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Limiting absorption principle for the second quantization

of self-adjoint operators
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Abstract. In this paper we discuss the limiting absorption principle (l.a.p.) of the

second quantization of semi-bounded self-adjoint operators. We show that the l.a.p.

for a self-adjoint operator on a basic Hilbert space H is “inherited” to the one for its

second quantization on a Fock space F(H). In order to show such a result, we examine

the resolvent of n-body problem and take the limit of the infinite direct sum of those

operators in a suitable subspace of F(H).
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1. Introduction

We consider the limiting absorption principle for the second quantization
dΓ(T ) of a semi-bounded self-adjoint operator T in a Hilbert space H. The
second quantization dΓ(T ) is defined as follows. Let ⊗nH be a n-fold tensor
product of H and define an operator

T (n) :=
n∑

j=1

I ⊗ · · · ⊗ I ⊗
j-th︷︸︸︷
T ⊗I ⊗ · · · ⊗ I (1.1)

on ⊗nH. Then we define the second quantization of T by

dΓ(T ) := ⊕∞n=0T
(n)

on the Fock space F(H) := ⊕∞n=0 ⊗n H. It is known that dΓ(T ) is a self-
adjoint operator (see e.g. Reed and Simon [8], [9]). Roughly speaking, our
purpose is to show that the limiting absorption principle for T in H is
“inherited” to one for its second quantization dΓ(T ) in a dense subset of the
Fock space F(H).

In the following, we denote by σ(T ) the spectrum of a self-adjoint
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operator T in H and by R[T ](z) ≡ (T − z)−1 the resolvent of T for
z ∈ ρ(T ) ≡ C \ σ(T ). It is well known that σ(T ) is contained in R and
that R[T ](z) is an analytic function in ρ(T ), if T is a self-adjoint operator.
Therefore, it is of special interest to compute the boundary values of the
resolvent on the real axis. However, if µ ∈ σ(T ), then R[T ](µ± iε) diverges
as ε → 0+ in the norm topology of B(H), the space of bounded linear
operators from H into itself. This is the reason why we need to consider a
slightly different topology. To be more precise, we introduce the following
notion.

Definition 1.1 Let H be a Hilbert space, and X ⊂ H be a dense, contin-
uously embedded Banach space. We say that the self-adjoint operator T on
H satisfies the limiting absorption principle (l.a.p. for short) in K ⊆ σ(T )
with respect to the norm topology of B(X, X∗), if the limits

R±[T ](µ) := lim
ε→0+

R[T ](µ± iε)

exist in the norm topology of B(X, X∗), uniformly in µ ∈ K. Here B(X, X∗)
denotes the space of bounded linear operators of X into its dual X∗, and
i =

√−1.

Remark 1.2 When T satisfies the l.a.p., R±[T ](µ) are operator-valued
continuous functions in µ w.r.t. the norm topology of B(X, X∗), since R[T ]
is continuous function in upper or lower half plane w.r.t. the norm topology
of B(X, X∗) and converges to uniformly R±[T ](µ).

As a typical example of H and X, we have in mind H ≡ L2(Rd), the
space of square integrable functions, and X ≡ L2,s(Rd) = {f : Rd → C |∫
Rd |f(x)|2(1 + |x|2)sdx < ∞} with s > 0.

Now we state our main result of this paper:

Theorem 1.3 Let H and X be as in Definition 1.1. Suppose that a self-
adjoint operator T on H satisfies the following three conditions:

(a) There exists a constant a < 0 such that T ≥ a holds.
(b) T satisfies the l.a.p. in every compact interval in (0,∞) w.r.t. the

norm topology of B(X, X∗).
(c) For any ϕ ∈ C∞0 (R), ϕ(T )X ⊆ X and ‖ϕ(T )‖B(X) ≤ supx∈R|ϕ(x)|

hold.
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Then, for any positive numbers λ and θ with λ < θ, there exists a con-
tinuously embedded Hilbert space Fλ,θ(X) in F(H) such that dΓ(T ) satisfies
the l.a.p. in every compact interval in (λ, θ) w.r.t. the norm topology of
B(Fλ,θ(X),Fλ,θ(X)∗). Furthermore, for any µ ∈ (λ, θ) we have

‖R±[dΓ(T )](µ)‖B(Fλ,θ(X),Fλ,θ(X)∗) ≤ 1. (1.2)

We can get similar results by replacing F(H) by the bosonic Fock
space Fb(H) ≡ ⊕∞n=0Sn(⊗nH) or the fermionic Fock space Ff (H) ≡
⊕∞n=0An(⊗nH), and dΓ(T ) by its reduced part on Fb(H) or Ff (H), re-
spectively, where Sn (resp. An) is the n-th symmetrization (resp. anti-
symmetrization) operator.

Corollary 1.4 Assume that T satisfies the assumptions of Theorem 1.3
and that

Sn(⊗nX) ⊂ ⊗nX, An(⊗nX) ⊂ ⊗nX (1.3)

for any n ∈ N. Let dΓ](T ) be the reduced part of dΓ(T ) on F](H) with
] = b or f . Then, for any positive numbers λ and θ with λ < θ, there exist
continuously embedded Hilbert spaces F ]

λ,θ(X) ⊂ F](H) such that dΓ](T )
satisfy the l.a.p. in every compact interval in (λ, θ) w.r.t. the norm topology
of B(F ]

λ,θ(X),F ]
λ,θ(X)∗) with ] = b or f .

Since the proof of this assertion is similar to that of Theorem 1.3, we
omit it. We remark that (1.3) is satisfied if we choose (H, X) as in Remark
1.2 with s > 1/2.

