborhood of
t = ω+. Here K is a constant.

If B 6= B2, then we conclude the following:

Theorem 2.6 If B > B2, then the conclusion of Theorem 2.4 follows. If
B < B2, then x(t) is defined for (0, ω+) (0 < ω+ < ∞) and has represen-
tations

x(t) = K

(
1 +

∑

m+n>0

xmntαλm+n

)
if

1
αλ

/∈ N

x(t) = K

{
1 +

∞∑

k=1

tαλkpk(log t)
}

if
1

αλ
∈ N

(2.12)

in the neighborhood of t = 0 and (2.7) through (2.10) in the neighborhood of
t = ω+. In (2.12), K and xmn are constants and pk are polynomials whose
degrees are not greater than [αλk].

For proving Theorems 2.1 through 2.4, we adopt a transformation

x = {λ(λ + 1)}1/αt−λ(−y)1/α

(
namely y = − 1

λ(λ + 1)
tαλxα

)
, z = ty′ (2.13)
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and transform (E) into a first order rational differential equation

dz

dy
=
−λ(λ + 1)α2y2 + (2λ + 1)αyz − (1− α)z2 + λ(λ + 1)α2y3

αyz
.

(2.14)

Moreover using a parameter s, we write this as a two dimensional au-
tonomous system

dy

ds
= αyz

dz

ds
= −λ(λ + 1)α2y2 + (2λ + 1)αyz − (1− α)z2 + λ(λ + 1)α2y3.

(2.15)

Here, notice the following:
( i ) y got from (2.13) is negative, since we consider only positive solutions.
( ii ) Only the origin is a critical point of (2.15) lying in y ≤ 0 in the yz

plane.
(iii) An orbit of (2.15) is a solution of (2.14).
(iv) The z axis consists of the orbits and the origin.

Using a transformation written in [11], we shall show Theorems 2.5 and
2.6 from Theorems 2.1 through 2.4.

3. Orbits of (2.15) in the neighborhood of y = 0

First, suppose λ > 0. Then we consider asymptotic behavior of orbits
of (2.15) as y → 0.

Lemma 3.1 If z = z(y) is an orbit of (2.15) continuable to y = 0, then
we get

lim
y→0

z(y)
y

= αλ, α(λ + 1).

Proof. If z(y) is unbounded as y → 0, then putting z = 1/ζ in (2.14) we
have

dζ

dy
=

λ(λ + 1)α2y2ζ3 − (2λ + 1)αyζ2 + (1− α)ζ − λ(λ + 1)α2y3ζ3

αy

(3.1)
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and hence a contradiction

ζ =
1

z(y)
≡ 0.

Indeed from the usual discussion using Painlevé’s theorem and the unique-
ness of the solution, we conclude this (cf. [4]). Therefore z(y) is bounded. If
z(y) tends to a nonzero number as y → 0, then this contradicts the unique-
ness of the solution of (2.15) since the z axis consists of the orbits and the
critical point of (2.15). Thus we conclude

z(y) → 0 as y → 0.

Hence we apply the proof of Lemma 1 of [19] and get

lim
y→0

z(y)
y

= αλ, α(λ + 1), ±∞.

Now if

lim
y→0

z(y)
y

= ±∞, (3.2)

then w(y) = yz(y)−1 is a solution of a Briot-Bouquet differential equation

y
dw

dy
=

1
α

w − (2λ + 1)w2 + λ(λ + 1)αw3 − λ(λ + 1)αyw3

with

w(y) → 0 as y → 0.

However since 1/α < 0, it follows from Lemma 2.5 of [18] that

w(y) ≡ 0

which is a contradiction. Thus the case (3.2) is excluded and the proof is
complete. ¤

Conversely from the conclusion of Lemma 3.1 we obtain the solutions
of (2.14) and analytical expressions of these.

Lemma 3.2 There exists a unique orbit z = z1(y) of (2.15) such that

lim
y→0

z

y
= αλ. (3.3)
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Moreover in the neighborhood of y = 0, z1(y) is represented as

z1(y) = αλy

(
1 +

∞∑

n=1

znyn

)
(3.4)

where zn are constants.

