A formula for the Lojasiewicz exponent at infinity in the real plane via real approximations

Ha Huy Vui and Nguyen Hong Duc

(Received April 25, 2008; Revised July 22, 2008)

Abstract

We compute the Lojasiewicz exponent of $f=\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ via the real approximation of Puiseux's expansions at infinity of the curve $f_{1} \ldots f_{n}=0$. As a consequence we construct a collection of real meromorphic curves which provide a testing set for properness of f as well as a condition, which is very easy to check, for a local diffeomorphism to be a global one.

Key words: Łojasiewicz exponent at infinity, Puiseux expansion at infinity, Testing sets for properness of polynomial mappings.

1. Introduction

Let M, N be finite dimensional real vector spaces and let $f: M \rightarrow N$ be semi-algebraic mapping. For $X \subset M$, put

$$
\begin{aligned}
\mathcal{L}_{\infty}\left(\left.f\right|_{X}\right):=\sup \{ & \nu \in \mathbb{R}: \exists C, R>0 \\
& \left.\forall x \in X\left(\|x\| \geq R \Rightarrow\|f(x)\| \geq C\|x\|^{\nu}\right)\right\}
\end{aligned}
$$

and

$$
\widetilde{\mathcal{L}}_{\infty}\left(\left.f\right|_{X}\right)=\inf _{\Phi} \frac{\operatorname{deg} f \circ \Phi}{\operatorname{deg} \Phi}
$$

where Φ runs over the set of meromorphic functions at infinity such that $\operatorname{deg} \Phi>0$ and $\Phi(\tau) \in X$, for all τ enough large.

According to [Sk, Theorem 2.1], we know that

$$
\widetilde{\mathcal{L}}_{\infty}\left(\left.f\right|_{X}\right)=\mathcal{L}_{\infty}\left(\left.f\right|_{X}\right)
$$

The number $\mathcal{L}_{\infty}(f):=\mathcal{L}_{\infty}\left(\left.f\right|_{M}\right)$ is called the Eojasiewicz exponent at infinity of the mapping f.

[^0]We refer the reader to the recent survey $[\mathrm{K}]$ for more information on the Łojasiewicz exponent at infinity of mappings.

Remark 1.1 It is clear that the Lojasiewicz exponent does not change by a linear transformation.

Following Jelonek [Je], $X \subset M$ is called a testing set for properness of the map f, if $\left.f\right|_{X}: X \rightarrow N$ is proper, then f is proper, too. It is clear that if $\mathcal{L}_{\infty}\left(\left.f\right|_{X}\right)=\mathcal{L}_{\infty}(f)$ then $X \subset M$ is a testing set for properness of the map f.

In this note we restrict our investigation to a very restrictive setting, namely we consider polynomial mappings in two real variables. We give a formula for the Łojasiewicz exponent in terms of real approximations of Puiseux's expansions at infinity. As a consequence we construct a collection of real meromorphic curves which provide a testing set for properness of polynomial maps as well as a condition, which is very easy to check, for a local diffeomorphism to be a global one.

In [Je], Z. Jelonek has given various conditions for a given set to be a testing set for properness of a polynomial mapping from a complex affine variety to \mathbb{C}^{n}. In particular, if $f=\left(f_{1}, \ldots, f_{n}\right): \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}$ is polynomial mapping then the set $\left\{f_{1} f_{2} \ldots f_{n}=0\right\}$ is a testing set for properness of f. The same result was also proven in [C-K2]. Moreover if $m=n=2$, the authors of [C-K2] have given a formula expressing the Lojasiewicz exponent via Puiseux's expansions at infinity of the curve $f_{1} f_{2}=0$ ([C-K1]). It is not difficult to see that these results are not longer true for the case of real variables (see Remark 2.5 bellow).

2. Main result

If $\varphi(\tau)$ is a series of the form

$$
\varphi(\tau)=a_{0} \tau^{\alpha}+\text { terms of lower degree }
$$

where $\tau \in \mathbb{K}(\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}), a_{0} \in \mathbb{K}^{n}, n \in \mathbb{N}, a_{0} \neq 0$, then the number α is denoted by $\operatorname{deg} \varphi$.

Let us consider a series $x=\lambda(y)$ in the form:

$$
x=\lambda(y)=a_{1} y^{\alpha_{1}}+a_{2} y^{\alpha_{2}}+\cdots+a_{s-1} y^{\alpha_{s-1}}+a_{s} y^{\alpha_{s}}+\cdots
$$

where $\alpha_{1}>\alpha_{2}>\cdots, a_{i} \in \mathbb{C}$.
If $a_{1}, a_{2}, \ldots, a_{s-1} \in \mathbb{R}$ and $a_{s} \notin \mathbb{R}$, we put

$$
\lambda^{\mathbb{R}}(y):=a_{1} y^{\alpha_{1}}+a_{2} y^{\alpha_{2}}+\cdots+a_{s-1} y^{\alpha_{s-1}}+c y^{\alpha_{s}}
$$

where c is a generic real number. We call $\lambda^{\mathbb{R}}(y)$ the real approximation of $\lambda(y)$.