In order to prove Theorem 1.3, we shall apply the following result, which
is an extension of Theorem 4.1 in Ben-Artzi and Devinatz [2] where the case
of two particles was studied.

Theorem 1.5 Assume T satisfies the assumptions of Theorem 1.3. Then
T (n), defined by (1.1), satisfies the l.a.p. in every compact interval in (0,∞)
w.r.t. the norm topology of B(⊗nX, (⊗nX)∗). Moreover, for any 0 < λ < θ,
we have

∥∥R±[T (n)](µ)
∥∥

B(⊗nX,(⊗nX)∗) ≤ Cn, µ ∈ [λ, θ], (1.4)

where Cn := n sup λ

4n−1≤τ≤θ−(n−1)a‖R±[T ](τ)‖B(X,X∗) + (6 · 4n−2/λ) and n
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is a positive integer.

Let us mention the sketch of proofs of these results. We prove Theorem
1.5 by following the argument of [2]. Since T (n) can be written as T ⊗
I(n−1) + I ⊗ T (n−1) as an operator on ⊗nH, our proof will be reduced to
the two particle case, where I and I(n−1) are the identity operators on H
and ⊗n−1H, respectively. As for Theorem 1.3, we shall introduce a “space
of weighted square summable sequences” (for the notion, we refer to e.g.
Obata [6]), and apply Theorem 1.5.

The plan of this paper is as follows. In the next section we prepare
notations and preliminaries. In Section 3 we prove Theorem 1.5. Finally,
Theorem 1.3 is shown in Section 4.

2. Preliminaries

First we prepare some notations.

• We denote by 〈·, ·〉 an inner product on a Hilbert space, which is
antilinear with respect to the left variable.

• ‖ · ‖V stands for the norm of a Banach space V . As long as it does
not cause any confusion, we sometimes omit the index.

• For a bounded sesqui-linear form q on Hilbert space H, we define
‖q‖ ≡ sup‖f‖H,‖g‖H=1|q(f, g)|.

• We denote by E and En the spectral measures of T and T (n), re-
spectively. We denote by Rn the resolvent of T (n), i.e., Rn(z) =
R[T (n)](z).

• We denote byH⊗̂K the algebraic tensor product of two Hilbert spaces
H and K.

• We identify (H⊗K)∗ withH∗⊗K∗, whereH and K are Hilbert spaces.

Next we prepare three lemmas which will be used in the subsequent
sections. The first one is an elementary fact.

Lemma 2.1 Let H be a Hilbert space and q(·, ·) be a sesqui-linear form
defined on a dense subspace D of H. Suppose there exists some constant
C such that |q(f, g)| ≤ C‖f‖‖g‖ for any f, g ∈ D. Then q(·, ·) can be
uniquely extended to a bounded sesqui-linear form q̃(·, ·) defined on whole H.
Moreover, it holds that |q̃(f, g)| ≤ C‖f‖‖g‖ for any f, g ∈ H.
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The second one is a representation of Rn, the resolvent of T (n). It will
play an important role in this paper.

Lemma 2.2 Let H be a Hilbert space, and let T be a self-adjoint operator
(not necessarily semi-bounded) on H. Then for any µ ∈ R, ε > 0, we have

〈Rn(µ± iε)f, g〉 =
∫

R
〈R1(µ± iε− ω)f1, g1〉d〈fn−1, En−1(ω)gn−1〉

=
∫

R
〈Rn−1(µ± iε− ω)fn−1, gn−1〉d〈f1, E(ω)g1〉, (2.1)

where f = f1 ⊗ fn−1 and g = g1 ⊗ gn−1 with f1, g1 ∈ H and fn−1, gn−1 ∈
⊗n−1H.

For the proof, see Berezanskii [3, Ch.VI, Section 4, pp. 462–469].
The last one concerns with the relation among tensor products of dif-

ferent Hilbert spaces.

Lemma 2.3 Let H and X be Hilbert spaces such that X ⊂ H and ‖f‖H ≤
‖f‖X , for any f ∈ X. Then for any positive integer n and any pair of
integers (i1, . . . , im) satisfying 1 ≤ i1 < i2 < · · · < im ≤ n, the Hilbert space

Xn
i1,...,im

:= H⊗ · · · ⊗
i1-th︷︸︸︷
X ⊗ · · · ⊗

i2-th︷︸︸︷
X ⊗ · · · ⊗

im-th︷︸︸︷
X ⊗ · · · ⊗ H︸ ︷︷ ︸

n

is a subspace

of ⊗nH, and ‖f‖⊗nH ≤ ‖f‖Xn
i1,...,im

for any f ∈ Xn
i1,...,im

.