Proof. In (2.14) we put

v = y−1z − αλ (3.5)

and get a Briot-Bouquet differential equation

y
dv

dy
= (λ + 1)y +

1
αλ

v + · · · (3.6)

in the neighborhood of (y, v) = (0, 0) where · · · denotes a convergent power
series starting from a term whose degree is greater than that of the previous
term. If z is a solution of (2.14) satisfying (3.3), then we get

v → 0 as y → 0. (3.7)

However since 1/αλ < 0, it follows from Lemma 2.5 of [18] that there exists
the unique holomorphic solution

v =
∞∑

n=1

vnyn (vn : constants)

such that (3.7) holds. Therefore z is uniquely determined from using (3.5)
to this. So if z is denoted as z1(y), then we have (3.4) and the proof is
complete. ¤

Similarly we conclude the following:

Lemma 3.3 There exists an orbit z = z(y) of (2.15) such that

lim
y→0

z(y)
y

= α(λ + 1). (3.8)

Furthermore if Y = −y, then z = z(y) is represented as

z = −α(λ + 1)Y

×
[
1 +

∑

m+n>0

zmnY m
{
Y −1/α(λ+1)(h log Y + C)

}n
]

(3.9)
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in the neighborhood of Y = 0 where zmn, h, and C are constants and unless
−1/α(λ + 1) is an integer, h = 0.

Proof. Put

v = y−1z − α(λ + 1), Y = −y.

Then from (2.14) we get a Briot-Bouquet differential equation

Y
dv

dY
= −λY − v

α(λ + 1)
+ · · · . (3.10)

Since −1/α(λ + 1) > 0, there exists a solution v of (3.10) such that

v → 0 as Y → 0

and v is represented as

v =
∑

m+n>0

vmnY m{Y −1/α(λ+1)(h log Y + C)}n

in the neighborhood of Y = 0. Here v01 = 1 and vmn are constants. Hence
there exists z = z(y) with (3.8) and z = z(y) is represented as (3.9). ¤

4. Asymptotic behavior of orbits of (2.15) for decreasing y

First we put y = −1/η in (2.14) and get

dz

dη
=

λ(λ + 1)α2η + (2λ + 1)αη2z + (1− α)η3z2 + λ(λ + 1)α2

αη4z
.

(4.1)

Here, recall that if we put z = 1/ζ, then we have (3.1). In this we put
y = −1/η and obtain

dζ

dη
=−{λ(λ+1)α2ηζ2 +(2λ+1)αη2ζ +(1−α)η3 +λ(λ+1)α2ζ2}ζ

αη4
.

(4.2)

Moreover, put w = η−3/2ζ and ξ = η1/2. Then we get

ξ
dw

dξ
= −α + 2

α
w − 2(2λ + 1)ξw2

− 2λ(λ + 1)αw3 − 2λ(λ + 1)αξ2w3. (4.3)
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Let z = z(y) be an orbit of (2.15). Then we conclude the following:

Lemma 4.1 z(y) is continuable to y = −∞ and

lim
y→−∞ z(y) = ±∞. (4.4)

Proof. If there exists a sequence {yn} such that yn converges to c (−∞ <

c < 0) and z(yn) diverges to ±∞, then from (3.1) we have a contradiction

ζ =
1

z(y)
≡ 0.

Hence z(y) is continuable to y = −∞. Similarly if there exists a sequence
{yn} such that yn diverges to −∞ and a sequence {z(yn)} is bounded, then
from (4.1) we obtain a contradiction

η ≡ 0.

Therefore (4.4) holds and the proof is complete. ¤

Moreover the following lemma holds:

Lemma 4.2 If x = x(t) is a solution of (E) whose domain is denoted as
(ω−, ω+) and (y, z) is defined as (2.13), then y tends to 0 or −∞ as t →
ω±.

Proof. This is almost the same as the proof of Lemma 2 of [19]. ¤

Owing to the previous section and this lemma, it is sufficient to consider
(2.14) in the neighborhood of y = −∞.

Lemma 4.3 In the neighborhood of y = −∞ an orbit z = z(y) of (2.15)
is represented as follows: If −2 < α < 0, then we get

1
z

= Cξ(2α−2)/α

{
1 +

∑

m+n>0

wmnξm(Cξ−(α+2)/α)n

}
, (4.5)

if α = −2, then

1
z

= ±ξ3{−8λ(λ + 1)(log ξ + C)}−1/2

×
[
1 +

∑

0<2j+k<2(N+1)

wjkξ
j{−8λ(λ + 1)(log ξ + C)}−k/2 + Ω(1)

N

]
(4.6)
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where Ω(1)
N is a function of ξ and log ξ with

|Ω(1)
N | ≤ K

(1)
N | log ξ|−N (K(1)

N : a constant),

and if α < −2, then

1
z

= ξ3

[
±ρ +

∑

m+n>0

umnξm{ξ2(α+2)/α(h log ξ + C)}n

]
(4.7)

where

ρ =
1
α

√
−α− 2

2λ(λ + 1)

and h is a constant such that if α 6= −4, then h = 0. Moreover in (4.5),
(4.6), and (4.7), C, wmn, wjk, and umn are constants and u01 = 1.

