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A generalization of antipodal point theorems

for set-valued mappings
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Abstract. Let U be a bounded symmetric open neighborhood of the origin of

Rm+k (k = 1). We shall prove a generalization of the Borsuk’s antipodal theorem

for an admissible mapping ϕ : ∂U → Rm and the related topic. We shall generalize

the theorem for the case of a bounded symmetric open neighborhood U of the origin of

an infinite dimensional normed space E. The Borsuk-Ulam theorem shall be studied

for the case of a bounded symmetric open neighborhood U of the origin of an infinite

dimensional normed space E.
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1. Introduction

When we assign each point x of X a non empty closed set ϕ(x) in a topo-
logical space Y , we call the correspondence a set-valued mapping and write
ϕ : X → Y by the Greek alphabet. For single-valued mappings, we write
f : X → Y etc. by the Roman alphabet. In this paper, we assume that set-
valued mappings are upper semi-continuous (cf. Section 14 in L. Górniewicz
[8]).

Fixed point theorems for set-valued mappings have been developed
by many mathematicians [3], [7]. L. Górniewicz defined admissible map-
pings (cf. Definition 2.5) in the class of set-valued mappings and proved a
fixed point theorem and the Borsuk-Ulam theorem for admissible mappings
(cf. Sections 40, 43 in [8]). M. Nakaoka proved many theorems concerning
the equivariant theory [14]. In the previous paper [15], the author studied
a fixed point theorem and estimated the dimension of the set of equivari-
ant points for admissible mappings. They are generalizations of results of
M. Nakaoka [11], [13] and K. Gȩba and L. Górniewicz [5], [8]. In this paper,
we shall prove a generalization of the Borsuk’s antipodal theorem for an
admissible mapping ϕ : ∂U → Rm where U is a bounded symmetric open
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neighborhood of the origin of Rm+k (k = 1) and ∂U is the boundary of U .
Here symmetricity of U means T (U) = U for the involution T (x) = −x.
For the simplicity, we sometimes use the same symbol T for the involu-
tion. We also study the theorem for the case of a bounded symmetric open
neighborhood U of the origin of an infinite dimensional normed space E.

In the second section, we review various cohomology theories and some
results. In this paper, we shall mainly use the Alexander-Spanier cohomol-
ogy theory H̄∗(X;F) with coefficient in a field F.

In the third section, we define equivariant mappings in the class of
set-valued mappings (cf. Definition 3.4) and discuss generalizations of the
Borsuk’s antipodal theorem for admissible mappings. The first Stiefel-
Whitney class c = c(X, T ) of a space X with a free involution T is defined by
c = f∗(ω) where f : Xπ → RP∞ is the classifying mapping of the projection
p : X → Xπ and ω is the generator of H1(RP∞;F2) where F2 is the prime
field of the order 2. Our main theorem is as follows: (cf. Theorem 3.5).

Main Theorem 1 Let N be a paracompact Hausdorff space and N0 its
closed subspace with a free involution T0 and cm 6= 0 for c = c(N0, T0) and
M an m-dimensional closed manifold with a free involution T ′. Assume
that ϕ : N → M is an admissible mapping and is equivariant on N0. Then,
k∗ : H̄m(N ;F2) → H̄m(N0;F2) is not trivial where k : N0 → N is the
inclusion.

From the theorem, we obtain a generalization of the Borsuk’s antipodal
theorem (cf. Corollary 3.6). S. Y. Chang proved a generalization of the
Borsuk’s antipodal theorem (cf. Theorem 4 in [2]) for closed convex set-
valued mappings by using method of general topology and analysis. By
using the new definition of equivariant mappings for set-valued mappings
which is a generalization of S. Y. Chang’s definition, we shall prove the
following theorem which is a generalization of his theorem (cf. Theorem
3.8).

Main Theorem 2 Let U be a bounded symmetric open neighborhood of
the origin in Rm+k for k = 1. Assume that ϕ : ∂U → Rm is an equivariant
admissible mapping. Then there exists a point x0 ∈ ∂U such that ϕ(x0) 3 0.

We have the following theorem (cf. Theorem 3.10) which is a general-
ization of Theorem 6 in [2] and also a generalization of Theorem 9.1, 9.2 of
Section 10 in [9] for set-valued mappings.
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Main Theorem 3 Let U be a bounded symmetric open neighborhood of
the origin in Rm. Assume that ϕ : U → Rm is an admissible mapping which
is equivariant on the boundary ∂U of U . Then there exist a point x0 ∈ U

such that ϕ(x0) 3 0 and a point x1 ∈ U such that ϕ(x1) 3 x1.

In the last section, we discuss a generalization of results of the section 3
to the case of an infinite dimensional normed space. We obtain the following
theorem (cf. Theorem 4.4) which is a generalization of Theorem 7 in [2] for
the case of an infinite dimensional normed space.

Main Theorem 4 Let U be a bounded symmetric open neighborhood of the
origin of an infinite dimensional normed space E. Assume that ϕ : U → E
is a compact admissible mapping which is equivariant on ∂U . Then there
exist a fixed point z0 ∈ U such that ϕ(z0) 3 z0.

In the above theorem, we can not deduce the existence of the zero value
of ϕ contrary to the finite dimensional version.

We shall prove a generalization of the Borsuk-Ulam theorem for a com-
pact field (cf. Theorem 4.5 and Section 2 in K. Geba and L. Górniewicz
[6]).

Main Theorem 5 Let Ek be a closed linear subspace of codimension
k = 1 of an infinite dimensional normed space E and U be a bounded sym-
metric open neighborhood of the origin of E. If Φ : ∂U → Ek is a compact
admissible mapping, there is a point x0 ∈ ∂U such that ϕ(x0)∩ϕ(T (x0)) 6= ∅
where ϕ(x) = x− Φ(x).

We shall also prove IndA(ϕ) = k − 1 where A(ϕ) = {x ∈ ∂U | ϕ(x) ∩
ϕ(T (x)) 6= ∅} (cf. Corollary 4.6).

