A formula for the Lojasiewicz exponent at infinity in the real plane via real approximations

Ha Huy VUI and Nguyen Hong DUC

(Received April 25, 2008; Revised July 22, 2008)

Abstract. We compute the Lojasiewicz exponent of $f = (f_1, \ldots, f_n) : \mathbb{R}^2 \to \mathbb{R}^n$ via the real approximation of Puiseux's expansions at infinity of the curve $f_1 \ldots f_n = 0$. As a consequence we construct a collection of real meromorphic curves which provide a testing set for properness of f as well as a condition, which is very easy to check, for a local diffeomorphism to be a global one.

Key words: Lojasiewicz exponent at infinity, Puiseux expansion at infinity, Testing sets for properness of polynomial mappings.

1. Introduction

Let M, N be finite dimensional real vector spaces and let $f: M \to N$ be semi-algebraic mapping. For $X \subset M$, put

$$\mathcal{L}_{\infty}(f|_X) := \sup \left\{ \nu \in \mathbb{R} \colon \exists C, \ R > 0, \\ \forall x \in X(\|x\| \ge R \Rightarrow \|f(x)\| \ge C \|x\|^{\nu}) \right\}$$

and

$$\widetilde{\mathcal{L}}_{\infty}(f|_X) = \inf_{\Phi} \frac{\deg f \circ \Phi}{\deg \Phi},$$

where Φ runs over the set of meromorphic functions at infinity such that $\deg \Phi > 0$ and $\Phi(\tau) \in X$, for all τ enough large.

According to [Sk, Theorem 2.1], we know that

$$\widetilde{\mathcal{L}}_{\infty}(f|_X) = \mathcal{L}_{\infty}(f|_X).$$

The number $\mathcal{L}_{\infty}(f) := \mathcal{L}_{\infty}(f|_M)$ is called the Lojasiewicz exponent at infinity of the mapping f.

²⁰⁰⁰ Mathematics Subject Classification : Primary 14R25; Secondary 32A20, 32S05, 14R25.

We refer the reader to the recent survey [K] for more information on the Lojasiewicz exponent at infinity of mappings.

Remark 1.1 It is clear that the Łojasiewicz exponent does not change by a linear transformation.

Following Jelonek [Je], $X \subset M$ is called a testing set for properness of the map f, if $f|_X : X \to N$ is proper, then f is proper, too. It is clear that if $\mathcal{L}_{\infty}(f|_X) = \mathcal{L}_{\infty}(f)$ then $X \subset M$ is a testing set for properness of the map f.

In this note we restrict our investigation to a very restrictive setting, namely we consider polynomial mappings in two real variables. We give a formula for the Lojasiewicz exponent in terms of real approximations of Puiseux's expansions at infinity. As a consequence we construct a collection of real meromorphic curves which provide a testing set for properness of polynomial maps as well as a condition, which is very easy to check, for a local diffeomorphism to be a global one.

In [Je], Z. Jelonek has given various conditions for a given set to be a testing set for properness of a polynomial mapping from a complex affine variety to \mathbb{C}^n . In particular, if $f = (f_1, \ldots, f_n) \colon \mathbb{C}^m \to \mathbb{C}^n$ is polynomial mapping then the set $\{f_1 f_2 \ldots f_n = 0\}$ is a testing set for properness of f. The same result was also proven in [C-K2]. Moreover if m = n = 2, the authors of [C-K2] have given a formula expressing the Lojasiewicz exponent via Puiseux's expansions at infinity of the curve $f_1 f_2 = 0$ ([C-K1]). It is not difficult to see that these results are not longer true for the case of real variables (see Remark 2.5 bellow).

2. Main result

If $\varphi(\tau)$ is a series of the form

 $\varphi(\tau) = a_0 \tau^{\alpha} + \text{ terms of lower degree},$

where $\tau \in \mathbb{K}$ ($\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$), $a_0 \in \mathbb{K}^n$, $n \in \mathbb{N}$, $a_0 \neq 0$, then the number α is denoted by deg φ .