Proof. Let us consider (4.3). If its righthand side is equal to 0 in the case
ξ = 0, then we get

w = 0

if −2 ≤ α < 0, and

w = 0, ±ρ

if α < −2. Here, let γ be a cluster point of a solution of (4.3) as ξ → 0
(namely y → −∞). Then if γ 6= 0, ±∞ and besides γ 6= ±ρ in the case
α < −2, then from (4.3) we have

dξ

dw
=

ξ

{−(α + 2)/α}w− 2(2λ + 1)ξw2− 2λ(λ + 1)αw3− 2λ(λ + 1)αξ2w3

which implies a contradition

ξ ≡ 0.

Therefore we obtain

γ = 0, ±ρ, ±∞
and γ is the limit. So, let w = wγ(ξ) be the solution of (4.3) tending to γ

as ξ → 0.
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Now, suppose γ = 0. Then if −2 < α < 0, we get

wγ(ξ) = Cξ−(α+2)/α

{
1 +

∑

m+n>0

wmnξm(Cξ−(α+2)/α)n

}
,

since −(α + 2)/α > 0 and w divides the righthand side of (4.3). Returning
to the original variable z, we get (4.5). If α = −2, then from (4.3) we have

ξ
dw

dξ
= −2(2λ + 1)ξw2 + 4λ(λ + 1)w3 + 4λ(λ + 1)ξ2w3.

Hence using a theory of [5] we obtain

wγ(ξ) = ±{−8λ(λ + 1)(log ξ + C)}−1/2

×
[
1 +

∑

0<2j+k<2(N+1)

wjkξ
j{−8λ(λ + 1)(log ξ + C)}−k/2 + Ω(1)

N

]

and returning to the original variable z, (4.6). Finally if α < −2, then since
−(α + 2)/α < 0 we get a contradiction

wγ(ξ) ≡ 0

from Lemma 2.5 of [18].
Next, suppose γ = ±ρ. Then α < −2. Moreover, put

u = wγ(ξ)− γ.

Then u is a solution of

ξ
du

dξ
=

(2λ + 1)(α + 2)
λ(λ + 1)α2

ξ +
2(α + 2)

α
u + · · ·

and tends to 0 as ξ → 0. Since 2(α + 2)/α > 0, we obtain

u =
∑

m+n>0

umnξm
{
ξ2(α+2)/α(h log ξ + C)

}n

and returning to the original variable z, (4.7).
Finally, suppose γ = ±∞. Then if we put θ = 1/wγ(ξ), θ is a solution

of
dξ

dθ
=

αξθ

(α + 2)θ2 + 2(2λ + 1)αξθ + 2λ(λ + 1)α2 + 2λ(λ + 1)α2ξ2
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Fig. 1.

and tends to 0 as ξ → 0. Therefore we conclude a contradiction

ξ ≡ 0.

Namely the case γ = ±∞ never occurs.
Since we have just examined all cases of γ, the proof is complete. ¤

5. Proof of theorems

Now, suppose λ > 0 again. Then it follows from Lemma 3.1 that
orbits of (2.15) continuable to y = 0 satisfy (3.3) or (3.8). Moreover due
to Lemma 3.2, the orbit satisfying (3.3) is only z = z1(y). It follows from
Lemma 4.1 that every orbit z = z(y) of (2.15) is continuable to y = −∞
and z(y) diverges to ±∞ as y → −∞. As s increases, y increases in a
region y < 0 and z > 0, and decreases in a region y < 0 and z < 0, since
dy/ds = αyz from (2.15). Furthermore on the y axis we have

dy

ds
= 0,

dz

ds
= λ(λ + 1)α2y2(y − 1) < 0

from (2.15), namely the orbit of (2.15) passes the y axis vertically and
decreasingly. Noticing the above, we draw a phase portrait of (2.15) as in
Fig. 1.

Now we take (I) into account. If we define (y, z) as (2.13) from a
solution x = x(t) of (E) and (I), then (y, z) is a solution of (2.15) and
satisfies
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z = αy

(
λ +

tx′(t)
x(t)

)
.

