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Well-posedness for a modified Zakharov system

Hartmut PECHER

(Received January 31, 2006; Revised July 12, 2006)

Abstract. The Cauchy problem for a modified Zakharov system is proven to be locally
well-posed for rough data in two and three space dimensions. In the three dimensional
case the problem is globally well-posed for data with small energy. Under this assumption
there also exists a global classical solution for sufficiently smooth data.
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0. Introduction

The following system describes in plasma physics the nonlinear coupling
of lower-hybrid waves, characterized by the complex amplitude ¢ of the wave
potential, with the much lower-frequency quasineutral density perturbations
x of the ion-acoustic type. It was introduced in [14] as a variant of the
standard Zakharov system which describes the phenomenon of Langmuir
turbulence in a plasma. For details of the physical background and its
derivation we refer to [14]. The (2+ 1)-dimensional version reads as follows:

) 1 —
¢§A¢+A2¢+ =V Vx =0 (1)
0? 1 =

@X —Ax — EA(VW V) =0. (2)

Here V denotes the usual gradient and V = (9/0xq, —0/dz1), and ¢ and
x are respectively a complex-valued and a real-valued function defined for
(z,t) e RZx RT.

The initial conditions are

ol 0) = po(a), x(, 0) = xola), He(x, 0) = (@) ®)

The functions g, X0, X1 are given in suitable Sobolev spaces.
A similar (3 4+ 1)-dimensional version of the Cauchy problem will also
be considered, which reads as follows:
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0 1
iaAng%—Ang—i-z(V(p xVx)-e=0 (4)
9? 1 _
@XfAXfEA(Vgochp)oe:(). (5)

Here e is a constant vector in R? and x denotes the vector product.

The most important question concerning the Cauchy problem is
whether global smooth solutions exist for a class of smooth data. One
way to attack this problem is to give a local well-posedness result for data
with low regularity and then to use the conservation laws, especially the
energy conservation, to extend this solution globally. It then remains to
show that regular data lead to regular solutions. This program can in fact
successfully be carried out, at least in 3 + 1 dimensions.

We are going to use the Fourier restriction norm method introduced by
Bourgain [2], [3] to prove local existence and uniqueness of the problems
also for rough data. It turns out that in 3 + 1 dimensions such a result is
true for the problem (4), (5), (3) provided By € H*¥(R?), Bxo € H'(R?),
By € H-Y(R?), where B := (-A)"/2, 1 > —1,1+1 < k <1+ 2 and
E > (I4+2)/2. So the lowest admissible pair is (k, ) = (1/2, —1) (cf.
Theorem 2.1). It is also possible to treat the case Byg € H'(R?), xo €
L*(R3), B~'x; € L?*(R?). This is of particular interest, because in this
case the conservation laws belonging to our problem (cf. (11), (12) below)
can be used to give an a-priori bound for ||Bo| g + |Ix|lr2 + 1B~ x¢ll 12,
provided || Boo| gt + |Ixollz2 + [|B 1|12 is sufficiently small. This allows
to extend the solution globally in time, thus showing global well-posedness
of the problem in energy space (Theorem 2.2).

It is also possible to refine these results in such a way (cf. Theorem 2.3)
that one can show global well-posedness of the Cauchy problem for smoother
data, especially proving the existence of global classical solutions under the
above mentioned (weak) smallness assumption on the data (Theorem 2.4).

In 2+1 dimensions local well-posedness is proven for B'*¢pyc H*~¢(R?),
B'%yo € H*T(R?), B%x; € HHO(R?),if I > —1,1+1< k<142, k>
(142)/2 for 0 < €, < 1 (Theorem 3.1). It is also possible to treat the
case BlT¢py € H'7¢(R?), xo € L*(R?), B~ 'x1 € L}(R?) for 0 < e < 1,
but for global well-posedness one would need € = 0, which is excluded here.
The latter has to do with low frequency problems and the lack of a Sobolev
embedding H* C L in two space dimensions.

This paper leaves open the question whether the results are optimal.
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In order to show the sharpness of the bilinear estimates one would need a
number of counterexamples showing the necessity of the various conditions
on the parameters involved. But even if this could be done this would
not directly imply ill-posedness. A remarkable progress has been made
in a recent paper by Holmer ([10]) for the original Zakharov system in
dimension 1 + 1, who made precise in which sense ill-posedness holds, if
certain conditions on the parameters are violated. An idea could be to
adapt these methods to the present more complicated higher dimensional
situation, but I am not going to make such an attempt in this paper.

The technique of the proof relies on the pioneering works of Bourgain
[2] and Kenig, Ponce and Vega [11], and especially on the paper of Ginibre-
Tsutsumi-Velo [5] for the corresponding problem for the original Zakharov
system, which reads as follows:

i—u+ Au = nu

ot
a—Qn — An = A(Ju?)
ot? N
0
u(0) = up, n(0) = ny, a—rtl(O) =nj.

In 2+ 1 and 3 + 1 dimensions they showed local well-posedness for data
ug € H¥, ng € H”, ny € H'~! under the assumptions I’ > 0, I/ < k' <
'+ 1, ¥ > (I' +2)/2. These conditions are in principle the same as ours
(with I’ = 1+1 and k' = k), if one remarks that somehow u can be identified
with (—A)l/ 2p and n with y. Namely, after this identification and applying
(=A)'/2 to the first equation of the Zakharov system we arrive at

¥
i Ap — A%p = (—A)2 (x(=A) %)
2

o2

which has a similar form as (4), (5) (just counting the number of deriva-

X — Ax = A((=8)2¢]?),

tives), although the nonlinearities are of a different type.

Global well-posedness for the Zakharov system also holds for small data
in two and three space dimensions [4]. A problem which is somehow related
to the problem considered in the paper at hand has been treated in [9]. They
however consider the 2-dimensional version with a weaker nonlinearity in
the wave equation and prove global well-posedness for smooth data.
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We will often use the notation a+ = a + € for a small € > 0. Similarly,
a—=a—cand a++ =a+ 2e.

The solution spaces are defined as follows: For k, [, b € R we denote
by X*? and Xib the space such that f € S'(R" x R) and

1200 = / (r 1 22 () F(e, 7)Pdedr < oo
and

1130 = [ £ 1€*(©1F€. Pdsdr < o

respectively. X* and X4? are defined by replacing (€) := (1 + |¢|2)Y/2 by
|€]. Y* is defined with respect to

1l o= 16 + €3 HOF FE, 7z

and Y1 similarly by replacing (1 + |£>)~! by (r & [¢))~!. Y* and Y{ are
defined by replacing (£) by [£]. We also use the corresponding restriction
norm spaces X0, T by its norm I £l xk00.17 = infﬂ[o =f | £llxcx.s and
similarly the other cases. ’

We use the following standard facts about these spaces. Let ¢ denote a
cut-off function in C§°(R) with supp+ C (-2, 2), ¢ =1on [—-1, 1], ¥(t) =
P(—=t), P(t) >0, ¥5(t) :=(t/6), 0 < 6 < 1. Then the following estimates
hold:

lpse’™ fllxes < 627 f g, b= 0
and similarly

||¢5€ﬂth||Xib <027 fll, b>0.

Moreover

t
“77[)5/0 e—z(t—s)Af(S)dSHXk’b < c51—b+b HfHXk,b’ (6)

for Y <0<b<b +1,0 >-1/2,6 <1, and

s [ et p(s)as

t
0

inyp S U lxkmrre + 1 fllve) (7)
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as well as

[95.fllxre < O™ Fll e (8)

for b >0, € > 0.
Similar estimates hold for Xi’b, where —A is replaced by B := (—A)Y/2,
Proofs can be found in [5].

The Strichartz estimates for the Schrodinger equation in R"™ are given

by
e uoll sy < clluollzz,

if0<2/qg=n(1/2—1/r) < 1. A direct consequence is (cf. [5], Lemma 2.4):

IflLazy) < cell fllxoe, (9)

if by >1/2,0<b<by, 0<n<1,2/qg=1—nb/b), n(1/2—1/r) = (1—
1)(b/bo)-

For the wave equation we only use

||6ﬂtBU0HL§°(Lg) < c|luol| 2

and its consequence

1A lzgezy < el fllxoe, (10)

if by > 1/2, 2/(] =1- b/bo

An important consequence for functions with a suitable support
property is given by [5], Lemma 3.1, which we state as follows (for the
Schrodinger equation):

Lemma 0.1 Leto=71+¢?% bp>1/2,a>0,0<~v<1, (1—7)a< by,

a’ > va. Define 2/q =1 —n(1 —v)(a/by), n(1/2 —1/r) := (1 —n)(1 —
Y)(a/by). Let v € L? be given such that F~'((c)~*D) has support in {|t| <
cT'}. Then the following estimate holds:

1F= (o)™ 0D | Lary) < TOlvll 2,

where © = ~va(l —[a' —1/2]+/d’), [ —1/2]4 :=d' —1/2, if d' > 1/2, :=,
ifa =1/2,:=0, ifd’ <1/2.