2. Various cohomology theories

To begin with, we give some remarks about several cohomology theories
(cf. Y. Shitanda [15]). The Alexander-Spanier cohomology theory H̄∗(−;G)
is isomorphic to the singular cohomology theory H∗(−;G), that is,

µ : H̄∗(X;G) ∼= H∗(X;G)

if the singular cohomology theory satisfies the continuity condition (cf.
Theorem 6.9.1 in [16]).
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For a paracompact Hausdorff space X, it holds also the isomorphism
between the Čech cohomology theory Ȟ∗(−;G) with coefficient in a constant
sheaf and the Alexander-Spanier cohomology theory H̄∗(−;G) (cf. Theorem
6.8.8 in [16])

Ȟ∗(X;G) ∼= H̄∗(X;G).

An ANR space is an r-image of an open set of a normed space (cf. Propo-
sition 1.8 in [8]). For an ANR space X, it holds also the isomorphisms:

Ȟ∗(X;G) ∼= H̄∗(X;G) ∼= H∗(X;G)

by Theorem 6.1.10 of [16]. The remarkable feature of the Alexander-Spanier
cohomology theory is that it satisfies the continuity property (cf. Theorem
6.6.2 in [16]). Hereafter we mainly use the Alexander-Spanier (co)homology
theory with coefficient in a field F.

Let f : X → Y be a continuous mapping. When f−1(K) is a compact
set for any compact subset K ⊂ Y , f is called a proper mapping. f is called
a perfect mapping, if f is a closed mapping and any preimage f−1(y) is a
compact set for each y ∈ Y . A perfect mapping is a proper mapping by
Theorem 3.7.2 in R. Engelking [4]. For the case that Y is a metric space,
a proper mapping f is a closed mapping (cf. Proposition 1.8.1 in [8]). We
can not find any proof on the proposition for the general case. Since perfect
mappings behave better than proper mappings, we adopt perfect mappings
for the definition of Vietoris mappings (cf. Definition 1.4.6 in [1]).

The following proposition is essentially proved in Theorem 3.3.22 in [4].

Proposition 2.1 Let X be a Hausdorff space and Y a compactly generated
Hausdorff space. If f : X → Y is a onto continuous and proper mapping, it
is a closed mapping.

Compactly generated Hausdorff spaces are k-space (cf. Corollary 3.3.19
in [4]). Metric spaces and CW-complexes are compactly generated Hausdorff
spaces. Clearly there exists a Hausdorff space X which is not a compactly
generated. We give a compactly generated Hausdorff topology for X. The
space is denoted by X̂. The identity mapping f : X̂ → X is a proper
continuous mapping. Take F which is not a closed set in X and is a closed
set in X̂. Since f(F ) is not a closed set, f is not a closed mapping.

Let X and Y are Hausdorff spaces with free involutions. If an equiv-
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ariant mapping f : X → Y is a perfect mapping, fπ : Xπ → Yπ is also a
perfect mapping. A mapping f : X → Y is called a compact mapping, if
f(X) is contained in a compact set of Y , or equivalently its closure f(X) is
compact.

Definition 2.2 Let X and Y be paracompact Hausdorff spaces. A map-
ping f : X → Y is called a Vietoris mapping, if it satisfies the following
conditions:

1. f is a perfect and onto continuous mapping.
2. f−1(y) is an acyclic space for any y ∈ Y , that is, it is a connected

space and H̄∗(f−1(y);F) = 0 for positive dimensions.

When f is closed and onto continuous mapping and satisfies the condition
(2), we call it weak Vietoris mapping.

We prepare a Lemma.

Lemma 2.3 Let p : X → Y a perfect mapping and f : Z → Y a continu-
ous mapping. Then q : W → Z is a perfect mapping where

W
g //

q

²²

X

p

²²
Z

f // Y

is a pull-back square. Especially if p is a Vietoris mapping, q is also a
Vietoris mapping.

Proof. Consider the following diagram:

W
(q,g) //

q

²²

Z ×X
PrX //

IdZ×p

²²

X

p

²²
Z

(IdZ ,f)// Z × Y
PrY // Y

where PrX and PrY are the projections to X and Y respectively,
(IdZ , f)(z) = (z, f(z)). Since p is a perfect mapping, IdZ × p is also a
perfect mapping by Theorem 3.7.9 in [4]. Z is a closed subspace of Z × Y .
Therefore q is a perfect mapping by Proposition 3.7.6 in [4]. ¤
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Theorems in the previous paper [15] are valid for the case of perfect
mapping instead of proper mappings, for example Theorem 3.9 and 3.10
and Lemma 5.4 and therefore Theorem 5.5 and 6.3 etc.

The following theorem is called the Vietoris’s theorem and is important
for our purpose (cf. Theorem 6.9.15 in [16]).

Theorem 2.4 Let f : X → Y be a weak Vietoris mapping between para-
compact Hausdorff spaces X and Y . Then,

f∗ : H̄m(Y ;F) → H̄m(X;F)

is an isomorphism for all m = 0.

The graph of a set-valued mapping ϕ : X → Y is defined by Γϕ =
{(x, y) ∈ X × Y | y ∈ ϕ(x)}. If ϕ is upper semi-continuous, Γϕ is closed,
but the converse is not true. If the image ϕ(X) is contained in a compact
set, the converse is true (cf. Section 14 in [8]).

Definition 2.5 An upper semi-continuous mapping ϕ : X → Y is admis-
sible, if there exists a paracompact Hausdorff space Γ satisfying the following
conditions:

1. there exist a Vietoris mapping p : Γ → X and a continuous mapping
q : Γ → Y ,

2. ϕ(x) ⊃ q(p−1(x)) for each x ∈ X.

A pair (p, q) of mappings p and q is called a selected pair of ϕ.

Define ϕ∗ : H̄∗(Y ;G) → H̄∗(X;G) by the set {(p∗)−1q∗} where (p, q)
is a selected pair of admissible mapping ϕ : X → Y . And ϕ∗ is similarly
defined by the set {q∗(p∗)−1}.

3. Borsuk’s antipodal theorem

Let X and Y be spaces with involutions T and T ′ respectively. g : X →
Y is called an equivariant mapping, if it satisfies g(Tx) = T ′g(x) for x ∈ X.
The classical Borsuk’s antipodal theorem is stated as follows. A continuous
mapping f : Sm → Rm has at least one pair of antipodal points to the
same point, that is, there exists a point x0 ∈ Sm such that f(x0) = f(−x0)
(cf. Theorem 5.2 of Section 5 in [9]). Equivalently an equivariant mapping
f : Sm−1 → Sm−1 is not null-homotopic. In other words an equivariant
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mapping f : Sm → Rm has the zero value. The classical Borsuk’s fixed point
theorem is stated as follows. A continuous mapping f : Dm → Rm which is
equivariant on the boundary ∂Dm = Sm−1 has a fixed point (cf. Theorem
6.2 of Section 5 in [9]).

