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Well-posedness for a modified Zakharov system

Hartmut Pecher
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Abstract. The Cauchy problem for a modified Zakharov system is proven to be locally

well-posed for rough data in two and three space dimensions. In the three dimensional

case the problem is globally well-posed for data with small energy. Under this assumption

there also exists a global classical solution for sufficiently smooth data.
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0. Introduction

The following system describes in plasma physics the nonlinear coupling
of lower-hybrid waves, characterized by the complex amplitude ϕ of the wave
potential, with the much lower-frequency quasineutral density perturbations
χ of the ion-acoustic type. It was introduced in [14] as a variant of the
standard Zakharov system which describes the phenomenon of Langmuir
turbulence in a plasma. For details of the physical background and its
derivation we refer to [14]. The (2+1)-dimensional version reads as follows:

i
∂

∂t
∆ϕ+ ∆2ϕ+

1
i
∇ϕ · ∇χ = 0 (1)

∂2

∂t2
χ−∆χ− 1

i
∆(∇ϕ̄ · ∇ϕ) = 0. (2)

Here ∇ denotes the usual gradient and ∇ = (∂/∂x2, −∂/∂x1), and ϕ and
χ are respectively a complex-valued and a real-valued function defined for
(x, t) ∈ R2 ×R+.

The initial conditions are

ϕ(x, 0) = ϕ0(x), χ(x, 0) = χ0(x),
∂χ

∂t
(x, 0) = χ1(x). (3)

The functions ϕ0, χ0, χ1 are given in suitable Sobolev spaces.
A similar (3 + 1)-dimensional version of the Cauchy problem will also

be considered, which reads as follows:
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i
∂

∂t
∆ϕ+ ∆2ϕ+

1
i
(∇ϕ×∇χ) · e = 0 (4)

∂2

∂t2
χ−∆χ− 1

i
∆(∇ϕ̄×∇ϕ) · e = 0. (5)

Here e is a constant vector in R3 and × denotes the vector product.
The most important question concerning the Cauchy problem is

whether global smooth solutions exist for a class of smooth data. One
way to attack this problem is to give a local well-posedness result for data
with low regularity and then to use the conservation laws, especially the
energy conservation, to extend this solution globally. It then remains to
show that regular data lead to regular solutions. This program can in fact
successfully be carried out, at least in 3 + 1 dimensions.

We are going to use the Fourier restriction norm method introduced by
Bourgain [2], [3] to prove local existence and uniqueness of the problems
also for rough data. It turns out that in 3 + 1 dimensions such a result is
true for the problem (4), (5), (3) provided Bϕ0 ∈ Hk(R3), Bχ0 ∈ H l(R3),
Bχ1 ∈ H l−1(R3), where B := (−∆)1/2, l ≥ −1, l + 1 ≤ k ≤ l + 2 and
k ≥ (l + 2)/2. So the lowest admissible pair is (k, l) = (1/2, −1) (cf.
Theorem 2.1). It is also possible to treat the case Bϕ0 ∈ H1(R3), χ0 ∈
L2(R3), B−1χ1 ∈ L2(R3). This is of particular interest, because in this
case the conservation laws belonging to our problem (cf. (11), (12) below)
can be used to give an a-priori bound for ‖Bϕ‖H1 + ‖χ‖L2 + ‖B−1χt‖L2 ,
provided ‖Bϕ0‖H1 + ‖χ0‖L2 + ‖B−1χ1‖L2 is sufficiently small. This allows
to extend the solution globally in time, thus showing global well-posedness
of the problem in energy space (Theorem 2.2).

It is also possible to refine these results in such a way (cf. Theorem 2.3)
that one can show global well-posedness of the Cauchy problem for smoother
data, especially proving the existence of global classical solutions under the
above mentioned (weak) smallness assumption on the data (Theorem 2.4).

In 2+1 dimensions local well-posedness is proven forB1+εϕ0∈Hk−ε(R2),
B1−δχ0 ∈ H l+δ(R2), B−δχ1 ∈ H l+δ(R2), if l ≥ −1, l + 1 ≤ k ≤ l + 2, k ≥
(l + 2)/2 for 0 < ε, δ < 1 (Theorem 3.1). It is also possible to treat the
case B1+εϕ0 ∈ H1−ε(R2), χ0 ∈ L2(R2), B−1χ1 ∈ L2(R2) for 0 < ε < 1,
but for global well-posedness one would need ε = 0, which is excluded here.
The latter has to do with low frequency problems and the lack of a Sobolev
embedding Ḣ1 ⊂ L∞ in two space dimensions.

This paper leaves open the question whether the results are optimal.



Well-posedness for a modified Zakharov system 469

In order to show the sharpness of the bilinear estimates one would need a
number of counterexamples showing the necessity of the various conditions
on the parameters involved. But even if this could be done this would
not directly imply ill-posedness. A remarkable progress has been made
in a recent paper by Holmer ([10]) for the original Zakharov system in
dimension 1 + 1, who made precise in which sense ill-posedness holds, if
certain conditions on the parameters are violated. An idea could be to
adapt these methods to the present more complicated higher dimensional
situation, but I am not going to make such an attempt in this paper.

The technique of the proof relies on the pioneering works of Bourgain
[2] and Kenig, Ponce and Vega [11], and especially on the paper of Ginibre-
Tsutsumi-Velo [5] for the corresponding problem for the original Zakharov
system, which reads as follows:

i
∂

∂t
u+ ∆u = nu

∂2

∂t2
n−∆n = ∆(|u|2)

u(0) = u0, n(0) = n0,
∂n

∂t
(0) = n1.

In 2 + 1 and 3 + 1 dimensions they showed local well-posedness for data
u0 ∈ Hk′ , n0 ∈ H l′ , n1 ∈ H l′−1 under the assumptions l′ ≥ 0, l′ ≤ k′ ≤
l′ + 1, k′ ≥ (l′ + 2)/2. These conditions are in principle the same as ours
(with l′ = l+1 and k′ = k), if one remarks that somehow u can be identified
with (−∆)1/2ϕ and n with χ. Namely, after this identification and applying
(−∆)1/2 to the first equation of the Zakharov system we arrive at

−i ∂
∂t

∆ϕ−∆2ϕ = (−∆)1/2
(
χ(−∆)1/2ϕ

)

∂2

∂t2
χ−∆χ = ∆

(|(−∆)1/2ϕ|2),

which has a similar form as (4), (5) (just counting the number of deriva-
tives), although the nonlinearities are of a different type.

Global well-posedness for the Zakharov system also holds for small data
in two and three space dimensions [4]. A problem which is somehow related
to the problem considered in the paper at hand has been treated in [9]. They
however consider the 2-dimensional version with a weaker nonlinearity in
the wave equation and prove global well-posedness for smooth data.
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We will often use the notation a+ = a+ ε for a small ε > 0. Similarly,
a− = a− ε and a+ + = a+ 2ε.

The solution spaces are defined as follows: For k, l, b ∈ R we denote
by Xk,b and X l,b

± the space such that f ∈ S ′(Rn ×R) and

‖f‖2
Xk,b :=

∫
〈τ + |ξ|2〉2b〈ξ〉2k|f̂(ξ, τ)|2dξdτ <∞

and

‖f‖2
Xl,b
±

:=
∫
〈τ ± |ξ|〉2b〈ξ〉2l|f̂(ξ, τ)|2dξdτ <∞,

respectively. Ẋk,b and Ẋ l,b
± are defined by replacing 〈ξ〉 := (1 + |ξ|2)1/2 by

|ξ|. Y k is defined with respect to

‖f‖Y k := ‖〈τ + |ξ|2〉−1〈ξ〉kf̂(ξ, τ)‖L2
ξ(L1

τ )

and Y l± similarly by replacing 〈τ + |ξ|2〉−1 by 〈τ ± |ξ|〉−1. Ẏ k and Ẏ l± are
defined by replacing 〈ξ〉 by |ξ|. We also use the corresponding restriction
norm spaces Xk,b[0, T ] by its norm ‖f‖Xk,b[0,T ] := inf f̃|[0,T ]=f ‖f̃‖Xk,b and
similarly the other cases.

We use the following standard facts about these spaces. Let ψ denote a
cut-off function in C∞0 (R) with suppψ ⊂ (−2, 2), ψ = 1 on [−1, 1], ψ(t) =
ψ(−t), ψ(t) ≥ 0, ψδ(t) := ψ(t/δ), 0 < δ ≤ 1. Then the following estimates
hold:

‖ψδe
it∆f‖Xk,b ≤ cδ1/2−b‖f‖Hk

x
, b ≥ 0

and similarly

‖ψδe
±itBf‖

Xl,b
±
≤ cδ1/2−b‖f‖Hl

x
, b ≥ 0.

Moreover
∥∥∥ψδ

∫ t

0
e−i(t−s)∆f(s)ds

∥∥∥
Xk,b

≤ cδ1−b+b′‖f‖Xk,b′ (6)

for b′ ≤ 0 ≤ b ≤ b′ + 1, b′ > −1/2, δ ≤ 1, and
∥∥∥ψδ

∫ t

0
e−i(t−s)∆f(s)ds

∥∥∥
Xk,1/2

≤ c(‖f‖Xk,−1/2 + ‖f‖Y k) (7)
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as well as

‖ψδf‖Xk,b ≤ cδ−ε‖f‖Xk,b (8)

for b ≥ 0, ε > 0.
Similar estimates hold for Xk,b

± , where −∆ is replaced by B := (−∆)1/2.
Proofs can be found in [5].

The Strichartz estimates for the Schrödinger equation in Rn are given
by

‖eit∆u0‖Lq
t (Lr

x) ≤ c‖u0‖L2
x
,

if 0 ≤ 2/q = n(1/2−1/r) < 1. A direct consequence is (cf. [5], Lemma 2.4):

‖f‖Lq
t (Lr

x) ≤ c‖f‖X0,b , (9)

if b0 > 1/2, 0 ≤ b ≤ b0, 0 ≤ η ≤ 1, 2/q = 1− η(b/b0), n(1/2− 1/r) = (1−
η)(b/b0).

For the wave equation we only use

‖e±itBu0‖L∞t (L2
x) ≤ c‖u0‖L2

x

and its consequence

‖f‖Lq
t (L2

x) ≤ c‖f‖
X0,b
±
, (10)

if b0 > 1/2, 2/q = 1− b/b0.
An important consequence for functions with a suitable support

property is given by [5], Lemma 3.1, which we state as follows (for the
Schrödinger equation):

Lemma 0.1 Let σ = τ + |ξ|2, b0 > 1/2, a ≥ 0, 0 ≤ γ ≤ 1, (1− γ)a ≤ b0,
a′ ≥ γa. Define 2/q = 1 − η(1 − γ)(a/b0), n(1/2 − 1/r) := (1 − η)(1 −
γ)(a/b0). Let v ∈ L2 be given such that F−1(〈σ〉−a′ v̂) has support in {|t| ≤
cT}. Then the following estimate holds:

‖F−1(〈σ〉−a|v̂|)‖Lq
t (Lr

x) ≤ cTΘ‖v‖L2
x
,

where Θ = γa(1− [a′ − 1/2]+/a′), [a′ − 1/2]+ := a′ − 1/2, if a′ > 1/2, := ε,
if a′ = 1/2, := 0, if a′ < 1/2.

The proof is a combination of (9), the support property and Hölder’s in-
equality.
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Remark 1. The same estimate is true for the wave equation with σ :=
τ ± |ξ| in the special case η = 1, r = 2 (by use of (10)).
2. The statement of the Lemma without the factor TΘ remains true, if no
support property is assumed (with even a simpler proof).
For details we refer to [5].