The proof is a combination of (9), the support property and Hélder’s in-
equality.
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Remark 1. The same estimate is true for the wave equation with o :=
7 £ |£| in the special case n = 1, r = 2 (by use of (10)).

2. The statement of the Lemma without the factor 7© remains true, if no
support property is assumed (with even a simpler proof).

For details we refer to [5].

1. Conservation laws

We now show that the system (4), (5) has two conserved quantities,
namely

I ::/ |V|?dz (11)
R3

1 _
b= [ 18pPdos g [ (1-8) Bl + [xP)da (12)
R3 R3

1
—|—,/ X(Vg x Vo) - edx
1 JRr3

In order to show that I is conserved we take the imaginary part of the
scalar product of (4) with ¢. We use

1
%;((Wp x Vx)-e, @)

1 _ _ _
- _5 /[(me Xzo — (10962X11)90 + @(‘PmXﬂﬁz - @xzxw1)]e3d$

2+ similar terms by permutation of the indices.

The first term is treated as follows
€3 _ _ _ _
=y (21 X)22P — Pa122XP — (P22 X)21 P + Prpzs XP
+ 0(Pr1 X)zs — P(Prrz2X) — P(PrsX)1 + PProey X]dx
=0.

This implies that I is conserved.
Next we show that I is conserved. We take the real part of the scalar
product of (4) with ¢;. We remark that
. 1d
R(iApr, o) =0, R(A%p, @) = 5@”A80||2

and
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%%((ch x Vx)-e, o)
— %(((Vso X Vx) e 1) = (Vo x Vx) - e, @r)).

Calculating (V¢ x V) - e and taking its third term (the others are similar)
we get

€3 _ _ _
22 ((SDMX:CQ @:L?X:m)‘pt - ((Pacl Xz — (meXxl)SDt)dx
63 _ — _
= 2% [(SOIJHX)Iz(Pt Prizo XPt — (SOQ?2X)IE1 Pt + Paoxy XPt
- (@mX)mSOt + @mmX(pt + (@mX)an Pt — SE:EQMX(Pt] dx
€3 _ _ _ _
= ?Z (*me XPtas T PaoX Pty + Poi XPtas — @mzx@txl)df
€3 _ _ _
= 5; [ X( = ¢a1Praz + (ParPra)t = Poi Pt
TPz, Ptay — (@IQ ‘Pm)t + @thQ‘PCEl)dx
€3 _ _
= % X(‘le‘Pm - ‘Pm2¢11)tdx-

Thus we arrive at

R{(Veox V0 ) = 50 [ x((V9 % Vo) -¢) do

1 d - 1 _

=% dt X(VQOXVSD)'BCZQZ—%/Xt(VSOXVSO)'edx
_li (Vo x V) -ed —1/ (Afl - x)d
=% x(Ve ) - edx 5 Xt Xtt — X)ax

by using (5). Now we have

1/Xt(A_1XttX) (<( A2, (=) x4+ (s X))

2
d 1/2. 112 2
= 5 (=220 + ).

Summarizing we get

d 1 _
a1 (18612 + 012212 + )
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1
+i/x(Vg0><Vg0)'edx> = 0.

These two conservation laws imply an a-priori bound for the solution of
our system (4), (5), (3), provided suitable norms of the data are sufficiently
small.

Proposition 1.1 Let (¢, x) be a solution of (4), (5), (3) with By €
CcO([o, T], HY(R?)), x € C°([0, T], L*(R?)), B~'x; € C°([0, T], L*(R?)).
Assume that the data fulfill

1Beolla + lIxollz2 + 1B~ xellz2 < eo

for a sufficiently small ¢y dependent only on the vector e and some Sobolev
embedding constants. Then for t € [0, T):

1Bl +IIx®)z2 + 1B~ )l z2 < Co,
where Cy is independent of T

Proof. Consider the conserved quantity
E(p, X, xt) = | Ap|® + %HX”Q + %HB_1XtH2
+ % /X(W x V) - edz + || V||
Now by the Sobolev embeddding H'(R?) c L*(R?):

1
2)/X(V¢ x V) x edm‘ SC/|X|W‘P|2d$

1
<1 [Pdzd [ 196l
1
<3 [ Pzt IVl + gl 13

Defining

E(@O) X0, Xl)
1 |
= Ago|* + §HX0H2 +51B xall?

+ ‘/Xo(vcﬁo X V(,Do) -edx| + HV(,O()HQ,
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we get

m(t) = 1Agl” + 71X + 3 1Bal® + [Vl
< Blgo, x00 x1) + colll Vel + 18]
thus
m(t) < E(po, X0, X1) + com(t)? V¥t € [0, T).
Defining

f(m) = E(So(b X0> Xl) —m+ COTR2

we get f(m(t)) > 0Vt € [0, T]. f has its only minimum in mo = 1/2c.
For a suitably chosen Cj our smallness assumption implies E(@o, xo0, X1) <
1/4co using (13) above. This implies

1 1
=0.

1 2
<— - = ——5—+tc 5=
f(mo) mo + comy Tos 2 + ¢o 4c%

460
Because m(0) < E(po, X0, X1) < 1/4co < mg and f(m(0)) > 0, this implies
m(0) < my, where m; is the smaller zero of f(m). Because m(t) is contin-
uous and f(m(t)) > 0 we conclude m(t) < my Vt € [0, T] and especially
m(t) < mgy Vt € [0, T]. Thus we have an a-priori bound for m(t), and the
claim follows. O

Concerning the (24 1)-dimensional problem the system (1), (2), (3) has
also two conserved quantities, namely

I ::/ |V|?dx
R2

1 .
I ;:/ \Agay?dac+2/ ((=2)"2xa + |x[?)da
R? R?

1 _
+ / X(Vg - Vy)dz.
1 JR2

This is shown in the same manner as in 3 dimensions. Moreover it is easy
to see that these conservation laws imply an a-priori bound for ||Be|| g1 +
lIxIlz2 + 1B~ xell 2, provided || Beyol|z2 is sufficiently small. This follows
immediately from a Gagliardo-Nirenberg type inequality for the cubic term
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in I, namely

— 1
[ x(Ve - Topta| < G + eIl Al

1 2 1 2
< 7 IIxXlze + 1Al

provided ¢||[Vgo||7, < 1/2.
The systems in 241 as well as in 3 + 1 dimensions can be transformed
into a first order system in ¢t by defining

. _1/00 1
X+ = x £i(—A) 1/28%(, X=X+ +x-),

2
X0 = X0 £ i(—A) 2y,

In 3 + 1 dimensions this leads to the system

0 1
z’—tAg0+ A?p + 2—(Vg0 X V(x++x-))-e=0

0 i
) B 1, . . _
iooxE F (A) V2, + g(A) 2(Vpx V) -e=0

and

©(0) = o0, x+(0) = Xxo0.
The corresponding system of integral equations reads as follows:

(—A)1/290(t) = (—A)l/QeitA¢0
1 [t
~ g5 | IR (Vi x T+ x-)) - e)ds
0
(_A)1/2X:|:(t) = (_A)1/2€¥it(7A)1/2Xi0

1t
F i/o ejFl(t_S)(_A)lm(—A)((ng x V) - e)ds.

2. Local and global existence in 3 + 1 dimensions

Concerning the system (4), (5), (3), in order to prove local existence and
uniqueness for solutions By € X**[0, T] and By € Xibl [0, T]+ xhh [0, T
we have to give estimates for the nonlinearities in spaces of the type X b/
and Xibll for some ¥/, b} < 0, and in some limiting cases also in the spaces
Y* and lec, respectively, because in these cases we are forced to choose
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b'=—1/20or by = —1/2 (cf. (6) and (7)).
In the sequel we use the notation

E=& &, Ti=T1— Ty, 0;:=T; + \&]2 (i=1,2), oc:=71xI.
Then we have
&l =& Flél =01 — 02— 0. (14)

Later we need the following elementary algebraic inequalities, which were
essentially proven in ([5]), Lemma 3.3. Here ¢ denotes the characteristic
function of the set F.

Lemma 2.1 1. Letwy, y2 € R and z =y; — y2. Then for any A > 1

A
|21 < My2l + =7 [W1lS 001y <le/ </ 0-1))- (15)

2. Let |&1| > 2|&2|. Then

(€1)* < c({o) + (o1) + (02)) (16)
(€1)? < (o) + (02) + (01)D(er|on| <61 2<calon |}) (17)
(€1)? < c((o1) + (02) + (0) Dy ol <le2<eslo})> (18)

where ¢, c1, cg > 0.

