Mean iterations derived from transformation formulas for the hypergeometric function

Ryohei Hattori, Takayuki Kato and Keiji Matsumoto

(Received July 14, 2008)

Abstract

From Goursat's transformation formulas for the hypergeometric function $F(\alpha, \beta, \gamma ; z)$, we derive several double sequences given by mean iterations and express their common limits by the hypergeometric function. Our results are analogies of the fact that the arithmetic-geometric mean of 1 and $x \in(0,1)$ can be expressed as the reciprocal of $F\left(\frac{1}{2}, \frac{1}{2}, 1 ; 1-x^{2}\right)$.

Key words: hypergeometric function, mean iteration.

1. Introduction

Let m_{1} and m_{2} be the arithmetic mean and the geometric mean:

$$
m_{1}(x, y)=\frac{x+y}{2}, \quad m_{2}(x, y)=\sqrt{x y} .
$$

For $0<b<a$, we give a double sequence $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ by the iteration of two means m_{1} and m_{2} with initial (a, b) :

$$
\left(a_{0}, b_{0}\right)=(a, b), \quad\left(a_{n+1}, b_{n+1}\right)=\left(m_{1}\left(a_{n}, b_{n}\right), m_{2}\left(a_{n}, b_{n}\right)\right)
$$

This double sequence converges and has a common limit, which is called the arithmetic-geometric mean of a and b, or the compound $m_{1} \diamond m_{2}(a, b)$. It is known that the arithmetic-geometric mean can be expressed by the hypergeometric function, that is

$$
m_{1} \diamond m_{2}(a, b)=\frac{a}{F\left(\frac{1}{2}, \frac{1}{2}, 1 ; 1-\left(\frac{b}{a}\right)^{2}\right)},
$$

where

$$
F(\alpha, \beta, \gamma ; z)=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}(1)_{n}} z^{n}
$$

We remark that the Gauss quadratic transformation formula for the hypergeometric function implies this fact, refer to Section 3 for details.

In this paper, from Goursat's transformation formulas in [G] instead of Gaussian, we induce several double sequences given by mean iterations and express their common limits by the hypergeometric function $F(\alpha, \beta, \gamma ; z)$. We list pairs of means and their common limits induced from quadratic transformations in Theorem 2 and those from cubic ones in Theorem 3. It turns out that the parameters (α, β, γ) of the hypergeometric function in Theorem 2 satisfy

$$
\left\{\frac{1}{|1-\gamma|}, \frac{1}{|\gamma-\alpha-\beta|}, \frac{1}{|\alpha-\beta|}\right\}=\{2,2, \infty\}, \quad\{2,4,4\}
$$

and that those in Theorem 3 satisfy

$$
\left\{\frac{1}{|1-\gamma|}, \frac{1}{|\gamma-\alpha-\beta|}, \frac{1}{|\alpha-\beta|}\right\}=\{2,3,6\} .
$$

B.C. Carlson considers in [C] the twelve double sequences given by the iteration of means m_{i} and $m_{j}(1 \leq i, j \leq 4, i \neq j)$, where

$$
m_{3}(x, y)=\sqrt{x \frac{x+y}{2}}, \quad m_{4}(x, y)=\sqrt{\frac{x+y}{2} y}
$$

They converge and their common limits $m_{i} \diamond m_{j}(a, b)$ admit integral representations of Euler type. Theorem 2 can be obtain by these results together with some functional equations for the hypergeometric function in Lemma 2.
J.M. and P.B. Borwein study in [BB1] two double sequences given by the iteration of m_{5} and m_{6} and by that of m_{7} and m_{8}, where

$$
\begin{aligned}
& m_{5}(x, y)=\frac{x+2 y}{3}, \quad m_{6}(x, y)=\sqrt[3]{y \frac{x^{2}+x y+y^{2}}{3}} \\
& m_{7}(x, y)=\frac{x+3 y}{4}, \quad m_{8}(x, y)=\sqrt{y \frac{x+y}{2}}
\end{aligned}
$$

They converge and their common limits $m_{5} \diamond m_{6}(a, b)$ and $m_{7} \diamond m_{8}(a, b)$ can be expressed as

$$
\frac{a}{F\left(\frac{1}{3}, \frac{2}{3}, 1 ; 1-\left(\frac{b}{a}\right)^{3}\right)}, \quad \frac{a}{F\left(\frac{1}{4}, \frac{3}{4}, 1 ; 1-\left(\frac{b}{a}\right)^{2}\right)^{2}}
$$

respectively. We remark that Theorem 3 is independent of the results in [BB1] and [C].

The above expressions of common limits of double sequences in [BB1] are extended to those of multiple sequences by the hypergeometric function F_{D} of multi variables, refer to $[\mathrm{KS}],[\mathrm{KM}]$ and [MO]. Similar extensions of some results in Theorem 2 are studied in [M].

A list of transformation formulas for the generalized hypergeometric function ${ }_{3} F_{2}\left(\begin{array}{c}\alpha_{0}, \alpha_{1}, \alpha_{2} \\ \beta_{1}, \beta_{2}\end{array} ; z\right)$ is given in $[\mathrm{K}]$. We attempt to find double sequences whose common limits can be expressed by ${ }_{3} F_{2}$. It turns out that we can not get proper expressions of common limits by ${ }_{3} F_{2}$ because of the reduction and the Clausen formula for ${ }_{3} F_{2}$, refer to Section 6.

2. Mean iterations

In this section, we formalize the notion of mean iterations, for which we refer to Section 8 in [BB2].

Let \mathbb{R}_{+}^{*} be the multiplicative group of positive real numbers. A mean is a continuous function $m: \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}^{*}$ satisfying

$$
\begin{aligned}
\min (x, y) & \leq m(x, y) \leq \max (x, y) \\
m(t x, t y) & =t m(x, y)
\end{aligned}
$$

for any $x, y, t \in \mathbb{R}_{+}^{*}$. A mean $m(x, y)$ is strict if

$$
m(x, y)=x \text { or } m(x, y)=y \quad \Rightarrow \quad x=y
$$

For two means m_{1} and m_{2} and two positive real numbers a and b, we define a double sequence $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ with initial $\left(a_{0}, b_{0}\right)=(a, b)$ by

$$
\left(a_{n+1}, b_{n+1}\right)=\left(m_{1}\left(a_{n}, b_{n}\right), m_{2}\left(a_{n}, b_{n}\right)\right) .
$$

This double sequence is called the $\left(m_{1}, m_{2}\right)$-sequence with initial (a, b). If
the (m_{1}, m_{2})-sequence with initial (a, b) converges and has a common limit, this value is called the compound of m_{1} and m_{2} with initial (a, b) and denoted by $m_{1} \diamond m_{2}(a, b)$.

If $a \geq b$ and two means m_{1} and m_{2} satisfy

$$
\begin{equation*}
m_{1}(x, y) \geq m_{2}(x, y), \quad \text { for any }(x, y) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
(x-y)\left(m_{1}(x, y)-m_{2}(x, y)\right) \geq 0, \quad \text { for any }(x, y) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*} \tag{2}
\end{equation*}
$$

then the $\left(m_{1}, m_{2}\right)$-sequence with initial (a, b) satisfies

$$
b_{0} \leq b_{1} \leq b_{2} \leq \cdots \leq b_{n} \leq a_{n} \leq \cdots \leq a_{2} \leq a_{1} \leq a_{0}
$$

If $a \geq b$ and two means m_{1} and m_{2} satisfy

$$
\begin{equation*}
(x-y)\left(m_{1}(x, y)-m_{2}(x, y)\right) \leq 0, \quad \text { for any }(x, y) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}, \tag{3}
\end{equation*}
$$

then the $\left(m_{1}, m_{2}\right)$-sequence with initial (a, b) satisfies

$$
b_{0} \leq a_{1} \leq b_{2} \leq \cdots \leq b_{2 n} \leq a_{2 n+1} \leq b_{2 n+1} \leq a_{2 n} \leq \cdots \leq a_{2} \leq b_{1} \leq a_{0}
$$

Lemma 1 Suppose that two means m_{1} and m_{2} satisfy (1) or (2) or (3). If either m_{1} or m_{2} is strict, then the $\left(m_{1}, m_{2}\right)$-sequence with initial (a, b) converges and has a common limit, and the compound $m_{1} \diamond m_{2}$ becomes a mean. Moreover, the convergence is uniform on any compact subset of $\mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$.