1. Conservation laws

We now show that the system (4), (5) has two conserved quantities,
namely

I1 :=
∫

R3

|∇ϕ|2dx (11)

I2 :=
∫

R3

|∆ϕ|2dx+
1
2

∫

R3

(|(−∆)−1/2χt|2 + |χ|2)dx (12)

+
1
i

∫

R3

χ(∇ϕ̄×∇ϕ) · edx

In order to show that I1 is conserved we take the imaginary part of the
scalar product of (4) with ϕ. We use

=1
i
〈(∇ϕ×∇χ) · e, ϕ〉

= −1
2

∫
[(ϕx1χx2 − ϕx2χx1)ϕ̄+ ϕ(ϕ̄x1χx2 − ϕ̄x2χx1)]e3dx

2+ similar terms by permutation of the indices.

The first term is treated as follows

· · ·= −e3
2

∫
[(ϕx1χ)x2ϕ̄− ϕx1x2χϕ̄− (ϕx2χ)x1ϕ̄+ ϕx2x1χϕ̄

+ ϕ(ϕ̄x1χ)x2 − ϕ(ϕ̄x1x2χ)− ϕ(ϕ̄x2χ)x1 + ϕϕ̄x2x1χ]dx

= 0.

This implies that I1 is conserved.
Next we show that I2 is conserved. We take the real part of the scalar

product of (4) with ϕt. We remark that

<〈i∆ϕt, ϕt〉 = 0, <〈∆2ϕ, ϕt〉 =
1
2
d

dt
‖∆ϕ‖2

and
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<1
i
〈(∇ϕ×∇χ) · e, ϕt〉

=
1
2i

(〈(∇ϕ×∇χ) · e, ϕt〉 − 〈(∇ϕ̄×∇χ) · e, ϕ̄t〉
)
.

Calculating (∇ϕ×∇χ) · e and taking its third term (the others are similar)
we get

e3
2i

∫ (
(ϕx1χx2 − ϕx2χx1)ϕ̄t − (ϕ̄x1χx2 − ϕ̄x2χx1)ϕt

)
dx

=
e3
2i

∫ [
(ϕx1χ)x2ϕ̄t − ϕx1x2χϕ̄t − (ϕx2χ)x1ϕ̄t + ϕx2x1χϕ̄t

− (ϕ̄x1χ)x2ϕt + ϕ̄x1x2χϕt + (ϕ̄x2χ)x1ϕt − ϕ̄x2x1χϕt

]
dx

=
e3
2i

∫ (−ϕx1χϕ̄tx2 + ϕx2χϕ̄tx1 + ϕ̄x1χϕtx2 − ϕ̄x2χϕtx1

)
dx

=
e3
2i

∫
χ
(− ϕx1ϕ̄tx2 + (ϕ̄x1ϕx2)t − ϕ̄x1ϕtx2

+ϕ̄x1ϕtx2 − (ϕ̄x2ϕx1)t + ϕ̄tx2ϕx1

)
dx

=
e3
2i

∫
χ
(
ϕ̄x1ϕx2 − ϕ̄x2ϕx1

)
t
dx.

Thus we arrive at

<1
i
〈(∇ϕ×∇χ) · e, ϕt〉 =

1
2i

∫
χ
(
(∇ϕ̄×∇ϕ) · e)

t
dx

=
1
2i
d

dt

∫
χ(∇ϕ̄×∇ϕ) · edx− 1

2i

∫
χt(∇ϕ̄×∇ϕ) · edx

=
1
2i
d

dt

∫
χ(∇ϕ̄×∇ϕ) · edx− 1

2

∫
χt(∆−1χtt − χ)dx

by using (5). Now we have

−1
2

∫
χt(∆−1χtt−χ)dx=

1
2
(〈(−∆)−1/2χt, (−∆)−1/2χtt〉+ 〈χt, χ〉

)

=
1
4
d

dt

(‖(−∆)−1/2χt‖2 + ‖χ‖2
)
.

Summarizing we get

d

dt

(
‖∆ϕ‖2 +

1
2
(‖(−∆)−1/2χt‖2 + ‖χ‖2

)
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+
1
i

∫
χ(∇ϕ̄ ×∇ϕ) · edx

)
= 0.

These two conservation laws imply an a-priori bound for the solution of
our system (4), (5), (3), provided suitable norms of the data are sufficiently
small.

Proposition 1.1 Let (ϕ, χ) be a solution of (4), (5), (3) with Bϕ ∈
C0

(
[0, T ], H1(R3)

)
, χ ∈ C0

(
[0, T ], L2(R3)

)
, B−1χt ∈ C0

(
[0, T ], L2(R3)

)
.

Assume that the data fulfill

‖Bϕ0‖H1 + ‖χ0‖L2 + ‖B−1χt‖L2 < ε0

for a sufficiently small ε0 dependent only on the vector e and some Sobolev
embedding constants. Then for t ∈ [0, T ]:

‖Bϕ(t)‖H1 + ‖χ(t)‖L2 + ‖B−1χt(t)‖L2 ≤ C0,

where C0 is independent of T .

Proof. Consider the conserved quantity

E(ϕ, χ, χt) := ‖∆ϕ‖2 +
1
2
‖χ‖2 +

1
2
‖B−1χt‖2

+
1
i

∫
χ(∇ϕ̄×∇ϕ) · edx+ ‖∇ϕ‖2.

Now by the Sobolev embeddding H1(R3) ⊂ L4(R3):

1
2

∣∣∣
∫
χ(∇ϕ̄×∇ϕ)× edx

∣∣∣≤ c
∫
|χ||∇ϕ|2dx

≤ 1
4

∫
|χ|2dx+ c′

∫
|∇ϕ|4dx

≤ 1
4

∫
|χ|2dx+ c0(‖∇ϕ‖2 + ‖∆ϕ‖2)2 (13)

Defining

Ẽ(ϕ0, χ0, χ1)

:= ‖∆ϕ0‖2 +
1
2
‖χ0‖2 +

1
2
‖B−1χ1‖2

+
∣∣∣∣
∫
χ0(∇ϕ̄0 ×∇ϕ0) · edx

∣∣∣∣ + ‖∇ϕ0‖2,
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we get

m(t) := ‖∆ϕ‖2 +
1
4
‖χ‖2 +

1
2
‖B−1χt‖2 + ‖∇ϕ‖2

≤ Ẽ(ϕ0, χ0, χ1) + c0(‖∇ϕ‖2 + ‖∆ϕ‖2)2,

thus

m(t) ≤ Ẽ(ϕ0, χ0, χ1) + c0m(t)2 ∀t ∈ [0, T ].

Defining

f(m) := Ẽ(ϕ0, χ0, χ1)−m+ c0m
2

we get f
(
m(t)

) ≥ 0 ∀t ∈ [0, T ]. f has its only minimum in m0 = 1/2c0.
For a suitably chosen C0 our smallness assumption implies Ẽ(ϕ0, χ0, χ1) <
1/4c0 using (13) above. This implies

f(m0) <
1

4c0
−m0 + c0m

2
0 =

1
4c0

− 1
2c0

+ c0
1

4c20
= 0.

Because m(0) ≤ Ẽ(ϕ0, χ0, χ1) < 1/4c0 < m0 and f
(
m(0)

) ≥ 0, this implies
m(0) ≤ m1, where m1 is the smaller zero of f(m). Because m(t) is contin-
uous and f

(
m(t)

) ≥ 0 we conclude m(t) ≤ m1 ∀t ∈ [0, T ] and especially
m(t) ≤ m0 ∀t ∈ [0, T ]. Thus we have an a-priori bound for m(t), and the
claim follows. ¤

Concerning the (2+1)-dimensional problem the system (1), (2), (3) has
also two conserved quantities, namely

I1 :=
∫

R2

|∇ϕ|2dx

I2 :=
∫

R2

|∆ϕ|2dx+
1
2

∫

R2

(|(−∆)−1/2χt|2 + |χ|2)dx

+
1
i

∫

R2

χ(∇ϕ̄ · ∇ϕ)dx.

This is shown in the same manner as in 3 dimensions. Moreover it is easy
to see that these conservation laws imply an a-priori bound for ‖Bϕ‖H1 +
‖χ‖L2 + ‖B−1χt‖L2 , provided ‖Bϕ0‖L2 is sufficiently small. This follows
immediately from a Gagliardo-Nirenberg type inequality for the cubic term
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in I2, namely
∣∣∣∣
∫

R2

χ(∇ϕ · ∇ϕ)dx
∣∣∣∣≤

1
4
‖χ‖2

L2 + c‖∇ϕ‖2
L2‖∆ϕ‖2

L2

≤ 1
4
‖χ‖2

L2 +
1
2
‖∆ϕ‖2,

provided c‖∇ϕ0‖2
L2 ≤ 1/2.

The systems in 2 + 1 as well as in 3 + 1 dimensions can be transformed
into a first order system in t by defining

χ± := χ± i(−∆)−1/2∂χ

∂t
, χ =

1
2
(χ+ + χ−),

χ±0 := χ0 ± i(−∆)−1/2χ1.

In 3 + 1 dimensions this leads to the system

i
∂

∂t
∆ϕ+ ∆2ϕ+

1
2i

(∇ϕ×∇(χ+ + χ−)
) · e = 0

i
∂

∂t
χ± ∓ (∆)−1/2χ± ± 1

i
(∆)−1/2(∇ϕ̄×∇ϕ) · e = 0

and

ϕ(0) = ϕ0, χ±(0) = χ±0.

The corresponding system of integral equations reads as follows:

(−∆)1/2ϕ(t) = (−∆)1/2eit∆ϕ0

− 1
2i

∫ t

0
ei(t−s)∆(−∆)−1/2

(
(∇ϕ×∇(χ+ + χ−)) · e)ds

(−∆)1/2χ±(t) = (−∆)1/2e∓it(−∆)1/2
χ±0

∓ 1
i

∫ t

0
e∓i(t−s)(−∆)1/2

(−∆)
(
(∇ϕ̄×∇ϕ) · e)ds.

2. Local and global existence in 3 + 1 dimensions

Concerning the system (4), (5), (3), in order to prove local existence and
uniqueness for solutions Bϕ ∈ Xk,b[0, T ] and Bχ ∈ X l,b1

+ [0, T ] +X l,b1
− [0, T ]

we have to give estimates for the nonlinearities in spaces of the type Xk,b′

and X
l,b′1± for some b′, b′1 ≤ 0, and in some limiting cases also in the spaces

Y k and Y l±, respectively, because in these cases we are forced to choose
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b′ = −1/2 or b′1 = −1/2 (cf. (6) and (7)).
In the sequel we use the notation

ξ := ξ1 − ξ2, τ := τ1 − τ2, σi := τi + |ξi|2 (i = 1, 2), σ := τ ± |ξ|.
Then we have

|ξ1|2 − |ξ2|2 ∓ |ξ| = σ1 − σ2 − σ. (14)

Later we need the following elementary algebraic inequalities, which were
essentially proven in ([5]), Lemma 3.3. Here φE denotes the characteristic
function of the set E.

Lemma 2.1 1. Let y1, y2 ∈ R and z = y1 − y2. Then for any λ > 1

|z| ≤ λ|y2|+ λ

λ− 1
|y1|φ{λ/(λ+1)≤|z|/|y1|≤λ/(λ−1)}. (15)

2. Let |ξ1| ≥ 2|ξ2|. Then

〈ξ1〉2 ≤ c(〈σ〉+ 〈σ1〉+ 〈σ2〉) (16)

〈ξ1〉2 ≤ c(〈σ〉+ 〈σ2〉+ 〈σ1〉φ{c1|σ1|≤|ξ1|2≤c2|σ1|}) (17)

〈ξ1〉2 ≤ c(〈σ1〉+ 〈σ2〉+ 〈σ〉φ{c1|σ|≤|ξ|2≤c2|σ|}), (18)

where c, c1, c2 > 0.