Proof. (15) follows from the fact that {(A—1)/A}z| < |y1] < {(A+1)/A} =],
i [2] > Algal.

(16) is implied by (14) and the fact that |£1]? — |&]? F |€] ~ |&1] for large
|€1], and that |€1]? — |&2]? F |€] is bounded for small |&1].

In order to prove (17) we use (15) with z = &[> — |&|? F €], and get for
large 1

&1 ~ 16 = &) F €]

A
< Alo] + lo2]) + s lotlop o<t -t /o< 3/ 01}
< c((0) + (02) 4+ (T1) Dy or <1 [2<caloa]}) -

But (17) is trivially also true for small |&;].
Finally, (18) follows from (17) by interchanging ¢ and o; and using |£| ~
[STE 0
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Lemma 2.2 In space dimensions n = 2 orn = 3 let m > 0, 1/2 >
a, ai, ag > 0 satisfy 2(a+ a1 +az) + m >n/2+1 and a+ a1 + az > 1/2.
Let v, v1, v2 € L2, be given such that F~1({0)~%0) and F~1({(0;)~%%;) are
supported in {|t| < cT'} for some B>b>a, B>b;>a; (i=1,2). Then
the following estimates hold with © = O(a, a1, az, m, B) > 0:

o o
[ g < Tl ez, ez,
s .
[ e < Tl ol ozl

Remark Here and in the following integrals are always taken over
dé1déadidry and v =0(§, 1), 01 = 01(&1, T1), V2 = 02(E2, T2).

Proof. For the proof of the second inequality we refer to Lemma 2.3 below.
Just remark that we can assume m < n/2 w.l.o.g. under our assumptions
2(a+a;+az2)+m>n/2+1and a+ a1 +ag > 1/2.

Next we prove the first inequality along the lines of [5], Lemma 3.2. We
estimate using Holder’s inequality by

™ B gy - IF ™ (o)™ D g
NNF T (o) 2 @) o2y (19)

with
1 1 1
-+ —+— =1, (20)
q q1 q2
1 1 1
-4+ —4+—=1. (21)

Choose by = 1/2 + ¢, € sufficiently small, and 0 < -, n < 1 such that
2 a; 2 a
—=1-n1l-v)—@GE=12), -=1—-(1-—7v)—

” (=) ( ) . (L=

(remark that (1 — «)max(a, a1, az) < by, because a, a1, ag < 1/2, so that
q, q1, @2 > 2). Now (20) is equivalent to

(1 =7)(a+n(ar + az)) = bo. (22)

Concerning the z-integration we use the Sobolev embedding Hy" 2 c L’ for

m>n<%—1>>0 (23)



Well-posedness for a modified Zakharov system 479

and choose

n(5- ) === (24)

7

With these choices an application of Lemma 0.1 (+Remark 1) gives the
desired bound. Now (21) by use of (24) reduces to

(1 1) (1+1 1) (1 1) (1 1>+n
nl-——-)J=n{l—+——=)=-nl=-——)—nl=-—— —
2 r re Tro 2 2 n 2 1 2

=5 —(1=y)(-mn)

From (22) we get (1 —~v){n(a; +az2)/bp} =1—(1—~)a/by and thus n(1/2—
1/r) = 14+ n/2 — (1 —){(a+ a1 + a2)/bp} so that (23) reduces to the
condition

m>14+ 0o (1ot atae
2 bo

It remains to check (22) and (25). (25) can be fulfilled for a suitable 0 <
~v < 1 close to 0, if by is close enough to 1/2 under our assumption 2(a +
a; + az) + m > n/2 + 1. Concerning (22) we only remark that (1 —y)a <
1/2 < by, whereas (1 —v)(a + a1 + ag) > by for small v > 0 and by close
to 1/2 by the assumption a + a1 + a2 > 1/2. So (22) can be fulfilled for a
suitable 0 < n < 1. ]

(25)

Remark Lemma 2.2 remains true, if one of the three factors does not fulfill
the support property and at least one of the exponents a, a1, as belonging
to the other two factors is strictly positive. This follows by using Remark 2
to Lemma 0.1.

We also need the following variant of the previous Lemma.

Lemma 2.3 In space dimensionsn =2 orn =3 letn/2>m >0,1/2>
a, aj, ay > 0, a; > 0 satisfy 2(a + a1 + a2) + m > n/2+ 1. Let v, vy, vy €
L2, be given such that F~1({c)~%%) and F~'({o;)~%0;) are supported in
{|t| < I'} for some B>b>a, B>b; > a; (i =1,2). Then the following
estimate holds with © = ©(a, a1, az, m, B) > 0:

s o
[ e < ol ol ezl
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Proof. Again using a variant of the proof of [5], Lemma 3.2 we estimate
the L.h.s. by Holder’s inequality as follows:

e F () B D sazzy - I1F (o) ™ BN o g
ANF (el o2) 2 )| oz 2y (26)

with
1 1 1
S+ +—=1, (27)
q aq q2
1 1 1

T1 (] N 2.
Choose by = 1/2 + ¢, € sufficiently small, and 0 < , n < 1 such that

2 a; . 2 a
Sl -y9)2 (i=1,2), S=1-(1-7)—
” n( v)bo( ) . ( v)bo

(remark that (1 — ) max(a, a1, az) < by, because a, a1, ag < 1/2, so that
q, 41, g2 > 2). Now (27) is equivalent to

(1 =7)(a+n(a1 + az)) = bo. (29)

Concerning the x-integration we use the Sobolev embedding Hy" 2 C L2
provided
1 1
m=n(;— )20 (30)
and ry # oco. This last condition is by (28) equivalent to r1 # 2. We now
choose r1 such that

ai

n(5 =)= A= -0, (31)

2 1
This is strictly positive, because a; > 0. Thus 1 # 2 and ro # oo is fulfilled.

Now we choose 7, such that

1 1 a9
S )=y -2 32
(3= 5)=0-n0 -y (32)
With these choices we can estimate (26) by cT®||vHL2f [v1llz2, [[vall 2, using
Lemma 0.1 (+Remark 1). Now we compute using (28), (31), (32):

1 1 1 1 1 n a1 + as
[ A T RS I Y4 R
n(ré 7’2) n(ré + el 2) 2 (= ) b
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n a1 +a
=5~ (1—=7) : bo :
From (29) we get (1 —y){n(a1 +a2)/bp} =1 — (1 —~)(a/by) and thus

1 1 n a+ay+as
— ) =141 -y)—=.
n(ré T'2> +2 ( ’Y) b()

ai +ao

+n(l—7)

Thus (30) reduces to

a+ay+az
bo

= (1-7)(a+a +as) :bo(g—i—l—m). (33)

mzl—#—%—(l—’y)

It remains to fulfill (29) and (33). (33) can be fulfilled with a suitable 0 <
v < 1, if by is close enough to 1/2 under our assumption 2(a + a1 + a2) +
m > n/2+ 1. It remains to fulfill (29). By (33) and m < n/2 we have
(1 —v)(a+ ay + az) > by, whereas (1 —)a < 1/2 < by, so that (29) can be
fulfilled by a suitable choice of n € (0, 1). O

Remark Similarly as for Lemma 2.2 it is sufficient here to have the sup-
port property for only two of the three factors, provided at least one of the
exponents a, ay, as belonging to the other two factors is strictly positive.

In the following D denotes any first order spatial derivative.

Lemma 2.4 [In space dimensionn = 3 assumel > —1, k> 1+1, k <142
with the exception of (k, 1) = (0, —1). ¢ and x are given with support in
{|t| < T'}. Then the following estimate holds:

1(=A)"2(DeDx) | k17204 < CT@HDQOHX’VJ/?HDXHXilﬂ
with © = O(k, 1) > 0.