Therefore if (y, z) passes a point (y0, z0) at t = T , then we get

y0 = − TαλAα

λ(λ + 1)
, z0 = αy0

(
λ +

TB

A

)
. (5.1)

Moreover an orbit z = z(y) of (y, z) is a solution of (2.14) with an initial
condition

z(y0) = z0. (5.2)

Conversely from an orbit z = z(y) passing (y0, z0) we have a solution x =
x(t) of (E) and (I).

Here for the proof of our theorems, fix T (> 0) and A arbitrarily. Then
from (5.1), y0 is fixed and (y0, z0) draws a line parallel to the z axis as B

varies. Let L be this line.

Proof of Theorem 2.1. Take (y0, z0) to be the intersection of L and z =
z1(y), and suppose B = B1 in this case. Then from (2.13) and (3.4) we get
a differential equation

ty′ = αλy

(
1 +

∞∑

n=1

znyn

)
.

Solving this, we determine y and have (2.1) from substituting this into (2.13)
namely

x = {λ(λ + 1)}1/αt−λ(−y)1/α.

This completes the proof. ¤

In order to prove Theorem 2.2, we prepare the following:

Lemma 5.1 If

Iµν =
∫

xµ−1(C − log x)νdx (µ ∈ N , ν ∈ Q−N)

and β = −β1/β2 where β1 and β2 are relatively prime positive integers with
1 ≤ β1 ≤ β2 − 1 or β1 = β2 = 1, then in the neighborhood of x = 0 we get

Iµβ =
1
µ

xµ(C − log x)
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×
{

(C − log x)−(β1+β2)/β2 +
∑

j,k

pjkx
j(C − log x)−k/β2

}
+ Rµβ .

Here
∑

j,k is the sum for all integers j and k satisfying

1 ≤ β2j + k < β2(N + 1− µ)

and

k ≥ β1 + β2 + 1 or j ≥ 1.

Moreover pjk are constants and Rµβ is a function such that

|Rµβ | ≤ KN |x|µ
∣∣log |x|

∣∣1−N (KN : a constant)

if

sup
x
| arg x| < ∞.

This is obtained from replacing C with −C in Lemma 2.7 of [21].

Proof of Theorem 2.2. If B = B1, then from applying (2.13) to a solution
x = x(t) of (E) and (I) we get the orbit z = z1(y) since (y0, z0) lies on
z = z1(y). Furthermore if (ω−, ω+) denotes the domain of x(t), then from
Lemma 4.2 and (2.13), namely

dy

dt
=

z1(y)
t

> 0

we have

y → −∞ as t → ω−.

Therefore from Lemma 4.3, z = z1(y) is represented as (4.5), (4.6), and
(4.7) respectively if −2 < α < 0, α = −2, and α < −2.

If −2 < α < 0, then from (4.5) and (2.13) we get
(

Cη−(α+1)/α +
∑

m+n>0

wmnηm/2−((α+2)/2α)n−(α+1)/α

)
η′ =

1
t

(wmn : constants)

since y = −1/η, ξ = η1/2, and z = ty′ = tη′/η2. Integrating both sides, we
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have

−αCη−1/α

(
1 +

∑

m+n>0

amnηm/2−((α+2)/2α)n

)
= log t + D

where amn are constants and D is an integral constant. Since η → 0 as
y → −∞, the lefthand side is bounded. Hence log t is also bounded and
ω− > 0. Therefore we obtain

η−1/α

(
1 +

∑

m+n>0

amnηm/2−((α+2)/2α)n

)
=

log t/ω−
−αC

(5.3)

and from this

η1/2

(
1 +

∑

m+n>0

bmnηm/2−((α+2)/2α)n

)
=

(
log t/ω−
−αC

)−α/2

(5.4)

η−(α+2)/2α

(
1 +

∑

m+n>0

cmnηm/2−((α+2)/2α)n

)

=
(

log t/ω−
−αC

)(α+2)/2

(5.5)

where bmn and cmn are constants. Now we apply the inverse function the-
orem to (5.3), (5.4), and (5.5), and determine η−1/α, η1/2, and η−(α+2)/2α.
In particular we have

η−1/α =
log t/ω−
−αC

{
1 +

∑

`+m+n>0

d̃`mn

(
log t/ω−
−αC

)`

×
(

log t/ω−
−αC

)−(α/2)m(
log t/ω−
−αC

)((α+2)/2)n}

where d̃`mn are constants. Therefore from (2.13) we obtain (2.2), since

log
t

ω−
=

t− ω−
ω−

− 1
2

(
t− ω−

ω−

)2

+ · · · , t−λ = ω−λ
− (1 + · · · ).