Let us consider a series $x = \lambda(y)$ in the form:

$$x = \lambda(y) = a_1 y^{\alpha_1} + a_2 y^{\alpha_2} + \dots + a_{s-1} y^{\alpha_{s-1}} + a_s y^{\alpha_s} + \dots$$

where $\alpha_1 > \alpha_2 > \cdots, a_i \in \mathbb{C}$.

If $a_1, a_2, \ldots, a_{s-1} \in \mathbb{R}$ and $a_s \notin \mathbb{R}$, we put

$$\lambda^{\mathbb{R}}(y) := a_1 y^{\alpha_1} + a_2 y^{\alpha_2} + \dots + a_{s-1} y^{\alpha_{s-1}} + c y^{\alpha_s},$$

where c is a generic real number. We call $\lambda^{\mathbb{R}}(y)$ the real approximation of $\lambda(y)$.

The following theorem is the main result of the article.

Theorem 2.1 Let $f = (f_1, \ldots, f_n) \colon \mathbb{R}^2 \to \mathbb{R}^n$ be a real polynomial mapping, where deg $f_i = \deg_x f_i = d_i > 0$.

Let $x = x_j(y)$ be the Puiseux expansions at infinity of $f_1 \dots f_n = 0$ and let $x_j^{\mathbb{R}}(y)$ be the real approximations of $x_j(y)$, for $j = 1, 2, \dots, D$, where $D = d_1 \cdots d_n$. Then

$$\mathcal{L}_{\infty}(f) = \min_{j} \big\{ \deg f(x_{j}^{\mathbb{R}}(y), y) \big\}.$$

Let $f(x, y) \in \mathbb{C}[x, y]$ such that $\deg f = \deg_x f = d > 0$. Let Γ denote the zero set of f. Let $x = x_i(y), i = 1, 2, ..., d$, be the Puiseux expansions at infinity of f(x, y) = 0 and let $x_i^{\mathbb{R}}(y)$ be the real approximations of $x_i(y)$. Put

$$\Gamma^{\mathbb{R}} := \cup_{i=1}^d \left\{ (x, y) \in \mathbb{R}^2 \colon |y| > R, x = x_i^{\mathbb{R}}(y) \right\}$$

and call it the real approximation of Γ .

Corollary 2.2 Let $f = (f_1, \ldots, f_n) \colon \mathbb{R}^2 \to \mathbb{R}^n$ be a real polynomial mapping such that deg $f_i = \deg_x f_i = d_i$, for all $i = 1, 2, \ldots, n$. Let $\Gamma := \{(x, y) \in \mathbb{C}^2 \colon f_1(x, y) \ldots f_n(x, y) = 0\}$ and let $\Gamma^{\mathbb{R}}$ denote the real approximation of Γ . Then $\Gamma^{\mathbb{R}}$ is a testing set for properness of the map f.

Corollary 2.3 With the notation as above, a local polynomial diffeomorphism $f = (f_1, f_2) \colon \mathbb{R}^2 \to \mathbb{R}^2$ is a global diffeomorphism if and only if one of three equivalent conditions hold

- (i) f is proper.
- (ii) The restriction of f on $\Gamma^{\mathbb{R}}$ is proper.
- (iii) The degree of $f(x_j^{\mathbb{R}}(y), y)$ is positive for every j = 1, 2, ..., D, where $D = d_1 \cdots d_n$.

Remark 2.4

(i) It is well known that a local polynomial diffeomorphism might not be

a global diffemorphism [P].

(ii) Some sufficient conditions for a local diffeomorphism to be a global diffeomorphism were given in [C-G], [R], [S].

Remark 2.5 It is easy to see that the restriction of the map $f = (f_1, f_2)$: $\mathbb{R}^2 \to \mathbb{R}^2$, where $f_1(x, y) = (xy-1)^2 + y^2$, $f_2(x, y) = [(xy-1)^2 + y^2]x$, on the set $f_1f_2 = 0$ is proper, nevertheless f is not proper. In fact $z_n = (n, \frac{1}{n}) \to \infty$ but $f(z_n) \to (0, 0)$.