Proof. (15) follows from the fact that {(λ−1)/λ}|z| ≤ |y1| ≤ {(λ+1)/λ}|z|,
if |z| ≥ λ|y2|.
(16) is implied by (14) and the fact that |ξ1|2 − |ξ2|2 ∓ |ξ| ∼ |ξ1| for large
|ξ1|, and that |ξ1|2 − |ξ2|2 ∓ |ξ| is bounded for small |ξ1|.
In order to prove (17) we use (15) with z = |ξ1|2 − |ξ2|2 ∓ |ξ|, and get for
large |ξ1|:

|ξ1|2 ∼
∣∣|ξ1|2 − |ξ2|2 ∓ |ξ|

∣∣

≤ λ(|σ|+ |σ2|) +
λ

λ− 1
|σ1|φ{λ/(λ+1)≤| |ξ1|2−|ξ2|2∓|ξ| |/|σ1|≤λ/(λ−1)}

≤ c(〈σ〉+ 〈σ2〉+ 〈σ1〉φ{c1|σ1|≤|ξ1|2≤c2|σ2|}).

But (17) is trivially also true for small |ξ1|.
Finally, (18) follows from (17) by interchanging σ and σ1 and using |ξ| ∼
|ξ1|. ¤
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Lemma 2.2 In space dimensions n = 2 or n = 3 let m > 0, 1/2 ≥
a, a1, a2 ≥ 0 satisfy 2(a + a1 + a2) +m > n/2 + 1 and a + a1 + a2 > 1/2.
Let v, v1, v2 ∈ L2

xt be given such that F−1(〈σ〉−bv̂) and F−1(〈σi〉−bi v̂i) are
supported in {|t| ≤ cT} for some B ≥ b ≥ a, B ≥ bi ≥ ai (i = 1, 2). Then
the following estimates hold with Θ = Θ(a, a1, a2, m, B) > 0:

∫ |v̂v̂1v̂2|
〈σ〉a〈σ1〉a1〈σ2〉a2〈ξ〉m ≤ cTΘ‖v‖L2

xt
‖v1‖L2

xt
‖v2‖L2

xt
,

∫ |v̂v̂1v̂2|
〈σ〉a〈σ1〉a1〈σ2〉a2〈ξ2〉m ≤ cTΘ‖v‖L2

xt
‖v1‖L2

xt
‖v2‖L2

xt
.

Remark Here and in the following integrals are always taken over
dξ1dξ2dτ1dτ2 and v̂ = v̂(ξ, τ), v̂1 = v̂1(ξ1, τ1), v̂2 = v̂2(ξ2, τ2).

Proof. For the proof of the second inequality we refer to Lemma 2.3 below.
Just remark that we can assume m < n/2 w.l.o.g. under our assumptions
2(a+ a1 + a2) +m > n/2 + 1 and a+ a1 + a2 > 1/2.

Next we prove the first inequality along the lines of [5], Lemma 3.2. We
estimate using Hölder’s inequality by

c‖F−1(〈ξ〉−m〈σ〉−a|v̂|)‖Lq
t (Lr

x) · ‖F−1(〈σ1〉−a1 |v̂1|)‖L
q1
t (L

r1
x )

· ‖F−1(〈σ2〉−a2 |v̂2|)‖L
q2
t (L

r2
x ) (19)

with
1
q

+
1
q1

+
1
q2

= 1, (20)

1
r

+
1
r1

+
1
r2

= 1. (21)

Choose b0 = 1/2 + ε, ε sufficiently small, and 0 < γ, η < 1 such that

2
qi

= 1− η(1− γ)
ai

b0
(i = 1, 2),

2
q

= 1− (1− γ)
a

b0

(remark that (1 − γ)max(a, a1, a2) < b0, because a, a1, a2 ≤ 1/2, so that
q, q1, q2 ≥ 2). Now (20) is equivalent to

(1− γ)(a+ η(a1 + a2)) = b0. (22)

Concerning the x-integration we use the Sobolev embedding Hm,2
x ⊂ Lr

x for

m > n
(1

2
− 1
r

)
≥ 0 (23)
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and choose

n
(1

2
− 1
ri

)
= (1− γ)(1− η)

ai

b0
. (24)

With these choices an application of Lemma 0.1 (+Remark 1) gives the
desired bound. Now (21) by use of (24) reduces to

n
(1

2
− 1
r

)
= n

( 1
r1

+
1
r2
− 1

2

)
= −n

(1
2
− 1
r1

)
− n

(1
2
− 1
r2

)
+
n

2

=
n

2
− (1− γ)(1− η)

a1 + a2

b0
.

From (22) we get (1−γ){η(a1 +a2)/b0} = 1− (1−γ)a/b0 and thus n(1/2−
1/r) = 1 + n/2 − (1 − γ){(a + a1 + a2)/b0} so that (23) reduces to the
condition

m > 1 +
n

2
− (1− γ)

a+ a1 + a2

b0
. (25)

It remains to check (22) and (25). (25) can be fulfilled for a suitable 0 <
γ < 1 close to 0, if b0 is close enough to 1/2 under our assumption 2(a +
a1 + a2) +m > n/2 + 1. Concerning (22) we only remark that (1 − γ)a <
1/2 < b0, whereas (1 − γ)(a + a1 + a2) > b0 for small γ > 0 and b0 close
to 1/2 by the assumption a + a1 + a2 > 1/2. So (22) can be fulfilled for a
suitable 0 < η < 1. ¤

Remark Lemma 2.2 remains true, if one of the three factors does not fulfill
the support property and at least one of the exponents a, a1, a2 belonging
to the other two factors is strictly positive. This follows by using Remark 2
to Lemma 0.1.

We also need the following variant of the previous Lemma.

Lemma 2.3 In space dimensions n = 2 or n = 3 let n/2 > m ≥ 0, 1/2 ≥
a, a1, a2 ≥ 0, a1 > 0 satisfy 2(a+ a1 + a2) +m > n/2 + 1. Let v, v1, v2 ∈
L2

xt be given such that F−1(〈σ〉−bv̂) and F−1(〈σi〉−bi v̂i) are supported in
{|t| ≤ cT} for some B ≥ b ≥ a, B ≥ bi ≥ ai (i = 1, 2). Then the following
estimate holds with Θ = Θ(a, a1, a2, m, B) > 0:

∫ |v̂v̂1v̂2|
〈σ〉a〈σ1〉a1〈σ2〉a2 |ξ2|m ≤ cTΘ‖v‖L2

xt
‖v1‖L2

xt
‖v2‖L2

xt
.
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Proof. Again using a variant of the proof of [5], Lemma 3.2 we estimate
the l.h.s. by Hölder’s inequality as follows:

c‖F−1(〈σ〉−a|v̂|)‖Lq
t (L2

x) · ‖F−1(〈σ1〉−a1 |v̂1|)‖L
q1
t (L

r1
x )

· ‖F−1(|ξ2|−m〈σ2〉−a2 |v̂2|)‖L
q2
t (L

r2
x ) (26)

with
1
q

+
1
q1

+
1
q2

= 1, (27)

1
r1

+
1
r2

=
1
2
. (28)

Choose b0 = 1/2 + ε, ε sufficiently small, and 0 < γ, η < 1 such that

2
qi

= 1− η(1− γ)
ai

b0
(i = 1, 2),

2
q

= 1− (1− γ)
a

b0

(remark that (1 − γ)max(a, a1, a2) < b0, because a, a1, a2 ≤ 1/2, so that
q, q1, q2 ≥ 2). Now (27) is equivalent to

(1− γ)(a+ η(a1 + a2)) = b0. (29)

Concerning the x-integration we use the Sobolev embedding Ḣm,r′2
x ⊂ Lr2

x

provided

m = n
( 1
r′2
− 1
r2

)
≥ 0 (30)

and r2 6= ∞. This last condition is by (28) equivalent to r1 6= 2. We now
choose r1 such that

n
(1

2
− 1
r1

)
:= (1− γ)(1− η)

a1

b0
. (31)

This is strictly positive, because a1 > 0. Thus r1 6= 2 and r2 6= ∞ is fulfilled.
Now we choose r′2 such that

n
(1

2
− 1
r′2

)
:= (1− γ)(1− η)

a2

b0
. (32)

With these choices we can estimate (26) by cTΘ‖v‖L2
xt
‖v1‖L2

xt
‖v2‖L2

xt
using

Lemma 0.1 (+Remark 1). Now we compute using (28), (31), (32):

n
( 1
r′2
− 1
r2

)
= n

( 1
r′2

+
1
r1
− 1

2

)
=
n

2
− (1− γ)(1− η)

a1 + a2

b0
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=
n

2
− (1− γ)

a1 + a2

b0
+ η(1− γ)

a1 + a2

b0
.

From (29) we get (1− γ){η(a1 + a2)/b0} = 1− (1− γ)(a/b0) and thus

n
( 1
r′2
− 1
r2

)
= 1 +

n

2
− (1− γ)

a+ a1 + a2

b0
.

Thus (30) reduces to

m = 1 +
n

2
− (1− γ)

a+ a1 + a2

b0

⇐⇒ (1− γ)(a+ a1 + a2) = b0

(n
2

+ 1−m
)
. (33)

It remains to fulfill (29) and (33). (33) can be fulfilled with a suitable 0 <
γ < 1, if b0 is close enough to 1/2 under our assumption 2(a + a1 + a2) +
m > n/2 + 1. It remains to fulfill (29). By (33) and m < n/2 we have
(1− γ)(a+ a1 + a2) > b0, whereas (1− γ)a < 1/2 < b0, so that (29) can be
fulfilled by a suitable choice of η ∈ (0, 1). ¤

Remark Similarly as for Lemma 2.2 it is sufficient here to have the sup-
port property for only two of the three factors, provided at least one of the
exponents a, a1, a2 belonging to the other two factors is strictly positive.

In the following D denotes any first order spatial derivative.

Lemma 2.4 In space dimension n = 3 assume l ≥ −1, k ≥ l+1, k < l+2
with the exception of (k, l) = (0, −1). ϕ and χ are given with support in
{|t| ≤ cT}. Then the following estimate holds:

‖(−∆)−1/2(DϕDχ)‖Xk,(−1/2)+ ≤ cTΘ‖Dϕ‖Xk,1/2‖Dχ‖
X

l,1/2
±

with Θ = Θ(k, l) > 0.

Remark Trivially we can replace ‖Dχ‖
X

l,1/2
±

by ‖χ‖
Ḣ

l+1,1/2
±

, if l ≤ 0.

Proof. Defining v̂ := 〈ξ〉l〈σ〉1/2D̂χ, v̂2 := 〈ξ2〉k〈σ2〉1/2D̂ϕ and
ψ̂ := 〈ξ1〉k〈σ1〉−1/2+v̂1, where v1 ∈ L2

xt, we have ‖v‖L2
xt

= ‖Dχ‖
X

l,1/2
±

,

‖v2‖L2
xt

= ‖Dϕ‖Xk,1/2 and ‖v1‖L2
xt

= ‖ψ‖X−k,1/2− . This generic function ψ

in X−k,1/2− can be assumed to have support in {|t| ≤ cT}, too. Thus we
have: the support of F−1(〈σ〉−1/2v̂), F−1(〈σ2〉−1/2v̂2) and F−1(〈σ1〉−1/2+v̂1)
is contained in {|t| ≤ cT}. We thus have to show:
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S :=
∣∣∣∣
∫

v̂v̂1v̂2|ξ1|−1〈ξ1〉k
〈ξ〉l〈ξ2〉k〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

∣∣∣∣
≤ cTΘ‖v‖L2

xt
‖v1‖L2

xt
‖v2‖L2

xt
. (34)

Region A: |ξ1| ≤ (1/2)|ξ2|.
In this case we have |ξ| ∼ |ξ2|, thus

S ≤ c

∫ |v̂v̂1v̂2||ξ1|−1〈ξ1〉k
〈ξ2〉k+l〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

Case 1: k < 1, k + l ≤ 0.
We use the estimate (cf. (16)) 〈ξ2〉 ≤ (〈σ〉+ 〈σ1〉+ 〈σ2〉)1/2 and get

S ≤ c

∫ |v̂v̂1v̂2|(〈σ〉+ 〈σ1〉+ 〈σ2〉)(−k−l)/2

|ξ1|〈ξ1〉−k〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
.