The Borsuk’s antipodal theorem is generalized to the following theorem
(cf. Theorem 9.2 of Section 10 in [9]).

Theorem 3.1 Let U be a bounded symmetric open neighborhood of the
origin in Rm. Assume that the closure U of U is a finite polyhedron and
f : U → Rm be a continuous mapping which is equivariant on the boundary
∂U of U . Then f has the zero value, that is, there exists a point x0 ∈ U

such that f(x0) = 0.

S. Y. Chang proved the following Borsuk antipodal theorem for upper
semi-continuous mappings which are closed convex set-valued (cf. Theorem
4 in [2]). Let X and Y be two normed spaces and N a closed subset of
X. According to his paper, a convex set-valued mapping ψ : N → Y is
called an antipodal mapping on a symmetric subset N0 of N , if ψ satisfies
ψ(x) ∩ (−ψ(−x)) 6= ∅ for all x ∈ N0.

Theorem 3.2 Let U be a bounded symmetric open neighborhood of the
origin in Rm+1, and ψ : ∂U → Rm be upper semi-continuous, closed convex
set-valued, and antipodal preserving. Then ψ has the zero value, that is,
there exists a point x0 ∈ U such that ψ(x0) 3 0.

In this paper, we shall give a generalization of the above theorems. We
prepare a theorem for our purpose (cf. Theorem 4.3 in [13]).

Theorem 3.3 Let N be a paracompact Hausdorff space with a free involu-
tion T and M an m-dimensional closed manifold with a free involution T ′.
Assume that cm 6= 0 for c = c(N, T ) ∈ H̄1(Nπ;F2) and f : N → M is an
equivariant mapping. Then f∗ : H̄m(M ;F2) → H̄m(N ;F2) is not trivial.

Proof. Let h : M → S∞ be an equivariant mapping such that h∗π(ω) =
c(M, T ′). Here ω is the generator of H̄1(RP∞;F2). hf : N → S∞ is also an
equivariant mapping such that (hf)∗π(ω) = c(N, T ). From c(N, T )m 6= 0, it
holds c(M, T ′)m 6= 0. By the Gysin-Smith exact sequence, we see φ∗(cM ) =
c(M, T ′)m where cM is the dual cocycle of the m-dimensional fundamental
cycle [M ]. By
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φ∗f∗(cM ) = f∗πφ∗(cM ) = f∗π(c(M, T ′)m) = c(N, T )m 6= 0,

we obtain f∗(cM ) 6= 0. ¤

In this paper we adopt a new definition of an equivariant mapping for
set-valued mappings.

Definition 3.4 Let X and Y be paracompact Hausdorff spaces with invo-
lutions T and T ′ respectively. An admissible mapping ϕ : X → Y is said to
be equivariant, if there exist a paracompact Hausdorff space Γ with a free in-
volution and an equivariant Vietoris mapping p : Γ → X and an equivariant
continuous mapping q : Γ → Y such that qp−1(x) ⊂ ϕ(x) for x ∈ X. An ad-
missible mapping ϕ : X → Y is said to be equivariant on a closed subspace
X0 of X, if there exists an equivariant Vietoris mapping p0 : Γ0 → X0 and
equivariant mapping q0 : Γ0 → Y and satisfies the following commutativity:

X0

k

²²

Γ0
p0oo q0 //

i

²²

Y

id

²²
X Γ

poo q // Y

(1)

where (p, q) is a selected pair of ϕ and k and i are closed inclusions. It holds
also q0p

−1
0 (x) ⊂ ϕ0(x) for x ∈ X0 where ϕ0(x) = ϕ(x) ∩ T ′ϕ(T (x)).

Our definition is a generalization of S. Y. Chang’s definition. In fact
for a convex set-valued mapping ψ : N → Y which is equivariant on a
symmetric subset N0 in the sense of S. Y. Chang, consider ψ0 : N0 → Y

defined by ψ0(x) = ψ(x) ∩ (−ψ(−x)) for x ∈ N0. It is an acyclic mapping
and satisfies ψ0(−x) = −ψ0(x) for x ∈ N0. The projection p0 : Γψ0 → N0

is an equivariant Vietoris mapping and the projection q0 : Γψ0 → Y is an
equivariant continuous mapping. p0 and q0 satisfy q0p

−1
0 (x) = ϕ0(x) for

x ∈ N0. The projections p : Γψ → N, q : Γψ → Y and p0, q0 satisfy our
definition of an equivariant mapping.

In some cases we can relax the condition of equivariant mappings in
Definition 3.4. For example we replace the commutativity to the homotopy
commutativity in the diagram (1). For an equivariant mapping ϕ : X → Y ,
a set A(ϕ) is defined by {x ∈ X | ϕ(Tx) ∩ T ′ϕ(x) 6= ∅}.

Now we state our main result.
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Theorem 3.5 Let N be a paracompact Hausdorff space and N0 its closed
subspace with a free involution T0 and cm 6= 0 for c = c(N0, T0) and M

an m-dimensional closed manifold with a free involution T ′. Assume that
ϕ : N → M is an admissible mapping and is equivariant on N0. Then,
k∗ : H̄m(N ;F2) → H̄m(N0;F2) is not trivial where k : N0 → N is the
inclusion.

Proof. Let p : Γ → N and q : Γ → M be a selected pair of ϕ. Let
p0 : Γ0 → N0 and q0 : Γ0 → M be a selected pair of ϕ0 : N0 → M where
p0 : Γ0 → N0 is an equivariant Vietoris mapping and q0 : Γ0 → M is an
equivariant mapping. Since ϕ : N → M is an admissible mapping and
equivariant on N0, we have the following diagram:

N0

k

²²

Γ0
p0oo q0 //

i

²²

M

id

²²
N Γ

poo q // M.

Since p0 is an equivariant Vietoris mapping, p0π is a Vietoris mapping and
(p0π)∗ is an isomorphism. By c(Γ0, T1)m = (p0π)∗(c(N0, T0)m) 6= 0 where T1

is a free involution of Γ0, q∗0 is not trivial for the m-dimension by Theorem
3.3.