Proof. We shall only treat the case of n = 2 and i1 = 1 (that is, X2
1 ≡

X ⊗ H). Let us define a sesqui-linear form q(f, g) := 〈f, g〉X , f, g ∈ X on
H whose domain is equal to X. By the assumption, it is easy to show that
q(·, ·) is a non-negative closed symmetric form. Then there exists a self-
adjoint operator A ≥ 0 on H such that q(f, g) = 〈Af,Ag〉H for f, g ∈ X.
Then we can find immediately that the domain of A is equal to X and
‖Af‖H = ‖f‖X ≥ ‖f‖H. We recall that X ⊗H is completion of X⊗̂H with
its norm ‖f⊗g‖X⊗H := ‖f‖X‖g‖H. Since ‖f⊗g‖X⊗H = ‖(A⊗I)f⊗g‖H⊗H
for f ∈ X, g ∈ H, we conclude that X ⊗H is equal to the domain of A⊗ I

and ‖ψ‖X⊗H = ‖(A ⊗ I)ψ‖H⊗H ≥ ‖ψ‖H⊗H for ψ ∈ X ⊗ H. Thus the
assertion is proved. ¤
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3. Proof of Theorem 1.5

As is mentioned at the end of Section 1, our proof of Theorem 1.5
is based on the work of Ben-Artzi and Devinatz [2]. The first step is to
decompose the resolvent Rn(z). Let λ be any positive number and fix it.
Suppose µ is an arbitrary fixed number such that µ ≥ λ. We put δ = λ/4.
Let ϕ,ψ and χ be a partition of unity over [a− 1,∞). More explicitly, they
are functions in C∞(R) satisfying ϕ(x) + ψ(x) + χ(x) ≡ 1 (x ∈ [a− 1,∞))
and

supp ϕ ⊆ (−∞, µ− δ),

supp ψ ⊆ (µ− 2δ, µ− (n− 1)a + 2δ),

supp χ ⊆ (µ− (n− 1)a + δ,∞).

If z = µ± iε with ε > 0, then we have

Rn(z) = Rn(z){ϕ(T )⊗ I(n−1)}+ Rn(z)
{
ψ(T )⊗ En−1((−∞, µ− δ])

}

+ Rn(z)
{
χ(T )⊗ En−1((−∞, µ− δ])

}

+ Rn(z)
{
(I − ϕ(T ))⊗ En−1((µ− δ,∞))

}
(3.1)

as an operator on ⊗nH. In fact, since operators on the right-hand side are
all bounded, and En−1(ω) is a resolution of identity, one can get (3.1) by an
algebraic tensorial computation. Therefore, if we set

q1(µ± iε)(f, g) :=
〈
Rn(µ± iε){ϕ(T )⊗ I(n−1)}f, g

〉
,

q2(µ± iε)(f, g) :=
〈
Rn(µ± iε){ψ(T )⊗ En−1((−∞, µ− δ])}f, g

〉
,

q3(µ± iε)(f, g) :=
〈
Rn(µ± iε){χ(T )⊗ En−1((−∞, µ− δ])}f, g

〉
,

q4(µ± iε)(f, g) :=
〈
Rn(µ± iε){(I − ϕ(T ))⊗ En−1((µ− δ,∞))}f, g

〉

(3.2)

for f, g ∈ ⊗nH and ε > 0, then we have

〈Rn(µ± iε)f, g〉 =
4∑

j=1

qj(µ± iε)(f, g).
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We remark that the meaning of those sesqui-linear forms are rather clear
than that in [2] where the computation is carried out based on the framework
of Berezanskii [3].

The next step is to derive estimates for qj(µ± iε)(f, g) for j = 1, 2, 3, 4
and take their limits, by assuming that the assumptions (a), (b) in Theorem
1.3 hold and that T (k) satisfies the l.a.p. in every compact interval in (0,∞),
w.r.t. the norm topology of B(Xk, X∗

k) for k = 1, 2, . . . , n−1. We denote by
R±k (µ) the limit of Rk(µ± iε) in B(⊗kX, (⊗kX)∗) for k = 1, 2, . . . , n−1. In
the following, we shall denote ⊗kH,⊗kX by Hk, Xk for k ∈ N, respectively,
for the sake of simplicity.

First we consider q1(µ± iε).

Lemma 3.1 For any ε > 0, it holds that

q1(µ± iε)(f, g) = lim
ΠN→0

N∑

j=1

〈
ϕ(ξj){I ⊗Rn−1(µ± iε− ξj)}f,

{E((ωj−1, ωj ])⊗ I(n−1)}g〉
(3.3)

for any f, g ∈ H⊗̂Xn−1. Here ΠN is a partition of [a, µ− δ];

a =: ω0 < ω1 < · · · < ωn−1 < ωn := µ− δ,

ξj ∈ (ωj−1, ωj ] for j = 1, . . . , N , and we mean by ΠN → 0 that max1≤j≤N

(ωj − ωj−1) converges to zero.
Moreover, we have

|q1(µ± iε)(f, g)| ≤ supa≤ω≤µ−δ‖Rn−1(µ± iε− ω)‖B(Xn−1,X∗
n−1)

· ‖f‖H⊗Xn−1‖g‖H⊗Xn−1 (3.4)

for any f, g ∈ H ⊗Xn−1.

Proof. First we shall prove (3.3). It is enough to show (3.3) for the case
where f = f1⊗fn−1, g = g1⊗gn−1 being f1, g1 ∈ H and fn−1, gn−1 ∈ Xn−1,
because of the linearity of both hand sides w.r.t. f and g. Then by the
continuity of 〈Rn−1(µ± iε−ω)fn−1, gn−1〉 in ω, the right-hand side of (3.3)
can be written as
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∫

[a,µ−δ]

ϕ(ω)〈Rn−1(µ± iε− ω)fn−1, gn−1〉d〈E(ω)f1, g1〉 (3.5)

(recall the assumption (a)). By the functional calculus and the variable
transformation concerning the Lebesgue-Stieltjes integral, we see that the
above integral is equal to

∫

R
〈Rn−1(µ± iε− ω)fn−1, gn−1〉d〈E(ω)ϕ(T )f1, g1〉. (3.6)

This expression is further equal to q1(µ ± iε)(f, g), by (2.1) and (3.2). We
thus get (3.3).