Remark Trivially we can replace || Dx|| 1172 by [|x|| ir11/2, i 1 <0.
1 +

Proof.  Defining v := <£>l<a>1/25§, Uy = <§2>k<02>1/259\0 and

Y = (&)*(o1) "2+ 41, where vy € L2,, we have [ollzz, = IDxll 4172,
z +
lv2llzz, = [[Dellxkas2 and [Jor]l 2, = ||l x—r1/2-. This generic function ¢

in X~%1/2= can be assumed to have support in {|t| < ¢T'}, too. Thus we
have: the support of F~1((o)~Y/2%), F~1({c2)"Y/?03) and F~1({(a1) " V/?T0)
is contained in {|t| < ¢T'}. We thus have to show:
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- 001 |€1 | (€1)"
i '/ (&) ()2 (o112 (02) 12

C)
< TOlo]l 2, o1l 2 loal 2, (34)

Region A: |&1] < (1/2)]&].
In this case we have [£| ~ |£2], thus

00105 [€1| 1 (61)"
5= C/ (&) (o)1 /2(01) /2 (09) /2
Casel: k<1, k+1<0.
We use the estimate (cf. (16)) (&) < ((6) + (01) + (02))"/? and get
. [ [005]((0) + (1) + {o2)) "1/
- (611 (1) (o) /2 (1)1 /2 (o) /2

Because under our assumptions —k —1 < 1, we get three terms with positive

powers of the o-modules in the denominator.
a. We consider first the case |£1| > 1, where we have

[06133| (o) + (o1) + (02)) 72

(€)1 R(0) /2 (01)1 /2 (02) /2
We use Lemma 2.2 with e.g. a = 1/2+ (k+1)/2, a1 = 1/2—, as = 1/2,
m = 1 —k (and similar choices in the other cases) and get 2(a + a1 + a2) +
m=1+4—>5/2forl > —-3/2,a+ a1 +axs=3/2+ (k+1)/2— > 1/2 and
a, ai, ag < 1/2, because k +1 < 0.

S<ec

b. In the case |{1] < 1 we get

AN A~

[00163|({0) + (o1) + (o2))(F=D/2
S<ec 161 (o) 1/2(51)1/2= (55)1/2

Similarly as before we use Lemma 2.3 with m = 1 and get 2(a + a1 + a2) +
m=k+1+4>—144 =3, thus the desired estimate.

Case2: k<1, k+1>0.
We get

[0o103||&1 | (€1)*
o= C/ (&) o)1/ (01)1/ 2 (o) 1/2

|001 02|

:C/ E1[(€0)H0) /2 (01) 12 (gg) 12
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a. |£1| > 1.
By I > —1 we get

AN A~

|001 03
<
§= C/ (V2o )2 (o) 12
This can be handled by Lemma 2.3 with a = as =1/2, a1 = 1/2—, m = 0.

b. &) <1.

[v07 09|
&1 [(o) /2 (01) /2 (o) /2
We use Lemma 2.3 with a = a2 =1/2, a1 =1/2—, m = 1.
Case 3: k>1.

a. |£1| > 1.
Using [£1] < (1/2)|€2] and | > —1 we get

AN A~

00103 (€1)7

s<e | oo

AN~ A~

|001 03]

Sc/ E) (o)1 2 {01) 1/ ()12

. i
= ()12 (1) 1/2 (g )1/2"
This can be handled by Lemma 2.3 with a = a2 =1/2, a1 =1/2—, m =0.

b. |&] < 1.
Using k+1>1+1> 0 we get

0013
61 [(E2)FH () 12 (01 )12 () 1/2

\m@\
£1(0) 12 ()12 (59)1/2

Now we use Lemma 2.3 with a = a2 =1/2, a1 =1/2—, m = 1.

Region B: (1/2)|&| < [&1] < 2|6 (= €] < 3l61], 3]&2])-

We have
0010/ (€) !
&1 (o 1/2 1/2 (o >1/2‘
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If [ > 0 we arrive at the same integral as in Region A, Case 3b.
If —1 <1 < 0 we estimate as follows:

G 06 531(6)" Pt
€1 [(0) /2 (1) 12 (0a) 1/2 = 1 [(0) /2 (o) 12~ (o) 112
In the case |€1] < 1 and [£;| > 1 we arrive at the same integral as in
Region A, Case 3b and Case 3a, respectively.

Region C: [§1] > 2[&f (= [€] ~ [&1]).

We get
oo 03&1] (€ ) R
SSC/@ HoV 2 (o)1 (o >1/2‘
a. ‘£1|§1

This implies |£2] < 1/2, so that we again arrive at the same term as in
Region A, Case 3b.

b. &> 1.
Because k > [ + 1 by assumption, we get by (16):

06153/ (61) "
SSC/<§2> k(o)1/2(g1)1/2 (g)1/2
<. [ [B05I(0) + {o1) + (02)) 41/
) (£2)4(0)172(01) 2~ (02) /2

We remark that our assumption £ < [ 4 2 implies that the exponents of

the g-modules in the denominator are positive. Using Lemma 2.2 with e.g.
a=1/2=a9,a1=1/2—(k—1—-1)/2—, m =k > 0, thus 2(a + a1 + a2) +
m=4+1—>5/2for | > —3/2, we get the desired bound. O

Corollary 2.1 Under the assumptions of Lemma 2.4 we have for k > 1:
1(=2)"2(DpDx) | k124
< CTe(HDwawzHXHXrl,l/z Dol lxll yorr2).
Proof. We use Lemma 2.4 with k =1—, 1= —
I(=2) " 2(DeDx) || x1--1/2+ < CT@HDSOHXl—«l/?HDXHX;IJ/Q

<T9)Dgl il o
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Applying the elementary inequality (€)1 < c((€)F~1F 4 (&)F11)
in the Fourier variables we arrive at

1(=A)"Y2(DpDx)|| xk.-1/2+
< eT®(|D _ _ D
< TP (|| Dl x1 ,1/z||xllxi 14,172 + || wllxk,uzllxllxiuz)
< cT@(IIDsOHszIIXIIXl;m/z + HDcpllxk,l/zIIXHXim)-
0

Lemma 2.5 In space dimension n = 3 assume | > —1, k > (I 4+ 2)/2,
k> 141, and let @1, pa be supported in {|t| < ¢T'}. Then the following
estimate holds:

|D&1D¢2 | gis21/2 < €T D sz | Depall s
with © = O(k, 1) > 0.
Remark Trivially we can replace XlJr2 —1/2+ by Xl+2 —1/2+
Proof. Defining 51 = (&)%(01)/2 Dy, B := (£2)*(02)1/2 Dy and ¢ ==

<£>l+2 <0>—1/2+i}, where v € L?, we have to show

W =

/ 00103 (€)" 2
(E1)R(Ea)F(o)/2= (01) /2 (00)1/2
< CT@HUHL; [villz2, lvallze,-

Region A: [§/2 < [&] < 2(&| (= [€] < 3|&, 3[&).
This gives

[00103| (&)1 T2 2F (U102
WSC/( V12— (01 )12 (g) 12 SC/<J>1/2 (01)1/2(09) 172

by our assumption k > (I + 2)/2. This integral is treated by Lemma 2.3 as
before.

Region B: |&| > 2|&| (= [€] ~ [€1]) (and similarly |£a] > 2]&1]).
Using k <[+ 2 w.l.o.g. and (16) we get

e mm §1>Z+H
()R (0)1/2= (51 )1/2(05) 1/2

) \@m« ) + <al> T (02)) 202
S/ e oV (o P (o) 2
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The condition k > [ 4+ 1 is required to produce positive exponents of the
o-modules in the denominator. Moreover we have £ > 0 so that we can
apply Lemma 2.2 with e.g. a =1/2 — (1 +2 —k)/2—, a1 = a2 = 1/2 and
m =k, so that 2(a+a1+az)+m =k+(k—10)+1— > 5/2, because k—1 > 1
and k > (I +2)/2 > 1/2. This completes the proof of Lemma 2.5. O

Corollary 2.2 Under the assumptions of Lemma 2.5 we get for k > 1:

||(—A)I/Q(D%Dw)\|X1i+1,(71/2>+

< eTO(ID¢1 || x102 [ D2l xas2 + | Dprll i sal| Doz xu.a/2)-
Proof. Using Lemma 2.5 with £k =1, [ = 0— we get

1D@1 Dol g2 -1+ < IO Drll 1172 Doall 1,172, (35)
which gives as in the proof of Corollary 2.1 for { > 0—:

I(=2)"2(D@1 Do) | 1172+ < ([ D1 Dpal| o172+

+ +

< TO(| D1l xras2 [ Doall xrerrase + [ Don |l sz | Dozl xus2)

< eTO(ID¢1 || x1.a2 [ D2l xas2 + | Dprll i szl| Depz | x1.1/2),
whereas for [ < 0— we get obviously by (35):

||(_A)I/QD@lDS@||Xl+1,(71/2)+ < ”D@1D902||X27,71/2+

+ +
< IO Dr |l x11/2 ]| Doal 1,172
< TO(| Dl /21 D2 xrase + D1 [ xrasal| Dol xrse)-
O

Lemma 2.6 Letn=3,1>—-1,14+1<k<I1+2, and let v, x be given
with support in {|t| < cT'}. Then the following estimate holds:

I(=A) " 2(DeDx) | k172 < cT@HDsOHXk,l/zHDxHXg/z
with © = O(k, 1) > 0.