Example 2.6 (a) We will compute the Lojasiewicz exponent at infinity of the map in Remark 2.5. By the linear transformation x := x; y := x + y, we get $g = (g_1, g_2)$, where

$$g_1(x,y) = (x^2 + xy - 1)^2 + (x+y)^2,$$

$$g_2(x,y) = \left[(x^2 + xy - 1)^2 + (x+y)^2 \right] x^2.$$

It follows from Remark 1.1 that $\mathcal{L}_{\infty}(f) = \mathcal{L}_{\infty}(g)$. Then

$$\begin{aligned} x_1(y) &= i + y^{-1} + o(y^{-1}), \\ x_2(y) &= -i + y^{-1} + o(y^{-1}), \\ x_3(y) &= -y - y^{-1} + iy^{-2} + o(y^{-2}), \\ x_4(y) &= -y - y^{-1} - iy^{-2} + o(y^{-2}) \end{aligned}$$

and $x_5(y) = 0$ are the Puiseux expansions at infinity of $g_1g_2 = 0$. Therefore

$$x_1^{\mathbb{R}}(y) = x_2^{\mathbb{R}}(y) = c, \quad x_3^{\mathbb{R}}(y) = x_4^{\mathbb{R}}(y) = -y - y^{-1} + cy^{-2}$$

and $x_5^{\mathbb{R}}(y) = 0$, where c is a generic real number. Hence by Theorem 2.1 we have

$$\mathcal{L}_{\infty}(f) = \mathcal{L}_{\infty}(g) = -2.$$

(b) We consider the map $f = (f_1, f_2) \colon \mathbb{K}^2 \to \mathbb{K}^2$, where

$$f_1(x,y) = (x^2 + xy - 1)^2 + (x+y)^2$$
 and $f_2(x,y) = x^2 + 1$.

Then

$$\begin{aligned} x_1(y) &= i + y^{-1} + o(y^{-1}), \\ x_2(y) &= -i + y^{-1} + o(y^{-1}), \\ x_3(y) &= -y - y^{-1} + iy^{-2} + o(y^{-2}), \\ x_4(y) &= -y - y^{-1} - iy^{-2} + o(y^{-2}), \end{aligned}$$

 $x_5(y) = i$ and $x_6(y) = -i$ are the Puiseux expansions at infinity of $f_1 f_2 = 0$. Therefore

$$\begin{split} x_1^{\mathbb{R}}(y) &= x_2^{\mathbb{R}}(y) = x_5^{\mathbb{R}}(y) = x_6^{\mathbb{R}}(y) = c, \\ x_3^{\mathbb{R}}(y) &= x_4^{\mathbb{R}}(y) = -y - y^{-1} + cy^{-2}, \end{split}$$

where c is a generic real number. Thus, by the result of [C-K2]

$$\mathcal{L}_{\infty}(f) = -1, \text{ if } \mathbb{K} = \mathbb{C}$$

while by Theorem 2.1, we have

$$\mathcal{L}_{\infty}(f) = 2, \text{ if } \mathbb{K} = \mathbb{R}.$$

3. Proof of the main result

Let $f: \mathbb{K}^2 \to \mathbb{K}$ be a polynomial. For a series

$$x = \varphi(y) = c_1 y^{n_1/N} + c_2 y^{n_2/N} + \cdots, \quad c_i \in \mathbb{K}, c_1 \neq 0$$

we put

$$M(X,Y) = f\left(X + \varphi\left(\frac{1}{Y}\right), \frac{1}{Y}\right) = \sum_{i,j} c_{ij} X^i Y^{j/N}.$$

For each $c_{ij} \neq 0$, let us plot a dot at (i, j/N), called a Newton dot. The set of Newton dots is called the Newton diagram. They generate a convex hull, whose boundary is called the Newton polygon of f relative to φ , to be denoted by $\mathbb{P}(f, \varphi)$ or $\mathbb{P}(M)$.

Assume that $x = \varphi(y)$ is not a Puiseux root at infinity of f = 0. Then the Y-axis contains at least one dot of M. Let $(0, h_M)$ be the lowest Newton H. H. Vui and N. H. Duc

dot. We see that $h_M = -\deg f(\varphi(y), y)$.