Next we shall prove (3.4). To begin with, we remark that

∣∣〈{I ⊗Rn−1(µ± iε− ξj)}f, {E((ωj−1, ωj ])⊗ I(n−1)}g〉∣∣

≤ Cn−1

∥∥{E((ωj−1, ωj ])⊗ I(n−1)}f∥∥
H⊗Xn−1

· ∥∥{E((ωj−1, ωj ])⊗ I(n−1)}g∥∥
H⊗Xn−1

(3.7)

holds for any f, g ∈ H⊗̂Xn−1, where we have set

Cn−1 = supa≤ω≤µ−δ‖Rn−1(µ± iε− ω)‖B(Xn−1,X∗
n−1)

.

In fact, since E(·) is an orthogonal projection, we have

〈{I ⊗Rn−1(µ± iε− ξj)}f, {E((ωj−1, ωj ])⊗ I(n−1)}g〉

=
〈{(I ⊗Rn−1(µ± iε− ξj))(E((ωj−1, ωj ])⊗ I(n−1))}f,

{E((ωj−1, ωj ])⊗ I(n−1)}g〉
. (3.8)

Since

‖I ⊗Rn−1(µ± iε− ξj)‖B(H⊗Xn−1,H∗⊗X∗
n−1)

≤ Cn−1

for a ≤ ξj ≤ µ− δ, we obtain (3.7) from (3.8). Now, by (3.7) we have
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∣∣∣∣
N∑

j=1

ϕ(ξj)
〈{I ⊗Rn−1(µ± iε− ω)}f, {E((ωj−1, ωj ])⊗ I(n−1)}g〉∣∣∣∣

≤ Cn−1

N∑

j=1

|ϕ(ξj)|
∥∥{E((ωj−1, ωj ])⊗ I(n−1)}f

∥∥∥∥{E((ωj−1, ωj ])⊗ I(n−1)}g
∥∥

≤ Cn−1

√√√√
N∑

j=1

‖{E((ωj−1, ωj ])⊗ I(n−1)}f‖2

·
√√√√

N∑

j=1

‖{E((ωj−1, ωj ])⊗ I(n−1)}g‖2

= Cn−1

∥∥{E([a, µ− δ])⊗ I(n−1)}f∥∥∥∥{E([a, µ− δ])⊗ I(n−1)}g∥∥

≤ Cn−1‖f‖‖g‖ (3.9)

for f, g ∈ H⊗̂Xn−1. Here the norms are taken in H⊗Xn−1. Hence q1(µ±
iε)(·, ·) is a bounded sesqui-linear form on H⊗̂Xn−1. From (3.3), (3.9) and
Lemma 2.1, we find (3.4). This completes the proof. ¤

Similarly to the proof of Lemma 3.1, we can prove the following lemma
with the help of the assumption (b).

Lemma 3.2 For any ε > 0, it holds that

q2(µ± iε)(f, g) = lim
ΛN→0

N∑

j=1

〈{R1(µ± iε− ξj)ψ(T )⊗ I(n−1)}f,

{I ⊗ En−1((ωj−1, ωj ])}g
〉

(3.10)

for any f, g ∈ X⊗̂Hn−1. Here ΛN is a partition of [(n− 1)a, µ− δ];

(n− 1)a =: ω0 < ω1 < · · · < ωn−1 < ωn := µ− δ.

Moreover, we have

|q2(µ± iε)(f, g)| ≤ sup(n−1)a≤ω≤µ−δ‖R1(µ± iε− ω)‖B(X,X∗)

· ‖f‖X⊗Hn−1‖g‖X⊗Hn−1 (3.11)
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for any f, g ∈ X ⊗Hn−1.

Next we consider the limits of the sesqui-linear forms q1(µ ± iε) and
q2(µ± iε) as ε → 0+. We define a sesqui-linear form on H⊗̂Xn−1 by

q±1 (µ)(f, g) = lim
ΠN→0

N∑

j=1

ϕ(ξj)
〈{I ⊗R±n−1(µ− ξj)}f,

{E((ωj−1, ωj ])⊗ I(n−1)}g〉
(3.12)

for any f, g ∈ H⊗̂Xn−1. Here we have used the same notation as in
(3.3), R±n−1(µ) is the limit of Rn−1(µ ± iε) in B(Xn−1, X

∗
n−1), and 〈{I ⊗

R±n−1(µ− ξj)}f, {E((ωj−1, ωj ])⊗ I(n−1)}g〉 means {I ⊗R±n−1(µ− ξj)}f acts
on {E((ωj−1, ωj ])⊗ I(n−1)}g as a linear functional on H⊗Xn−1. Note that
q±1 (µ) is well defined. In fact, if f = f1⊗fn−1, g = g1⊗gn−1, then q±1 (µ)(f, g)
is equal to

∫
[a,µ−δ]

ϕ(ω)〈R±n−1(µ − ω)fn−1, gn−1〉d〈E(ω)f1, g1〉. By the as-
sumption that l.a.p. T (n−1) satisfies the l.a.p. 〈R±n−1(µ − ω)fn−1, gn−1〉 is
continuous in ω, and hence the integral is finite. For general elements in
H⊗̂Xn−1, it can be linearly extended. Similarly to (3.9), we have

∣∣q±1 (µ)(f, g)
∣∣ ≤ supa≤ω≤µ−δ

∥∥R±n−1(µ− ω)
∥∥

B(Xn−1,X∗
n−1)

· ‖f‖H⊗Xn−1‖g‖H⊗Xn−1

for any f, g ∈ H⊗̂Xn−1. By using Lemma 2.1, it is hence extended to a
bounded sesqui-linear form on H⊗Xn−1.