The following theorem is the main result of the article.
Theorem 2.1 Let $f=\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ be a real polynomial mapping, where $\operatorname{deg} f_{i}=\operatorname{deg}_{x} f_{i}=d_{i}>0$.

Let $x=x_{j}(y)$ be the Puiseux expansions at infinity of $f_{1} \ldots f_{n}=0$ and let $x_{j}^{\mathbb{R}}(y)$ be the real approximations of $x_{j}(y)$, for $j=1,2, \ldots, D$, where $D=d_{1} \cdots d_{n}$. Then

$$
\mathcal{L}_{\infty}(f)=\min _{j}\left\{\operatorname{deg} f\left(x_{j}^{\mathbb{R}}(y), y\right)\right\}
$$

Let $f(x, y) \in \mathbb{C}[x, y]$ such that $\operatorname{deg} f=\operatorname{deg}_{x} f=d>0$. Let Γ denote the zero set of f. Let $x=x_{i}(y), i=1,2, \ldots, d$, be the Puiseux expansions at infinity of $f(x, y)=0$ and let $x_{i}^{\mathbb{R}}(y)$ be the real approximations of $x_{i}(y)$. Put

$$
\Gamma^{\mathbb{R}}:=\cup_{i=1}^{d}\left\{(x, y) \in \mathbb{R}^{2}:|y|>R, x=x_{i}^{\mathbb{R}}(y)\right\}
$$

and call it the real approximation of Γ.
Corollary 2.2 Let $f=\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ be a real polynomial mapping such that $\operatorname{deg} f_{i}=\operatorname{deg}_{x} f_{i}=d_{i}$, for all $i=1,2, \ldots, n$. Let $\Gamma:=\left\{(x, y) \in \mathbb{C}^{2}: f_{1}(x, y) \ldots f_{n}(x, y)=0\right\}$ and let $\Gamma^{\mathbb{R}}$ denote the real approximation of Γ. Then $\Gamma^{\mathbb{R}}$ is a testing set for properness of the map f.

Corollary 2.3 With the notation as above, a local polynomial diffeomophism $f=\left(f_{1}, f_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a global diffeomorphism if and only if one of three equivalent conditions hold
(i) f is proper.
(ii) The restriction of f on $\Gamma^{\mathbb{R}}$ is proper.
(iii) The degree of $f\left(x_{j}^{\mathbb{R}}(y), y\right)$ is positive for every $j=1,2, \ldots, D$, where $D=d_{1} \cdots d_{n}$.

Remark 2.4

(i) It is well known that a local polynomial diffeomorphism might not be
a global diffemorphism [P].
(ii) Some sufficient conditions for a local diffeomorphism to be a global diffeomorphism were given in $[\mathrm{C}-\mathrm{G}],[\mathrm{R}],[\mathrm{S}]$.

Remark 2.5 It is easy to see that the restriction of the map $f=$ $\left(f_{1}, f_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, where $f_{1}(x, y)=(x y-1)^{2}+y^{2}, f_{2}(x, y)=\left[(x y-1)^{2}+y^{2}\right] x$, on the set $f_{1} f_{2}=0$ is proper, nevertheless f is not proper. In fact $z_{n}=\left(n, \frac{1}{n}\right) \rightarrow \infty$ but $f\left(z_{n}\right) \rightarrow(0,0)$.

Example 2.6 (a) We will compute the Lojasiewicz exponent at infinity of the map in Remark 2.5. By the linear transformation $x:=x ; y:=x+y$, we get $g=\left(g_{1}, g_{2}\right)$, where

$$
\begin{aligned}
& g_{1}(x, y)=\left(x^{2}+x y-1\right)^{2}+(x+y)^{2} \\
& g_{2}(x, y)=\left[\left(x^{2}+x y-1\right)^{2}+(x+y)^{2}\right] x^{2}
\end{aligned}
$$

It follows from Remark 1.1 that $\mathcal{L}_{\infty}(f)=\mathcal{L}_{\infty}(g)$. Then

$$
\begin{aligned}
& x_{1}(y)=i+y^{-1}+o\left(y^{-1}\right), \\
& x_{2}(y)=-i+y^{-1}+o\left(y^{-1}\right), \\
& x_{3}(y)=-y-y^{-1}+i y^{-2}+o\left(y^{-2}\right), \\
& x_{4}(y)=-y-y^{-1}-i y^{-2}+o\left(y^{-2}\right)
\end{aligned}
$$

and $x_{5}(y)=0$ are the Puiseux expansions at infinity of $g_{1} g_{2}=0$. Therefore

$$
x_{1}^{\mathbb{R}}(y)=x_{2}^{\mathbb{R}}(y)=c, \quad x_{3}^{\mathbb{R}}(y)=x_{4}^{\mathbb{R}}(y)=-y-y^{-1}+c y^{-2}
$$

and $x_{5}^{\mathbb{R}}(y)=0$, where c is a generic real number. Hence by Theorem 2.1 we have

$$
\mathcal{L}_{\infty}(f)=\mathcal{L}_{\infty}(g)=-2
$$

(b) We consider the map $f=\left(f_{1}, f_{2}\right): \mathbb{K}^{2} \rightarrow \mathbb{K}^{2}$, where

$$
f_{1}(x, y)=\left(x^{2}+x y-1\right)^{2}+(x+y)^{2} \text { and } f_{2}(x, y)=x^{2}+1
$$