Let i : Γ0 → Γ be the natural inclusion. If k∗ = 0 for the m-dimension,
we see i∗ = 0 for the m-dimension by the isomorphisms H̄∗(N0;F2) ∼=
H̄∗(Γ0;F2), H̄∗(N ;F2) ∼= H̄∗(Γ;F2) and the commutativity p∗0k

∗ = i∗p∗.
Since it holds q0 = qi and i∗ = 0 for the m-dimension, we obtain q∗0 = 0 for
the m-dimension. This contradicts to the non triviality of q∗0 . Therefore we
see k∗ 6= 0 for the m-dimension. ¤

If we take Rm+1−{0} in the place of M in Theorem 3.3 and 3.5, we have
the similar statements. Since the proofs are entirely similar to Theorem 3.3
and Theorem 3.5, we omit the proofs.

Corollary 3.6 Let N be a paracompact Hausdorff space and N0 its closed
subspace with a free involution T0 and cm−1 6= 0 for c = c(N0, T0). Assume
that k∗ : H̄m−1(N ;F2) → H̄m−1(N0;F2) is trivial for the inclusion k :
N0 → N and ϕ : N → Rm is an admissible mapping and is equivariant on
N0. Then, there exists a point x0 ∈ N such that ϕ(x0) 3 0.
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Let N be a closed domain in Rm which is a symmetric polyhedron
with respect to the involution T (x) = −x and its boundary N0 be a con-
nected manifold. Since it holds the isomorphism δ∗ : H̄m−1(N0;F2) →
H̄m(N, N0;F2), we see i∗ = 0 : H̄m−1(N ;F2) → H̄m−1(N0;F2). Therefore
we have a generalization of the Borsuk’s antipodal theorem for an admissible
mapping ϕ : N → Rm from the above corollary.

We shall generalize Theorem 3.1 and 3.2 in what follows. Let ∂U be the
boundary of U , that is, ∂U = U − IntU .

Proposition 3.7 Let U be a bounded symmetric open neighborhood of the
origin in Rn. It holds cn−1(∂U, T ) 6= 0.

Proof. To begin with, we shall prove the case that ∂U is a topological
manifold. Set M = U −D where D is an open disk centered at 0 with a
small radius r > 0. M is a topological manifold with boundary which has
the free involution T . We have i∗(c(M, T )) = c(∂U, T ) for the inclusion
i : ∂U → M and j∗(c(M, T )) = c(∂D, T ) for the inclusion j : ∂D → M . We
can prove the following formula:

cn−1(∂U, T )
[
(∂U)π

]
= cn−1(Sn−1, T )

[
Sn−1

π

]

by the method of Theorem 4.9 in J. Milnor [10]. Since cn−1(Sn−1, T ) is not
zero, we obtain

cn−1(∂U, T ) 6= 0. (2)

We shall prove the general case. We cover U by finitely many open disks
{Vα}α∈A with a small radius below r > 0 such that U ⊂ ∪α∈AVα. Here we
can assume that {Vα}α∈A contains both of Vα and TVα for α ∈ A. We may
assume that W = ∪α∈AVα is a manifold with boundary. Moreover we may
assume that the boundary ∂W is a manifold. If ∂W is not a manifold, it
happened at a point x where two closed disks V 1 and V 2 are tangent each
other. Since the point x is clearly outside of U or on ∂U , it is sufficient to
add two small disks symmetrically at x and T (x). Therefore we have

cn−1(∂W, T ) 6= 0

as the above proof.
Set Ur = {x ∈ U | d(x, ∂U) = 2r} where d(x, ∂U) is the distance
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between x and ∂U . We cover Ur symmetrically by finitely many open disks
{V ′

β}β∈B with a small radius below r > 0 such that Ur ⊂ ∪β∈BV ′
β ⊂ U . Set

W ′ = ∪β∈BV ′
β . We may assume that W ′ is a manifold with boundary and

satisfies W ′ ⊂ IntU . By ∂(W − IntW ′) = ∂W ∪ ∂W ′, we obtain

cn−1(∂W ′, T ) 6= 0, cn−1(W − IntW ′, T ) 6= 0.

Since families {IntW −W ′} and {W − IntW ′} are cofinal coverings of
∂U , we have the isomorphism:

H̄∗(∂U) ∼= lim
→

H̄∗(IntW −W ′) ∼= lim
→

H̄∗(W − IntW ′)

by the continuity of the Alexander-Spanier cohomology theory. By the nat-
urality of Stiefel-Whitney class with respect to {W − IntW ′}, we have

cn−1(∂U, T ) 6= 0 (3)

for general case. ¤

The following theorem is a generalization of Theorem 4 of S. Y. Chang
[2].

Theorem 3.8 Let U be a bounded symmetric open neighborhood of the
origin in Rm+k for k = 1. Assume that ϕ : ∂U → Rm is an equivariant
admissible mapping. Then there exists a point x0 ∈ ∂U such that ϕ(x0) 3 0.

Proof. By our assumption, there exists an equivariant Vietoris mapping
p0 : Γ0 → ∂U and an equivariant mapping q0 : Γ0 → Rm such that
q0p

−1
0 (x) ⊂ ϕ(x) for x ∈ ∂U . By our hypothesis, we obtain

c(Γ0, T
′) = p∗0π

(
c(∂U, T )

) 6= 0. (4)

Assume that ϕ(x) does not contain the origin of Rm. q0 is considered
as q0 : Γ0 → Rm − {0}. Since q0 is equivariant, we obtain

q∗0π(c) = c(Γ0, T
′) (5)

by the proof of Theorem 3.3 where c is the first Stiefel-Whitney class of
Rm − {0}. From the results (4), (5), we have
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(q0π)∗(cm+k−1) = c(Γ0, T
′)m+k−1 = (p0π)∗

(
c(∂U, T )m+k−1

)
. (6)

The left side of the equation is zero by cm = 0 and the right side is not zero
by Proposition 3.7 and the bijectivity of (p0π)∗. From the contradiction, we
obtain the conclusion. ¤

Let ∂U be defined by ∂U = U − U . Generally ∂U and ∂U are different
and ∂U ⊂ ∂U . It is easily seen that the above theorem holds for the case
∂U .