For any f, g ∈ H ⊗Xn−1, let {fk}, {gk} be sequences in H⊗̂Xn−1 such
that fk → f and gk → g as k → ∞. Then it follows from (3.3) and (3.12)
that
∣∣q1(µ± iε)(f, g)− q±1 (µ)(f, g)

∣∣

= lim
k→∞

∣∣∣∣ lim
ΠN→0

N∑

j=1

ϕ(ξj)
〈{I ⊗ (Rn−1(µ± iε− ξj)−R±n−1(µ− ξj))}fk,

{E((ωj−1, ωj ])⊗ I(n−1)}gk

〉∣∣∣∣
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≤ lim
k→∞

supa≤ω≤µ−δ

∥∥Rn−1(µ± iε− ω)−R±n−1(µ− ω)
∥∥

B(Xn−1,X∗
n−1)

· ‖fk‖‖gk‖
= supa≤ω≤µ−δ

∥∥Rn−1(µ± iε− ω)−R±n−1(µ− ω)
∥∥

B(Xn−1,X∗
n−1)

‖f‖‖g‖,
(3.13)

where the norms are taken in H ⊗ Xn−1. By Lemma 2.3, we have
‖f‖H⊗Xn−1 ≤ ‖f‖Xn

for any f ∈ Xn. Therefore we conclude that

Lemma 3.3 The sesqui-linear form q1(µ ± iε)(f, g) converges to
q±1 (µ)(f, g) uniformly in f, g ∈ Xn, as ε → 0+. Moreover, we have

∥∥q±1 (µ)
∥∥ ≤ supa≤ω≤µ−δ

∥∥R±n−1(µ− ω)
∥∥

B(Xn−1,X∗
n−1)

. (3.14)

Similarly, we have the following lemma.

Lemma 3.4 Let q±2 (µ)(·, ·) be the linear extension over X ⊗ Hn−1 of a
sesqui-linear form defined by

q±2 (µ)(f, g) = lim
ΛN→0

N∑

j=1

〈{R±1 (µ− ξj)⊗ I(n−1)}{ψ(T )⊗ I(n−1)}f,

{I ⊗ En−1((ωj−1, ωj ])}g
〉

(3.15)

for any f, g ∈ X⊗̂Hn−1. Then q2(µ ± iε)(f, g) converges to q±2 (µ)(f, g)
uniformly in f, g ∈ Xn, as ε → 0+. Moreover, we have

∥∥q±2 (µ)
∥∥ ≤ sup(n−1)a≤ω≤µ−δ

∥∥R±(µ− ω)
∥∥

B(X,X∗). (3.16)

Next we deal with q3(µ± iε).

Lemma 3.5 For any ε > 0, it holds that

q3(µ± iε)(f, g) = lim
ΛN→0

N∑

j=1

〈
[{χ(T )R1(µ± iε− ξj)} ⊗ I(n−1)]f,

{I ⊗ En−1((ωj−1, ωj ])}g
〉
. (3.17)

for any f, g ∈ H⊗̂Hn−1. Here ΛN and ξj are as in Lemma 3.2.
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Moreover, we have |q3(µ ± iε)(f, g)| ≤ δ−1‖f‖Hn
‖g‖Hn

for any f, g ∈
Hn.

Proof. The equation (3.17) can be shown similarly to the proof of (3.3).
In order to prove the inequality, we first remark that

sup(n−1)a≤ω≤µ−δ‖χ(T )R1(µ± iε− ω)‖B(H) ≤ δ−1.

In fact, by the functional calculus, we have

‖χ(T )R1(µ± iε− ω)f‖2H =
∫

(µ−(n−1)a+δ,∞)

∣∣∣∣
χ(ρ)

ρ− (µ± iε− ω)

∣∣∣∣
2

d‖E(ρ)f‖2

for any f ∈ H and ω ∈ [(n − 1)a, µ − δ]. Since ρ − (µ − ω) ≥ δ for any
ρ ∈ (µ − (n − 1)a + δ,∞) and ω ∈ [(n − 1)a, µ − δ], the last quantity is
bounded by δ−2‖f‖2. If we let f, g ∈ H⊗̂Hn−1, then we have

|q3(µ± iε)(f, g)|

≤ lim
ΛN→0

∣∣∣∣
N∑

j=1

〈
[{χ(T )R1(µ± iε− ξj)} ⊗ I(n−1)]f, {I ⊗ En−1((ωj−1, ωj ])}g

〉∣∣∣∣

= lim
ΛN→0

∣∣∣∣
N∑

j=1

〈{χ(T )R1(µ± iε− ξj)⊗ I(n−1)}{I ⊗ En−1((ωj−1, ωj ]}f,

{I ⊗ En−1((ωj−1, ωj ])}g
〉∣∣∣∣

≤ δ−1‖f‖Hn
‖g‖Hn

.

This completes the proof. ¤

Proceeding as in the proof of Lemmas 3.3 and 3.4, we have the following.
We remark that χ(T )/{T − (µ − ξj)} is well defined thanks to the cut-off
function χ.

Lemma 3.6 Let q±3 (µ)(·, ·) be a sesqui-linear form on H⊗Hn−1 such that
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q±3 (µ)(f, g)

= lim
ΛN→0

N∑

j=1

〈{(
χ(T )

T − (µ− ξj)

)
⊗ I(n−1)

}
f, {I ⊗ En−1((ωj−1, ωj ])g

〉

(3.18)

for any f, g ∈ H⊗̂Hn−1. Then q3(µ ± iε)(f, g) converges to q±3 (µ)(f, g)
uniformly in f, g ∈ Xn, as ε → 0+. Moreover, we have ‖q±3 (µ)‖ ≤ δ−1.