Proof. For a proof of the cases (1) and (2), refer to [BB2]. Suppose that (3) is satisfied. We may assume that $a \geq b$. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be the $\left(m_{1}, m_{2}\right)-$ sequence with initial (a, b). Then both of four sequences $\left\{a_{2 n}\right\},\left\{a_{2 n+1}\right\}$, $\left\{b_{2 n}\right\}$ and $\left\{b_{2 n+1}\right\}$ are monotonous and bounded. Thus they converge; we set

$$
\lim _{n \rightarrow \infty} a_{2 n}=\alpha_{0}, \quad \lim _{n \rightarrow \infty} a_{2 n+1}=\alpha_{1}, \quad \lim _{n \rightarrow \infty} b_{2 n}=\beta_{0}, \quad \lim _{n \rightarrow \infty} b_{2 n+1}=\beta_{1} .
$$

Let $n \rightarrow \infty$ for the inequalities

$$
a_{2 n-1} \leq b_{2 n} \leq a_{2 n+1} \leq b_{2 n+1} \leq a_{2 n} \leq b_{2 n-1}
$$

we have

$$
\alpha_{1} \leq \beta_{0} \leq \alpha_{1} \leq \beta_{1} \leq \alpha_{0} \leq \beta_{1}, \quad \text { i.e., } \quad \beta_{0}=\alpha_{1}, \quad \beta_{1}=\alpha_{0}, \quad \alpha_{1} \leq \alpha_{0} .
$$

Let $n \rightarrow \infty$ for the equalities

$$
a_{2 n+1}=m_{1}\left(a_{2 n}, b_{2 n}\right), \quad b_{2 n+1}=m_{2}\left(a_{2 n}, b_{2 n}\right)
$$

we have

$$
\alpha_{1}=m_{1}\left(\alpha_{0}, \beta_{0}\right)=m_{1}\left(\alpha_{0}, \alpha_{1}\right), \quad \alpha_{0}=\beta_{1}=m_{2}\left(\alpha_{0}, \beta_{0}\right)=m_{2}\left(\alpha_{0}, \alpha_{1}\right)
$$

Since either m_{1} or m_{2} is strict, α_{0} should be equal to α_{1}.
Let us show that $\mu=m_{1} \diamond m_{2}$ is a mean. In order to show that μ is continuous, take any $(a, b) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$, any $\varepsilon>0$, and choose $N \in \mathbb{N}$ such that

$$
\left|a_{n}(a, b)-\mu(a, b)\right|<\varepsilon
$$

for any $n>N$. We fix a natural number n satisfying $2 n>N$. We can regard $a_{2 n}$ and $a_{2 n+1}$ as continuous functions of the initial terms (a, b). Thus there exists $\delta>0$ such that

$$
\begin{aligned}
& |x-a|<\delta, \\
& |y-b|<\delta,
\end{aligned} \quad \Rightarrow \quad\left|a_{2 n}(x, y)-a_{2 n}(a, b)\right|<\varepsilon, \quad\left|a_{2 n+1}(x, y)-a_{2 n+1}(a, b)\right|<\varepsilon .
$$

If $|x-a|<\delta,|y-b|<\delta$ and $x \geq y$ then we have

$$
\begin{gathered}
\mu(x, y) \leq a_{2 n}(x, y)<a_{2 n}(a, b)+\varepsilon<\mu(a, b)+2 \varepsilon \\
\mu(x, y) \geq a_{2 n+1}(x, y)>a_{2 n+1}(a, b)-\varepsilon>\mu(a, b)-2 \varepsilon
\end{gathered}
$$

i.e.,

$$
|\mu(x, y)-\mu(a, b)|<2 \varepsilon .
$$

If $|x-a|<\delta,|y-b|<\delta$ and $x \leq y$ then we have

$$
\begin{gathered}
\mu(x, y) \leq a_{2 n+1}(x, y)<a_{2 n+1}(a, b)+\varepsilon<\mu(a, b)+2 \varepsilon, \\
\mu(x, y) \geq a_{2 n}(x, y)>a_{2 n}(a, b)-\varepsilon>\mu(a, b)-2 \varepsilon
\end{gathered}
$$

i.e.,

$$
|\mu(x, y)-\mu(a, b)|<2 \varepsilon
$$

Hence μ is continuous at (a, b). It is clear that

$$
\begin{aligned}
& \min (x, y) \leq \mu(x, y) \leq \max (x, y) \\
& \mu(t x, t y)=t \mu(x, y)
\end{aligned}
$$

for any $x, y, t \in \mathbb{R}_{+}^{*}$.
Let K be any compact subset of $\mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$, and K_{+}and K_{-}be closed subsets of K given as $\{(x, y) \in K \mid \pm(x-y) \geq 0\}$, respectively. Since μ is continuous on $\mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$ and the sequences $\left\{a_{2 n+1}\right\}$ and $\left\{a_{2 n}\right\}$ are monotonous on K_{+}(resp. K_{-}), they uniformly converge to μ on the compact subset K_{+} (resp. K_{-}) by Dini's theorem. Thus $\left\{a_{n}\right\}$ uniformly converges to μ on the compact subset K.

The key observation about $m_{1} \diamond m_{2}$ is the following fact in [BB2].
Fact 1 (Invariant principle) Suppose that the compound $m_{1} \diamond m_{2}$ of two means m_{1} and m_{2} exists. Then $m_{1} \diamond m_{2}$ is the unique mean μ satisfying

$$
\mu\left(m_{1}(a, b), m_{2}(a, b)\right)=\mu(a, b)
$$

for any $a, b \in \mathbb{R}_{+}^{*}$.

3. The hypergeometric function and mean iterations

The hypergeometric function $F(\alpha, \beta, \gamma ; z)$ with parameters (α, β, γ) is defined as

$$
F(\alpha, \beta, \gamma ; z)=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}(1)_{n}} z^{n}
$$

where the variable z is in $\left\{z \in \mathbb{C}||z|<1\}, \gamma \neq 0,-1,-2, \ldots\right.$, and $(\alpha)_{n}=$ $\alpha(\alpha+1) \cdots(\alpha+n-1)=\Gamma(\alpha+n) / \Gamma(\alpha)$. This function admits an integral representation of Euler type

$$
F(\alpha, \beta, \gamma ; z)=\frac{\Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\gamma-\alpha)} \int_{0}^{1} t^{\alpha}(1-t)^{\gamma-\alpha}(1-z t)^{-\beta} \frac{d t}{t(1-t)}
$$

and satisfies the hypergeometric differential equation

$$
z(1-z) \frac{d^{2} F}{d z^{2}}+[\gamma-(\alpha+\beta+1) z] \frac{d F}{d z}-\alpha \beta F=0
$$

Theorem 1 Suppose that the compound $m_{1} \diamond m_{2}$ of two means m_{1} and m_{2} exists. If m_{1} and m_{2} satisfy $m_{2}(a, b)^{p}<2 m_{1}(a, b)^{p}$ and

$$
\begin{equation*}
\frac{m_{1}(a, b)}{F\left(\alpha, \beta, \gamma ; 1-\left(\frac{m_{2}(a, b)}{m_{1}(a, b)}\right)^{p}\right)^{q}}=\frac{a}{F\left(\alpha, \beta, \gamma ; 1-\left(\frac{b}{a}\right)^{p}\right)^{q}} \tag{4}
\end{equation*}
$$

for some $\alpha, \beta, \gamma, p, q \in \mathbb{R}$ and for any $a, b \in \mathbb{R}_{+}^{*}$ with $b^{p}<2 a^{p}$, then we have

$$
\begin{equation*}
m_{1} \diamond m_{2}(a, b)=\frac{a}{F\left(\alpha, \beta, \gamma ; 1-\left(\frac{b}{a}\right)^{p}\right)^{q}} \tag{5}
\end{equation*}
$$

Proof. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be the $\left(m_{1}, m_{2}\right)$-sequence with initial (a, b). The equality (4) implies that

$$
\begin{aligned}
& \frac{a_{0}}{F\left(\alpha, \beta, \gamma ; 1-\left(\frac{b_{0}}{a_{0}}\right)^{p}\right)^{q}}=\frac{a_{1}}{F\left(\alpha, \beta, \gamma ; 1-\left(\frac{b_{1}}{a_{1}}\right)^{p}\right)^{q}} \\
& =\frac{a_{2}}{F\left(\alpha, \beta, \gamma ; 1-\left(\frac{b_{2}}{a_{2}}\right)^{p}\right)^{q}}=\cdots=\frac{a_{n}}{F\left(\alpha, \beta, \gamma ; 1-\left(\frac{b_{n}}{a_{n}}\right)^{p}\right)^{q}}
\end{aligned}
$$