From Proposition 3.7, we obtain the following corollary which is a gen-
eralization of Theorem 5 of S. Y. Chang [2].

Corollary 3.9 Let U be a bounded symmetric open neighborhood of the
origin in Rm+k for k = 1. If ϕ : ∂U → Rm is an admissible mapping, then
there exists point x1 ∈ ∂U such that ϕ(x1) ∩ ϕ(T (x1)) 6= ∅.
Proof. We consider Rm as the subspace of Sm. From Proposition 3.7, we
see c(∂U, T )m+k−1 6= 0. Since ϕ∗ contains the trivial element, there exists
an element x1 ∈ ∂U such that ϕ(x1)∩ϕ(T (x1)) 6= ∅ by Theorem 6.3 in [15].

¤

Let A, B and C be paracompact Hausdorff spaces. Let i : A → B be
a closed embedding and f : A → C a closed continuous mapping. Then
we have a space D obtained by the push-out of B

i← A
j→ C. That is,

D = (B ∪ C)/ ≡ where i(a) ≡ a ≡ j(a). Then l : C → D is also closed
embedding and k : B → D a closed continuous mapping. D is a paracompact
Hausdorff space by Theorem 5.1.33 and 5.1.34 in [4]. Therefore we obtain
the excision isomorphism H̄∗(B,A;F) ∼= H̄∗(D, C;F) by Theorem 6.6.5 in
[16] and Mayer-Vietoris exact sequence:

→ H̄∗(D;F) → H̄∗(B;F)⊕ H̄∗(C;F) → H̄∗(A;F) → H̄∗+1(D;F) → . (7)

The following theorem is a generalization of Theorem 6 of S. Y. Chang
[2]. We use the same symbol T for the involution T (x) = −x of the Euclidean
spaces {Rn}. Note that Rm is the subspace of Rn as the first m-coordinates
for m < n.

Theorem 3.10 Let U be a bounded symmetric open neighborhood of the
origin in Rm. Assume that ϕ : U → Rm is an admissible mapping which
is equivariant on the boundary ∂U of U . Then there exist a point x0 ∈ U
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such that ϕ(x0) 3 0 and a point x1 ∈ U such that ϕ(x1) 3 x1.

Proof. We define a new open neighborhood V of the origin in Rm+1:

V =
{
(x, s) ∈ Rm+1 | x ∈ IntU, |s| < d(x, ∂U)

}
.

Clearly V is an open neighborhood of the origin in Rm+1 and bounded
symmetric with respect to the antipodal involution in Rm+1. We easily see:

V =
{
(x, s) ∈ Rm+1 | x ∈ U, |s| 5 d(x, ∂U)

}
.

The boundary ∂V of V is

∂V =
{
(x, s) ∈ Rm+1 | x ∈ U, |s| = d(x, ∂U)

}
.

Define the mapping J : U → Rm+1 by

J(x) = x + d(x, ∂U)em+1

where x ∈ Rm and em+1 is the (m + 1)-th unit vector in Rm+1. Note
d(−x, ∂U) = d(x, ∂U). Clearly we see ∂V = J(U) ∪ {TJ(U)}. By Proposi-
tion 3.7, we have c(∂V , T )m 6= 0 and c(∂U, T )m−1 6= 0.

Let ϕ̂ : U → Rm be defined as follows:

ϕ̂(x) =

{
ϕ(x) if x ∈ IntU

ϕ(x) ∪ Tϕ(Tx) if x ∈ ∂U.
(8)

Here ϕ(x)∪Tϕ(Tx) is a push out of the inclusions ϕ(x)∩Tϕ(Tx) → ϕ(x) and
ϕ(x)∩ Tϕ(Tx) → Tϕ(Tx). Since ϕ is upper semi-continuous, we can easily
verify that ϕ̂ is upper semi-continuous. Since ϕ is an equivariant admissible
mapping on ∂U , we can easily verify that ϕ̂ is equivariant admissible on ∂U .
Note ϕ̂(Tx) = T ϕ̂(x) for x ∈ ∂U .

Define Ψ : ∂V → Rm by

Ψ(z) =

{
ϕ̂(J−1(z)) if z ∈ J(U)

T ϕ̂(J−1(Tz)) if z ∈ TJ(U).
(9)

In other words, Ψ(z) = ϕ̂(x) if z = J(x) and Ψ(z) = T ϕ̂(x) if z = −J(x).



230 Y. Shitanda

Ψ is well-defined and an upper semi-continuous mapping defined on ∂V . It
holds Ψ(Tz) = TΨ(z) for z ∈ ∂V .

Let p : Γ → U and q : Γ → Rm be a selected pair of ϕ and p0 : Γ0 → ∂U

and q0 : Γ0 → Rm be a selected pair of ϕ0(x) = ϕ(x) ∩ Tϕ(T (x)). We
shall show that Ψ is equivariant on ∂V . Let i1 : Γ0 → Γ1 be defined by
the inclusion i : Γ0 → Γ. T1, T2 and i2 are defined by the following first
push-out diagram and Γ̂ is defined by the second push-out diagram:

Γ0
T //

i1

²²

Γ0
T //

i2

²²

Γ0

i1

²²
Γ1

T1 // Γ2
T2 // Γ1

Γ0
i2 //

i1

²²

Γ2

k2

²²
Γ1

k1 // Γ̂.

(10)

The relations T2T1 = IdΓ1 , T1T2 = IdΓ2 etc. hold. Γ̂ has the involution
T̂ induced by the following diagram and the definition of Γ̂:

Γ1

T1

²²

Γ0
i1oo i2 //

T

²²

Γ2

T2

²²
Γ2 Γ0

i2oo i1 // Γ1.