Because under our assumptions −k− l < 1, we get three terms with positive
powers of the σ-modules in the denominator.

a. We consider first the case |ξ1| ≥ 1, where we have

S ≤ c

∫ |v̂v̂1v̂2|(〈σ〉+ 〈σ1〉+ 〈σ2〉)(−k−l)/2

〈ξ1〉1−k〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
.

We use Lemma 2.2 with e.g. a = 1/2 + (k + l)/2, a1 = 1/2−, a2 = 1/2,
m = 1− k (and similar choices in the other cases) and get 2(a+ a1 + a2) +
m = l + 4− > 5/2 for l > −3/2, a+ a1 + a2 = 3/2 + (k + l)/2− > 1/2 and
a, a1, a2 ≤ 1/2, because k + l ≤ 0.

b. In the case |ξ1| ≤ 1 we get

S ≤ c

∫ |v̂v̂1v̂2|(〈σ〉+ 〈σ1〉+ 〈σ2〉)(−k−l)/2

|ξ1|〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
.

Similarly as before we use Lemma 2.3 with m = 1 and get 2(a+ a1 + a2) +
m = k + l + 4 ≥ −1 + 4 = 3, thus the desired estimate.

Case 2: k ≤ 1, k + l > 0.
We get

S ≤ c
∫ |v̂v̂1v̂2||ξ1|−1〈ξ1〉k
〈ξ1〉k+l〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

= c

∫ |v̂v̂1v̂2|
|ξ1|〈ξ1〉l〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.
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a. |ξ1| ≥ 1.
By l ≥ −1 we get

S ≤ c

∫ |v̂v̂1v̂2|
〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

This can be handled by Lemma 2.3 with a = a2 = 1/2, a1 = 1/2−, m = 0.

b. |ξ1| ≤ 1.

S ≤ c

∫ |v̂v̂1v̂2|
|ξ1|〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

We use Lemma 2.3 with a = a2 = 1/2, a1 = 1/2−, m = 1.

Case 3: k ≥ 1.

a. |ξ1| ≥ 1.
Using |ξ1| ≤ (1/2)|ξ2| and l ≥ −1 we get

S ≤ c
∫ |v̂v̂1v̂2|〈ξ1〉k−1

〈ξ2〉k+l〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2|
〈ξ2〉l+1〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2|
〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

This can be handled by Lemma 2.3 with a = a2 = 1/2, a1 = 1/2−, m = 0.

b. |ξ1| ≤ 1.
Using k + l ≥ 1 + l ≥ 0 we get

S ≤ c
∫ |v̂v̂1v̂2|
|ξ1|〈ξ2〉k+l〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2|
|ξ1|〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

Now we use Lemma 2.3 with a = a2 = 1/2, a1 = 1/2−, m = 1.

Region B: (1/2)|ξ2| ≤ |ξ1| ≤ 2|ξ2| (⇒ |ξ| ≤ 3|ξ1|, 3|ξ2|).
We have

S ≤ c

∫ |v̂v̂1v̂2|〈ξ〉−l

|ξ1|〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
.
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If l ≥ 0 we arrive at the same integral as in Region A, Case 3b.
If −1 ≤ l < 0 we estimate as follows:

S ≤ c

∫ |v̂v̂1v̂2|〈ξ1〉−l

|ξ1|〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
≤ c

∫ |v̂v̂1v̂2|〈ξ1〉
|ξ1|〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

In the case |ξ1| ≤ 1 and |ξ1| ≥ 1 we arrive at the same integral as in
Region A, Case 3b and Case 3a, respectively.

Region C: |ξ1| ≥ 2|ξ2| (⇒ |ξ| ∼ |ξ1|).
We get

S ≤ c

∫ |v̂v̂1v̂2||ξ1|−1〈ξ1〉k−l

〈ξ2〉k〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
.

a. |ξ1| ≤ 1.
This implies |ξ2| ≤ 1/2, so that we again arrive at the same term as in
Region A, Case 3b.

b. |ξ1| ≥ 1.
Because k ≥ l + 1 by assumption, we get by (16):

S ≤ c
∫ |v̂v̂1v̂2|〈ξ1〉k−l−1

〈ξ2〉k〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2|(〈σ〉+ 〈σ1〉+ 〈σ2〉)(k−l−1)/2

〈ξ2〉k〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
.

We remark that our assumption k < l + 2 implies that the exponents of
the σ-modules in the denominator are positive. Using Lemma 2.2 with e.g.
a = 1/2 = a2, a1 = 1/2− (k − l− 1)/2−, m = k > 0, thus 2(a+ a1 + a2) +
m = 4 + l− > 5/2 for l > −3/2, we get the desired bound. ¤

Corollary 2.1 Under the assumptions of Lemma 2.4 we have for k ≥ 1:

‖(−∆)−1/2(DϕDχ)‖Xk,−1/2+

≤ cTΘ(‖Dϕ‖X1,1/2‖χ‖
X

l+1,1/2
±

+ ‖Dϕ‖Xk,1/2‖χ‖
X

0,1/2
±

).

Proof. We use Lemma 2.4 with k = 1−, l = −1:

‖(−∆)−1/2(DϕDχ)‖X1−,(−1/2)+ ≤ cTΘ‖Dϕ‖X1−,1/2‖Dχ‖
X
−1,1/2
±

≤ cTΘ‖Dϕ‖X1−,1/2‖χ‖
X

0,1/2
±

.
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Applying the elementary inequality 〈ξ1〉k−1+ ≤ c(〈ξ〉k−1+ + 〈ξ2〉k−1+)
in the Fourier variables we arrive at

‖(−∆)−1/2(DϕDχ)‖Xk,(−1/2)+

≤ cTΘ(‖Dϕ‖X1−,1/2‖χ‖
X

k−1+,1/2
±

+ ‖Dϕ‖Xk,1/2‖χ‖
X

0,1/2
±

)

≤ cTΘ(‖Dϕ‖X1,1/2‖χ‖
X

l+1,1/2
±

+ ‖Dϕ‖Xk,1/2‖χ‖
X

0,1/2
±

).

¤

Lemma 2.5 In space dimension n = 3 assume l ≥ −1, k ≥ (l + 2)/2,
k > l + 1, and let ϕ1, ϕ2 be supported in {|t| ≤ cT}. Then the following
estimate holds:

‖Dϕ̄1Dϕ2‖X
l+2,−1/2+
±

≤ cTΘ‖Dϕ1‖Xk,1/2‖Dϕ2‖Xk,1/2

with Θ = Θ(k, l) > 0.

Remark Trivially we can replace X l+2,−1/2+
± by Ẋ l+2,−1/2+

± .

Proof. Defining v̂1 := 〈ξ1〉k〈σ1〉1/2D̂ϕ1, v̂2 := 〈ξ2〉k〈σ2〉1/2D̂ϕ2 and ψ̂ :=
〈ξ〉l+2〈σ〉−1/2+v̂, where v ∈ L2, we have to show

W =
∣∣∣∣
∫

v̂v̂1v̂2〈ξ〉l+2

〈ξ1〉k〈ξ2〉k〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

∣∣∣∣
≤ cTΘ‖v‖L2

xt
‖v1‖L2

xt
‖v2‖L2

xt
.

Region A: |ξ2|/2 ≤ |ξ1| ≤ 2|ξ2| (⇒ |ξ| ≤ 3|ξ1|, 3|ξ2|).
This gives

W ≤ c

∫ |v̂v̂1v̂2|〈ξ1〉l+2−2k

〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2
≤ c

∫ |v̂v̂1v̂2|
〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

by our assumption k ≥ (l + 2)/2. This integral is treated by Lemma 2.3 as
before.

Region B: |ξ1| ≥ 2|ξ2| (⇒ |ξ| ∼ |ξ1|) (and similarly |ξ2| ≥ 2|ξ1|).
Using k ≤ l + 2 w.l.o.g. and (16) we get

W ≤ c
∫ |v̂v̂1v̂2|〈ξ1〉l+2−k

〈ξ2〉k〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2|(〈σ〉+ 〈σ1〉+ 〈σ2〉)(l+2−k)/2

〈ξ2〉k〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2
.
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The condition k > l + 1 is required to produce positive exponents of the
σ-modules in the denominator. Moreover we have k > 0 so that we can
apply Lemma 2.2 with e.g. a = 1/2 − (l + 2 − k)/2−, a1 = a2 = 1/2 and
m = k, so that 2(a+a1 +a2)+m = k+(k− l)+1− > 5/2, because k− l > 1
and k ≥ (l + 2)/2 ≥ 1/2. This completes the proof of Lemma 2.5. ¤

Corollary 2.2 Under the assumptions of Lemma 2.5 we get for k ≥ 1:

‖(−∆)1/2(Dϕ̄1Dϕ2)‖X
l+1,(−1/2)+
±

≤ cTΘ(‖Dϕ1‖X1,1/2‖Dϕ2‖Xk,1/2 + ‖Dϕ1‖Xk,1/2‖Dϕ2‖X1,1/2).

Proof. Using Lemma 2.5 with k = 1, l = 0− we get

‖Dϕ̄1Dϕ2‖X
2−,(−1/2)+
±

≤ cTΘ‖Dϕ1‖X1,1/2‖Dϕ2‖X1,1/2 , (35)

which gives as in the proof of Corollary 2.1 for l ≥ 0−:

‖(−∆)1/2(Dϕ̄1Dϕ2)‖X
l+1,(−1/2)+
±

≤ ‖Dϕ̄1Dϕ2‖X
l+2,(−1/2)+
±

≤ cTΘ(‖Dϕ1‖X1,1/2‖Dϕ2‖Xl+1+,1/2 + ‖Dϕ1‖Xl+1+,1/2‖Dϕ2‖X1,1/2)

≤ cTΘ(‖Dϕ1‖X1,1/2‖Dϕ2‖Xk,1/2 + ‖Dϕ1‖Xk,1/2‖Dϕ2‖X1,1/2),

whereas for l ≤ 0− we get obviously by (35):

‖(−∆)1/2Dϕ̄1Dϕ2‖X
l+1,(−1/2)+
±

≤ ‖Dϕ̄1Dϕ2‖X
2−,−1/2+
±

≤ cTΘ‖Dϕ1‖X1,1/2‖Dϕ2‖X1,1/2

≤ cTΘ(‖Dϕ1‖X1,1/2‖Dϕ2‖Xk,1/2 + ‖Dϕ1‖Xk,1/2‖Dϕ2‖X1,1/2).

¤

Lemma 2.6 Let n = 3, l ≥ −1, l + 1 ≤ k ≤ l + 2, and let ϕ, χ be given
with support in {|t| ≤ cT}. Then the following estimate holds:

‖(−∆)−1/2(DϕDχ)‖Xk,−1/2 ≤ cTΘ‖Dϕ‖Xk,1/2‖Dχ‖
X

l,1/2
±

with Θ = Θ(k, l) > 0.

Remark For l ≤ 0 we can obviously replace ‖Dχ‖
X

l,1/2
±

by ‖χ‖
Ẋ

l+1,1/2
±

.

Proof. We repeat the proof of Lemma 2.4 replacing everywhere 〈σ1〉1/2−

by 〈σ1〉1/2. Then we can allow (k, l) = (0, −1) in Region A, Case 1. The
strong inequality k < l + 2 was only used in Region Cb. Here the case
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k = l+2 is also possible, if 〈σ1〉1/2 appears instead of 〈σ1〉1/2−. Just remark
that in the limiting case k = l+ 2 we have k > 0 so that Lemma 2.2 can be
applied. ¤

Corollary 2.3 Under the assumptions of Lemma 2.6 we have

‖(−∆)−1/2(DϕDχ)‖Xk,−1/2

≤ cTΘ(‖Dϕ‖X1,1/2‖χ‖
X

l+1,1/2
±

+ ‖Dϕ‖Xk,1/2‖χ‖
X

0,1/2
±

).