Let $n \rightarrow \infty$, then we have

$$
\frac{a}{F\left(\alpha, \beta, \gamma ; 1-\left(\frac{b}{a}\right)^{p}\right)^{q}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{F\left(\alpha, \beta, \gamma ; 1-\lim _{n \rightarrow \infty}\left(\frac{b_{n}}{a_{n}}\right)^{p}\right)^{q}}=m_{1} \diamond m_{2}(a, b),
$$

since $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=m_{1} \diamond m_{2}(a, b)$ and $F(\alpha, \beta, \gamma ; 0)=1$.
Corollary 1 Suppose that the compound $m_{1} \diamond m_{2}$ of two means m_{1} and m_{2} exists and that it satisfies (5) for $a, b \in \mathbb{R}_{+}^{*}$ such that b / a is sufficiently near to 1 . If

$$
\begin{aligned}
& m_{1}^{\prime}(x, y)=m_{1}\left(x^{r}, y^{r}\right)^{(s-t) / r} m_{2}\left(x^{r}, y^{r}\right)^{t / r} x^{1-s+t} y^{-t} \\
& m_{2}^{\prime}(x, y)=m_{1}\left(x^{r}, y^{r}\right)^{(s-t-1) / r} m_{2}\left(x^{r}, y^{r}\right)^{(t+1) / r} x^{1-s+t} y^{-t}
\end{aligned}
$$

are means for given $r(\neq 0), s, t \in \mathbb{R}$, and the compound $m_{1}^{\prime} \diamond m_{2}^{\prime}$ exists for such $a, b \in \mathbb{R}_{+}^{*}$, then we have

$$
m_{1}^{\prime} \diamond m_{2}^{\prime}(a, b)=\frac{a^{t+1}}{b^{t} F\left(\alpha, \beta, \gamma ; 1-\left(\frac{b}{a}\right)^{p r}\right)^{q s / r}}
$$

Proof. By Fact 1, we have the equality (4). Since

$$
\frac{m_{2}^{\prime}(a, b)}{m_{1}^{\prime}(a, b)}=\frac{m_{2}\left(a^{r}, b^{r}\right)^{1 / r}}{m_{1}\left(a^{r}, b^{r}\right)^{1 / r}}
$$

we can easily obtain

$$
\frac{m_{1}^{\prime}(a, b)^{t+1}}{m_{2}^{\prime}(a, b)^{t} F\left(\alpha, \beta, \gamma ; 1-\left(\frac{m_{2}^{\prime}(a, b)}{m_{1}^{\prime}(a, b)}\right)^{p r}\right)^{q s / r}}=\frac{a^{t+1}}{b^{t} F\left(\alpha, \beta, \gamma ; 1-\left(\frac{b}{a}\right)^{p r}\right)^{q s / r}}
$$

Fact 1 implies this theorem.
Remark 1 Though $m_{1}^{\prime}(x, y)$ and $m_{2}^{\prime}(x, y)$ do not satisfy the condition

$$
\min (x, y) \leq m_{i}^{\prime}(x, y) \leq \max (x, y) \quad(i=1,2)
$$

for some r, s, t in Corollary 1, it occurs that the double sequence $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ obtained by $m_{1}^{\prime}(x, y)$ and $m_{2}^{\prime}(x, y)$ has a non-zero common limit expressed by the hypergeometric function.

Corollary 2 Suppose that the compound $m_{1} \diamond m_{2}$ of two means m_{1} and m_{2} exists and that it satisfies (5) for $a, b \in \mathbb{R}_{+}^{*}$ such that b / a is sufficiently near to 1 . If the compound $m_{1}^{\prime} \diamond m_{2}^{\prime}$ of $m_{1}^{\prime}(x, y)=m_{2}(y, x)$ and $m_{2}^{\prime}(x, y)=$ $m_{1}(y, x)$ exists for such $a, b \in \mathbb{R}_{+}^{*}$, then we have

$$
\begin{aligned}
m_{1}^{\prime} \diamond m_{2}^{\prime}(a, b) & =\frac{a}{\left(\frac{b}{a}\right)^{p q \alpha-1} F\left(\gamma-\beta, \alpha, \gamma ; 1-\left(\frac{b}{a}\right)^{p}\right)^{q}} \\
& =\frac{a}{\left(\frac{b}{a}\right)^{p q \beta-1} F\left(\gamma-\alpha, \beta, \gamma ; 1-\left(\frac{b}{a}\right)^{p}\right)^{q}}
\end{aligned}
$$

Proof. It is shown in [IKSY], p. 38 that

$$
\begin{aligned}
F(\alpha, \beta, \gamma ; z) & =(1-z)^{-\alpha} F\left(\gamma-\beta, \alpha, \gamma ; \frac{z}{z-1}\right) \\
& =(1-z)^{-\beta} F\left(\gamma-\alpha, \beta, \gamma ; \frac{z}{z-1}\right)
\end{aligned}
$$

for $z \in \mathbb{C}$ satisfying $|z|<1$ and $\operatorname{Re}(z)<\frac{1}{2}$. By the first equality for $z=1-b^{p} / a^{p}$ and for $z=1-m_{2}(a, b)^{p} / m_{1}(a, b)^{p}$, we rewrite (4) as

$$
\begin{aligned}
& \frac{m_{2}(a, b)}{\left(\frac{m_{2}(a, b)}{m_{1}(a, b)}\right)^{1-p q \alpha} F\left(\gamma-\beta, \alpha, \gamma ; 1-\left(\frac{m_{1}(a, b)}{m_{2}(a, b)}\right)^{p}\right)^{q}} \\
& =\frac{b}{\left(\frac{b}{a}\right)^{1-p q \alpha} F\left(\gamma-\beta, \alpha, \gamma ; 1-\left(\frac{a}{b}\right)^{p}\right)^{q}} .
\end{aligned}
$$

Recall that we give m_{1}^{\prime} and m_{2}^{\prime} by changing the role of x, y and that of m_{1}, m_{2}. Fact 1 for m_{1}^{\prime} and m_{2}^{\prime} implies

$$
m_{1}^{\prime} \diamond m_{2}^{\prime}(a, b)=\frac{a}{\left(\frac{b}{a}\right)^{p q \alpha-1} F\left(\gamma-\beta, \alpha, \gamma ; 1-\left(\frac{b}{a}\right)^{p}\right)^{q}}
$$

Similarly we can get the second expression of $m_{1}^{\prime} \diamond m_{2}^{\prime}(a, b)$.
Let us explain how to utilize Theorem 1 and Corollary 1. The Gauss quadratic transformation formula is as follows:

$$
\begin{equation*}
(1+z)^{2 \alpha} F\left(\alpha, \alpha-\beta+\frac{1}{2}, \beta+\frac{1}{2} ; z^{2}\right)=F\left(\alpha, \beta, 2 \beta ; \frac{4 z}{(1+z)^{2}}\right) \tag{6}
\end{equation*}
$$

where z is in a small neighbourhood of 0 , and the value of $(1+z)^{2 \alpha}$ is 1 at $z=0$. By substituting

$$
\frac{b}{a}=\frac{1-z}{1+z}, \quad \alpha=\beta=\frac{1}{2}
$$

into the equality (6), we have

$$
\frac{(a+b) / 2}{F\left(\frac{1}{2}, \frac{1}{2}, 1 ; 1-\left(\frac{2 \sqrt{a b}}{a+b}\right)^{2}\right)}=\frac{a}{F\left(\frac{1}{2}, \frac{1}{2}, 1 ; 1-\left(\frac{b}{a}\right)^{2}\right)}
$$

Let m_{1} be the arithmetic mean and m_{2} the geometric mean. It is easy to show that the double sequence $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ defined by $\left(a_{0}, b_{0}\right)=(a, b)$, and

$$
\left(a_{n+1}, b_{n+1}\right)=\left(m_{1}\left(a_{n}, b_{n}\right), m_{2}\left(a_{n}, b_{n}\right)\right)=\left(\frac{a_{n}+b_{n}}{2}, \sqrt{a_{n} b_{n}}\right)
$$

has a common limit $\mu(a, b)$, which is called the arithmetic-geometric mean of a and b. Theorem 1 implies a well-known formula

$$
\begin{equation*}
\mu(a, b)=\frac{a}{F\left(\frac{1}{2}, \frac{1}{2}, 1 ; 1-\left(\frac{b}{a}\right)^{2}\right)} \tag{7}
\end{equation*}
$$

for $0<b \leq a$. By applying Corollary 1 for $(r, s, t)=(2,1,0)$ to (7), we have

$$
m_{1}^{\prime} \diamond m_{2}^{\prime}(a, b)=\frac{a}{\sqrt{F\left(\frac{1}{2}, \frac{1}{2}, 1 ; 1-\left(\frac{b}{a}\right)^{4}\right)}}
$$

for $a \geq b>0$ and two means

$$
m_{1}^{\prime}(x, y)=\sqrt{\frac{x^{2}+y^{2}}{2}}, \quad m_{2}^{\prime}(x, y)=\sqrt{x y}
$$

By applying Corollary 1 for $(r, s, t)=\left(1, \frac{1}{2}, 0\right)$ to (7), we have

$$
m_{1}^{\prime} \diamond m_{2}^{\prime}(a, b)=\frac{a}{\sqrt{F\left(\frac{1}{2}, \frac{1}{2}, 1 ; 1-\left(\frac{b}{a}\right)^{2}\right)}}
$$

for $a \geq b>0$ and two means

$$
m_{1}^{\prime}(x, y)=\sqrt{x \frac{x+y}{2}}, \quad m_{2}^{\prime}(x, y)=\sqrt{x \frac{2 x y}{x+y}}
$$

4. Compounds of means by quadratic transformation formulas

In 1881 Goursat gave a list of transformation formulas of the form

$$
F(\alpha, \beta, \gamma ; z)=\varphi(z) F\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime} ; \psi(z)\right),
$$

in [G], where $\varphi(z)$ and $\psi(z)$ are algebraic functions with values 1 and 0 at $z=0$, respectively. In this section, we give a list of the compound means expressed by the hypergeometric function derived from Theorem 1 and quadratic transformation formulas $\mathrm{G}(25), \ldots, \mathrm{G}(52)$ in [G].