By "the highest Newton edge" H_M of M we mean the edge of $\mathbb{P}(M)$, one of its extremities is $(0, h_M)$ and all of Newton dots of M are lying on or above the line containing H_M . Let $\theta_M = \tan \varphi$, here φ is the angle between H_M and the X-axis. Note that if (i, j/N) is a Newton dot of M then $\theta_M i + j/N \ge h_M$ and $(i, j/N) \in H_M$ if and only if $\theta_M i + j/N = h_M$. If $x = \varphi(y)$ is a Puiseux root at infinity of f = 0, we set $h_M = +\infty$ and $\theta_M = +\infty$.

We associate H_M with the polynomial $\varepsilon_M(x) := \varepsilon(x, 1)$, where

$$\varepsilon(X,Y) = \sum c_{ij} X^i Y^{j/N}$$
, with $(i,j/N) \in H_M$.

Lemma 3.1 ([H-D, Lemma 2.1]) Let $M(X, Y) = M(X + cY^{\theta}, Y)$, where θ is a real number. We have

- (a) If $\theta > \theta_M$, then $h_{\widetilde{M}} = h_M$ and $\theta_{\widetilde{M}} = \theta_M$.
- (b) If $\theta = \theta_M$ and c is a non-zero root of $\varepsilon_M(x)$, then $h_{\widetilde{M}} > h_M$ and $\theta_{\widetilde{M}} > \theta_M$.
- (c) $If \theta = \theta_M$ and $\varepsilon_M(c) \neq 0$, then $h_{\widetilde{M}} = h_M$ and $\theta_{\widetilde{M}} = \theta_M$.

If c is a non-zero root of $\varepsilon_M(x)$, the series $\varphi_1(y) = \varphi(y) + cy^{-\theta_M}$ will be called the sliding of $\varphi(y)$ along f. A recursive sliding $\varphi \to \varphi_1 \to \cdots$ produces a limit, φ_{∞} , where $\varphi_{\infty}(y) = \varphi_i(y)$ if $f(\varphi_i(y), y) = 0$. The series φ_{∞} is a Puiseux expansion at infinity of f = 0 (see [H-P] for more information about Puiseux expansions at infinity) and will be called a final result of sliding φ along f.

Lemma 3.2 ([H-D, Lemma 2.3]) Let $f, g: \mathbb{R}^2 \to \mathbb{R}$ be polynomials. For a series $x = \varphi(y)$, we put

$$M(X,Y) = f\left(X + \varphi\left(\frac{1}{Y}\right), \frac{1}{Y}\right)$$

and

$$N(X,Y) = g\left(X + \varphi\left(\frac{1}{Y}\right), \frac{1}{Y}\right).$$

Let $x = \varphi_{\infty}(y)$ be a final result of sliding φ along f and $\varphi_{\infty}^{\mathbb{R}}(y)$ be the real approximation of $\varphi_{\infty}(y)$. We have

(a) If $\theta_M > \theta_N$, then $\deg g(\varphi_{\infty}^{\mathbb{R}}(y), y) = \deg g(\varphi(y), y);$ (b) If $\theta_M = \theta_N$, then $\deg g(\varphi_{\infty}^{\mathbb{R}}(y), y) \leq \deg g(\varphi(y), y),$

in particular with g = f, we have $\deg f(\varphi_{\infty}^{\mathbb{R}}(y), y) \leq \deg f(\varphi(y), y)$.

Proof of Theorem 2.1. We know that $\mathcal{L}_{\infty}(f) \leq \max\{\deg f_i\}$. Assume that $\mathcal{L}_{\infty}(f) = \max\{\deg f_i\}$. From the hypothesis $\deg f_{i_0} = \deg_x f_{i_0}$, we have $\deg x_j(y) \leq 1$ and therefore $\deg x_j^{\mathbb{R}}(y) \leq 1$. It follows that $\deg f(x_j^{\mathbb{R}}(y), y) \leq \deg f$. Thus

$$\mathcal{L}_{\infty}(f) = \max\{\deg f_i\} \ge \min_j \big\{ \deg f(x_j^{\mathbb{R}}(y), y) \big\}.$$

Hence

$$\mathcal{L}_{\infty}(f) = \min_{j} \big\{ \deg f(x_{j}^{\mathbb{R}}(y), y) \big\},\$$

since

$$\mathcal{L}_{\infty}(f) \le \min_{j} \big\{ \deg f(x_{j}^{\mathbb{R}}(y), y) \big\}.$$