Remark For [ <0 we can obviously replace || Dx||i1/2 by ||| z1+1.1/2.
+ +

Proof. We repeat the proof of Lemma 2.4 replacing everywhere <01)1/ 2-
by (o1)'/2. Then we can allow (k, ) = (0, —1) in Region A, Case 1. The
strong inequality k£ < [ 4+ 2 was only used in Region Cb. Here the case
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k = 1+2 is also possible, if (1)!/? appears instead of (o1)'/2~. Just remark

that in the limiting case k = [ 4 2 we have k > 0 so that Lemma 2.2 can be
applied. O

Corollary 2.3 Under the assumptions of Lemma 2.6 we have

1(=2)""2(DDx)l| xt.-1/2
< TO(IDpllxrarzlixll gz + Dol xcrarz Xl goir2)-

Lemma 2.7 Letn=3,1> -1, k> (l+2)/2, k=141 and suppose 1
and o are supported in {|t| < cT'}. Then

1D@1D@s | g142.-1/2 < €T Dpr | raror [ Do cmasav

with © = O(k, 1) > 0.

Remark We can replace X_f:z’fl/z by Xi”v*l/?'

Proof. Replacing (¢)'/2~ by (¢)1/2 and (5;)'/? by (5;)'/?* everywhere we
repeat the proof of Lemma 2.5. The strong condition k£ > [ 4+ 1 was only
required in Region B to produce positive exponents of the o-modules in the
denominator. In the limiting case k = [ + 1 (remark that & > 0 here) we
use Lemma 2.2 with e.g. a =0, a; = 1/24, ag = 1/24 and m = k and get
the inequality

5
2(a+a1+a2)+m:2+k+>§, (36)

if £ > 1/2. This completes the proof. ([

Remark For k > 1/2 we can replace X%1/2+ by X*1/2 in the statement
of Lemma 2.7.

This follows immediately, because in this case condition (36) with a = 0,
a1 = ag = 1/2 is also satisfied.

Corollary 2.4 Under the assumptions of Lemma 2.7 and k > 1 we get
[(—A)V2(Do1 Do)l i1,
+
< cTO(IDp1 12| Dzl xcrse + | Dt xrasz | Doall xrasz)-

Because we were forced to replace X% ~1/2+ by X*~1/2 in the limiting
case k =1+ 2 in Lemma 2.4 we have to give an additional estimates where
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Xk=1/2 i5 replaced by Y* (in order to apply (7) later). Similarly, because

X_ﬁ:Q’(_l/QH had to be replaced by X?Q’_W in the limiting case k =1 +1

in Lemma 2.5 we need an estimate where X_fz’_l/ % is replaced by Yer.

Lemma 2.8 Letn=3,1>—-1,1+1<k <142 be given and let ¢ and
X be supported in {|t| < cT'}. Then

I(=2)"2(DeDy) |y« < CTelllelxk,lxzHDXHXil/z
with © = O(k, 1) > 0.
Remark For I <0 we can replace || Dx| 1172 by [|x| g1+1.1/2-
+ +
Corollary 2.5 Under the assumptions of Lemma 2.8 we have
I(=2)"*(DeDx) |y
< T9(||D D :
< TP (IDel xrarlIxl gz + 1Dl ks Xl yo.1/2)

Proof of Lemma 2.8. Defining v and vy as in the proof of Lemma 2.4 and
P(&1) = (&)*wi (&) with wy € L2, so that 1 denotes a generic function in
H7* we have to show

5- [l

SCT@U 2 |lwillr2|lvallre .
<£>l<€2>k<0'>1/2<0']_><O'2>1/2 || HLth HLI” Hth
The only case where the strict inequality & < [ + 2 was used in the proof of
Lemma 2.4 was the region |£1] > 2|¢2] and [£1| > 1. In all other regions we
define 07 := <01>*1/2*

can be replaced by

w1. Then one easily checks [[v1][;2 < cllwi] 12 and S

/ 00103 &1] " (€1)"

()& k(o) 1/2(01)1/2 (02)1/2

This is exactly the integral treated in the proof of Lemma 2.4, so that the
desired result in these regions follows using the remarks to Lemma 2.2 and
Lemma 2.3 taking into account that w; fulfills no support property.

It remains to consider the region where |£;| > 2|&] and || > 1and [+1 <
k <1+ 2. In this case we get as in Lemma 2.4

- G163 (€1)F
o SC/ (G (0) 2 (1) (02) /2
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< C/ poit|({o) + {o2) + <01>¢{C1|0’1\S\&|2S02\01\})(k7171)/2
B (&a)F(0)1/2(01) (o)1 /2 '

Here we used (17). The two terms coming from (o) and (o2) in the nu-
merator are treated by defining 07 as before by Lemma 2.2 with e.g. a =
1/2—-(k—-1-1)/2 >0, a1 = 1/2—, a2 = 1/2, m = k, which implies
2(a + a1 +a2) + m = 4+ 1— > 5/2, whereas the term coming from (o)
is treated by defining 07 := <01>_1/2fu\1¢{cl‘UI|§|§1|2§02|01|}. One can easily
show [lv1][z2, < cl[wi|[z2, so that we only have to give the estimate

(0010 e
/<§2>k<a>1/2<01>1/2—(k—l—1)/2<02>1/2 < I llz, lvill 2, llvzl 2,

This can be done by Lemma 2.2 (+remark) with a = as =1/2, a; =1/2 —
(k—1—1)/2 > 0 and m = k which implies 2(a + a; +a2) + m =4 —1>
5/2. O

We also get

Lemma 2.9 Letn=3,1> -1, k> (14+2)/2, k =1+ 1 and suppose p;
and o are supported in {|t| < cT'}. Then

1D@1D2|ly iz < T Dprll xrsor [ Dzl o

with © = O(k, 1) > 0. If k > 1/2, we can replace X*1/2+ by Xk1/2,
Remark We can obviously replace Yfﬂ by Yfﬂ and k=1+1by k >
[+ 1.

Eroof. Defining v; and wvg similarly as in the proof of Lemma 2.5 and
P(€) == (&)H2w(€) with w € L2 (so that ¢ is a generic function in H;!=2),
we have to show for any ¢ > 0:

T |01 |(€) 2
W= / (&1)F (&) (o) (o1)1/2He(og)t/2He

C]
< I lwllzzllvall e, o2l 22, -

—1/2—¢/2

In region A of the proof of Lemma 2.5 we define v := (o) w such

that ||v|[z2, < cf|w[/r2 and W is estimated by

‘5)\17\11/)\2‘ <§1>l+272k
/ (@)

L/2=€/2(g))1/2+¢ () 1/2+¢
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<ec |66\16\2‘

= (0)1/2=€¢/2 (g1 )1/24¢ (gy) 1 /24
which can be estimated by ¢T'®||v||2||v1||z2]|va|| L2 by Lemma 2.3 (+remark)
as before. In region B of the proof of Lemma 2.5 we get using £k =+ 1 and
(18):

A~~~

: |w0102](&1)
W= C/ (&) (o) (o1)1/2He(og) /2 He

A~~~

- C/ |w0193|({01) + (02) + <0>¢{cl|a|g\5|2gcQ|a\})1/2.

B (€)M (o) (1) 1/2e(og) /2 He
The two terms coming from (o7) and (o9) in the numerator are treated by
defining v as before by Lemma 2.2 with e.g. a1 =€, a3 =1/24+€, a =1/2—
€/2, m =k >1/2, so that

5
2(a+a1+a2)+m>§. (37)

The term coming from (o) is treated by defining

0= <‘7>_1/2@¢{61\U\SIEPSQ\UI}’ so that [|lv]| 2, < cllw|[zz. Thus it remains
to show

05153 o
/<§2>k<01>1/2+e<02>1/2+6 < T HU||L2||UIHL2HU2||L2-

This is true by Lemma 2.2 with a1 = a2 = 1/2+¢€, a =0, m =k > 1/2,
thus 2(a + a1 + az2) +m > 5/2.

If £ > 1/2, we can easily modify the proof by replacing <aj>1/2+5 by (o)
(j = 1, 2), because the decisive condition (37) in this case also holds. O

1/2

Corollary 2.6 Under the assumptions of Lemma 2.9 and k > 1 we get
I(~2)/2(Dg1 D)y
< cTO(|| D1l x 12l D2l xkar2 + 1Dl xks2 | Depall x11/2).-
Proof. Follows from Lemma 2.9 and the remark to that Lemma. O

Theorem 2.1 In space dimensionn = 3 assumel > —1,1+1 < k <142,
k> (1+42)/2, and

Byy € H*(R?), Bxo € H'(R?), x1 € H(R?).
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Then there exists 1 > T > 0, T = T(||Beoll g |Bxoll gty X1l z1), such
that the problem (4), (5), (3) has a unique solution (@, x) with

Bp e X®0,T), By, x: € X0, T] + x"'[0, T7.