Lemma 2.7 Let n = 3, l ≥ −1, k ≥ (l + 2)/2, k = l + 1 and suppose ϕ1

and ϕ2 are supported in {|t| ≤ cT}. Then

‖Dϕ̄1Dϕ2‖X
l+2,−1/2
±

≤ cTΘ‖Dϕ1‖Xk,1/2+‖Dϕ2‖Xk,1/2+

with Θ = Θ(k, l) > 0.

Remark We can replace X l+2,−1/2
± by Ẋ l+2,−1/2

± .

Proof. Replacing 〈σ〉1/2− by 〈σ〉1/2 and 〈σi〉1/2 by 〈σi〉1/2+ everywhere we
repeat the proof of Lemma 2.5. The strong condition k > l + 1 was only
required in Region B to produce positive exponents of the σ-modules in the
denominator. In the limiting case k = l + 1 (remark that k > 0 here) we
use Lemma 2.2 with e.g. a = 0, a1 = 1/2+, a2 = 1/2+ and m = k and get
the inequality

2(a+ a1 + a2) +m = 2 + k+ >
5
2
, (36)

if k ≥ 1/2. This completes the proof. ¤

Remark For k > 1/2 we can replace Xk,1/2+ by Xk,1/2 in the statement
of Lemma 2.7.
This follows immediately, because in this case condition (36) with a = 0,
a1 = a2 = 1/2 is also satisfied.

Corollary 2.4 Under the assumptions of Lemma 2.7 and k ≥ 1 we get

‖(−∆)1/2(Dϕ̄1Dϕ2)‖X
l+1,−1/2
±

≤ cTΘ(‖Dϕ1‖X1,1/2‖Dϕ2‖Xk,1/2 + ‖Dϕ1‖Xk,1/2‖Dϕ2‖X1,1/2).

Because we were forced to replace Xk,−1/2+ by Xk,−1/2 in the limiting
case k = l+ 2 in Lemma 2.4 we have to give an additional estimates where



488 H. Pecher

Xk,−1/2 is replaced by Y k (in order to apply (7) later). Similarly, because
X

l+2,(−1/2)+
± had to be replaced by X l+2,−1/2

± in the limiting case k = l + 1
in Lemma 2.5 we need an estimate where X l+2,−1/2

± is replaced by Y l+2
± .

Lemma 2.8 Let n = 3, l ≥ −1, l + 1 ≤ k ≤ l + 2 be given and let ϕ and
χ be supported in {|t| ≤ cT}. Then

‖(−∆)−1/2(DϕDχ)‖Y k ≤ cTΘ‖Dϕ‖Xk,1/2‖Dχ‖
X

l,1/2
±

with Θ = Θ(k, l) > 0.

Remark For l ≤ 0 we can replace ‖Dχ‖
X

l,1/2
±

by ‖χ‖
Ẋ

l+1,1/2
±

.

Corollary 2.5 Under the assumptions of Lemma 2.8 we have

‖(−∆)−1/2(DϕDχ)‖Y k

≤ cTΘ(‖Dϕ‖X1,1/2‖χ‖
X

l+1,1/2
±

+ ‖Dϕ‖Xk,1/2‖χ‖
X

0,1/2
±

).

Proof of Lemma 2.8. Defining v and v2 as in the proof of Lemma 2.4 and
ψ̂(ξ1) := 〈ξ1〉kŵ1(ξ1) with w1 ∈ L2

x, so that ψ denotes a generic function in
H−k

x , we have to show

S̃ :=
∫ |v̂ŵ1v̂2| |ξ1|−1〈ξ1〉k
〈ξ〉l〈ξ2〉k〈σ〉1/2〈σ1〉〈σ2〉1/2

≤ cTΘ‖v‖L2
xt
‖w1‖L2

x
‖v2‖L2

xt
.

The only case where the strict inequality k < l+ 2 was used in the proof of
Lemma 2.4 was the region |ξ1| ≥ 2|ξ2| and |ξ1| ≥ 1. In all other regions we
define v̂1 := 〈σ1〉−1/2−ŵ1. Then one easily checks ‖v1‖L2

xt
≤ c‖w1‖L2

x
and S̃

can be replaced by
∫ |v̂v̂1v̂2| |ξ1|−1〈ξ1〉k
〈ξ〉l〈ξ2〉k〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

This is exactly the integral treated in the proof of Lemma 2.4, so that the
desired result in these regions follows using the remarks to Lemma 2.2 and
Lemma 2.3 taking into account that w1 fulfills no support property.
It remains to consider the region where |ξ1| ≥ 2|ξ2| and |ξ1| ≥ 1 and l+1 ≤
k ≤ l + 2. In this case we get as in Lemma 2.4

S̃ ≤ c
∫ |v̂ŵ1v̂2|〈ξ1〉k−l−1

〈ξ2〉k〈σ〉1/2〈σ1〉〈σ2〉1/2
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≤ c
∫ |v̂ŵ1v̂2|(〈σ〉+ 〈σ2〉+ 〈σ1〉φ{c1|σ1|≤|ξ1|2≤c2|σ1|})

(k−l−1)/2

〈ξ2〉k〈σ〉1/2〈σ1〉〈σ2〉1/2
.

Here we used (17). The two terms coming from 〈σ〉 and 〈σ2〉 in the nu-
merator are treated by defining v̂1 as before by Lemma 2.2 with e.g. a =
1/2 − (k − l − 1)/2 ≥ 0, a1 = 1/2−, a2 = 1/2, m = k, which implies
2(a + a1 + a2) + m = 4 + l− > 5/2, whereas the term coming from 〈σ1〉
is treated by defining v̂1 := 〈σ1〉−1/2ŵ1φ{c1|σ1|≤|ξ1|2≤c2|σ1|}. One can easily
show ‖v1‖L2

xt
≤ c‖w1‖L2

x
, so that we only have to give the estimate

∫ |v̂v̂1v̂2|
〈ξ2〉k〈σ〉1/2〈σ1〉1/2−(k−l−1)/2〈σ2〉1/2

≤ cTΘ‖v‖L2
xt
‖v1‖L2

xt
‖v2‖L2

xt
.

This can be done by Lemma 2.2 (+remark) with a = a2 = 1/2, a1 = 1/2−
(k − l − 1)/2 ≥ 0 and m = k which implies 2(a + a1 + a2) + m = 4 − l >

5/2. ¤

We also get

Lemma 2.9 Let n = 3, l ≥ −1, k ≥ (l + 2)/2, k = l + 1 and suppose ϕ1

and ϕ2 are supported in {|t| ≤ cT}. Then

‖Dϕ̄1Dϕ2‖Y l+2
±

≤ cTΘ‖Dϕ1‖Xk,1/2+‖Dϕ2‖Xk,1/2+

with Θ = Θ(k, l) > 0. If k > 1/2, we can replace Xk,1/2+ by Xk,1/2.

Remark We can obviously replace Y l+2
± by Ẏ l+2

± and k = l + 1 by k ≥
l + 1.

Proof. Defining v1 and v2 similarly as in the proof of Lemma 2.5 and
ψ̂(ξ) := 〈ξ〉l+2ŵ(ξ) with w ∈ L2

x (so that ψ is a generic function in H−l−2
x ),

we have to show for any ε > 0:

W̃ :=
∫ |ŵv̂1v̂2|〈ξ〉l+2

〈ξ1〉k〈ξ2〉k〈σ〉〈σ1〉1/2+ε〈σ2〉1/2+ε

≤ cTΘ‖w‖L2
x
‖v1‖L2

xt
‖v2‖L2

xt
.

In region A of the proof of Lemma 2.5 we define v̂ := 〈σ〉−1/2−ε/2ŵ such
that ‖v‖L2

xt
≤ c‖w‖L2

x
and W̃ is estimated by

c

∫ |v̂v̂1v̂2|〈ξ1〉l+2−2k

〈σ〉1/2−ε/2〈σ1〉1/2+ε〈σ2〉1/2+ε



490 H. Pecher

≤ c

∫ |v̂v̂1v̂2|
〈σ〉1/2−ε/2〈σ1〉1/2+ε〈σ2〉1/2+ε

,

which can be estimated by cTΘ‖v‖L2‖v1‖L2‖v2‖L2 by Lemma 2.3 (+remark)
as before. In region B of the proof of Lemma 2.5 we get using k = l+1 and
(18):

W̃ ≤ c
∫ |ŵv̂1v̂2|〈ξ1〉
〈ξ2〉k〈σ〉〈σ1〉1/2+ε〈σ2〉1/2+ε

≤ c
∫ |ŵv̂1v̂2|(〈σ1〉+ 〈σ2〉+ 〈σ〉φ{c1|σ|≤|ξ|2≤c2|σ|})

1/2

〈ξ2〉k〈σ〉〈σ1〉1/2+ε〈σ2〉1/2+ε
.

The two terms coming from 〈σ1〉 and 〈σ2〉 in the numerator are treated by
defining v̂ as before by Lemma 2.2 with e.g. a1 = ε, a2 = 1/2+ ε, a = 1/2−
ε/2, m = k ≥ 1/2, so that

2(a+ a1 + a2) +m >
5
2
. (37)

The term coming from 〈σ〉 is treated by defining
v̂ := 〈σ〉−1/2ŵφ{c1|σ|≤|ξ|2≤c2|σ|}, so that ‖v‖L2

xt
≤ c‖w‖L2

x
. Thus it remains

to show
∫ |v̂v̂1v̂2|
〈ξ2〉k〈σ1〉1/2+ε〈σ2〉1/2+ε

≤ cTΘ‖v‖L2‖v1‖L2‖v2‖L2 .

This is true by Lemma 2.2 with a1 = a2 = 1/2 + ε, a = 0, m = k ≥ 1/2,
thus 2(a+ a1 + a2) +m > 5/2.
If k > 1/2, we can easily modify the proof by replacing 〈σj〉1/2+ε by 〈σj〉1/2

(j = 1, 2), because the decisive condition (37) in this case also holds. ¤

Corollary 2.6 Under the assumptions of Lemma 2.9 and k ≥ 1 we get

‖(−∆)1/2(Dϕ̄1Dϕ2)‖Y l+1
±

≤ cTΘ(‖Dϕ1‖X1,1/2‖Dϕ2‖Xk,1/2 + ‖Dϕ1‖Xk,1/2‖Dϕ2‖X1,1/2).

Proof. Follows from Lemma 2.9 and the remark to that Lemma. ¤

Theorem 2.1 In space dimension n = 3 assume l ≥ −1, l+1 ≤ k ≤ l+2,
k ≥ (l + 2)/2, and

Bϕ0 ∈ Hk(R3), Bχ0 ∈ H l(R3), χ1 ∈ H l(R3).
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Then there exists 1 ≥ T > 0, T = T (‖Bϕ0‖Hk , ‖Bχ0‖Hl , ‖χ1‖Hl), such
that the problem (4), (5), (3) has a unique solution (ϕ, χ) with

Bϕ ∈ Xk,b[0, T ], Bχ, χt ∈ X l,b1
+ [0, T ] +X l,b1

− [0, T ].

Here b = 1/2+, b1 = 1/2+, if l + 1 < k < l + 2, b = 1/2, b1 = 1/2+, if
k = l + 2, and b = 1/2+, b1 = 1/2, if k = l + 1. This solution satisfies

Bϕ ∈ C0
(
[0, T ], Hk(R3)

)
, Bχ, χt ∈ C0

(
[0, T ], H l(R3)

)
.