(11)

p̂ : Γ̂ → ∂V is defined by

p̂(y) =

{
J(p(y)) if y ∈ Γ1

TJ(p(T2(y))) if y ∈ Γ2.
(12)

In other words, p̂(y) = J(p(y)) if y ∈ Γ1 and p̂(y) = TJ(p(y′)) if y =
T1(y′) ∈ Γ2. We see easily p̂ : Γ̂ → ∂V is a Vietoris mapping by (7). It
holds p̂(T̂ (y)) = T p̂(y) for y ∈ Γ̂. Note that ∂V is defined as same as
Γ̂ (cf. diagram (10), (11)). Therefore p̂ is well-defined by pi1 = j1p0 and
j1 : ∂U → U .

q̂ : Γ̂ → Rm is defined by

q̂(y) =

{
q(y) if y ∈ Γ1

Tq(T2(y)) if y ∈ Γ2.
(13)
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In other words, q̂(y) = q(y) if y ∈ Γ1 and q̂(y) = Tq(y′) if y = T1(y′) ∈ Γ2.
It holds q̂(T̂ (y)) = T q̂(y) for y ∈ Γ̂. Therefore q̂ is well-defined by q0 = qi1.
By c(∂V , T )m 6= 0, we apply Theorem 3.8 to our case. Then we obtain
a point z0 ∈ ∂V such that Ψ(z0) 3 0. This means ϕ(x0) 3 0 for a point
x0 ∈ U .

For the second part, define ϕ1 : U → Rm by ϕ1(x) = x − ϕ(x) for
x ∈ U . p : Γ → U and p− q : Γ → Rm are a selected pair of ϕ1. We easily
verify that ϕ1 is equivariant on ∂U by our hypothesis on ϕ. By applying
the former part of this theorem to the case, there exists an element x1 ∈ U

such that ϕ1(x1) 3 0, i.e. ϕ(x1) 3 x1. ¤

For an open set U of a normed space E, it is said to be balanced if
satisfies sU ⊂ U for all s, (0 5 s 5 1). Since a bounded symmetric open
balanced space U satisfies the condition of the above theorem, we obtain
easily Theorem 6 of S. Y. Chang [2]. From Theorem 3.10, we easily obtain
the following corollary which is a generalization of Theorem 3.1 and Theorem
3.2.

Corollary 3.11 Let U be a bounded symmetric open neighborhood of the
origin in Rm+k for k = 0. Assume that ϕ : U → Rm is upper semi-
continuous mapping which is a closed convex set-valued mapping and satis-
fies T ′ϕ(x)∩ϕ(T (x)) 6= ∅ for x ∈ ∂U . Then there exist a point x0 ∈ U such
that ϕ(x0) 3 0 and a point x1 ∈ U such that ϕ(x1) 3 x1.

4. Generalization to normed spaces

In this section we shall generalize some results of the section 3 to the
case of infinite dimensional normed spaces. In this section E means an
infinite dimensional normed space. We state mainly the case of an infinite
dimensional normed space and add the case of the finite dimensional vector
space if necessary. A set-valued mapping ϕ : X → Y is called a compact
set-valued mapping, if ϕ(x) is a compact set for each x ∈ X. ϕ : X → Y

is called a closed convex set-valued mapping, if ϕ(x) is a closed convex set
for each x ∈ X. ϕ : X → Y is called a compact mapping, if the closure
ϕ(X) of the image ϕ(X) is a compact set. A compact mapping is a compact
set-valued mapping. The converse is not true.

We prepare the Schauder approximation theorem for our application
(cf. Theorem 12.9 in [8]).
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Theorem 4.1 Let X be a Hausdorff space and U an open set of a normed
space E and f : X → U a continuous compact mapping. Then, for any
ε > 0, there exists a continuous compact mapping fε : X → U satisfying the
following condition:

1. fε(X) ⊂ En(ε) for a finite dimensional subspace En(ε) of E
2. ‖fε(x)− f(x)‖ < ε for any x ∈ X

3. fε(x), f(x) : X → U are homotopic, noted by fε ' f .

For a normed space E, set D = {x ∈ E | ‖x‖ 5 1} and S = ∂D.

Lemma 4.2 S is acyclic for an infinite dimensional normed space E.

Proof. It is sufficient to prove that E− {0} is acyclic. We shall prove this
lemma by using the singular homology theory because of Theorem 5.5.3 and
Theorem 6.9.1 in [16].

Let C be any p-dimensional cycle of E − {0}, i.e. ∂C = 0. C has a
form C =

∑m
k=1 nkσk where nk ∈ F, σk : ∆p → E− {0}. Set P = ∪m

k=1∆
p
k

where ∆p
k’s are p-dimensional simplices corresponding σk’s. Let ∆q

k and
∆q

k′ be faces of ∆p
k and ∆p

k′ (q < p) respectively. We define the space Q

from P which the faces ∆q
k and ∆q

k′ are patched together by the relation
σk|∆q

i = σk′ |∆q
i′ . The space Q is a CW complex. Let τ : Q → E − {0}

be defined by using σk’s. By the Schauder approximation theorem, we
have τε : Q → En(ε) − {0} such that τ ' τε. A cycle D =

∑n
k=1 nkρk is

defined by using τε : Q → En(ε) − {0}. Since two singular cycles C and D

are homologous, we may assume that σk : ∆n → En(ε) − {0}. Since E is
infinite dimensional, we can construct a (p + 1)-dimensional chain B such
that ∂B = C by considering the cone of C and a point of E−En(ε). ¤

Let Sπ be the orbit space of S by the antipodal involution. The co-
homology ring of Sπ is the polynomial ring for the case of the infinite di-
mensional normed spaces. This is easily proved by using the Gysin-Smith
exact sequence of a double covering space. The cohomology ring of Sπ is the
truncated polynomial ring for the case of the n-dimensional normed space
(n > 1). Sπ consists a point for n = 1.

If U is a balanced open neighborhood of the origin of a normed space,
U and IntU are balanced neighborhood of the origin.

Proposition 4.3 Let U be a bounded symmetric balanced open neighbor-
hood of the origin of an infinite dimensional normed space. Then ∂U and
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∂U are acyclic spaces. H∗((∂U)π;F2) and H∗((∂U)π;F2) are the polyno-
mial ring.

Proof. We shall prove the case of ∂U . It is similarly proved for the case of
∂U . Define R : U − {0} → S by R(x) = x

‖x‖ and R0 by the restriction of R

to ∂U . Then we assert that the fiber R−1
0 (x) of x ∈ S is a point or a closed

interval. If y and y′ are in R−1
0 (x) ⊂ ∂U = U − U , we may assume y′ = sy

for 0 < s < 1. It is proved that any point ty (s < t < 1) is in ∂U . If ty is a
point of U , sy is in U by s < t < 1. This is a contradiction. Therefore we
see ty ∈ ∂U for s 5 t 5 1.