Here b = 1/2+, by = 1/24, ifl+1 < k <1+2,b=1/2, by = 1/2+, if
k=142, andb=1/2+, by =1/2, if k =1+ 1. This solution satisfies

By e C°([0, T), H*(R®)), By, x: € C°([0, 7], H'(R?)).

If I < 0 we can replace Bxo, x1 € H' by xo € H'', x1 € H', and
By, x¢ € X2'0,T] + X"0, 7] by x € X0, 7] + X0, 1,
Xt € Xibl [0, T + xhb [0, T], and we have x € C°([0, T1, Hl+1(R3)), Xt €
C([o, T], H'(R?)).

Proof. We replace our system of integral equations by the cut-off system

Bo(t) =a(0Be g0 — vr(0) [ IB(var(s)Vio(s)

0

X ($21(5) V(1 () + X (5)) - € ) ds
BXi(t)Zwl(t)BeiitBXio$%¢T(t) / o2 (vr(s)Ve(s)

0
X (wQT(S)Vgp(s)) . e) ds,

which we want to solve globally in ¢. This gives a solution of the original
system in [0, T']. The factors ¥o7 here allow to assume that the factors in the
nonlinearities are supported in {|t| < 27'}. We want to use the contraction
mapping principle and consider the case [ +1 < k < [ + 2 first.

The linear parts are treated as follows:

l1 () Be™ ol xno < €| Beoll g

and
||¢1(t)BeiitBXi0||Xib1 < c||[Bxoll g

Using (6) the integral term in the first equation can be estimated in the
X#1/2+_norm by

CT(HHBil (((¢2TV(P) X (YarV(x+ +x-))) - e) HXk,(71/2)++7



492 H. Pecher

which by Lemma 2.4 and (8) is majorized by

CT®+HB(w2T‘P)”X’%1/2(HB(¢2TX+)HX311/2 + [1B(2rx-)ll y11/2)

< 7O | Bollrara (1Bl yore + 1Bx-l guara),

where © > 0.

The integral term in the second equation can be estimated in the X7
norm similarly by use of Lemma 2.5 instead of Lemma 2.4 and leads to the
bound CTG_HBQOH%(M/Q.

The standard contraction argument then gives a unique solution By € X%,
Bx+ € X7 o1 of the cut-off system for small enough 7.

If K =14 1 the estimates for the first equation remain unchanged whereas

11/2+

Lemma 2.5 is no longer true and forces us to choose by = 1/2, so that the
integral term in the X:"'-norm is estimated by (7) by

HB2 (((d)?TV@) (¢2Tv90 ) HXZ -1/2
+||B*((($2r V@) x (V21 V) - €) ||y

The first term can be treated by Lemma 2.7 and (8) and gives the bound
cTGHB(wQTgo)ka e < €T HBgoHXk 1/24» Whereas the second term gives
the same bound by Lemma 2.9. So we get a unique solution By € X*: 12+,
By € X112

If kK = [+2 the estimates for the second equation remain unchanged, whereas
Lemma 2.4 is no longer true and thus requires b = 1/2 so that the integral

term in the X**-norm is bounded by

I1B(((2r V) x (1Y (s + X)) - €) || g2
+ || B(((Y2r V) x (2rV (x4 + x-))) - )| ye-

These terms are treated by Lemma 2.6 and Lemma 2.8, which gives the
bound

TN Boarlxrar (1BYarx+ll oy + 1 Barx-ll )
< T || Bollcrase (1 Bx+ | /e + HBX—HXz_,l/z),

which leads to a unique solution By € X¥1/2 By, € Xl U2+ of the cut-off
System.

To prove uniqueness for the original system of integral equations in [0, T
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(without cut-offs) let (¢, x+) be any solution with By € X*b[0, T], By+ €
Xibl [0, T]. Consider e.g. the case [ +1 < k <[+ 2and b = 1/2+, by =
1/2+. Let (@, X+) be any extension with Bg € X** By. € Xibl. Then
we have by the same estimates as above:

H/Ot cit=s)A p—1 <(Vg0($) x V(x4(s) + x=(5))) - e) dSH

< H?l}T(t) /t RIGDIN
0

x B ((1ar () V(s)  ar(s) V(24 (s) + X-(5))) - ¢ ) ds|
< OBl xrara (| Bt ll sz + | BX-|gr72)-

Xk:b[0, T

Xk.b

Thus

H/Ot ei(t—s)AB—1<(VCp(S) x V(x+(s) +x-(5))) .e)dSH

< OBl o, 1 (1B s gy + 1BX- s )

XF0[0,T]

Similarly we can treat this term in the other cases using the Y-spaces and
also the integral term in the second integral equation. A standard argument
implies uniqueness for the original system in [0, T7.

The claim that By belongs to C°([0, T], H*) and Bx to C°([0, t], H') fol-
lows directly from the embeddings X**[0, 7] C°([0, T], H*) and Xibl [0, T
c [0, T), H') forb > 1/2 and by > 1/2. If b = 1/2 (or similarly b; = 1/2)
this follows from the fact that the nonlinearity B~ (((¢2r V) x (YarVx+))-
e) belongs to Y* for By € X¥1/2 and By4 € Xilm (cf. estimate above).
This implies by [5], Lemma 2.2:

/O e IAB((ar Vi) X (ParV (xs +x-))) - €) ds
e C'(R, H*(R?Y)),

which by the integral equation implies By € C°([0, T], H*(R?)).

The additional claim for I < 0 follows easily by replacing in the application

of Lemma 2.4, Lemma 2.6 and Lemma 2.8 || Bx+|| y11/2 by [[X+ | ;1+1.1/2 and
+ +

in the application of Lemma 2.5 and Lemma 2.7 [[D@De| iv2.-1/2¢+) by
+
||D@D(,0||X3:+2,71/2(+) and in Lemma 2.9 HD@DSOHY:?—Q by HD@DSOHY:?—Q (]
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Remark The case k =1, = —1 especially shows that, given data ¢q, X0
with Bypg € H'(R?) and xo, B~'x1 € L*(R?), there exists a unique local
solution (¢, x) of problem (4), (5), (3) on [0, T7,

T =T(|Bgolla lIxollzz, 1B~ xallz2),

with By € X11/2[0, T) and y, By, € X320, T]+Xx*"** [0, T]. More-
over By € C°([0, T], HY(R3)) and x, B~x; € C°([0, T], L*(R?)).

Combining the last remark with Proposition 1.1 we immediately get

Theorem 2.2 Let ¢, xo, x1 be given with

IBeollm + Ixollz + 1B xallze < eo

where €q is a sufficiently small constant (depending only on e € R? and a
Sobolev embedding constant). Then the Cauchy problem (4), (5), (3) has a
unique global solution (v, x) with

BQD c X171/2, X, B—lxt c X_?_’1/2++X971/2+.
Moreover
Byp e C°(R, H'(R?)), x, B™'xs € C°(R, L*(R?)).

Using the refinements of the nonlinear estimates given in Corollary 2.1,
Corollary 2.2, Corollary 2.3, Corollary 2.4, Corollary 2.5 and Corollary 2.6
we get the following variant of Theorem 2.2.

Theorem 2.3 Assumek >1,1> -1, 1+1<k<I[+2 and
Byo € H¥R?), x0, B 'x1 € HY(R?).

Then there exists 1 > T > 0, T = T(||Beoll a1, lIxollz2, 1B txallz2), such
that problem (4), (5), (3) has a unique solution (p, x) with

BSO c Xk’l/Q[O, T], X B_lxt c Xf:_Lbl [O, T] _1_le+1,51 [O, T]’

where by = 1/2+, if l+1 < k <1+2, and by = 1/2, if k =1+ 1. This
solution satisfies

By e C°(0, T, H*(R?)), Bx, B 'x: € C°([0, 7], H(R?)).
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Proof. One has to modify the usual contraction argument in the proof of
Theorem 2.1 combining the following fundamental estimates, which e.g. in
the case [ +1 < k <[+ 2 read as follows:

IB~H(DpDx)|l x1.-1/2 < CT@HDQOHX:[J/?”XHXi»1/2 (38)
IB~1(DeDx)|lyr < CT@HDQOHXLU?HXHXi,l/? (39)
IB~HDeDX) | xr.-1/2

< CTO(HDSDHXI,l/zHX||X;+1,1/2 1Dl xkaszllxllo2) - (40)
IB(Do1Do2)ll 1172+ < T D1 || x1.1/2]| Depa 1,12 (41)
|1B(Dp1Dp2)| yit1,-1/2)+

+

< TP (|Dr || 12| Depall xrasz + | Dprl xrasz | Dozl xrs2). (42)

Here (38), (39), (40), (41) and (42) follow from Lemma 2.6 (+remark),
Lemma 2.8 (+remark), Corollary 2.3, Lemma 2.5 and Corollary 2.6, re-
spectively.