It turns out that parameters (α, β, γ) of the hypergeometric function satisfy

$$
\left\{\frac{1}{|1-\gamma|}, \frac{1}{|\gamma-\alpha-\beta|}, \frac{1}{|\alpha-\beta|}\right\}=\{2,2, \infty\}, \text { or }\{2,4,4\}, \text { or }\{\infty, \infty, \infty\},
$$

for our consideration. We classify our results by these data. For the case $\{\infty, \infty, \infty\}$, we have the classical arithmetic-geometric mean explained in the previous section.

Theorem 2 We have the following tables.

$$
\{2,2, \infty\}
$$

No.	$m_{1}(a, b)$	$m_{2}(a, b)$	type	$m_{1} \diamond m_{2}(a, b)$
Q(1)	$\sqrt{a b}$	$\frac{\sqrt{b}(\sqrt{a}+\sqrt{b})}{2}$	(M)	$a / F\left(1,1, \frac{3}{2} ; 1-\frac{b}{a}\right)$
$\mathrm{Q}(2)$	$\frac{\sqrt{a}(\sqrt{a}+\sqrt{b})}{2}$	$\sqrt{a b}$	(M)	$a / F\left(1, \frac{1}{2}, \frac{3}{2} ; 1-\frac{b}{a}\right)$
$\mathrm{Q}(3)$	$\sqrt{\frac{a(a+b)}{2}}$	$\frac{a+b}{2}$	(M)	$a / F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; 1-\left(\frac{b}{a}\right)^{2}\right)$
Q(4)	$\sqrt[4]{\frac{2 a b}{a+b} a^{2} b}$	$\sqrt[4]{\frac{a+b}{2} a b^{2}}$	(M)	$a / F\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} ; 1-\left(\frac{b}{a}\right)^{2}\right)^{\frac{1}{2}}=\sqrt{a b}$
Q(5)	$\frac{2 a b}{a+b}$	$\frac{a+b}{2}$	(M)	$a / F\left(\frac{1}{2}, 1,1 ; 1-\frac{b}{a}\right)=\sqrt{a b}$

$\{2,4,4\}$

No.	$m_{1}(a, b)$	$m_{2}(a, b)$	type	$m_{1} \diamond m_{2}(a, b)$
$\mathrm{Q}(6)$	$\frac{\sqrt{b}(\sqrt{a}+\sqrt{b})}{2}$	$\sqrt{a b}$	(A)	$a / F\left(1, \frac{3}{4}, \frac{5}{4} ; 1-\frac{b}{a}\right)$
$\mathrm{Q}(7)$	$\sqrt{a b}$	$\frac{\sqrt{a}(\sqrt{a}+\sqrt{b})}{2}$	(A)	$a / F\left(1, \frac{1}{2}, \frac{5}{4} ; 1-\frac{b}{a}\right)$
$\mathrm{Q}(8)$	$\sqrt{\frac{b(a+b)}{2}}$	$\frac{a+b}{2}$	(A)	$a / F\left(\frac{1}{4}, \frac{3}{4}, \frac{5}{4} ; 1-\left(\frac{b}{a}\right)^{2}\right)^{2}$
$\mathrm{Q}(9)$	$\frac{a+b}{2}$	$\sqrt{\frac{a(a+b)}{2}}$	(A)	$a / F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4} ; 1-\left(\frac{b}{a}\right)^{2}\right)^{2}$
$\mathrm{Q}(10)$	$\sqrt[4]{\frac{2 a b}{a+b} a b^{2}}$	$\sqrt[4]{\frac{a+b}{2} a^{2} b}$	(A)	$a / F\left(\frac{1}{4}, \frac{3}{4}, \frac{3}{4} ; 1-\left(\frac{b}{a}\right)^{2}\right)=\sqrt{a b}$
$\mathrm{Q}(11)$	$\sqrt[4]{\frac{a+b}{2} a b^{2}}$	$\sqrt[4]{\frac{2 a b}{a+b} a^{2} b}$	(A)	$a / F\left(\frac{1}{2}, \frac{3}{4}, \frac{3}{4} ; 1-\left(\frac{b}{a}\right)^{2}\right)^{\frac{1}{2}}=\sqrt{a b}$

Here b / a is sufficiently near to 1 , the type (M) means the $\left(m_{1}, m_{2}\right)$-sequence is monotonous, i.e., they satisfy

$$
b_{n} \leq b_{n+1} \leq a_{n+1} \leq a_{n} \quad \text { or } \quad b_{n} \geq b_{n+1} \geq a_{n+1} \geq a_{n}
$$

the type (A) means the $\left(m_{1}, m_{2}\right)$-sequence is alternative, i.e., they satisfy

$$
b_{0} \leq a_{1} \leq b_{2} \leq \cdots \leq b_{2 n} \leq a_{2 n+1} \leq b_{2 n+1} \leq a_{2 n} \leq \cdots \leq a_{2} \leq b_{1} \leq a_{0}
$$

Proof. We show $\mathrm{Q}(3)$. The quadratic transformation formula $\mathrm{G}(41)$ in $[\mathrm{G}]$ is

$$
\begin{aligned}
F(\alpha, 1-\alpha, \gamma ; z) & =(1-z)^{\gamma-1} F\left(\frac{\gamma-\alpha}{2}, \frac{\gamma+\alpha-1}{2}, \gamma ; 4 z(1-z)\right) \\
& =(1-z)^{\gamma-1}(1-2 z) F\left(\frac{\gamma+\alpha}{2}, \frac{\gamma+1-\alpha}{2}, \gamma ; 4 z(1-z)\right)
\end{aligned}
$$

Substitute

$$
\alpha=\frac{1}{2}, \quad \gamma=\frac{3}{2}, \quad \frac{b}{a}=1-2 z
$$

into the first row of this formula, then we have

$$
\frac{m_{1}(a, b)}{F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; 1-\left(\frac{m_{2}(a, b)}{m_{1}(a, b)}\right)^{2}\right)}=\frac{a}{F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; 1-\left(\frac{b}{a}\right)^{2}\right)}
$$

where

$$
m_{1}(a, b)=\sqrt{\frac{a(a+b)}{2}}, \quad m_{2}(a, b)=\frac{a+b}{2} .
$$

We can easily show that the (m_{1}, m_{2})-sequence converges and has a common limit by Lemma 1 . Theorem 1 implies that

$$
m_{1} \diamond m_{2}(a, b)=\frac{a}{F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; 1-\left(\frac{b}{a}\right)^{2}\right)} .
$$

We list used formulas in [G] and substitutions to prove this proposition.

$\mathrm{Q}(1)$	$\alpha=\beta=1, b / a=(1-2 z)^{2}$,
$\mathrm{G}(38):$	$F\left(\alpha, \beta, \frac{\alpha+\beta+1}{2} ; z\right)=(1-2 z) F\left(\frac{\alpha+1}{2}, \frac{\beta+1}{2}, \frac{\alpha+\beta+1}{2} ; 4 z(1-z)\right)$
$\mathrm{Q}(2)$	$\alpha=1 / 2, \gamma=3 / 2, \quad b / a=1-z$,
$\mathrm{G}(35):$	$F\left(\alpha, \alpha+\frac{1}{2}, \gamma ; z\right)=\left(\frac{1+\sqrt{1-z}}{2}\right)^{-2 \alpha} F\left(2 \alpha, 2 \alpha+1-\gamma, \gamma ; \frac{1-\sqrt{1-z}}{1+\sqrt{1-z}}\right)$
$\mathrm{Q}(3)$	$\alpha=1 / 2, \gamma=3 / 2, \quad b / a=1-2 z$,
$\mathrm{G}(41):$	$F(\alpha, 1-\alpha, \gamma ; z)=(1-z)^{\gamma-1} F\left(\frac{\gamma-\alpha}{2}, \frac{\gamma+\alpha-1}{2}, \gamma ; 4 z(1-z)\right)$
$\mathrm{Q}(4)$	$\alpha=1 / 2, \gamma=1 / 2, \quad b / a=1-2 z$,
$\mathrm{G}(41):$	$F(\alpha, 1-\alpha, \gamma ; z)=\frac{1-2 z}{(1-z)^{1-\gamma}} F\left(\frac{\gamma+\alpha}{2}, \frac{\gamma+1-\alpha}{2}, \gamma ; 4 z(1-z)\right)$
$\mathrm{Q}(5)$	$\alpha=1, \beta=1 / 2, \quad b / a=1-z$,
$\mathrm{G}(44):$	$F(\alpha, \beta, 2 \beta ; z)=\frac{1-\frac{z}{2}}{(1-z)^{(\alpha+1) / 2}} F\left(\beta+\frac{1-\alpha}{2}, \frac{1+\alpha}{2}, \beta+\frac{1}{2} ; \frac{z^{2}}{4(z-1)}\right)$