U contains a disk Dr centered at 0 with a radius r > 0 and is contained
in Ds centered at 0 with a radius s > 0. The restriction R1 : Ds−IntDr → S

of R is proper by the homeomorphism between Ds − IntDr and S × [r, s].
Therefore the mapping R0 is proper. Since the normed space E and its
subspace are metric spaces i.e. paracompact Hausdorff spaces, H∗(∂U ;F2)
is isomorphic to H∗(S;F2) by the Vietoris’ theorem. ∂U is acyclic by Lemma
4.2. The second part is easily proved by the above result and the Gysin-
Smith exact sequence of double covering space. ¤

For the case of the n-dimensional normed space (n > 1), we see easily
that H∗((∂U)π;F2) and H∗((∂U)π;F2) are the truncated polynomial ring
F2(c)/(cn) where dim c = 1. For the case n = 1, ∂U and ∂U consist two
points.

For the case of a bounded symmetric balanced neighborhood of the
origin in a locally convex topological space, S. Y. Chang proved the next
Theorem 4.4 for closed convex set-valued mappings (cf. Theorem 7 in [2]).
We shall generalize his theorem to the case of admissible mappings and
spaces which are not necessarily contractible. The following theorem is also
called the Borsuk’s fixed point theorem (cf. Theorem 3.3 in Section 6 in [9]).

Theorem 4.4 Let U be a bounded symmetric open neighborhood of the
origin of an infinite dimensional normed space E. Assume that ϕ : U → E
is a compact admissible mapping which is equivariant on ∂U . Then there
exist a fixed point z0 ∈ U such that ϕ(z0) 3 z0.

Proof. Let (p, q) be a selected pair of ϕ where p : Γ → U is a Vietoris
mapping and q : Γ → E is a compact mapping. p0 : Γ0 → ∂U is an
equivariant Vietoris mapping and q0 : Γ0 → E is a compact equivariant
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mapping. Let qn : Γ → En is a Schauder approximation of q such that

‖qn(y)− q(y)‖ <
1
n

(y ∈ Γ)

where En is a finite dimensional subspace of E and dimEn = in.
Set Γn = p−1(En ∩ U) and Γn,0 = p−1

0 (∂(En ∩ U)). Define pn : Γn →
En ∩ U and qn : Γn → En by the restrictions of p and qn respectively.
Similarly we define pn,0 : Γn,0 → ∂(En ∩ U) and qn,0 : Γn,0 → En by the
restrictions of p0 and qn respectively.

If ϕ has a fixed point in ∂U , the theorem is true. If ϕ has not a fixed
point in ∂U , we may assume pn,0−qn,0 : Γn,0 → En−{0} for large n. Define
q̂n : Γn,0 → En by

q̂n(y) =
1
2
{qn,0(y)− qn,0(Ty)}

which is an equivariant mapping. It is easily seen that

‖q̂n(y)− q(y)‖ <
1
n

, ‖q̂n(y)− qn,0(y)‖ <
1
n

(y ∈ Γn,0).

We may assume pn,0− q̂n : Γn,0 → En−{0} for large n. Since pn,0− q̂n is an
equivariant mapping, we see deg(pn,0 − q̂n) 6= 0 by Theorem 3.3. Therefore
we see deg(pn,0 − qn,0) = deg(pn,0 − q̂n) 6= 0 for large n.

Let u be the generator of H̄1((∂(En ∩ U))π;F2). we see uin−1 6= 0
by Proposition 3.7. We find an element v ∈ H̄in−1(∂(En ∩ U);F2) such
that φ∗(v) = uin−1 by the Gysin-Smith exact sequence. Here φ∗ :
H̄in−1(∂(En ∩ U);F2) → H̄in−1(∂(En ∩ U)π;F2) is the transfer mapping.
Consider a disk Din and a sphere Sin−1 contained En ∩ U as Proposition
3.7. By comparing the ladder of exact sequences of (En ∩ U, ∂(En ∩ U)) and
(Din , Sin−1), we see that v is not any image of H̄in−1(En ∩ U ;F2). Let w

be the element of H̄in−1(Γn,0;F2) such that p∗n,0(v) = w. Therefore w is not
any image of k∗ : H̄in−1(Γn;F2) → H̄in−1(Γn,0;F2) where k : Γn,0 → Γn is
the inclusion.

Let e be the generator of H̄in−1(En − {0};F2). By Theorem 3.3, it
holds (pn,0 − q̂n)∗(e) = w. Therefore it holds (pn,0 − qn,0)∗(e) = w. If ϕ

has not a fixed point in U , we may assume p − q : Γ → E − {0} and also
pn− qn : Γn → En−{0} for large n. Since it holds (pn− qn)k = pn,0− qn,0,
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this contradicts the condition on w in the precedent paragraph. Therefore
we have yn ∈ Γn such that pn(yn) − qn(yn) = 0. Since q is a compact
mapping, subsequences {q(yni)} and {qn(yni)} converge to x0 ∈ U . Since
p is a Vietoris mapping, we assume that {yni

} converge to y0 such that
p(y0) = x0. Therefore we have q(y0) = p(y0) = x0, that is, ϕ(x0) 3 x0. ¤

According to Theorem 3.10, ϕ : U → E has the zero value for the case
of the finite dimensional vector space E. We can not assert the existence of
the zero value of ϕ for the case of an infinite dimensional normed space E,
Now we shall give some examples.

Let D be the unit disk in a Hilbert space H. Let f : D → D be defined
by

f({zn}) =
(√

1− ‖z‖2, {zn}
)
.

Clearly f is a continuous mapping on D and equivariant on the boundary
S and not a compact mapping. If f has a zero value, it holds the equations√

1− ‖z‖2 = 0 and zn = 0 for all n. We easily obtain the contradiction
from the equations. Therefore f has not a zero value. Similarly we easily
see that f has not a fixed point.

Let g : D → D be defined by

g({zn}) =
(√

1− ‖z‖2,
{

zn

n

})
.

Clearly g is a continuous mapping on D and equivariant on the boundary
S and a compact mapping. If g has a zero value, it holds the equations√

1− ‖z‖2 = 0 and zn

n = 0 for all n. We obtain easily the contradiction
from the equations. Therefore g has not the zero value. Of course g has a
fixed point by Theorem 3.10 of [15] (cf. Section 12 in [8]).