In the limiting case k = [ + 1 we only have to replace (42) by

[B(Dp1D@2)| i41,-1/2
+
< TO(| D1l 112 D2l sz + | Depr || xrnse | Depal| yi1/2),

which follows from Corollary 2.4, and to add

|B(Dg1Dgs)
< ¢TO(|Dgill 12| Dl sz + 1Dl sz | Dl rr2),

coming from Corollary 2.6.
We omit the proof and just refer to [8], Theorem 1.1, where a detailed proof
can be found. O

Combining Theorem 2.3 with Proposition 1.1 we can also show global
well-posedness for smoother data, namely

Theorem 2.4 Assumek >1,1>—-1,1+1<k<I[+2 and

Byo € H¥(R?), xo0, B"'x1 € HFY(R?)
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with
1 Beollm + Ixollz + 1B~ xallz2 < eo,

where ¢ is sufficiently small, dependent only on e € R?® and a Sobolev
embedding constant. Then the Cauchy problem (4), (5), (3) has a unique
global solution (p, x) with

Bpe XM2 x, Bl e X 4 XTI,

where by = 1/24, if l+1 < k <1+2, and by =1/2, if k =1+ 1. This
solution satisfies

By e C°(R, H*(R?)), x, B 'x: € C°(R, H"'(R?)).
3. Local existence in 2 + 1 dimensions

Lemma 3.1 In space dimension n = 2 the following estimate holds under
the assumptions of Lemma 2.4:

IB~H(DeDx) | xxb—e.-1/2+
< CT@HBGDM’XIC%JN||Bi§DXHXli+6,1/2

with © >0, if 0 <e <1 andd > 0.

Remark If [ < 0, we can replace |]B_5Dx||Xz+5,1/2 by |Ix|[ 1172
+ +

Proof. We follow the proof of Lemma 2.4 and have to give the estimate

5= / DBl | ()
[€1704€) 0 18a]<(2)F (o) /2 (01) /2~ (o) /2
< TOlvll gz, lonll 2, vzl 2, -
Region A: 6] < (1/2)[&] (= [€] ~ &)
Case 1: |&1] > 1, |[&] > 1.

The same calculation as in Lemma 2.4 gives the desired estimate.

Case 2: |&1] <1, [&] > 1.
We have

00162 & |~

o= C/ (E2) TR (o) /2 (1 )12 (02) /2
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a. l+k<0.
Using (16) we get

oo [ PRBI) + (1) + (2)) D72

- |61t ) /2 (o) 2 (o) /2

Remark that —k — [ < 1, so that Lemma 2.3 can be applied with m =1 —¢
and gives 2(a+a1+a2)+m=k+1l—4—e— >3 —e— > 2, because k > 0,
[ > —1, thus the desired estimate follows.

b. [+k>0.

00103
11— (0) 12 (1)1 /2= (gg) 12
Using Lemma 2.3 with m = 1 — € gives the desired result.

Case 3: [&1] <1, |&2| <1 and w.l.o.g. 0 <e.
00103 [&: |~
|&2|=%(0) /2 (01)1/2 (o)1 /2

06103
1[0 (0)1/2(0y Y172~ ()12
Using Lemma 2.3 with m = 1 — § gives the result.
Region B: (1/2)|&| < [&] < 26 (= (€] < 3|6, 3[&))-

We have
o1 32/(€) 1 01¢)°
1] (o 1/2 1/2 (o 2>1/2'

Case 1: [¢] < 1.

[001 03|
S<c/|§1‘1 50V {512 (gg) 172

This can easily be handled by Lemma 2.3 with m =1 — 6.

Case2: [£| >1 (= |&| > 1/3).

B!
Sgc/w 72 ()12 () /2
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a. [ <0.

AN A~

[v01 09|
S < C/ (€N (o )1/2(1 2)1/2—<02>1/2'

Because 1 4+ 1 > 0 this can easily be handled by Lemma 2.2 or Lemma 2.3.

b. [ >0.
We get

[001 03|
S <
- / (€ (@) (o)1 /2 (o2) /2"
which can be treated by Lemma 2.2.
Region C: [&i] > 26| (= €] ~ |&])-
We get
’ﬁﬁ@”&‘ 1+e+6<€1>k—e—l—6
|E2|¢(€a) k(o) /2 (01) /2 (0g) 1/2

Case 1: |&1] > 1, [&] > 1.
This case can be handled like the 3-dimensional case in Lemma 2.4.

S<ec

Case 2: |&] > 1, [&] < 1.
We have by (16):

<o [ lEamE)
|&2](0) /2 (01 )12 (59)1/2
< C/ IWWEI« )+ <01) + (o)) V2
B [a] ()12 {01) /2 (o) /2
Because k > [ + 2 we can apply Lemma 2.3 with m = € and compute 2(a +

a1 +az)+m=2(1/2+1/2+1/2—(k—1—1)/2) + e— > 2+ e—, so that
the claimed estimate follows.

Case 3: &1 <1,]&| <1and wlog 6 <1—e.

mvausn ets
|&a|<(0)1/2(0) 112 (59) 1/2

‘le’l)Q’
|10 (0) /2 (0 )12 (gg) 12

An application of Lemma 2.3 with m = 1 — § gives the desired estimate.
O
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Lemma 3.2 Letn =2. Under the assumptions of Lemma 2.5 we have

HBQ_(S(D¢D<P)HX;+5,—1/2+ < T B Do hmcn o

with ©® >0 for0<d<1,0<e<1.

Proof. Arguing as in Lemma 2.5 we have to show

W | / DG (E) ]2
€ (e &l €2V (0) 1P~ (1) /2 {05) 12

S
< ol gz, lvillzz, lv2llz2, -

Region A: [&/2 < |61 < 28| (= [¢] < 3[&1], 3|&])-

Case 1: [&1] > 1 (= |&] > 1/2).
Using the assumption k > (I + 2)/2 we get

e
W / 51 52 1/2 < >1/2<0—2>1/2

|6171?]< >l+2‘2k [001 03]
Sc/< >1/21<2 D1/2(gg)1/2 SC/<U>1/2 (o 1>132< )12

Lemma 2.3 gives the claimed estimate.

Case 2 [61] <1 (= 6] <2 = [ < 3).
Using 2 —d — e > 0 and [£] < 3 we get the estimate

W< / [ot1 53] |€]*°
|€1]¢I€2] ()12~ (01)1/2(02) /2
<c/ |5?71172||€|2 e
&2|<(o

V172 (1) 1/2(g,)1/2

Wﬁ@l
|&2](0) 12 (o) 1/2(g9) /2

Lemma 2.3 gives the claimed estimate.

Region B: |&1| > 2|&| (= [€] ~ [€1]) (and similarly |£a] > 2|&1]).
We get

[001 03] (€1) 0 €1 >0 ¢
w<
/ (E1)kel&ale(E2) k() /2= (1) /2 (02) /2
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/ [515l{61) >~
&l (€ ()12 (1) {00 2

Case 1: [&] > 1.

s s I+2—k

[00102](€1)
weef @) (o) (o1 (o) 2

This is exactly the integral treated in Lemma 2.5 in the case n = 3.

Case 2: |[&] < 1.
Assuming w.l.o.g. £ <[+ 2 and using (16) we get the estimate

S s I+2—k
W<c/ [vo102(€1)
|&2]<(0) /2= (01)1/2(09)1/2

</ [06133] (o) + (o1) + (02)) 270/

- [a| ()2 (o) /2 (o) /2
The exponents in the denominator are nonnegative, because k > [+1. Thus
we apply Lemma 2.3 with e.g. a =1/2—({+2—-k)/2— >0, a1 = ay =1/2,
m =€, so that 2(a + a1 +az) + m > 2+ € > 2. O

The following variant of Lemma 3.2 is also true:

Lemma 3.3 Let n=2. Under the assumptions of Lemma 2.5 we have
IDED@| ¢iv2.-1/2+ ~ | B DDpl| grvs.-1/2+
+ +
< CT@HBEDSOHA%(IC76,1/2
with © >0 for 0 < e < 1.

Proof. The proof of Lemma 3.2 is modified as follows. We have to estimate

- ‘/ 00103]€]""
|E1]€(€r)PelEale (Ea) P (o) /2= (a1) /2 (o) /21
Region A: [&]/2 < (6] < 2[&| (= (€] < 3l&, 3[&)-

Case 1: [&1] > 1 (= [&] > 1/2).
This case is treated exactly as in Lemma 3.2.