Next, let us consider the case α = −2. Then we merely follow the line
of the discussion for obtaining Corollary 2.6 of [21]. Since z = ty′ = 2tξ′/ξ3,
we get from (4.6)

±{−8λ(λ + 1)(log ξ + C)}−1/2
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×
[
1 +

∑

0<2j+k<2(N+1)

wjkξ
j{−8λ(λ + 1)(log ξ + C)}−k/2 + Ω(1)

N

]
ξ′ =

1
2t

where wjk are constants. Replacing C with −C here, we have

±(C − log ξ)−1/2

[
1 +

∑

0<2j+k<2(N+1)

w̃jkξ
j(C − log ξ)−k/2 + Ω(1)

N

]
ξ′

=

√
2λ(λ + 1)

t
.

Integrating both sides from 0 to ξ, we obtain

I1 −1/2 +
∑

0<2j+k<2(N+1)

w̃jkIj+1 −(k+1)/2 + Ω(2)
N

=
√

2λ(λ + 1) log
t

ω−
(5.6)

where w̃jk are constants and Ω(2)
N is a function with

|Ω(2)
N | =

∣∣∣∣
∫ ξ

0
(C − log ξ)−1/2Ω(1)

N dξ

∣∣∣∣ ≤ K
(2)
N |ξ|| log ξ|−N−1/2

(K(2)
N : a constant).

Parting the sum into a sum with even k and a sum with odd k we write
(5.6) as

I1 −1/2 +
∑

0<2j+2m−1<2(N+1)

w̃j 2m−1Ij+1 −m

+
∑

0<2j+2m<2(N+1)

w̃j 2mIj+1 −m−1/2+Ω(2)
N =

√
2λ(λ + 1) log

t

ω−
.

(5.7)

On the other hand, from Lemma 5.1 we get

I1 −1/2 = ξ(C − log ξ)

×
{

(C − log ξ)−3/2 +
∑

1≤2j+k<2N

pjkξ
j(C − log ξ)−k/2

}
+ R1 −1/2 (5.8)
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where in the sum k ≥ 4 or j ≥ 1. Moreover from Lemma 5.1 and

Ij+1 −m =
m−1∑

`=1

bm`ξ
j+1(C − log ξ)−m+` + bmIj+1 −1

where

b1` = 0, b1 = 1, bm` = − (j + 1)`−1

(−m + 1)(−m + 2) · · · (−m + `)
,

bm =
(−1)m−1(j + 1)m−1

(m− 1)!
(m ≥ 2),

we obtain

Ij+1 −m =
∑

1≤J+K≤N+1

q
(1)
jJKξj+1+J(C − log ξ)1−K + bmRj+1 −1 (5.9)

where q
(1)
jJK are constants and in the sum K ≥ 2 or J ≥ 1. Since

Ij+1 −m−1/2 =
m∑

`=1

bm`ξ
j+1(C − log ξ)−m−1/2+` + bmIj+1 −1/2

where

bm` = − (j + 1)`−1

(−m + 1/2)(−m + 3/2) · · · (−m− 1/2 + `)
,

bm =
(j + 1)m

(−m + 1/2)(−m + 3/2) · · · (−1/2)
,

we get from Lemma 5.1

Ij+1 −m−1/2

=
∑

1≤2J+K≤2(N+1)

q
(2)
jJKξj+1+J(C − log ξ)1−K/2 + bmRj+1 −1/2 (5.10)

where q
(2)
jJK are constants and in the sum K ≥ 4 or J ≥ 1. Indeed in

Ij+1 −m−1/2 the coefficient bmm +bm/(j+1) of ξj+1(C− log ξ)−1/2 vanishes.
From (5.7) through (5.10) we have

ξ(C − log ξ)−1/2

{
1 +

∑

1≤j+k<3(N+1)

qjkξ
j(C − log ξ)(3−k)/2

}
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+ Ω(3)
N =

√
2λ(λ + 1) log

t

ω−
(5.11)

where qjk are constants, in the sum k ≥ 4 or j ≥ 1,

Ω(3)
N = R1 −1/2 +

∑

0<2j+2m−1<2(N+1)

wj 2m−1bmRj+1 −1

+
∑

0<2j+2m<2(N+1)

wj 2mbmRj+1 −1/2 + Ω(2)
N ,

and

|Ω(3)
N | ≤ K

(3)
N |ξ|| log ξ|1−N (K(3)

N : a constant).