If l ≤ 0 we can replace Bχ0, χ1 ∈ H l by χ0 ∈ Ḣ l+1, χ1 ∈ Ḣ l, and
Bχ, χt ∈ X l,b1

+ [0, T ] + X l,b1
− [0, T ] by χ ∈ Ẋ l+1,b1

+ [0, T ] + Ẋ l+1,b1
− [0, T ],

χt ∈ Ẋ l,b1
+ [0, T ] + Ẋ l,b1

− [0, T ], and we have χ ∈ C0
(
[0, T ], Ḣ l+1(R3)

)
, χt ∈

C0
(
[0, T ], Ḣ l(R3)

)
.

Proof. We replace our system of integral equations by the cut-off system

Bϕ(t) =ψ1(t)Beit∆ϕ0− 1
2i
ψT (t)

∫ t

0
ei(t−s)∆B−1

((
ψ2T (s)∇ϕ(s)

)

×(
ψ2T (s)∇(χ+(s)+χ−(s))

) · e
)
ds

Bχ±(t) =ψ1(t)Be±itBχ±0∓ 1
i
ψT (t)

∫ t

0
e∓i(t−s)BB2

((
ψ2T (s)∇ϕ̄(s)

)

×(
ψ2T (s)∇ϕ(s)

) · e
)
ds,

which we want to solve globally in t. This gives a solution of the original
system in [0, T ]. The factors ψ2T here allow to assume that the factors in the
nonlinearities are supported in {|t| ≤ 2T}. We want to use the contraction
mapping principle and consider the case l + 1 < k < l + 2 first.
The linear parts are treated as follows:

‖ψ1(t)Beit∆ϕ0‖Xk,b ≤ c‖Bϕ0‖Hk

and

‖ψ1(t)Be±itBχ±0‖X
l,b1
±

≤ c‖Bχ±0‖Hl .

Using (6) the integral term in the first equation can be estimated in the
Xk,1/2+-norm by

cT 0+
∥∥B−1

(
((ψ2T∇ϕ)× (ψ2T∇(χ+ + χ−))) · e)

∥∥
Xk,(−1/2)++ ,
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which by Lemma 2.4 and (8) is majorized by

cTΘ+‖B(ψ2Tϕ)‖Xk,1/2(‖B(ψ2Tχ+)‖
X

l,1/2
+

+ ‖B(ψ2Tχ−)‖
X

l,1/2
−

)

≤ cTΘ−‖Bϕ‖Xk,1/2(‖Bχ+‖X
l,1/2
+

+ ‖Bχ−‖X
l,1/2
−

),

where Θ > 0.
The integral term in the second equation can be estimated in the X l,1/2+

± -
norm similarly by use of Lemma 2.5 instead of Lemma 2.4 and leads to the
bound cTΘ−‖Bϕ‖2

Xk,1/2 .
The standard contraction argument then gives a unique solution Bϕ ∈ Xk,b,
Bχ± ∈ X l,b1

± of the cut-off system for small enough T .
If k = l + 1 the estimates for the first equation remain unchanged whereas
Lemma 2.5 is no longer true and forces us to choose b1 = 1/2, so that the
integral term in the X l,b1

± -norm is estimated by (7) by
∥∥B2

(
((ψ2T∇ϕ̄)× (ψ2T∇ϕ)) · e)

∥∥
X

l,−1/2
±

+
∥∥B2

(
((ψ2T∇ϕ̄) × (ψ2T∇ϕ)) · e)

∥∥
Y l .

The first term can be treated by Lemma 2.7 and (8) and gives the bound
cTΘ‖B(ψ2Tϕ)‖2

Xk,1/2+ ≤ cTΘ−‖Bϕ‖2
Xk,1/2+ , whereas the second term gives

the same bound by Lemma 2.9. So we get a unique solution Bϕ ∈ Xk,1/2+,
Bχ± ∈ X l,1/2

± .
If k = l+2 the estimates for the second equation remain unchanged, whereas
Lemma 2.4 is no longer true and thus requires b = 1/2 so that the integral
term in the Xk,b-norm is bounded by

∥∥B(
((ψ2T∇ϕ)× (ψ2T∇(χ+ + χ−))) · e)

∥∥
Xk,−1/2

+
∥∥B(

((ψ2T∇ϕ)× (ψ2T∇(χ+ + χ−))) · e)∥∥
Y k .

These terms are treated by Lemma 2.6 and Lemma 2.8, which gives the
bound

cTΘ‖Bψ2Tϕ‖Xk,1/2(‖Bψ2Tχ+‖
Xl+, 12

+ ‖Bψ2Tχ−‖
Xl−, 12

)

≤ cTΘ−‖Bϕ‖Xk,1/2(‖Bχ+‖Xl+,1/2 + ‖Bχ−‖Xl−,1/2),

which leads to a unique solution Bϕ ∈ Xk,1/2, Bχ± ∈ X l,1/2+
± of the cut-off

system.
To prove uniqueness for the original system of integral equations in [0, T ]
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(without cut-offs) let (ϕ, χ±) be any solution with Bϕ ∈ Xk,b[0, T ], Bχ± ∈
X l,b1
± [0, T ]. Consider e.g. the case l + 1 < k < l + 2 and b = 1/2+, b1 =

1/2+. Let (ϕ̃, χ̃±) be any extension with Bϕ̃ ∈ Xk,b, Bχ̃± ∈ X l,b1
± . Then

we have by the same estimates as above:
∥∥∥
∫ t

0
ei(t−s)∆B−1

((∇ϕ(s)×∇(χ+(s) + χ−(s))
) · e

)
ds

∥∥∥
Xk,b[0, T ]

≤
∥∥∥ψT (t)

∫ t

0
ei(t−s)∆

×B−1
((
ψ2T (s)∇ϕ̃(s)× ψ2T (s)∇(χ̃+(s) + χ̃−(s))

) · e
)
ds

∥∥∥
Xk,b

≤ cTΘ−‖Bϕ̃‖Xk,1/2(‖Bχ̃+‖X
l,1/2
+

+ ‖Bχ̃−‖X
l,1/2
−

).

Thus
∥∥∥
∫ t

0
ei(t−s)∆B−1

((∇ϕ(s)×∇(χ+(s) + χ−(s))
) · e

)
ds

∥∥∥
Xk,b[0, T ]

≤ cTΘ−‖Bϕ‖Xk,1/2[0, T ](‖Bχ+‖X
l,1/2
+ [0, T ]

+ ‖Bχ−‖X
l,1/2
− [0, T ]

).

Similarly we can treat this term in the other cases using the Y -spaces and
also the integral term in the second integral equation. A standard argument
implies uniqueness for the original system in [0, T ].
The claim that Bϕ belongs to C0([0, T ], Hk) and Bχ to C0([0, t], H l) fol-
lows directly from the embeddingsXk,b[0, T ]⊂C0([0, T ], Hk) andX l,b1

± [0, T ]
⊂ C0([0, T ], H l) for b > 1/2 and b1 > 1/2. If b = 1/2 (or similarly b1 = 1/2)
this follows from the fact that the nonlinearity B−1

(
((ψ2T∇ϕ)×(ψ2T∇χ±))·

e
)

belongs to Y k for Bϕ ∈ Xk,1/2 and Bχ± ∈ X
l,1/2
± (cf. estimate above).

This implies by [5], Lemma 2.2:
∫ t

0
ei(t−s)∆B(((ψ2T∇ϕ)× (ψ2T∇(χ+ + χ−))) · e) ds

∈ C0(R,Hk(R3)),

which by the integral equation implies Bϕ ∈ C0([0, T ], Hk(R3)).
The additional claim for l ≤ 0 follows easily by replacing in the application
of Lemma 2.4, Lemma 2.6 and Lemma 2.8 ‖Bχ±‖X

l,1/2
±

by ‖χ±‖Ẋ
l+1,1/2
±

and

in the application of Lemma 2.5 and Lemma 2.7 ‖Dϕ̄Dϕ‖
X

l+2,−1/2(+)
±

by

‖Dϕ̄Dϕ‖
Ẋ

l+2,−1/2(+)
±

and in Lemma 2.9 ‖Dϕ̄Dϕ‖Y l+2
±

by ‖Dϕ̄Dϕ‖Ẏ l+2
±

. ¤
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Remark The case k = 1, l = −1 especially shows that, given data ϕ0, χ0

with Bϕ0 ∈ H1(R3) and χ0, B−1χ1 ∈ L2(R3), there exists a unique local
solution (ϕ, χ) of problem (4), (5), (3) on [0, T ],

T = T (‖Bϕ0‖H1 , ‖χ0‖L2 , ‖B−1χ1‖L2),

withBϕ ∈ X1,1/2[0, T ] and χ, B−1χt ∈ X0,1/2+
+ [0, T ]+X0,1/2+

− [0, T ]. More-
over Bϕ ∈ C0([0, T ], H1(R3)) and χ, B−1χt ∈ C0([0, T ], L2(R3)).

Combining the last remark with Proposition 1.1 we immediately get

Theorem 2.2 Let ϕ, χ0, χ1 be given with

‖Bϕ0‖H1 + ‖χ0‖L2 + ‖B−1χ1‖L2 < ε0

where ε0 is a sufficiently small constant (depending only on e ∈ R3 and a
Sobolev embedding constant). Then the Cauchy problem (4), (5), (3) has a
unique global solution (ϕ, χ) with

Bϕ ∈ X1,1/2, χ, B−1χt ∈ X0,1/2+
+ +X

0,1/2+
− .

Moreover

Bϕ ∈ C0
(
R, H1(R3)

)
, χ, B−1χt ∈ C0

(
R, L2(R3)

)
.

Using the refinements of the nonlinear estimates given in Corollary 2.1,
Corollary 2.2, Corollary 2.3, Corollary 2.4, Corollary 2.5 and Corollary 2.6
we get the following variant of Theorem 2.2.

Theorem 2.3 Assume k ≥ 1, l ≥ −1, l + 1 ≤ k ≤ l + 2 and

Bϕ0 ∈ Hk(R3), χ0, B
−1χ1 ∈ H l+1(R3).

Then there exists 1 ≥ T > 0, T = T (‖Bϕ0‖H1 , ‖χ0‖L2 , ‖B−1χ1‖L2), such
that problem (4), (5), (3) has a unique solution (ϕ, χ) with

Bϕ ∈ Xk,1/2[0, T ], χ, B−1χt ∈ X l+1,b1
+ [0, T ] +X l+1,b1

− [0, T ],

where b1 = 1/2+, if l + 1 < k ≤ l + 2, and b1 = 1/2, if k = l + 1. This
solution satisfies

Bϕ ∈ C0
(
[0, T ], Hk(R3)

)
, Bχ, B−1χt ∈ C0

(
[0, T ], H l+1(R3)

)
.
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Proof. One has to modify the usual contraction argument in the proof of
Theorem 2.1 combining the following fundamental estimates, which e.g. in
the case l + 1 < k ≤ l + 2 read as follows:

‖B−1(DϕDχ)‖X1,−1/2 ≤ cTΘ‖Dϕ‖X1,1/2‖χ‖
X

0,1/2
±

(38)

‖B−1(DϕDχ)‖Y 1 ≤ cTΘ‖Dϕ‖X1,1/2‖χ‖
X

0,1/2
±

(39)

‖B−1(DϕDχ)‖Xk,−1/2

≤ cTΘ(‖Dϕ‖X1,1/2‖χ‖
X

l+1,1/2
±

+ ‖Dϕ‖Xk,1/2‖χ‖
X

0,1/2
±

) (40)

‖B(Dϕ̄1Dϕ2)‖X
1,(−1/2)+
±

≤ cTΘ‖Dϕ1‖X1,1/2‖Dϕ2‖X1,1/2 (41)

‖B(Dϕ̄1Dϕ2)‖X
l+1,(−1/2)+
±

≤ cTΘ(‖Dϕ1‖X1,1/2‖Dϕ2‖Xk,1/2 + ‖Dϕ1‖Xk,1/2‖Dϕ2‖X1,1/2). (42)