Case 2: & <1 (= |&] <2=[£] <3).
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Using [ +2 — € > 0 and |£] < 3 we get the bound
weo [ s
[€11I&2| (o)1 /2 (01) /2 {or2) /2
/ m@rml”—&
|&0|€(0) /2~ (51)1/2(59)1/2

\61?11?2|
2] (o)1 /2= (o112 ()1 /2

which can be estimated by Lemma 2.3.

Region B: || > 2|&| (= €] ~ |€1]) (and similarly [€o| > 2|&1]).
Using [ + 2 — € > 0 we get the bound

[Pl

WSC/ () eIl (&) =<() /2~ (01) /2 (02) /2

/ ol (61)
|£2 62 >1/2 <O-1>1/2<O-2>1/2’

This is exactly the integral treated in the proof of Lemma 3.2, Region B.
Thus the claimed estimate follows. ([

In order to treat the limiting cases k =141 and k = [ + 2 we also need
the following results:

Lemma 3.4 Letn=2,1>—1,1+1 <k <I+2, and let , x be supported
in {|t| < T'}. Then the following estimate holds:

|B=H(DeDx) || xxb—e-1/2 < CTGHBGDSOHXk—e@/QHB_(sDXHXziH,I/z
with © >0 for0<e<1,6>0.

Remark Forl < 0 we can replace |\B_5Dx||Xz+(s,1/2 by [[xIl gi+1,172-
+ +

Proof. We repeat the proof of Lemma 3.1 replacing (o1)"/?~ by (o)/2.
We only have to remark that the limit case k = [+ 2 is allowed in Region C,
Case 1 and Case 2, because the power of the o-modules in the denominator
remains nonnegative in this case. O
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Lemma 3.5 Letn=2,1>-1,k>(1+2)/2, k=141 and suppp C
{|t| < T'}. Then

|B*2(D@D) | 1512 < T B Do amr
with ® >0 for0<d<1,0<e<1.

Proof. 'We repeat the proof of Lemma 3.2 with (¢)1/2~ replaced by (o)!/2.
The condition & < [ 4+ 1 was only used in Region B, Cases 1 and 2 to
produce nonnegative exponents of the o-modules in the denominator, which
is satisfied now also for k =1+ 1. O

Remark The estimate of Lemma 3.3 remains true for k = [ + 1 in the
following form:

IDEDG grss 12 < €T B Dl
with © >0 for 0 < e < 1.
This follows similarly as Lemma 3.5.

Lemma 3.6 Assumen=2,1> —1, k=142, and let ¢, x be supported
in {|t| < T'}. Then

|B~ (Do Dx)|lyk-e < cT@HBEDgoHXk,e,l/QHB*‘SDXHX?M/Q
with © >0 for0<e<1,6>0.

Remark For [ < 0 we can replace HBiéDXHXHéJﬂ by (x|l gi+1.1/2-
+

Proof. Arguing as in the proof of Lemma 3.1 we now have to give the
following estimate (cf. the proof of Lemma 2.8):

g ,_/ [ow1 03| &1 ] (€1)
' [E]79(E)H0|&a < (Ea) k=< (o) /2 (1) (o2) 1/

©
<cT ||vHngct||w1”L§||UQHL§t'

The only case where the strict inequality k& < [ + 2 was used in the proof
of Lemma 3.1 was Region C, Case 1 and 2. In all other regions we define

01 := (o1)~ Y2y, so that [v1llz2, < cllwiflzz, and S reads as follows:
5 :/ 00165 |[€1 |71 T (€)P
[€17948)

FHO1Ea|<(Ea)P <o) /2 (o) /2~ (o)1 /2
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This is exactly the integral treated in the proof of Lemma 3.1, so that the
result in these regions follows. It remains to consider Region C, Case 1 and
2 in the proof of Lemma 3.1. Similarly as there we get in Region C, Case 1
(with k =1+ 2):

i Pl (E)
Sgc/@ KoV 1/ (o) ()12

This integral was already treated in the proof of Lemma 2.8. In Region C,

Case 2 by use of (17) we arrive at

[owv2](&1)
S<c /
|€2]¢(o

1/2 0-1><0-2

1/2

)
2) + (01D (er|or| <61 2<ealon )2

c/ \Uw1v2| + (o

B [62]<(0) /2 {01 ) (02) /2
The two terms coming from (o) and (o2) in the numerator are treated by
defining 07 as before by Lemma 2.3 with e.g. a =0, a1 = 1/2—, ag = 1/2,
m = ¢, so that 2(a + a1 + a2) + m = 2 + e— > 2, whereas the term coming
from (o1) is treated by defining 07 := (o71)~ 1/21/0\1¢>{Cl|01|§|§1|2§CQ|01|}. so that
[villz2, < cllwilzz. Thus we are left with

o6i53)
|E2]<(0)1/2 () 1/2

which can be handled by Lemma 2.3. ([

Finally we get

Lemma 3.7 Letn=2,1>—-1,k>(1+2)/2, k=1+1 and suppy C
{It| < T}. Then

| B> (DeD@) |y 15 < T B D%y
with® >0 for0<d<1,0<e<1.

Proof. We follow the proof of Lemma 3.2 and have to show

W |@oi2|(6)"+0l¢[*~°
=
/\§1€<€1>k “I62l<(€2) (o) (o1) /2 (02) /2

C)
< I |lwllzzllvallrz, o2l 22,

In Region A, Case 1 of the proof of Lemma 3.2 we define 7 := (o) ~'/2~ 0,
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so that [[v]|zz, < cllw|zz, and we get as in Lemma 3.2 the estimate

. 5515 / 55,53|
W < <
—C/ (Y (o) (o) 172 = ] ()12 (01) /2 {ag) /2

which can easily be handled by Lemma 2.3.

Similarly, in Region A, Case 2 we arrive at

rm@\
W / ’61 1/2 >1/2<0.2>1/2’

which can be controlled by Lemma 2.3 again.
In Region B, Case 1 we get for k =1+ 1 using (18):

|@771172| (1)
V<o | e e

{
w103 +

02) + (0)Dferol< 2 <calorl})

/|’w’011)2| o1)
(&2)F(0)(o1)1/2(02)1/2

The two terms coming from (o7) and (o9) in the numerator are treated by

defining ¥ as before and using Lemma 2.2, whereas the term coming from
(o) is treated by defining v := <0>_1/2ﬁ?¢{cl|g|§|§|2§02|0|}, so that [|v][f2 <
cllw|[zz2, leading to

/ 00133
(€2)F(o1) /2 (o) /2

which again can be handled by Lemma 2.2 (remark that k£ > 1/2).
In Region B, Case 2 we arrive at the corresponding integrals where (£3)* is
replaced by |£2]¢. This can be treated by use of Lemma 2.3. g

Remark The following variant of Lemma 3.7 is also true, as follows sim-
ilarly from the proof of Lemma 3.3:
Let n=2,1>—-1,k>(142)/2, k=141 and supp ¢ C {|t| < ¢T'}. Then

(DPDp)|y1+2 < cTO|| B D|%hco
with ©® >0 for 0 < e < 1.

These results can now be used to prove a local existence and uniqueness
result as in the 3 + 1-dimensional case.



Well-posedness for a modified Zakharov system 505

Theorem 3.1 In space dimensionn = 2 assumel > —1,[+1 < k <[1+2,
k> (1+4+2)/2,0<¢ <1, and

BH_GQO() c Hk_€<R2), Bl—6XO e Hl+5(R2), B—(SXl e HH_(S(RQ).

Then there exists 1 > T = T(|| B po|| gre—e, || B* " x0l| g5, 1B~ x1 || griss)
> 0, such that the problem (1), (2), (3) has a unique solution (p, x) with

Bl+eg0 c )(k‘—gb[o7 T],
Blfax, B*(th c Xf:_&bl [07 T} +Xl_+5,b1 [0, T]

Here b =1/24+, by = 1/24, ifl+1 < k <1+2,b=1/2, by = 1/2+, if
k=142, andb=1/24+, by =1/2, if k =1+ 1. This solution satisfies

B'p e ([0, T, H*“(R?)),
By, B%x; € C°([0, T), H'T*(R?)).

If 1 < 0 we can replace B' =0y, B~0x1 € H0 by xo € HIAL X1 € H,
and B'=%x, B0y, e X0, T + X0, T] by x e X500, 1] +
XHbo 1), v € Xibl [0, T] + X"*1[0, T, and we have

x € C°([0, T], H*Y(R?), x¢ € CO([0, T), H'(R?).

Remark If this theorem would be true for ¢ = 0, we would have local
existence und uniqueness for data By € H'(R?), xo € L*(R?), B™'x; €
L?(R?). Using the a-priori bounds for || Be|| g1 + ||x||12 + | B~ x¢| 2 under
a smallness assumption on ||Bygl| 2 (cf. Chapter 1), this would imply global
existence in these spaces under this smallness assumption.
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