Now, put

Ω(4)
N = ξ−1(C − log ξ)1/2

×
{

1 +
∑

1≤j+k<3(N+1)

qjkξ
j(C − log ξ)(3−k)/2

}−1

Ω(3)
N ,

U =

√
2λ(λ + 1) log t/ω−

1 + Ω(4)
N

.

Then from (5.11) we obtain

ξ(C − log ξ)−1/2

×
{

1 +
∑

1≤j+k<3(N+1)

qjkξ
j(C − log ξ)(3−k)/2

}
= U (5.12)

and

|Ω(4)
N | ≤ K

(4)
N | log ξ|3/2−N (K(4)

N : a constant),

U ∼
√

2λ(λ + 1) log
t

ω−
.

Since (5.12) is similar to (2.11) of [21], we follow the discussion of [21] after
this and get (2.3).

Finally if α < −2, then we have (4.7) which is similar to (16) and
(16’) of [13]. Therefore for getting (2.4) and (2.5) it suffices to follow the
discussion of [13] after those. Thus the proof is complete. ¤
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Proof of Theorem 2.3. Define (y0, z0) as (5.1) in the case B > B1. Then
z0 is increasing in B for fixed T and A, and (y0, z0) is a point lying above
z = z1(y) in the yz plane. Therefore if we define an orbit z = z(y) of (2.15)
passing (y0, z0) from (2.13), then this lies above z = z1(y). On the other
hand, it follows from the discussion of Sections 3 and 4 that z = z(y) is
represented as (3.9) in the neighborhood of y = 0 and (4.5), (4.6), and (4.7)
in the neighborhood of y = −∞.

Now applying (2.13) to (3.9), we have
[
1 +

∑

m+n>0

amnY m{Y −1/α(λ+1)(h log Y + C)}n

]
Y ′

Y
=

α(λ + 1)
t

and from the integration of both sides

Y

[
1 +

∑

m+n>0

bmnY m{Y −1/α(λ+1)(h log Y + C)}n

]
= Γtα(λ+1)

where amn, bmn, and Γ are constants. Therefore we obtain

t →∞ as y → 0 (namely Y → 0)

and from Smith’s lemma (Lemma 1 of [13])

Y = Γtα(λ+1)

[
1 +

∑

m+n>0

cmntα(λ+1)m{t−1(h log t + C)}n

]

where cmn are constants and α(λ + 1)h, h log Γ + C are replaced with h, C

respectively. Hence from (3.9) we get

x(t) = Kt

[
1 +

∑

m+n>0

x̃mntα(λ+1)m{t−1(h log t + C)}n

]

where x̃mn are constants. Furthermore putting

k = m− n

α(λ + 1)
,

we have

n = −α(λ + 1)(k −m) ≤ [−α(λ + 1)k]

and (2.6) in the neighborhood of t = ∞.
Moreover we have (2.2) through (2.5) in the neighborhood of y = −∞

as in the proof of Theorem 2.2. ¤
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Proof of Theorem 2.4. In the case B < B1, (y0, z0) defined as (5.1) and
the orbit z = z(y) of (2.15) passing (y0, z0) lie below z = z1(y). Moreover
from Fig. 1, we get

z(y) → ±∞ as y → −∞
and from Lemma 4.3, z(y) is represented as (4.5), (4.6), and (4.7) in the
neighborhood of y = −∞. Here, notice that z(y) is not a single valued
function of y. On the other hand, it follows from (2.13) that if z(y) > 0,
then y is an increasing function of t and if z(y) < 0, a decreasing function
of t. Therefore as t decreases, z(y) → ∞ and as t increases, z(y) → −∞.
Noticing this, we follow the line of the calculations done in the proof of
Theorem 2.2 and have the desired representations of the solution x = x(t)
of (E). Thus the proof is complete. ¤

Here, let us obtain the theorems of the case λ < −1 from those of the
case λ > 0.

Proof of Theorems 2.5 and 2.6. Suppose λ > 0 in (E) and adopt a trans-
formation

x =
w(τ)

τ
, t =

1
τ

(5.13)

for (E) (cf. [11]). Then we get

w′′ = −ταλ̃−2w1+α

(′
=

d

dτ
, λ̃ = −λ− 1

)
. (5.14)

Since λ > 0, we have

λ̃ < −1.

Moreover applying (5.13) to (I), we obtain the initial condition

w(T̃ ) = Ã, w′(T̃ ) = B̃

where

T̃ =
1
T

, Ã =
A

T
, B̃ = A−BT.