Here (38), (39), (40), (41) and (42) follow from Lemma 2.6 (+remark),
Lemma 2.8 (+remark), Corollary 2.3, Lemma 2.5 and Corollary 2.6, re-
spectively.
In the limiting case k = l + 1 we only have to replace (42) by

‖B(Dϕ̄1Dϕ2)‖X
l+1,−1/2
±

≤ cTΘ(‖Dϕ1‖X1,1/2‖Dϕ2‖Xk,1/2 + ‖Dϕ1‖Xk,1/2‖Dϕ2‖X1,1/2),

which follows from Corollary 2.4, and to add

‖B(Dϕ̄1Dϕ2)‖Y l+1
±

≤ cTΘ(‖Dϕ1‖X1,1/2‖Dϕ2‖Xk,1/2 + ‖Dϕ1‖Xk,1/2‖Dϕ2‖X1,1/2),

coming from Corollary 2.6.
We omit the proof and just refer to [8], Theorem 1.1, where a detailed proof
can be found. ¤

Combining Theorem 2.3 with Proposition 1.1 we can also show global
well-posedness for smoother data, namely

Theorem 2.4 Assume k ≥ 1, l ≥ −1, l + 1 ≤ k ≤ l + 2 and

Bϕ0 ∈ Hk(R3), χ0, B
−1χ1 ∈ H l+1(R3)
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with

‖Bϕ0‖H1 + ‖χ0‖L2 + ‖B−1χ1‖L2 < ε0,

where ε0 is sufficiently small, dependent only on e ∈ R3 and a Sobolev
embedding constant. Then the Cauchy problem (4), (5), (3) has a unique
global solution (ϕ, χ) with

Bϕ ∈ Xk,1/2, χ, B−1χt ∈ X l+1,b1
+ +X l+1,b1

− ,

where b1 = 1/2+, if l + 1 < k ≤ l + 2, and b1 = 1/2, if k = l + 1. This
solution satisfies

Bϕ ∈ C0
(
R, Hk(R3)

)
, χ, B−1χt ∈ C0

(
R,H l+1(R3)

)
.

3. Local existence in 2 + 1 dimensions

Lemma 3.1 In space dimension n = 2 the following estimate holds under
the assumptions of Lemma 2.4:

‖B−1+ε(DϕDχ)‖Xk−ε,(−1/2)+

≤ cTΘ‖BεDϕ‖Xk−ε,1/2‖B−δDχ‖
X

l+δ,1/2
±

with Θ > 0, if 0 < ε < 1 and δ > 0.

Remark If l < 0, we can replace ‖B−δDχ‖
X

l+δ,1/2
±

by ‖χ‖
Ẋ

l+1,1/2
±

.

Proof. We follow the proof of Lemma 2.4 and have to give the estimate

S :=
∣∣∣
∫

v̂v̂1v̂2|ξ1|−1+ε〈ξ1〉k−ε

|ξ|−δ〈ξ〉l+δ|ξ2|ε〈ξ2〉k−ε〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

∣∣∣

≤ cTΘ‖v‖L2
xt
‖v1‖L2

xt
‖v2‖L2

xt
.

Region A: |ξ1| ≤ (1/2)|ξ2| (=⇒ |ξ| ∼ |ξ2|).
Case 1: |ξ1| ≥ 1, |ξ2| ≥ 1.
The same calculation as in Lemma 2.4 gives the desired estimate.

Case 2: |ξ1| ≤ 1, |ξ2| ≥ 1.
We have

S ≤ c

∫ |v̂v̂1v̂2||ξ1|−1+ε

〈ξ2〉l+k〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
.
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a. l + k ≤ 0.
Using (16) we get

S ≤ c

∫ |v̂v̂1v̂2|(〈σ〉+ 〈σ1〉+ 〈σ2〉)(−k−l)/2

|ξ1|1−ε〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
.

Remark that −k− l < 1, so that Lemma 2.3 can be applied with m = 1− ε
and gives 2(a+ a1 + a2) +m = k+ l− 4− ε− ≥ 3− ε− > 2, because k ≥ 0,
l ≥ −1, thus the desired estimate follows.

b. l + k ≥ 0.

S ≤ c

∫ |v̂v̂1v̂2|
|ξ1|1−ε〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

Using Lemma 2.3 with m = 1− ε gives the desired result.

Case 3: |ξ1| ≤ 1, |ξ2| ≤ 1 and w.l.o.g. δ ≤ ε.

S ≤ c
∫ |v̂v̂1v̂2||ξ1|−1+ε

|ξ2|ε−δ〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2|
|ξ1|1−δ〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

Using Lemma 2.3 with m = 1− δ gives the result.

Region B: (1/2)|ξ2| ≤ |ξ1| ≤ 2|ξ2| (⇒ |ξ| ≤ 3|ξ1|, 3|ξ2|).
We have

S ≤ c

∫ |v̂v̂1v̂2|〈ξ〉−l−δ|ξ|δ
|ξ1|〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

Case 1: |ξ| ≤ 1.

S ≤ c

∫ |v̂v̂1v̂2|
|ξ1|1−δ〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

This can easily be handled by Lemma 2.3 with m = 1− δ.

Case 2: |ξ| ≥ 1 (⇒ |ξ1| ≥ 1/3).

S ≤ c

∫ |v̂v̂1v̂2|〈ξ〉−l

〈ξ1〉〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
.
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a. l ≤ 0.

S ≤ c

∫ |v̂v̂1v̂2|
〈ξ1〉1+l〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

Because 1 + l ≥ 0 this can easily be handled by Lemma 2.2 or Lemma 2.3.

b. l ≥ 0.
We get

S ≤ c

∫ |v̂v̂1v̂2|
〈ξ1〉〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

,

which can be treated by Lemma 2.2.

Region C: |ξ1| ≥ 2|ξ2| (⇒ |ξ| ∼ |ξ1|).
We get

S ≤ c

∫ |v̂v̂1v̂2||ξ1|−1+ε+δ〈ξ1〉k−ε−l−δ

|ξ2|ε〈ξ2〉k−ε〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
.

Case 1: |ξ1| ≥ 1, |ξ2| ≥ 1.
This case can be handled like the 3-dimensional case in Lemma 2.4.

Case 2: |ξ1| ≥ 1, |ξ2| ≤ 1.
We have by (16):

S ≤ c
∫ |v̂v̂1v̂2|〈ξ1〉k−l−1

|ξ2|ε〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2|(〈σ〉+ 〈σ1〉+ 〈σ2〉)(k−l−1)/2

|ξ2|ε〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
.

Because k > l+ 2 we can apply Lemma 2.3 with m = ε and compute 2(a+
a1 + a2) +m = 2

(
1/2 + 1/2 + 1/2− (k − l − 1)/2

)
+ ε− > 2 + ε−, so that

the claimed estimate follows.

Case 3: |ξ1| ≤ 1, |ξ2| ≤ 1 and w.l.o.g. δ ≤ 1− ε.

S ≤ c
∫ |v̂v̂1v̂2||ξ1|−1+ε+δ

|ξ2|ε〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2|
|ξ2|1−δ〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2

.

An application of Lemma 2.3 with m = 1 − δ gives the desired estimate.
¤
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Lemma 3.2 Let n = 2. Under the assumptions of Lemma 2.5 we have

‖B2−δ(Dϕ̄Dϕ)‖
X

l+δ,−1/2+
±

≤ cTΘ‖BεDϕ‖2
Xk−ε,1/2

with Θ > 0 for 0 < δ < 1, 0 < ε < 1.

Proof. Arguing as in Lemma 2.5 we have to show

W :=
∣∣∣
∫

v̂v̂1v̂2〈ξ〉l+δ|ξ|2−δ

|ξ1|ε〈ξ1〉k−ε|ξ2|ε〈ξ2〉k−ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

∣∣∣

≤ cTΘ‖v‖L2
xt
‖v1‖L2

xt
‖v2‖L2

xt
.

Region A: |ξ2|/2 ≤ |ξ1| ≤ 2|ξ2| (⇒ |ξ| ≤ 3|ξ1|, 3|ξ2|).
Case 1: |ξ1| ≥ 1 (⇒ |ξ2| ≥ 1/2).
Using the assumption k ≥ (l + 2)/2 we get

W ≤ c
∫ |v̂v̂1v̂2|〈ξ〉l+2

〈ξ1〉k〈ξ2〉k〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2|〈ξ〉l+2−2k

〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2
≤ c

∫ |v̂v̂1v̂2|
〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

.

Lemma 2.3 gives the claimed estimate.

Case 2: |ξ1| ≤ 1 (⇒ |ξ2| ≤ 2 ⇒ |ξ| ≤ 3).
Using 2− δ − ε > 0 and |ξ| ≤ 3 we get the estimate

W ≤ c
∫ |v̂v̂1v̂2||ξ|2−δ

|ξ1|ε|ξ2|ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2||ξ|2−δ−ε

|ξ2|ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2|
|ξ2|ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

.

Lemma 2.3 gives the claimed estimate.

Region B: |ξ1| ≥ 2|ξ2| (⇒ |ξ| ∼ |ξ1|) (and similarly |ξ2| ≥ 2|ξ1|).
We get

W ≤ c
∫ |v̂v̂1v̂2|〈ξ1〉l+δ|ξ1|2−δ−ε

〈ξ1〉k−ε|ξ2|ε〈ξ2〉k−ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2
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≤ c
∫ |v̂v̂1v̂2|〈ξ1〉l+2−k

|ξ2|ε〈ξ2〉k−ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2
.

Case 1: |ξ2| ≥ 1.

W ≤ c

∫ |v̂v̂1v̂2|〈ξ1〉l+2−k

〈ξ2〉k〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2
.

This is exactly the integral treated in Lemma 2.5 in the case n = 3.

Case 2: |ξ2| ≤ 1.
Assuming w.l.o.g. k ≤ l + 2 and using (16) we get the estimate

W ≤ c
∫ |v̂v̂1v̂2|〈ξ1〉l+2−k

|ξ2|ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

≤
∫ |v̂v̂1v̂2|(〈σ〉+ 〈σ1〉+ 〈σ2〉)(l+2−k)/2

|ξ2|ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2
.

The exponents in the denominator are nonnegative, because k > l+1. Thus
we apply Lemma 2.3 with e.g. a = 1/2− (l+2− k)/2− > 0, a1 = a2 = 1/2,
m = ε, so that 2(a+ a1 + a2) +m > 2 + ε > 2. ¤

The following variant of Lemma 3.2 is also true:

Lemma 3.3 Let n = 2. Under the assumptions of Lemma 2.5 we have

‖Dϕ̄Dϕ‖
Ẋ

l+2,(−1/2)+
±

∼ ‖B2−δDϕ̄Dϕ‖
Ẋ

l+δ,(−1/2)+
±

≤ cTΘ‖BεDϕ‖2
Xk−ε,1/2

with Θ > 0 for 0 < ε < 1.

Proof. The proof of Lemma 3.2 is modified as follows. We have to estimate

W :=
∣∣∣
∫

v̂v̂1v̂2|ξ|l+2

|ξ1|ε〈ξ1〉k−ε|ξ2|ε〈ξ2〉k−ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

∣∣∣.

Region A: |ξ2|/2 ≤ |ξ1| ≤ 2|ξ2| (⇒ |ξ| ≤ 3|ξ1|, 3|ξ2|).
Case 1: |ξ1| ≥ 1 (⇒ |ξ2| ≥ 1/2).
This case is treated exactly as in Lemma 3.2.

Case 2: |ξ1| ≤ 1 (⇒ |ξ2| ≤ 2 ⇒ |ξ| ≤ 3).
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Using l + 2− ε > 0 and |ξ| ≤ 3 we get the bound

W ≤ c
∫ |v̂v̂1v̂2||ξ|l+2

|ξ1|ε|ξ2|ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2||ξ|l+2−ε

|ξ2|ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2|
|ξ2|ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

,

which can be estimated by Lemma 2.3.