$\begin{aligned} & \mathrm{Q}(6) \\ & \mathrm{G}(49) \end{aligned}$	$\begin{gathered} \alpha=1, \beta=3 / 4, \quad b / a=(1+z)^{2} /(1-z)^{2} \\ F(\alpha, \beta, \alpha-\beta+1 ; z)=\frac{1+z}{(1-z)^{\alpha+1}} F\left(\frac{\alpha+1}{2}, \frac{\alpha}{2}+1-\beta, \alpha-\beta+1 ; \frac{-4 z}{(1-z)^{2}}\right) \end{gathered}$
$\begin{aligned} & \mathrm{Q}(7) \\ & \mathrm{G}(39): \end{aligned}$	$\begin{gathered} \alpha=1, \beta=1 / 2, \quad b / a=1 /(1-2 z)^{2} \\ F\left(\alpha, \beta, \frac{\alpha+\beta+1}{2} ; z\right)=(1-2 z)^{-\alpha} F\left(\frac{\alpha}{2}, \frac{\alpha+1}{2}, \frac{\alpha+\beta+1}{2} ; \frac{4 z(z-1)}{(2 z-1)^{2}}\right) \end{gathered}$
$\begin{aligned} & \mathrm{Q}(8) \\ & \mathrm{G}(42) \end{aligned}$	$\begin{gathered} \alpha=3 / 4, \gamma=5 / 4, \quad b / a=1 /(1-2 z), \\ F(\alpha, 1-\alpha, \gamma ; z)=\frac{(1-z)^{\gamma-1}}{(1-2 z)^{\gamma-\alpha}} F\left(\frac{\gamma-\alpha}{2}, \frac{\gamma+1-\alpha}{2}, \gamma ; \frac{-4 z(1-z)}{(1-2 z)^{2}}\right) \end{gathered}$
$\begin{aligned} & \mathrm{Q}(9) \\ & \mathrm{G}(48) \end{aligned}$	$\begin{gathered} \alpha=1 / 2, \beta=1 / 4, \quad b / a=(1+z) /(1-z) \\ (\alpha, \beta, \alpha-\beta+1 ; z)=(1-z)^{-\alpha} F\left(\frac{\alpha}{2}, \frac{\alpha+1-2 \beta}{2}, \alpha-\beta+1 ; \frac{-4 z}{(1-z)^{2}}\right) \end{gathered}$
$\begin{aligned} & \mathrm{Q}(10) \\ & \mathrm{G}(42): \end{aligned}$	$\begin{gathered} \alpha=1 / 4, \gamma=3 / 4, \quad b / a=1 /(1-2 z), \\ F(\alpha, 1-\alpha, \gamma ; z)=\frac{(1-z)^{\gamma-1}}{(1-2 z)^{\gamma-\alpha}} F\left(\frac{\gamma-\alpha}{2}, \frac{\gamma+1-\alpha}{2}, \gamma ; \frac{-4 z(1-z)}{(1-2 z)^{2}}\right) \end{gathered}$
$\begin{aligned} & \mathrm{Q}(11) \\ & \mathrm{G}(49): \end{aligned}$	$\begin{gathered} \alpha=1 / 2, \beta=3 / 4, \quad b / a=(1+z) /(1-z), \\ F(\alpha, \beta, \alpha-\beta+1 ; z)=\frac{1+z}{(1-z)^{\alpha+1}} F\left(\frac{\alpha+1}{2}, \frac{\alpha}{2}+1-\beta, \alpha-\beta+1 ; \frac{-4 z}{(1-z)^{2}}\right) \end{gathered}$

Here we remark that the formulas (G38), (G41) and (G42) consist of some equalities.

Lemma 2 We have

$$
\begin{gathered}
F\left(\frac{\gamma-\alpha}{2}, \frac{\gamma+\alpha-1}{2}, \gamma ; 1-t^{2}\right)=t F\left(\frac{\gamma+\alpha}{2}, \frac{\gamma+1-\alpha}{2}, \gamma ; 1-t^{2}\right), \\
F\left(\frac{\alpha}{2}, \frac{\alpha+1}{2}, \beta+\frac{1}{2} ; 1-t^{2}\right)=t^{2(\beta-\alpha)} F\left(\beta-\frac{\alpha}{2}, \beta+\frac{1-\alpha}{2}, \beta+\frac{1}{2} ; 1-t^{2}\right),
\end{gathered}
$$

for t in a small neighbourhood of 1. Especially,

$$
\begin{aligned}
& F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; 1-t^{2}\right)=t F\left(1,1, \frac{3}{2} ; 1-t^{2}\right) \\
& F\left(\frac{1}{2}, \frac{1}{4}, \frac{5}{4}, 1-t^{2}\right)=t F\left(\frac{3}{4}, 1, \frac{5}{4}, 1-t^{2}\right) \\
& F\left(\frac{1}{4}, \frac{3}{4}, \frac{5}{4}, 1-t^{4}\right)=t F\left(\frac{1}{2}, 1, \frac{5}{4}, 1-t^{4}\right)
\end{aligned}
$$

Proof. By substituting $t=1-2 z$ into the formula (G41), and $t=\frac{2 \sqrt{1-z}}{2-z}$ into (G45), we obtain the first and second equalities in this lemma, respectively. In order to get the rest, put $(\alpha, \gamma)=(1 / 2,3 / 2)$ and $(\alpha, \gamma)=(1 / 4,5 / 4)$ in the first equality, and $(\alpha, \beta)=(1 / 2,3 / 4), \sqrt{t}=t^{\prime}$ in the second.

Remark 2 Carlson studied in [C] compound means of two means taken from the following four means:

$$
\begin{array}{cl}
m_{1}(x, y)=\frac{x+y}{2}, & m_{2}(x, y)=\sqrt{x y} \\
m_{3}(x, y)=\sqrt{x \frac{x+y}{2}}, \quad m_{4}(x, y)=\sqrt{\frac{x+y}{2} y} .
\end{array}
$$

Refer also to Section 8.5 in [BB2] for these results. Note that the compound mean $m_{1} \diamond m_{2}$ is the classical arithmetic-geometric mean. It is shown that the compound means $m_{3} \diamond m_{4}(a, b)$ and $m_{4} \diamond m_{3}(a, b)$ are expressed as

$$
\sqrt{\frac{a^{2}-b^{2}}{2 \log (a / b)}},
$$

which is called Carlson's log expression. The other compound means $m_{i} \diamond m_{j}$ can be expressed by the hypergeometric function by Theorem 2, Corollary 1 and Lemma 2.

For example, $\mathrm{Q}(3)$ in Theorem 2 coincides with the expression of $m_{3} \diamond m_{1}$ shown in [BB2] and [C]. The compound mean $m_{2} \diamond m_{4}$ is expressed as

$$
\frac{a}{\sqrt{\frac{a}{b}} F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; 1-\left(\frac{b}{a}\right)^{2}\right)^{1 / 2}}
$$

by Exercises 1 of Section 8.5 in [BB2]. This result is obtained by $\mathrm{Q}(1)$ in Theorem 2, Corollary 1 for $(r, s, t)=(2,1,0)$ and Lemma 2.

Carlson's log expression can be obtained by the following functional equation for the hypergeometric function.

Lemma 3 For $\alpha, n \in \mathbb{C}$ and x in a small neighbourhood of 1 , we have
$n(1-x) F(n(\alpha-1)+1,1,2 ; 1-x)=\left(1-x^{n}\right) F\left(\alpha, 1,2 ; 1-x^{n}\right)=\frac{x^{(1-\alpha) n}-1}{\alpha-1}$,
where the value of x^{n} is 1 at $x=1$. Especially, if $\alpha=1$ and $n \in \mathbb{N}$ then it reduces

$$
F(1,1,2 ; 1-x)=\left(\frac{1+x+x^{2}+\cdots+x^{n-1}}{n}\right) F\left(1,1,2 ; 1-x^{n}\right)=\frac{\log x}{x-1}
$$

Proof. It is easy to show that the functions $n(1-x) F(n(\alpha-1)+1,1,2 ; 1-x)$ and $\left(1-x^{n}\right) F\left(\alpha, 1,2 ; 1-x^{n}\right)$ satisfy the differential equation

$$
\frac{d^{2} \varphi}{d x^{2}}=-\frac{n(\alpha-1)+1}{x} \frac{d \varphi}{d x}
$$

with initial conditions $\varphi(1)=0$ and $\frac{d \varphi}{d x}(1)=-n$. Thus these functions coincide with $\left(x^{(1-\alpha) n}-1\right) /(\alpha-1)$. Note that this function converges to $-n \log x$ as $\alpha \rightarrow 1$.