Indeed we get

x′(t) = −w′(τ)τ + w(τ)
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from (5.13).
Now, put

B̃1 = A−B1T.

Then B = B1, B > B1, and B < B1 are equivalent to B̃ = B̃1, B̃ < B̃1,
and B̃ > B̃1 respectively. Moreover, put

ω̃± =
1

ω∓
.

Then ω− < t < ∞ and ω− < t < ω+ are equivalent to ω̃+ > τ > 0 and
ω̃+ > τ > ω̃− respectively. Furthermore we have

t− ω− =
ω̃+ − τ

ω̃2
+

(
1 +

ω̃+ − τ

ω̃+
+ · · ·

)
,

ω+ − t =
τ − ω̃−

ω̃2−

(
1− τ − ω̃−

ω̃−
+ · · ·

)
,

w(τ) = {ω̃+ − (ω̃+ − τ)}x
(1

τ

)
= {ω̃− + (τ − ω̃−)}x

(1
τ

)
.

Noticing these, we obtain analytical expressions of solutions of (5.14)
from (2.1) through (2.10). For completing the proof, it suffices to denote
B̃1, τ , w, ω̃±, λ̃ as B2, t, x, ω±, λ respectively. ¤

6. On the case T = 0

In this section, suppose T = 0 in the initial condition (I). Then recalling
our theorems, we conclude that a solution of (E) satisfying (I) is represented
only as (2.12). Therefore if λ > 0, then there exists no solution of the initial
value problem (E) and (I). So we suppose λ < −1 and state the answer of
(E) and (I) as follows:

Corollary 6.1 If 1/αλ /∈ N and αλ > 1, then there exists uniquely a
solution x = x(t) of (E) and (I) such that

x(t) = A + Bt− A1+α

αλ(αλ− 1)
tαλ +

∑

m+n>1

xmntαλm+n (6.1)

in the neighborhood of t = 0. Here xmn are constants with x0n = 0 (n =
2, 3, . . .).



Asymptotic behavior of positive solutions 557

Proof. Substitute (2.12) of the case 1/αλ /∈ N into (E). Then we get
∑

m+n>0

(αλm + n)(αλm + n− 1)xmntαλm+n

= −Kαtαλ

(
1 +

∑

m+n>0

xmntαλm+n

)1+α

.

Since 1/αλ /∈ N , the series appearing here are regarded as double power
series of tαλ and t. Therefore we have

∑

m+n>0

(αλm + n)(αλm + n− 1)xmntαλm+n

=−Kαtαλ−
∑

m+n>1

KαPm−1 n(xMN : M ≤m−1, N ≤ n)tαλm+n

(6.2)

where Pm−1 n(xMN : M ≤ m − 1, N ≤ n) are polynomials of xMN with
M ≤ m− 1, N ≤ n and is equal to 0 if m = 0. Putting (m, n) = (1, 0), we
get

x10 = − Kα

αλ(αλ− 1)
.

In the case (m, n) = (0, 1), (6.2) becomes a trivial equation and none of
xmn is determined. If m + n > 1, then we have

x0n = 0 (n ≥ 2),

xmn = −KαPm−1 n(xMN : M ≤ m− 1, N ≤ n)
(αλm + n)(αλm + n− 1)

if m > 0.

Therefore x01 is arbitrary, but the other xmn are determined uniquely from
xMN with M ≤ m− 1, N ≤ n. Hence we obtain

x(t) = K

{
1− Kα

αλ(αλ− 1)
tαλ + x01t +

∑

m+n>1

xmntαλm+n

}
(6.3)

x′(t) = K

{
− Kα

αλ− 1
tαλ−1 + x01

+
∑

m+n>0

(αλm + n)xmntαλm+n−1

}
. (6.4)
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Since αλ > 1, we get

x′(0) = Kx01

and from (I)

K = A, x01 =
B

A
.

Thus we have (6.1). Since xmn are uniquely determined, the existence of
(6.1) is unique. This completes the proof. ¤

Corollary 6.2 Suppose that 1/αλ /∈ N and 0 < αλ < 1. Then there
exists a solution x = x(t) of (E) and (I) if and only if B = ∞. Moreover
x(t) is represented as

x(t) = A− A1+α

αλ(αλ− 1)
tαλ + Ct +

∑

m+n>1

xmntαλm+n (6.5)

in the neighborhood of t = 0 where xmn are the same as of Corollary 6.1
and C is an arbitrary constant.

Proof. In the similar way, we get (6.3), (6.4) and K = A. From αλ < 1
and (6.4) we have

x′(0) = ∞.