Next we consider q4(µ± iε).

Lemma 3.7 For any ε > 0, it holds that

q4(µ± iε)(f, g)

=
∫

(µ−δ,∞)

〈{I − ϕ(T )}{R1(µ± iε− ω)}f1, g1〉d〈fn−1, En−1(ω)gn−1〉
(3.19)

for any f = f1⊗fn−1, g = g1⊗gn−1, where f1, g1 ∈ H, fn−1, gn−1 ∈ Hn−1.
Moreover, we have

|q4(µ± iε)(f, g)| ≤ 2
λ
‖f‖Hn

‖g‖Hn
, f, g ∈ H ⊗Hn−1. (3.20)

Proof. The equation (3.19) can be shown similarly to (3.3). We shall next
prove (3.20). We remark that ‖{I −ϕ(T )}{R1(µ± iε−ω)}‖B(H) < 2/λ. In
fact, by the functional calculus, we have

‖{I − ϕ(T )}{R1(µ± iε− ω)}f‖2H

=
∫

[a,∞)

∣∣∣∣
1− ϕ(ρ)

ρ− (µ± iε− ω)

∣∣∣∣
2

d‖E(ρ)f‖2 (3.21)

for any ω ∈ (µ−δ,∞). Considering the support of 1−ϕ(ρ) under the domain
of the integration (3.19), we have ρ− µ + ω > µ− 2δ > λ/2. Therefore the
last quantity is bounded by (2/λ)2‖f‖2H.

Let f = f1 ⊗ fn−1, g = g1 ⊗ gn−1, and denote by q4,R(µ± iε)(f, g) the
following integral
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∫

(µ−δ,R]

〈
I − ϕ(T )

T − (µ± iε− ω)
f1, g1

〉
d〈fn−1, En−1(ω)gn−1〉,

R > µ− δ. (3.22)

Then for any c > 0, there exists R0 > µ− δ such that
∣∣q4(µ± iε)(f, g)− q4,R0(µ± iε)(f, g)

∣∣ < c.

Hence we have

|q4(µ± iε)(f, g)| < c +
∣∣q4,R0(µ± iε)(f, g)

∣∣. (3.23)

In order to establish an estimate of q4,R0(µ ± iε)(f, g), it is sufficient to
evaluate the partial sum;

N∑

l=1

〈
I − ϕ(T )

T − (µ± iε− ωl)
f1, g1

〉
〈fn−1, En−1(∆l)gn−1〉

=
N∑

l=1

〈{
I − ϕ(T )

T − (µ± iε− ωl)
⊗ I(n−1)

}
f, {I ⊗ En−1(∆l)}g

〉

where (µ − δ,R0] =
∑N

l=1 ∆l is a partition and ωl ∈ ∆l. Using (3.21), we
have

∣∣∣∣
N∑

l=1

〈{
I − ϕ(T )

T − (µ± iε− ωl)
⊗ I(n−1)

}
f, {I ⊗ En−1(∆l)}g

〉∣∣∣∣

≤
N∑

l=1

∥∥∥∥
I − ϕ(T )

T − (µ± iε− ωl)
⊗ I(n−1)

∥∥∥∥
B(Hn)

· ‖{I ⊗ En−1(∆l)}f‖‖{I ⊗ En−1(∆l)}g‖
≤ (2/λ)‖f‖‖g‖.

We thus get
∣∣q4,R0(µ± iε)(f, g)

∣∣ < (2/λ)‖f‖‖g‖. (3.24)
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Hence by (3.23) and (3.24), (3.20) holds when f = f1⊗fn−1, g = g1⊗gn−1.
For general elements ofH⊗̂Hn−1, we can show (3.20) by the linear extension.
Therefore, by Lemma 2.1, the assertion is proved. ¤

Finally, we handle the limit of q4(µ± iε).

Lemma 3.8 Let q±4 (µ) be a sesqui-linear form on H⊗̂Hn−1 such that

q±4 (µ)(f, g) =
∫

(µ−δ,∞)

〈
I − ϕ(T )

T − (µ− ω)
f1, g1

〉
d〈fn−1, En−1(ω)gn−1〉 (3.25)

for any f = f1 ⊗ fn−1, g = g1 ⊗ gn−1 where f1, g1 ∈ H, fn−1, gn−1 ∈ Hn−1

(for general elements of H⊗̂Hn−1, we linearly extend it). Then q4(µ ±
iε)(f, g) converges to q±4 (µ)(f, g) uniformly in f, g ∈ Xn. Moreover, we
have ‖q±4 (µ)‖ ≤ 2/λ.