By Lemma 3 for $\alpha=1, n=2$ and $b / a=x$, we have

$$
\begin{aligned}
\frac{a}{\sqrt{F\left(1,1,2 ; 1-\left(\frac{b}{a}\right)^{2}\right)}} & =\frac{m_{3}(a, b)}{\sqrt{F\left(1,1,2 ; 1-\left(\frac{m_{4}(a, b)}{m_{3}(a, b)}\right)^{2}\right)}} \\
& =\frac{m_{4}(a, b)}{\sqrt{F\left(1,1,2 ; 1-\left(\frac{m_{3}(a, b)}{m_{4}(a, b)}\right)^{2}\right)}}
\end{aligned}
$$

Theorem 1 implies Carlson's log expression.

5. Compounds of means by cubic transformation formulas

We give a list of the compound means expressed by the hypergeometric function derived from cubic transformation formulas (G78), ..., (G125) in [G], Theorem 1 and Corollary 2.

Theorem 3 We have the following table:

No.	$m_{1}(a, b)$	$m_{2}(a, b)$	type	$m_{1} \diamond m_{2}(a, b)$
$\mathrm{C}(1)$	$b^{\frac{2}{3}} X_{1}$	$b^{\frac{2}{3}} X_{2}$	(A)	$a / F\left(\frac{1}{2}, 1, \frac{7}{6} ; 1-\left(\frac{b}{a}\right)^{2}\right)$
$\mathrm{C}(2)$	$X_{1} X_{2}^{2}$	X_{2}^{3}	(A)	$a / F\left(\frac{1}{6}, \frac{2}{3}, \frac{7}{6} ; 1-\left(\frac{b}{a}\right)^{2}\right)^{3}$
$\mathrm{C}(3)$	$X_{1} X_{2}^{2}$	$X_{2}^{2} X_{3}$	(A)	$a / F\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{2} ; 1-\left(\frac{b}{a}\right)^{2}\right)$
$\mathrm{C}(4)$	$b^{\frac{1}{3}} X_{1} X_{2}$	$b^{\frac{1}{3}} X_{2} X_{3}$	(A)	$a / F\left(\frac{5}{6}, 1, \frac{3}{2} ; 1-\left(\frac{b}{a}\right)^{2}\right)^{\frac{1}{2}}$
$\mathrm{C}(5)$	$b^{\frac{2}{3}} X_{1}$	$b^{\frac{2}{3}} X_{3}$	(A)	$a / F\left(\frac{1}{3}, \frac{1}{2}, \frac{1}{2} ; 1-\left(\frac{b}{a}\right)^{2}\right)=\sqrt[3]{a b^{2}}$
$\mathrm{C}(6)$	$a^{\frac{2}{3}} Y_{2}$	$a^{\frac{2}{3}} Y_{1}$	(A)	$a / F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6} ; 1-\left(\frac{b}{a}\right)^{2}\right)$
$\mathrm{C}(7)$	Y_{2}^{3}	$Y_{1} Y_{2}^{2}$	(A)	$a /\left[\frac{b}{a} F\left(\frac{2}{3}, 1, \frac{7}{6} ; 1-\left(\frac{b}{a}\right)^{2}\right)\right]^{3}$
$\mathrm{C}(8)$	$Y_{2}^{2} Y_{3}$	$Y_{1} Y_{2}^{2}$	(A)	$a / F\left(\frac{1}{2}, \frac{5}{6}, \frac{3}{2} ; 1-\left(\frac{b}{a}\right)^{2}\right)$
$\mathrm{C}(9)$	$a^{\frac{1}{3}} Y_{2} Y_{3}$	$a^{\frac{1}{3}} Y_{1} Y_{2}$	(A)	$a / F\left(\frac{2}{3}, 1, \frac{3}{2} ; 1-\left(\frac{b}{a}\right)^{2}\right)^{\frac{1}{2}}$
$\mathrm{C}(10)$	$a^{\frac{2}{3}} Y_{3}$	$a^{\frac{2}{3}} Y_{1}$	(A)	$a / F\left(\frac{1}{6}, \frac{1}{2}, \frac{1}{2} ; 1-\left(\frac{b}{a}\right)^{2}\right)=\sqrt[3]{a^{2} b}$

where b / a is sufficiently near to 1 ,

$$
X_{1}=\frac{\xi_{1}^{\frac{1}{3}}+\xi_{2}^{\frac{1}{3}}}{2}, \quad X_{2}=\sqrt{\frac{\xi_{1}^{\frac{2}{3}}+\xi_{1}^{\frac{1}{3}} \xi_{2}^{\frac{1}{3}}+\xi_{2}^{\frac{2}{3}}}{3}}, \quad X_{3}=\sqrt{\xi_{1}^{\frac{2}{3}}-\xi_{1}^{\frac{1}{3}} \xi_{2}^{\frac{1}{3}}+\xi_{2}^{\frac{2}{3}}}
$$

$\left(\xi_{1}, \xi_{2}\right)$ is the preimage of (a, b) under the arithmetic and geometric means:

$$
\frac{\xi_{1}+\xi_{2}}{2}=a, \quad \sqrt{\xi_{1} \xi_{2}}=b, \quad\left\{\xi_{1}, \xi_{2}\right\}=\left\{a \pm \sqrt{a^{2}-b^{2}}\right\}
$$

and $-\frac{\pi}{6}<\arg \left(\xi_{i}^{\frac{1}{3}}\right)<\frac{\pi}{6}(i=1,2), \xi_{1}^{\frac{1}{3}} \xi_{2}^{\frac{1}{3}}=b^{\frac{2}{3}} \in \mathbb{R}_{+}^{*} ;$

$$
Y_{1}=\frac{\eta_{1}^{\frac{1}{3}}+\eta_{2}^{\frac{1}{3}}}{2}, \quad Y_{2}=\sqrt{\frac{\eta_{1}^{\frac{2}{3}}+\eta_{1}^{\frac{1}{3}} \eta_{2}^{\frac{1}{3}}+\eta_{2}^{\frac{2}{3}}}{3}}, \quad Y_{3}=\sqrt{\eta_{1}^{\frac{2}{3}}-\eta_{1}^{\frac{1}{3}} \eta_{2}^{\frac{1}{3}}+\eta_{2}^{\frac{2}{3}}},
$$

$\left(\eta_{1}, \eta_{2}\right)$ is the preimage of (a, b) under the geometric and arithmetic means:

$$
\sqrt{\eta_{1} \eta_{2}}=a, \quad \frac{\eta_{1}+\eta_{2}}{2}=b, \quad\left\{\eta_{1}, \eta_{2}\right\}=\left\{b \pm \sqrt{b^{2}-a^{2}}\right\}
$$

and $-\frac{\pi}{6}<\arg \left(\eta_{i}^{\frac{1}{3}}\right)<\frac{\pi}{6}(i=1,2), \eta_{1}^{\frac{1}{3}} \eta_{2}^{\frac{1}{3}}=a^{\frac{2}{3}} \in \mathbb{R}_{+}^{*}$.

Remark 3 Parameters (α, β, γ) of the hypergeometric function in Theorem 3 satisfy

$$
\left\{\frac{1}{|1-\gamma|}, \frac{1}{|\gamma-\alpha-\beta|}, \frac{1}{|\alpha-\beta|}\right\}=\{2,3,6\} .
$$

We give two lemmas in order to prove Theorem 3.
Lemma 4 If $b<a$ then

$$
\begin{aligned}
& b<b^{\frac{2}{3}} X_{1}<b^{\frac{2}{3}} X_{2}<b^{\frac{2}{3}} X_{3}<X_{2}^{2} X_{3}<a, \\
& b<Y_{2}^{2} Y_{3}<a^{\frac{2}{3}} Y_{3}<a^{\frac{2}{3}} Y_{2}<a^{\frac{2}{3}} Y_{1}<a
\end{aligned}
$$

if $a<b$ then

$$
\begin{aligned}
& a<X_{2}^{2} X_{3}<b^{\frac{2}{3}} X_{3}<b^{\frac{2}{3}} X_{2}<b^{\frac{2}{3}} X_{1}<b, \\
& a<a^{\frac{2}{3}} Y_{1}<a^{\frac{2}{3}} Y_{2}<a^{\frac{2}{3}} Y_{3}<Y_{2}^{2} Y_{3}<b .
\end{aligned}
$$