Assume now that $\mathcal{L}_{\infty}(f) < \max\{\deg f_i\}$. Let $x = \varphi(y)$ be a any series satisfying the condition

$$\frac{\deg f(\varphi(y), y)}{\deg(\varphi(y), y)} < \max\{\deg f_i\} = \deg f_{i_0}.$$

Then $\deg \varphi \leq 1$, since $\deg f_{i_0} = \deg_x f_{i_0}$. Put

$$M_i(X,Y) = f_i\left(X + \varphi\left(\frac{1}{Y}\right), \frac{1}{Y}\right).$$

Let $\theta_{M_{i_0}} = \max{\{\theta_{M_i}\}}$, Lemma 3.2 yields that

$$\deg f_i(\varphi_{\infty}^{\mathbb{R}}(y), y) \leq \deg f_i(\varphi(y), y), \quad \forall i = 1, \dots, n$$

where $x = \varphi_{\infty}(y)$ is the final result of the sliding φ along f_{i_0} . Thus

$$\mathcal{L}_{\infty}(f) \ge \min_{j} \big\{ \deg f(x_{j}^{\mathbb{R}}(y), y) \big\}.$$

On the other hand, the inequality

$$\mathcal{L}_{\infty}(f) \le \min_{j} \left\{ \deg f(x_{j}^{\mathbb{R}}(y), y) \right\}$$

is always satisfied. Hence

$$\mathcal{L}_{\infty}(f) = \min_{j} \{ \deg f(x_{j}^{\mathbb{R}}(y), y) \}.$$

Acknowledgments The authors would like to thank the referee for his precious comments and suggestions which improved the presentation of this paper.

References

- [C-K1] Chądzyński J. and Krasiński T., The gradient of a polynomial at infinity. Kodai Math. J. 26 (2003), 317–339.
- [C-K2] Chądzyński J. and Krasiński T., Exponent of growth of polynomial mapping of C² into C², Singularities (Warsaw, 1985), 147–160, Banach Center Publ., 20, PWN, Warsaw, 1988.
- [C-G] Nguyen Van Chau; Gutierrez C., Properness and the Jacobian conjecture in ℝ². Vietnam J. Math. **31** (2003), no. 4, 421–427.
- [H-D] Hà Huy Vui and Nguyen Hong Duc, On the Lojasiewicz exponent near the fibre of polynomial mappings. Ann. Polon. Math. 94 (2008), 43–52.
- [H-P] Hà Huy Vui and Pham Tien Son, Critical values of Singularities at infinity of complex polynomial. Vietnam Journal of Mathematics. 36:1 (2008), 1–38.
- [Je] Jelonek Z., Testing sets for properness of polynomial mappings. Math. Ann. 315 (1999), 1–35.
- [K] Krasiński T., On the Lojasiewicz exponent at infinity of polynomial mappings. Acta Math. Vietnam 32 (2007), no. 2–3, 189–203.
- [K-P] Kuo T-C. and Parusiński A., Newton polygon relative to an arc, Real and Complex singularities. Chapman & HallCRC Res. Notes Math. 412 (2000), 76–93.
- [P] Pinchuk S., A counterexample to the strong real Jacobian conjecture. Math. Z. 217 (1994), 1–4.
- [R] Randall J.D., The real Jacobian Problem. Proc. Sympos. Pure Math. 40. AMS (1983), 411–414.
- [S] Sakkalis T., A note on proper polynomial maps. Communications in Algebra. 33 (2005), 3359–3365.

[Sk] Skalski G., On the Lojasiewicz exponent near the fibre of a polynomial.
 Bull. Pol. Acad. Sci. Math. 52 (2004), no. 3, 231–236.

H. H. VuiInstitute of Mathematics18 Hoang Quoc Viet RoadCau Giay District10307, Hanoi, VietnamE-mail: hhvui@math.ac.vn

N. H. Duc Institute of Mathematics 18 Hoang Quoc Viet Road Cau Giay District 10307, Hanoi, Vietnam E-mail: nhduc@math.ac.vn