Let X be a subset of a normed space E and Φ : X → E be a compact
admissible mapping. A set-valued mapping ϕ : X → E is called an admis-
sible compact field, if ϕ is defined by ϕ(x) = x − Φ(x) (cf. Section 28 in
[8]). Let Ek be a closed subspace of codimension k of a normed space E.
K. Geba and L. Górniewicz [6] proved the following theorem for the case of
the unit sphere of a normed space (cf. Theorem 43.34 in [8]). Our method
is different from their method.

Theorem 4.5 Let Ek be a closed linear subspace of codimension k = 1 of
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an infinite dimensional normed space E and U be a bounded symmetric open
neighborhood of the origin of E. If Φ : ∂U → Ek is a compact admissible
mapping, there is a point x0 ∈ ∂U such that ϕ(x0) ∩ ϕ(T (x0)) 6= ∅ where
ϕ(x) = x− Φ(x).

Proof. Let (p, q) be a selected pair of Φ where p : Γ → ∂U is a Vietoris
mapping and q : Γ → Ek continuous mapping. There is a k-dimensional
subspace Lk such that E = Ek ⊕ Lk. By the approximation theorem of
Schauder, there are finite dimensional vector subspace Vn ⊂ Ek and qn :
Γ → Vn such that

‖q(y)− qn(y)‖ <
1
n

for y ∈ Γ and each n = 1. We may assume that in = dimVn increases and
Vn ⊂ Vn+1. Let Φn : ∂U → Vn be a set-valued mapping defined by

Φn(x) = Bn(Φ(x)) ∩Vn

where Bn(Φ(x)) = {y ∈ E | d(Φ(x), y) 5 1
n}. Since the graph of Φn is

closed and Φn(∂U) is compact, Φn is upper semi-continuous. Clearly Φn

has a selected pair p : Γ → ∂U and qn : Γ → Vn. Therefore Φn is a compact
and admissible mapping. Set ϕn(x) = x− Φn(x) for x ∈ ∂U .

Set Zn = U ∩ (Vn ⊕ Lk) and Wn = ∂Zn. Zn and Wn are subspaces of
the (in + k)-dimensional Euclidean space Vn ⊕ Lk. Consider Φ̂n : Wn →
Vn defined by the restriction of Φn to Wn Note that c(Wn, T )in+k−1 6= 0
by Proposition 3.7. Set ϕ̂n(x) = x − Φ̂n(x) for x ∈ Wn. By applying
Theorem 6.3 of Y. Shitanda [15] to ϕ̂n(x), we have a point xn ∈ Wn such
that ϕ̂n(xn) ∩ ϕ̂n(T (xn)) 6= ∅. This means xn − yn = −xn − zn for some
yn ∈ Φ̂n(xn) and zn ∈ Φ̂n(T (xn)).

From the conditions, we can choose y′n ∈ Φ(xn) and z′n ∈ Φ(T (xn))
such that ‖yn − y′n‖ < 1

n and ‖zn − z′n‖ < 1
n . Since Φ is compact mapping,

we can take proper subsequences {y′ni
} and {z′ni

} of {y′n} and {z′n} such
that {y′ni

} and {z′ni
} converge to y0 and z0 respectively. Therefore {yni

}
and {zni} converge to y0 and z0 respectively. There is a convergent point
x0 of the subsequence {xni} from the equation xn − yn = −xn − zn. We

have x0 =
y0 − z0

2
. We easily see y0 ∈ Φ(x0) and z0 ∈ Φ(T (x0)). By

x0 − y0 = −x0 − z0, we obtain ϕ(x0) ∩ ϕ(T (x0)) 6= ∅, i.e. A(ϕ) 6= ∅. ¤
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Let X be a space with a free involution T and Sk a k-dimensional sphere
with the antipodal involution. Define γ(X) and Ind(X) by

γ(X) = inf{k | f : X → Sk equivariant mapping}
Ind(X) = sup{k | ck 6= 0}

respectively, where c ∈ H̄1(Xπ;F2) is the class c = f∗π(ω) for an equivariant
mapping f : X → S∞. If X is a compact space with a free involution, it
holds the following formula (cf. Section 3 in [5]):

Ind(X) 5 γ(X) 5 dimX.

K. Gȩba and L. Górniewicz proved IndA(ϕ) = k−1 (cf. Theorem 2.5 in [6]).
We shall generalize their result.

Corollary 4.6 Under the hypothesis of Theorem 4.5, it holds

IndA(ϕ) = k − 1.

Proof. We use the notation of Theorem 4.5. There exists a point x0 ∈ A(ϕ)
by Theorem 4.5. Note that A(ϕ) is a closed set because of the upper semi-
continuity of ϕ. We can choose {Vn} such that x0 ∈ Vn for any n.

Since ϕ̂n : Wm → Vm is the restriction of ϕn to Wm, it holds A(ϕ̂n) 6= ∅
as Theorem 4.5. Set Φ̃n(x) = x − Bn(Φ(x)) for x ∈ ∂U . It holds A(ϕ̂n) ⊂
A(Φ̃n). Clearly A(ϕ̂n) and A(Φ̃n) are paracompact Hausdorff spaces with
free involutions. By Corollary 6.6 of [15], we have Ind(A(ϕ̂n)) = k − 1. It
holds also Ind(A(Φ̃n)) = k − 1 by the naturality of the cup product. By
the continuity of Alexander-Spanier cohomology theory (cf. Theorem 6.6.2
in [16]), we see Ind(A(ϕ)) = k − 1 by A(ϕ) =

⋂
n=1 A(Φ̃n). ¤

Though we state Theorem 4.5 and Corollary 4.6 for the case of the
infinite dimensional normed spaces, the corresponding results (cf. [5]) for the
finite dimensional normed spaces are proved by Theorem 6.3 and Corollary
6.6 of Y. Shitanda [15].

Acknowledgement The author would like to thank the referees for care-
ful reading of the manuscript and useful comments.



238 Y. Shitanda

References
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[ 6 ] Gȩba K. and Górniewicz L., On the Bourgin-Yang Theorem for Multi-valued

Maps II. Bull. Polish Acad. Sci. Math. 34(5–6) (1986), 323–327.
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