Proof. Suppose that $b<a$. Since ξ_{1}, ξ_{2} are real and $a=\frac{\left(\xi_{1}^{\frac{1}{3}}\right)^{3}+\left(\xi_{2}^{\frac{1}{3}}\right)^{3}}{2}$, it is easy to show that

$$
b<b^{\frac{2}{3}} X_{1}<b^{\frac{2}{3}} X_{2}<b^{\frac{2}{3}} X_{3}<X_{2}^{2} X_{3}
$$

and
$a^{2}-X_{2}^{4} X_{3}^{2}=\frac{1}{36}\left(5 \xi_{1}^{\frac{2}{3}}+11 \xi_{1}^{\frac{1}{3}} \xi_{2}^{\frac{1}{3}}+5 \xi_{2}^{\frac{2}{3}}\right)\left(\xi_{1}^{\frac{2}{3}}-\xi_{1}^{\frac{1}{3}} \xi_{2}^{\frac{1}{3}}+\xi_{2}^{\frac{2}{3}}\right)\left(\xi_{1}^{\frac{1}{3}}-\xi_{2}^{\frac{1}{3}}\right)^{2}>0$.
In order to show the other inequalities, we assume that $a=1$ by the homogeneity. Note that η_{i} do not belong to \mathbb{R} and that

$$
\left|\eta_{i}\right|=1, \quad \operatorname{Re}\left(\eta_{i}\right)=b, \quad-\frac{\pi}{2}<\arg \left(\eta_{i}\right)<\frac{\pi}{2}
$$

If we take branches of $\eta_{i}^{\frac{1}{3}}$ so that $-\frac{\pi}{6}<\arg \left(\eta_{i}^{\frac{1}{3}}\right)<\frac{\pi}{6}$, then we have

$$
\eta_{1}^{\frac{1}{3}} \eta_{2}^{\frac{1}{3}}=1, \quad \frac{\sqrt{3}}{2}<\frac{\eta_{1}^{\frac{1}{3}}+\eta_{2}^{\frac{1}{3}}}{2}=Y_{1}<1
$$

Since

$$
b=4 Y_{1}^{3}-3 Y_{1}, \quad Y_{2}=\sqrt{\frac{4 Y_{1}^{2}-1}{3}}, \quad Y_{3}=\sqrt{4 Y_{1}^{2}-3}
$$

we have

$$
\begin{aligned}
Y_{1}^{2}-Y_{2}^{2} & =\frac{1}{3}\left(1-Y_{1}^{2}\right)>0, \\
Y_{2}^{2}-Y_{3}^{2} & =\frac{8}{3}\left(1-Y_{1}^{2}\right)>0, \\
Y_{3}-Y_{2}^{2} Y_{3} & =Y_{3}\left(1-Y_{2}^{2}\right)>Y_{3}\left(Y_{1}^{2}-Y_{2}^{2}\right)>0, \\
Y_{2}^{4} Y_{3}^{2}-b^{2} & =\frac{1}{9}\left(1-Y_{1}^{2}\right)\left(1+20 Y_{1}^{2}\right)\left(4 Y_{1}^{2}-3\right)>0
\end{aligned}
$$

for $\frac{\sqrt{3}}{2}<Y_{1}<1$.
Lemma 5 For any $a, b \in \mathbb{R}_{+}^{*}$, we have

$$
\frac{2 \sqrt{2}}{3}<\frac{X_{2}}{X_{1}}<\frac{2 \sqrt{3}}{3}, \quad 0<\frac{X_{3}}{X_{1}}<2, \quad \frac{\sqrt{3}}{2}<\frac{Y_{1}}{Y_{2}}<\frac{3 \sqrt{2}}{4}, \quad \frac{1}{2}<\frac{Y_{1}}{Y_{3}}<\infty .
$$

Proof. By the homogeneity of X_{i}, we normalize $b=1$. Note that

$$
\frac{\sqrt{3}}{2}<X_{1}<\infty
$$

and that

$$
\frac{X_{2}}{X_{1}}=\sqrt{\frac{4 X_{1}^{2}-1}{3 X_{1}^{2}}}, \quad \frac{X_{3}}{X_{1}}=\sqrt{\frac{4 X_{1}^{2}-3}{X_{1}^{2}}}
$$

are monotonous as functions of X_{1}. Consider their limits as $X_{1} \rightarrow \frac{\sqrt{3}}{2}$ and as $X_{1} \rightarrow \infty$. Normalize $a=1$ to show the inequalities for Y_{1} / Y_{i}.

Proof of Theorem 3. Lemmas 1 and 4 imply that the (m_{1}, m_{2})-sequence alternatively converges for $\left(m_{1}, m_{2}\right)$ in Theorem 3 and for any $a, b \in \mathbb{R}_{+}^{*}$. We show $\mathrm{C}(1)$. Substitute $\alpha=1 / 6$ into the formula $\mathrm{G}(112)$:

$$
\begin{aligned}
F\left(\alpha, \alpha+\frac{1}{2}, 2 \alpha+\frac{5}{6} ; z\right) & =(1-z)^{\frac{1}{3}} F\left(\alpha+\frac{1}{3}, \alpha+\frac{5}{6}, 2 \alpha+\frac{5}{6} ; z\right) \\
& =(1-9 t)^{2 \alpha} F\left(3 \alpha, 3 \alpha+\frac{1}{2}, 2 \alpha+\frac{5}{6} ; t\right)
\end{aligned}
$$

where $27 t(1-t)^{2}+(1-9 t)^{2} z=0$. We have

$$
F\left(\frac{1}{2}, 1, \frac{7}{6} ; t\right)=\frac{3 t+1}{1-9 t} F\left(\frac{1}{2}, 1, \frac{7}{6} ; 1-\frac{(3 t+1)^{3}}{(1-9 t)^{2}}\right) .
$$

Put $u=(3 t+1) /(1-9 t)$, then $t=(u-1) /(3(1+3 u))$ and

$$
F\left(\frac{1}{2}, 1, \frac{7}{6} ; 1-\frac{4(1+2 u)}{3(1+3 u)}\right)=u F\left(\frac{1}{2}, 1, \frac{7}{6} ; 1-\frac{4 u^{3}}{1+3 u}\right) .
$$

Solve the equation

$$
\left(\frac{b}{a}\right)^{2}=\frac{4 u^{3}}{1+3 u}
$$

with the variable u for given $a, b>0$. Then we have

$$
\begin{gathered}
u=\frac{1}{a} b^{\frac{2}{3}} X_{1}, \quad \frac{1}{X_{1}}=\frac{X_{3}^{2}}{a}, \\
\frac{4}{1+3 u} \frac{1+2 u}{3}=\left(\frac{b}{a}\right)^{2} \frac{1}{u^{2}} \frac{1 / u+2}{3}=\frac{1}{X_{1}^{2}} \frac{X_{3}^{2}+2 b^{\frac{2}{3}}}{3}=\frac{X_{2}^{2}}{X_{1}^{2}},
\end{gathered}
$$

and

$$
\frac{m_{1}(a, b)}{F\left(\frac{1}{2}, 1, \frac{7}{6} ; 1-\left(\frac{m_{2}(a, b)}{m_{1}(a, b)}\right)^{2}\right)}=\frac{a}{F\left(\frac{1}{2}, 1, \frac{7}{6} ; 1-\left(\frac{b}{a}\right)^{2}\right)}
$$

for

$$
m_{1}(a, b)=b^{\frac{2}{3}} X_{1}, \quad m_{2}(a, b)=b^{\frac{2}{3}} X_{2} .
$$

Theorem 1 implies

$$
m_{1} \diamond m_{2}(a, b)=\frac{a}{F\left(\frac{1}{2}, 1, \frac{7}{6} ; 1-\left(\frac{b}{a}\right)^{2}\right)} .
$$

In order to get (C2), .., (C5), we use the following.

$\begin{aligned} & \mathrm{C}(2) \\ & \mathrm{G}(119): \end{aligned}$	$\begin{aligned} & \alpha=1 / 6, \quad u=2(1+3 z) /(1-9 z), \quad(b / a)^{2}=u^{3} /(3 u+2) \\ & (1-z)^{\frac{1}{3}-4 \alpha} F\left(\frac{1}{3}-\alpha, \frac{5}{6}-\alpha, 2 \alpha+\frac{5}{6} ; z\right) \\ & \quad=(1-9 z)^{-2 \alpha} F\left(\alpha, \alpha+\frac{1}{2}, 2 \alpha+\frac{5}{6} ; \frac{-27 z(1-z)^{2}}{(1-9 z)^{2}}\right) \end{aligned}$
$\begin{aligned} & C(3) \\ & G(87): \end{aligned}$	$\begin{aligned} & \alpha=0, \quad t=1-4 /(1+3 u), \quad(b / a)^{2}=4 u^{3} /(1+3 u), \\ & F\left(\alpha+\frac{1}{2}, \frac{2}{3}-\alpha, \frac{3}{2} ; z\right)=\frac{9(1-t)^{2 \alpha+1}}{9-t} F\left(3 \alpha+\frac{1}{2}, \alpha+\frac{2}{3}, \frac{3}{2} ; t\right) \\ & (t-9)^{2} t+27(1-t)^{2} z=0 \end{aligned}$
$\begin{aligned} & \mathrm{C}(4) \\ & \mathrm{G}(87): \end{aligned}$	$\begin{aligned} & \alpha=1 / 6, \quad t=1-4 /(1+3 u),(b / a)^{2}=4 u^{3} /(1+3 u) \\ & (1-z)^{\frac{1}{3}} F\left(1-\alpha, \alpha+\frac{5}{6}, \frac{3}{2} ; z\right)=\frac{9(1-t)^{2 \alpha+1}}{9-t} F\left(3 \alpha+\frac{1}{2}, \alpha+\frac{2}{3}, \frac{3}{2} ; t\right) \\ & (t-9)^{2} t+27(1-t)^{2} z=0 \end{aligned}$
$\begin{aligned} & C(5) \\ & G(86): \end{aligned}$	$\begin{aligned} & \alpha=1 / 6, \quad t=1-4 /(1+3 u), \quad(b / a)^{2}=4 u^{3} /(1+3 u), \\ & (1-z)^{\frac{1}{3}} F\left(\frac{1}{2}-\alpha, \alpha+\frac{1}{3}, \frac{1}{2} ; z\right)=(1-t)^{2 \alpha} F\left(3 \alpha, \alpha+\frac{1}{6}, \frac{1}{2} ; t\right) \\ & (t-9)^{2} t+27(1-t)^{2} z=0 \end{aligned}$