Region B: |ξ1| ≥ 2|ξ2| (⇒ |ξ| ∼ |ξ1|) (and similarly |ξ2| ≥ 2|ξ1|).
Using l + 2− ε > 0 we get the bound

W ≤ c
∫ |v̂v̂1v̂2||ξ1|l+2−ε

〈ξ1〉k−ε|ξ2|ε〈ξ2〉k−ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

≤ c
∫ |v̂v̂1v̂2|〈ξ1〉l+2−k

|ξ2|ε〈ξ2〉k−ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2
.

This is exactly the integral treated in the proof of Lemma 3.2, Region B.
Thus the claimed estimate follows. ¤

In order to treat the limiting cases k = l+1 and k = l+2 we also need
the following results:

Lemma 3.4 Let n = 2, l ≥ −1, l+1 ≤ k ≤ l+2, and let ϕ, χ be supported
in {|t| ≤ cT}. Then the following estimate holds:

‖B−1+ε(DϕDχ)‖Xk−ε,−1/2 ≤ cTΘ‖BεDϕ‖Xk−ε,1/2‖B−δDχ‖
X

l+δ,1/2
±

with Θ > 0 for 0 < ε < 1, δ > 0.

Remark For l < 0 we can replace ‖B−δDχ‖
X

l+δ,1/2
±

by ‖χ‖
Ẋ

l+1,1/2
±

.

Proof. We repeat the proof of Lemma 3.1 replacing 〈σ1〉1/2− by 〈σ1〉1/2.
We only have to remark that the limit case k = l+2 is allowed in Region C,
Case 1 and Case 2, because the power of the σ-modules in the denominator
remains nonnegative in this case. ¤
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Lemma 3.5 Let n = 2, l ≥ −1, k ≥ (l + 2)/2, k = l + 1 and suppϕ ⊂
{|t| ≤ cT}. Then

‖B2−δ(Dϕ̄Dϕ)‖
X

l+δ,−1/2
±

≤ cTΘ‖BεDϕ‖2
Xk−ε,1/2

with Θ > 0 for 0 < δ < 1, 0 < ε < 1.

Proof. We repeat the proof of Lemma 3.2 with 〈σ〉1/2− replaced by 〈σ〉1/2.
The condition k < l + 1 was only used in Region B, Cases 1 and 2 to
produce nonnegative exponents of the σ-modules in the denominator, which
is satisfied now also for k = l + 1. ¤

Remark The estimate of Lemma 3.3 remains true for k = l + 1 in the
following form:

‖Dϕ̄Dϕ‖
Ẋ

l+2,−1/2
±

≤ cTΘ‖BεDϕ‖2
Xk−ε,1/2

with Θ > 0 for 0 < ε < 1.

This follows similarly as Lemma 3.5.

Lemma 3.6 Assume n = 2, l ≥ −1, k = l + 2, and let ϕ, χ be supported
in {|t| ≤ cT}. Then

‖B−1+ε(DϕDχ)‖Y k−ε ≤ cTΘ‖BεDϕ‖Xk−ε,1/2‖B−δDχ‖
X

l+δ,1/2
±

with Θ > 0 for 0 < ε < 1, δ > 0.

Remark For l < 0 we can replace ‖B−δDχ‖
X

l+δ,1/2
±

by ‖χ‖Ẋl+1,1/2 .

Proof. Arguing as in the proof of Lemma 3.1 we now have to give the
following estimate (cf. the proof of Lemma 2.8):

S̃ :=
∫ |v̂ŵ1v̂2||ξ1|−1+ε〈ξ1〉k−ε

|ξ|−δ〈ξ〉l+δ|ξ2|ε〈ξ2〉k−ε〈σ〉1/2〈σ1〉〈σ2〉1/2

≤ cTΘ‖v‖L2
xt
‖w1‖L2

x
‖v2‖L2

xt
.

The only case where the strict inequality k < l + 2 was used in the proof
of Lemma 3.1 was Region C, Case 1 and 2. In all other regions we define
v̂1 := 〈σ1〉−1/2−ŵ1, so that ‖v1‖L2

xt
≤ c‖w1‖L2

x
, and S̃ reads as follows:

S̃ =
∫ |v̂v̂1v̂2||ξ1|−1+ε〈ξ1〉k−ε

|ξ|−δ〈ξ〉l+δ|ξ2|ε〈ξ2〉k−ε〈σ〉1/2〈σ1〉1/2−〈σ2〉1/2
.
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This is exactly the integral treated in the proof of Lemma 3.1, so that the
result in these regions follows. It remains to consider Region C, Case 1 and
2 in the proof of Lemma 3.1. Similarly as there we get in Region C, Case 1
(with k = l + 2):

S̃ ≤ c

∫ |v̂ŵ1v̂2|〈ξ1〉
〈ξ2〉k〈σ〉1/2〈σ1〉〈σ2〉1/2

.

This integral was already treated in the proof of Lemma 2.8. In Region C,
Case 2 by use of (17) we arrive at

S̃ ≤ c
∫ |v̂ŵ1v̂2|〈ξ1〉
|ξ2|ε〈σ〉1/2〈σ1〉〈σ2〉1/2

≤ c
∫ |v̂ŵ1v̂2|(〈σ〉+ 〈σ2〉+ 〈σ1〉φ{c1|σ1|≤|ξ1|2≤c2|σ1|})

1/2

|ξ2|ε〈σ〉1/2〈σ1〉〈σ2〉1/2
.

The two terms coming from 〈σ〉 and 〈σ2〉 in the numerator are treated by
defining v̂1 as before by Lemma 2.3 with e.g. a = 0, a1 = 1/2−, a2 = 1/2,
m = ε, so that 2(a+ a1 + a2) +m = 2 + ε− > 2, whereas the term coming
from 〈σ1〉 is treated by defining v̂1 := 〈σ1〉−1/2ŵ1φ{c1|σ1|≤|ξ1|2≤c2|σ1|}. so that
‖v1‖L2

xt
≤ c‖w1‖L2

x
. Thus we are left with

∫ |v̂v̂1v̂2|
|ξ2|ε〈σ〉1/2〈σ2〉1/2

,

which can be handled by Lemma 2.3. ¤

Finally we get

Lemma 3.7 Let n = 2, l ≥ −1, k ≥ (l + 2)/2, k = l + 1 and suppϕ ⊂
{|t| ≤ cT}. Then

‖B2−δ(Dϕ̄Dϕ)‖Y l+δ
±

≤ cTΘ‖BεDϕ‖2
Xk−ε,1/2

with Θ > 0 for 0 < δ < 1, 0 < ε < 1.

Proof. We follow the proof of Lemma 3.2 and have to show

W̃ :=
∫ |ŵv̂1v̂2|〈ξ〉l+δ|ξ|2−δ

|ξ1|ε〈ξ1〉k−ε|ξ2|ε〈ξ2〉k−ε〈σ〉〈σ1〉1/2〈σ2〉1/2

≤ cTΘ‖w‖L2
x
‖v1‖L2

xt
‖v2‖L2

xt
.

In Region A, Case 1 of the proof of Lemma 3.2 we define v̂ := 〈σ〉−1/2−ŵ,
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so that ‖v‖L2
xt
≤ c‖w‖L2

x
, and we get as in Lemma 3.2 the estimate

W̃ ≤ c

∫ |ŵv̂1v̂2|
〈σ〉〈σ1〉1/2〈σ2〉1/2

≤ c

∫ |v̂v̂1v̂2|
〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

,

which can easily be handled by Lemma 2.3.
Similarly, in Region A, Case 2 we arrive at

W̃ ≤ c

∫ |v̂v̂1v̂2|
|ξ1|ε〈σ〉1/2−〈σ1〉1/2〈σ2〉1/2

,

which can be controlled by Lemma 2.3 again.
In Region B, Case 1 we get for k = l + 1 using (18):

W̃ ≤ c
∫ |ŵv̂1v̂2|〈ξ1〉
〈ξ2〉k〈σ〉〈σ1〉1/2〈σ2〉1/2

≤ c
∫ |ŵv̂1v̂2|(〈σ1〉+ 〈σ2〉+ 〈σ〉φ{c1|σ|≤|ξ|2≤c2|σ|})

1/2

〈ξ2〉k〈σ〉〈σ1〉1/2〈σ2〉1/2
.

The two terms coming from 〈σ1〉 and 〈σ2〉 in the numerator are treated by
defining v̂ as before and using Lemma 2.2, whereas the term coming from
〈σ〉 is treated by defining v̂ := 〈σ〉−1/2ŵφ{c1|σ|≤|ξ|2≤c2|σ|}, so that ‖v‖L2

xt
≤

c‖w‖L2
x
, leading to
∫ |v̂v̂1v̂2|
〈ξ2〉k〈σ1〉1/2〈σ2〉1/2

,

which again can be handled by Lemma 2.2 (remark that k ≥ 1/2).
In Region B, Case 2 we arrive at the corresponding integrals where 〈ξ2〉k is
replaced by |ξ2|ε. This can be treated by use of Lemma 2.3. ¤

Remark The following variant of Lemma 3.7 is also true, as follows sim-
ilarly from the proof of Lemma 3.3:
Let n = 2, l ≥ −1, k ≥ (l + 2)/2, k = l + 1 and suppϕ ⊂ {|t| ≤ cT}. Then

‖(Dϕ̄Dϕ)‖Ẏ l+2
±

≤ cTΘ‖BεDϕ‖2
Xk−ε,1/2

with Θ > 0 for 0 < ε < 1.

These results can now be used to prove a local existence and uniqueness
result as in the 3 + 1-dimensional case.
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Theorem 3.1 In space dimension n = 2 assume l ≥ −1, l+1 ≤ k ≤ l+2,
k ≥ (l + 2)/2, 0 < ε, δ < 1, and

B1+εϕ0 ∈ Hk−ε(R2), B1−δχ0 ∈ H l+δ(R2), B−δχ1 ∈ H l+δ(R2).

Then there exists 1 ≥ T = T (‖B1+εϕ0‖Hk−ε , ‖B1−δχ0‖Hl+δ , ‖B−δχ1‖Hl+δ)
> 0, such that the problem (1), (2), (3) has a unique solution (ϕ, χ) with

B1+εϕ ∈ Xk−ε,b[0, T ],

B1−δχ, B−δχt ∈ X l+δ,b1
+ [0, T ] +X l+δ,b1

− [0, T ].

Here b = 1/2+, b1 = 1/2+, if l + 1 < k < l + 2, b = 1/2, b1 = 1/2+, if
k = l + 2, and b = 1/2+, b1 = 1/2, if k = l + 1. This solution satisfies

B1+εϕ ∈ C0
(
[0, T ], Hk−ε(R2)

)
,

B1−δχ, B−δχt ∈ C0
(
[0, T ], H l+δ(R2)

)
.

If l < 0 we can replace B1−δχ0, B
−δχ1 ∈ H l+δ by χ0 ∈ Ḣ l+1, χ1 ∈ Ḣ l,

and B1−δχ, B−δχt ∈ X l+δ,b1
+ [0, T ] + X l+δ,b1

− [0, T ] by χ ∈ Ẋ l+1,b1
+ [0, T ] +

Ẋ l+1,b1
− [0, T ], χt ∈ Ẋ l,b1

+ [0, T ] + Ẋ l,b1
− [0, T ], and we have

χ ∈ C0([0, T ], Ḣ l+1(R2), χt ∈ C0([0, T ], Ḣ l(R2).

Remark If this theorem would be true for ε = 0, we would have local
existence und uniqueness for data Bϕ0 ∈ H1(R2), χ0 ∈ L2(R2), B−1χ1 ∈
L2(R2). Using the a-priori bounds for ‖Bϕ‖H1 + ‖χ‖L2 + ‖B−1χt‖L2 under
a smallness assumption on ‖Bϕ0‖L2 (cf. Chapter 1), this would imply global
existence in these spaces under this smallness assumption.

Acknowledgment I am grateful to the referees for careful reading of the
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