Therefore if we put C = Ax01, then we obtain (6.5) and the proof is com-
plete. ¤

Suppose 1/αλ ∈ N in the following corollary:

Corollary 6.3 There exists a solution x = x(t) of (E) and (I) if and only
if B = ∞. Furthermore if 0 < αλ < 1, then the existence of x(t) is unique
and x(t) has a representation

x(t) = A− A1+α

αλ(αλ− 1)
tαλ +

∞∑

k=2

tαλkqk(log t) (6.6)

in the neighborhood of t = 0 where qk(log t) = Apk(log t). If αλ = 1, then
x(t) is represented as

x(t) = A + t(C −A1+α log t) +
∞∑

k=2

tkqk(log t) (6.7)
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in the neighborhood of t = 0 where C is an arbitrary constant.

Proof. Substitute (2.12) of the case 1/αλ ∈ N into (E). Then we obtain
∞∑

k=1

tαλk{p̈k(s) + (2αλk − 1)ṗk(s) + αλk(αλk − 1)pk(s)}

= −tαλKα −
∞∑

k=2

tαλkKαPk−1(pl : l ≤ k − 1) (6.8)

where s = log t, ˙ = d/ds, and Pk−1(pl : l ≤ k − 1) are polynomials of pl(s)
with l ≤ k − 1. Hence if k = 1, then we get

p̈1(s) + (2αλ− 1)ṗ1(s) + αλ(αλ− 1)p1(s) = −Kα. (6.9)

On the other hand, we have deg p1(s) ≤ [αλ] and αλ ≤ 1 from 1/αλ ∈ N .
Hence if αλ < 1, then we obtain

deg p1(s) = 0.

Namely p1(s) is a constant and from (6.9) we get

p1(s) = − Kα

αλ(αλ− 1)
.

If αλ = 1, then we have

deg p1(s) ≤ 1.

So we put

p1(s) = as + b (a, b are constants)

and obtain

a = −Kα.

Hence we get

p1(s) = −Kαs + b.

Moreover if k ≥ 2, then from (6.8) we have a second order inhomoge-
neous linear differential equation

p̈k(s) + (2αλk − 1)ṗk(s) + αλk(αλk − 1)pk(s)
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= −KαPk−1(pl : l ≤ k − 1).

Solving this and recalling that pk(s) are polynomials of s, we obtain

pk(s) = Kα

{
e(αλk−1)t

∫
Pk−1(ql : l ≤ k − 1)e−(αλk−1)sds

− eαλkt

∫
Pk−1(ql : l ≤ k − 1)e−αλksds

}
.

Therefore if we determine b, then pk(s) are uniquely determined.
Owing to the above discussion, we get

x(t) = K

{
1− Kα

αλ(αλ− 1)
tαλ +

∞∑

k=2

tαλkpk(s)
}

(6.10)

x′(t) = − K1+α

αλ− 1
tαλ−1 + K

∞∑

k=2

tαλk−1{αλkpk(s) + ṗk(s)}

if αλ < 1, and

x(t) = K

{
1 + t(b−Kαs) +

∞∑

k=2

tkpk(s)
}

(6.11)

x′(t) = −K1+α + K(b−Kαs) + K

∞∑

k=2

tk−1{kpk(s) + ṗk(s)}

if αλ = 1. Thus we have

x′(0) = ∞
in both cases. Finally applying x(0) = A to (6.10), (6.11), and putting
C = Kb in (6.11), we obtain (6.6), (6.7). Now the proof is complete. ¤

Since C is arbitrary, we conclude from (6.5) and (6.7) that the initial
value problem (E) and (I) has infinitely many solutions in the case 1/αλ /∈
N , 0 < αλ < 1, and the case αλ = 1. Moreover it follows from Theorem 2.6
that the solutions got in the above corollaries are continuable to t = ω+ (0 <

ω+ < ∞) and represented as (2.7) through (2.10), since these solutions are
obtained from (2.12).

Finally let us consider the Blasius problem introduced in Section 1. In
[2] it has been already shown that the solution g(u) of this problem exists.
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Putting

α = −2, λ = −3
2
, g(u) =

√
2x, u = t

in (E), we have this problem. Therefore we get the representation of g(u) in
the neighborhood of u = 0 from Corollary 6.1, while this was obtained also
in [2]. In addition we have the representation of g(u) in the neighborhood
of u = 1 from (2.8) (where ω+ = 1). From this we obtain an asymptotic
expression

g(u) ∼ 2(1− u) as u → 1− 0.
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