We remark that the formulas $\mathrm{G}(86), \mathrm{G}(87)$ and $\mathrm{G}(119)$ consist of some equalities. The equality $\mathrm{C}(5+k)$ is obtained by Corollary 2 for $\mathrm{C}(k)(k=$ $1, \ldots, 5)$.

6. Compounds of means by transformation formulas for ${ }_{3} F_{2}$

The generalized hypergeometric function ${ }_{3} F_{2}$ is defined as

$$
{ }_{3} F_{2}\left(\begin{array}{c}
\alpha_{0}, \alpha_{1}, \alpha_{2} \\
\beta_{1}, \beta_{2}
\end{array} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)_{n}\left(\alpha_{1}\right)_{n}\left(\alpha_{2}\right)_{n}}{(1)_{n}\left(\beta_{1}\right)_{n}\left(\beta_{2}\right)_{n}} z^{n}
$$

where $\beta_{1}, \beta_{2} \neq 0,-1,-2, \ldots$, and $|z|<1$. Note that this function reduces to the hypergeometric function $F\left(\alpha_{0}, \alpha_{1}, \beta_{1} ; z\right)$ when $\alpha_{2}=\beta_{2}$. In this section, we attempt to find pairs of means whose compounds can be expressed by ${ }_{3} F_{2}$ by using transformation formulas for ${ }_{3} F_{2}$ in $[\mathrm{K}]$.

Proposition 1 We have functional equations of the form

$$
{ }_{3} F_{2}\left(\begin{array}{c}
\alpha_{0}, \alpha_{1}, \alpha_{2} \tag{8}\\
\beta_{1}, \beta_{2}
\end{array} ; z\right)=\varphi(z){ }_{3} F_{2}\left(\begin{array}{c}
\alpha_{0}, \alpha_{1}, \alpha_{2} \\
\beta_{1}, \beta_{2}
\end{array} ; \psi(z)\right),
$$

where $\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}\right\},\left\{\beta_{1}, \beta_{2}\right\}, \varphi(z)$ and $\psi(z)$ are given as follows.

No.	$\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}\right\}$	$\left\{\beta_{1}, \beta_{2}\right\}$	$\varphi(z)$	$\psi(z)$
$\mathrm{K}(1)$	$\left\{\frac{1}{2}, \frac{3}{4}, 1\right\}$	$\left\{\frac{5}{4}, \frac{3}{2}\right\}$	$\frac{1}{1-z}$	$1-\left(\frac{1+z}{1-z}\right)^{2}$
$\mathrm{~K}(2)$	$\left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right\}$	$\left\{\frac{3}{4}, \frac{5}{4}\right\}$	$\frac{1}{\sqrt{1-z}}$	$1-\left(\frac{1+z}{1-z}\right)^{2}$
$\mathrm{~K}(3)$	$\left\{\frac{1}{3}, \frac{2}{3}, 1\right\}$	$\left\{\frac{7}{6}, \frac{4}{3}\right\}$	$\frac{1}{1-4 z}$	$1-\frac{(1-z)(1+8)^{2}}{(1-4)^{3}}$
$\mathrm{~K}(4)$	$\left\{\frac{1}{6}, \frac{1}{2}, \frac{5}{6}\right\}$	$\left\{\frac{5}{6}, \frac{7}{6}\right\}$	$\frac{1}{\sqrt{1-4 z}}$	$1-\frac{(1-z)(1+8)^{2}}{(1-4 z)^{3}}$

Proof. We can easily show these functional equations by the formulas (2.1) and (2.2) in $[\mathrm{K}]$.

Remark 4 Non-trivial functional equations of the form (8) can not directly obtained any more by the formulas $(2.1), \ldots,(2.5)$ in $[\mathrm{K}]$.

Note that each ${ }_{3} F_{2}$ in the functional equations $K(2)$ and $K(4)$ has a common parameter in the sets $\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}\right\}$ and $\left\{\beta_{1}, \beta_{2}\right\}$. Thus these functional equations reduce to

$$
\begin{align*}
& F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4} ; z\right)=\frac{1}{\sqrt{1-z}} F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4} ; 1-\left(\frac{1+z}{1-z}\right)^{2}\right), \tag{9}\\
& F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6} ; z\right)=\frac{1}{\sqrt{1-4 z}} F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6} ; 1-\frac{(1-z)(1+8 z)}{(1-4 z)^{3}}\right), \tag{10}
\end{align*}
$$

which appear when we study $\mathrm{Q}(9)$ and $\mathrm{C}(6)$, respectively.
By the Clausen formula

$$
3 F_{2}\left(\begin{array}{c}
2 \alpha, 2 \beta, \alpha+\beta \\
2 \alpha+2 \beta, \alpha+\beta+1 / 2
\end{array} ; z\right)=F(\alpha, \beta, \alpha+\beta+1 / 2 ; z)^{2},
$$

we have

$$
\begin{aligned}
& { }_{3} F_{2}\left(\begin{array}{c}
1 / 2,3 / 4,1 \\
5 / 4,3 / 2
\end{array} z\right)=F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4} ; z\right)^{2}, \\
& { }_{3} F_{2}\left(\begin{array}{c}
1 / 3,2 / 3,1 \\
7 / 6,4 / 3
\end{array} ; z\right)=F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6} ; z\right)^{2} .
\end{aligned}
$$

Thus the functional equations $K(1)$ and $K(3)$ reduce to (9) and (10), respectively.

Hence we conclude that proper expressions of compounds of means by ${ }_{3} F_{2}$ can not directly obtained by transformation formulas for ${ }_{3} F_{2}$ in $[\mathrm{K}]$.

Acknowledgment The authors express their gratitude to Professor M. Kato for informing them of his results in $[\mathrm{K}]$.

References

[BB1] Borwein, J.M. and Borwein, P.B., A cubic counterpart of Jacobi's identity and the AGM. Trans. Amer. Math. Soc. 323(2) (1991), 691-701.
[BB2] Borwein, J.M. and Borwein, P.B., Pi and the AGM, volume 4, A WileyInterscience Publ., New York, 1998.
[C] Carlson, B.C., Algorithms involving arithmetic and geometric means. MAA Monthly, 78(5) (1971), 496-505.
[E] Erdélyi, A., Higher Transcendental Functions, volume I, Robert E. Krieger Publishing Co., Inc., Melbourne, Florida, 1981.
[G] Goursat, E.M., Sur l'Équation Différentielle Linéaire qui Admet pour Intégrale la Série Hypergéométrique. Ann. Sci. l'Ecole Normale Sup. (2) 10 (1881), 3-142.
[IKSY] Iwasaki, K., Kimura, H., Shimomura, S. and Yoshida M., From Gauss to Painlevé, Vieweg, Braunschweig, Wiesbaden, 1991.
[K] Kato, M., Algebraic transformations of ${ }_{3} F_{2}$. Funkcialaj Ekvacioj, 51 (2008), 221-243.
[KM] Kato, T. and Matsumoto K., The common limit of a quadruple sequence and the hypergeometric function F_{D} of three variables, to appear in Nagoya Math. J.
[KS] Koike, K. and Shiga, H., Isogeny formulas for the Picard modular form and a three terms arithmetic geometric mean. J. Number Theory, 124 (2007), 123-141.
[M] Matsumoto, K., A transformation formula for Appell's hypergeometric function F_{1} and common limits of triple sequences by mean iterations,
preprint 2008.
[MO] Matsumoto, K. and Ohara, K., Some transformation formulas for Lauricella's hypergeometric functions F_{D}, to appear in Funkcialaj Ekvacioj.

R. Hattori
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
E-mail: hattori@math.sci.hokudai.ac.jp
T. Kato
MEC INC.
Futsuka 2-6, Aoba-ku
Sendai 980-0802, Japan
E-mail: katou-t@mec-inc.co.jp
K. Matsumoto
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
E-mail: matsu@math.sci.hokudai.ac.jp