Proof. By the functional calculus, we have supω>µ−δ‖{I − ϕ(T )}/{T −
(µ± iε−ω)}−1 −{I −ϕ(T )}/{T − (µ−ω)}‖B(H) < ε. Since the rest of the
proof is similar to that of Lemma 3.3, we omit it. ¤

End of the proof of Theorem 1.5. For µ ≥ λ, we set q±(µ) :=
∑4

i=1 q±i (µ).
We see from Lemmas 3.3, 3.4, 3.6 and 3.8 that it is a bounded sesqui-linear
form, and hence it can be identified with an element of B(Xn, X∗

n) by setting
〈R±n (µ)f, g〉 = q±(µ)(f, g) for f, g ∈ Xn. Then Lemmas 3.3, 3.4, 3.6 and 3.8
show that R±n (µ± iε) converge to R±n (µ) in B(Xn, X∗

n), as ε → 0+.
Next we prove the resolvent estimate (1.4). We first consider the case

n = 2. Fix any θ > λ > 0. Then for any µ ∈ [λ, θ], we have from Lemmas
3.1, 3.2, 3.5 and 3.7

‖R2(µ± iε)‖B(X2,X∗
2 ) ≤ 2 supδ≤ρ≤θ−a‖R1(ρ± iε)‖B(X,X∗) + 6/λ, (3.26)

because δ = 4/λ.
Next we treat the general case. Suppose the following inequality holds

for n = k − 1;

‖Rn(µ± iε)‖B(Xn,X∗
n)

≤ n sup λ

4n−1≤τ≤θ−(n−1)a‖R1(τ ± iε)‖B(X,X∗) + (6 · 4n−2/λ). (3.27)

Similarly to (3.26), for µ ∈ [λ, θ], we have
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‖Rk(µ± iε)‖B(Xk,X∗
k)

≤ supδ≤ρ≤θ−a‖Rk−1(ρ± iε)‖B(Xk−1,X∗
k−1)

+ supδ≤ρ≤θ−(k−1)a‖R1(ρ± iε)‖B(X,X∗) + 6/λ. (3.28)

On the other hand, replacing λ by δ in (3.27), we have

supδ≤ρ≤θ‖Rk−1(ρ± iε)‖B(Xk−1,X∗
k−1)

≤ (k − 1) sup δ

4k−1≤τ≤θ−(k−1)a‖R1(τ ± iε)‖B(X,X∗) + 6(k − 1)4k−3/δ

= (k − 1) sup λ

4k≤τ≤θ−(k−1)a‖R1(τ ± iε)‖B(X,X∗) + 6(k − 1)4k−2/λ.

(3.29)

Combining this estimate with (3.28), we conclude that (3.27) holds for n = k.
Letting ε → 0+, we obtain (1.4). This completes the proof of Theorem 1.5.

4. Proof of Theorem 1.3

Let us now consider the l.a.p. for dΓ(T ) in a Fock space, as an applica-
tion of Theorem 1.5. First of all, observe that (1.4) and (3.27) with n = k

yield the following:

Lemma 4.1 We fix any two positive numbers λ, θ with λ < θ. For any
n ∈ N, we set δn−1 := λ/4n−1 and

C̃n := n max
{

supz∈Kn
‖R(z)‖B(X,X∗),

supδn−1≤µ≤θ−(n−1)a‖R±(µ)‖B(X,X∗), 1
}

+ 6 · 4n−2/λ. (4.1)

Here Kn is defined by

Kn := {z = x + iy|δn−1 ≤ x ≤ θ − (n− 1)a, −1 < y < 1, y 6= 0}

Then we have

‖Rn(µ± iε)‖B(⊗nX,⊗nX∗) ≤ C̃n (4.2)

‖R±n (µ)‖B(⊗nX,⊗nX∗) ≤ C̃n (4.3)
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for any µ ∈ [δn−1, θ − (n− 1)a], 0 < ε < 1 and n ∈ N.

Now we shall introduce a suitable subspace Fλ,θ(X) of F(X), following
the standard argument in treating Fock space (we refer to, for instance,
Obata [6]). Let C̃n the number from Lemma 4.1. We define

Fλ,θ(X) :=
{

φ = {φ(n)}∞n=0 ∈ F(H)| φ(n) ∈ ⊗nX,

∞∑
n=0

2nC̃n‖φ(n)‖2⊗nX < ∞
}

(4.4)

with the inner product

〈φ, ψ〉Fλ,θ(X) :=
∞∑

n=0

2nC̃n

〈
φ(n), ψ(n)

〉
⊗nX

,

φ = {φ(n)}, ψ = {ψ(n)} ∈ Fλ,θ(X).

(4.5)

It is not difficult to see that Fλ,θ(X) is a Hilbert space. By the definition of
Fλ,θ(X), it is continuously embedded into F(X). By Lemma 2.3, F(X) is
embedded into F(H), so that

Fλ,θ(X) ↪→ F(X) ↪→ F(H).

Next we define R±(µ) for µ ∈ R by

〈R±(µ)f, g〉 :=
∞∑

n=0

〈
R±n (µ)f (n), g(n)

〉
,

f = {f (n)}, g = {g(n)} ∈ Fλ,θ(X).

(4.6)

We recall that R±n (µ)f (n) is an element of (⊗nX)∗. It follows from Theorem
1.5 that R±(µ) ∈ B(Fλ,θ(X),Fλ,θ(X)∗). In fact, by (4.3) we have

|〈R±(µ)f, g〉| ≤
∞∑

n=0

2nC̃n‖f (n)‖⊗nX‖g(n)‖⊗nX
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≤
√√√√

∞∑
n=0

2nC̃n‖f (n)‖2⊗nX

√√√√
∞∑

n=0

2nC̃n‖g(n)‖2⊗nX

= ‖f‖Fλ,θ(X)‖g‖Fλ,θ(X). (4.7)

We are ready to show dΓ(T ) satisfies the l.a.p. in B(Fλ,θ(X),Fλ,θ(X)∗).
Note that if f ∈ Fλ,θ(X) satisfies ‖f‖Fλ,θ(X) = 1, then

‖f (n)‖⊗nX ≤ 1/

√
2nC̃n for any n ∈ N, (4.8)

by (4.5). Therefore we have

∞∑
n=0

∥∥Rn(µ± iε)−R±n (µ)
∥∥

B(⊗nX,⊗nX∗)‖f (n)‖⊗nX‖g(n)‖⊗nX ≤
∞∑

n=0

1/2n−1

(4.9)

by (4.2) and (4.3). Take any compact interval K ⊆ [λ, θ] and η > 0. Then
there exists a large integer N such that

∞∑

n=N+1

∥∥Rn(µ± iε)−R±n (µ)
∥∥

B(⊗nX,⊗nX∗)‖f (n)‖⊗nX‖g(n)‖⊗nX < η (4.10)

for any µ ∈ K, f and g ∈ Fλ,θ(X) such that ‖f‖Fλ,θ(X) = ‖g‖Fλ,θ(X) = 1
by (4.9). Therefore, we have

∣∣〈R(µ± iε)f, g〉 − 〈R±(µ)f, g〉
∣∣

≤
N∑

n=0

∥∥Rn(µ± iε)−R±n (µ)
∥∥

B(⊗nX,⊗nX∗)‖f (n)‖⊗nX‖g(n)‖⊗nX

+
∞∑

n=N+1

∥∥Rn(µ± iε)−R±n (µ)
∥∥

B(⊗nX,⊗nX∗)‖f (n)‖⊗nX‖g(n)‖⊗nX

≤
N∑

n=0

supµ∈K

∥∥Rn(µ± iε)−R±n (µ)
∥∥

B(⊗nX,⊗nX∗) + η. (4.11)
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By the uniformly compact convergence of Rn(µ ± iε) (n = 0, . . . N), as
ε → 0+, the above inequality shows the desired conclusion. This completes
the proof.

5. Application to Schrödinger operators

In this section, we shall consider an application of Theorem 1.3 and 1.5
to the so called Schrödinger operators of the form −∆+V (x), where ∆ is the
generalized Laplacian and V (x) is a potential regarded as a multiplication
operator acting in L2(Rd). It is not simple to specify the class of potentials
for which the assumptions in Theorem 1.3 are fulfilled. However if V (x), for
example, is the Coulomb potential we can verify the assumption.

If we consider some specific potential, we can improve the assertion
of Theorems 1.3 and 1.5. we shall see this improvement in the following
paragraph. Assume that T satisfies the assumptions (a) and (b) of Theorem
1.3 and has the following two conditions;

(c’) For any ϕ ∈ {f ∈ C∞(R)| supx∈R|f(x)| < ∞}, ϕ(T )X ⊆ X and
‖ϕ(T )‖B(X) ≤ supx∈R|ϕ(x)|.

(d) There exists a constant C0 such that

supa≥0,b 6=0‖R[T ](a + ib)‖B(X,X∗) ≤ C0,

supa>0‖R±[T ](a)‖B(X,X∗) ≤ C0.

Then we can choose Fλ,θ(X) independent of λ and θ, and the estimate (1.4)
becomes

∥∥R±[T (n)](µ)
∥∥

B(⊗nX,⊗nX∗) ≤ (3n− 2)C0 (5.1)

for any µ ∈ (0,∞).

Proof. We shall first claim that

supµ∈(0,∞)

∥∥q±j (µ)
∥∥ ≤ C0 (5.2)

for j = 2, 3, 4. (5.2) can be proved as follows. If j = 2, it follows from
immediately (3.16) and the assumption (d). For the case j = 3, we remark
that
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q±3 (µ)(f, g) = lim
ΛN→0

N∑

j=1

〈{(R±(µ− ξj)χ(T ))⊗ I(n−1)}f,

{I ⊗ En−1((ωj−1, ωj ])g
〉

(5.3)

for any f, g ∈ X⊗̂Hn−1. Here we have used the same notations as in (3.18).
Then we have

∣∣q±3 (µ)(f, g)
∣∣ ≤ lim

ΛN→0

N∑

j=1

C0‖χ(T )‖B(X)

∥∥{I ⊗ En−1((ωj−1, ωj ])}f
∥∥

· ∥∥{I ⊗ En−1((ωj−1, ωj ])}g
∥∥

≤ C0‖f‖‖g‖ (5.4)

for any f, g ∈ X ⊗ Hn−1 (see also the proof of Lemma 3.5). Here the
norms are taken in X ⊗Hn−1, and we use the assumptions (c’) and (d) in
(5.3). From (5.4), Lemma 2.1 and Lemma 2.3, we conclude that supµ∈(0,∞)

‖q±3 (µ)‖ ≤ C0. We can prove (5.2) for the case j = 4 in the same way as
the case j = 3. Thus we have the following estimate instead of (3.28);

‖Rk(µ± iε)‖B(Xk,X∗
k)

≤ supδ≤ρ≤θ−a‖Rk−1(ρ± iε)‖B(Xk−1,X∗
k−1)

+ 3C0, (5.5)

from which we get

supµ∈(0,∞)

∥∥R[T (n)](µ± iε)
∥∥

B(⊗nX,(⊗nX)∗) ≤ (3n− 2)C0 (5.6)

for any n ∈ N. Letting ε → 0+, we find (5.1). ¤

The conditions (c’) and (d) are deduced, if V (x) does not have any
zero eigenvalue nor any zero resonance and X = H−1,s ≡ {f : Rd → C |
‖(1+ |x|2)s/2(1−∆)−1/2f‖L2(Rd) < ∞} with the space dimension d = 3 and
s > 5/2 (see Jensen and Kato [4]).
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