Then

$$
\begin{aligned}
& x_{1}(y)=i+y^{-1}+o\left(y^{-1}\right) \\
& x_{2}(y)=-i+y^{-1}+o\left(y^{-1}\right) \\
& x_{3}(y)=-y-y^{-1}+i y^{-2}+o\left(y^{-2}\right) \\
& x_{4}(y)=-y-y^{-1}-i y^{-2}+o\left(y^{-2}\right)
\end{aligned}
$$

$x_{5}(y)=i$ and $x_{6}(y)=-i$ are the Puiseux expansions at infinity of $f_{1} f_{2}=0$. Therefore

$$
\begin{aligned}
& x_{1}^{\mathbb{R}}(y)=x_{2}^{\mathbb{R}}(y)=x_{5}^{\mathbb{R}}(y)=x_{6}^{\mathbb{R}}(y)=c, \\
& x_{3}^{\mathbb{R}}(y)=x_{4}^{\mathbb{R}}(y)=-y-y^{-1}+c y^{-2},
\end{aligned}
$$

where c is a generic real number. Thus, by the result of [C-K2]

$$
\mathcal{L}_{\infty}(f)=-1, \text { if } \mathbb{K}=\mathbb{C}
$$

while by Theorem 2.1, we have

$$
\mathcal{L}_{\infty}(f)=2, \text { if } \mathbb{K}=\mathbb{R}
$$

3. Proof of the main result

Let $f: \mathbb{K}^{2} \rightarrow \mathbb{K}$ be a polynomial. For a series

$$
x=\varphi(y)=c_{1} y^{n_{1} / N}+c_{2} y^{n_{2} / N}+\cdots, \quad c_{i} \in \mathbb{K}, c_{1} \neq 0
$$

we put

$$
M(X, Y)=f\left(X+\varphi\left(\frac{1}{Y}\right), \frac{1}{Y}\right)=\sum_{i, j} c_{i j} X^{i} Y^{j / N}
$$

For each $c_{i j} \neq 0$, let us plot a dot at $(i, j / N)$, called a Newton dot. The set of Newton dots is called the Newton diagram. They generate a convex hull, whose boundary is called the Newton polygon of f relative to φ, to be denoted by $\mathbb{P}(f, \varphi)$ or $\mathbb{P}(M)$.

Assume that $x=\varphi(y)$ is not a Puiseux root at infinity of $f=0$. Then the Y-axis contains at least one dot of M. Let $\left(0, h_{M}\right)$ be the lowest Newton
dot. We see that $h_{M}=-\operatorname{deg} f(\varphi(y), y)$.
By "the highest Newton edge" H_{M} of M we mean the edge of $\mathbb{P}(M)$, one of its extremities is $\left(0, h_{M}\right)$ and all of Newton dots of M are lying on or above the line containing H_{M}. Let $\theta_{M}=\tan \varphi$, here φ is the angle between H_{M} and the X-axis. Note that if $(i, j / N)$ is a Newton dot of M then $\theta_{M} i+j / N \geq h_{M}$ and $(i, j / N) \in H_{M}$ if and only if $\theta_{M} i+j / N=h_{M}$. If $x=\varphi(y)$ is a Puiseux root at infinity of $f=0$, we set $h_{M}=+\infty$ and $\theta_{M}=+\infty$.

We associate H_{M} with the polynomial $\varepsilon_{M}(x):=\varepsilon(x, 1)$, where

$$
\varepsilon(X, Y)=\sum c_{i j} X^{i} Y^{j / N}, \text { with }(i, j / N) \in H_{M}
$$

Lemma 3.1 ([H-D, Lemma 2.1]) Let $\widetilde{M}(X, Y)=M\left(X+c Y^{\theta}, Y\right)$, where θ is a real number. We have
(a) If $\theta>\theta_{M}$, then $h_{\widetilde{M}}=h_{M}$ and $\theta_{\widetilde{M}}=\theta_{M}$.
(b) If $\theta=\theta_{M}$ and c is a non-zero root of $\varepsilon_{M}(x)$, then $h_{\widetilde{M}}>h_{M}$ and $\theta_{\widetilde{M}}>\theta_{M}$.
(c) If $\theta=\theta_{M}$ and $\varepsilon_{M}(c) \neq 0$, then $h_{\widetilde{M}}=h_{M}$ and $\theta_{\widetilde{M}}=\theta_{M}$.

If c is a non-zero root of $\varepsilon_{M}(x)$, the series $\varphi_{1}(y)=\varphi(y)+c y^{-\theta_{M}}$ will be called the sliding of $\varphi(y)$ along f. A recursive sliding $\varphi \rightarrow \varphi_{1} \rightarrow \cdots$ produces a limit, φ_{∞}, where $\varphi_{\infty}(y)=\varphi_{i}(y)$ if $f\left(\varphi_{i}(y), y\right)=0$. The series φ_{∞} is a Puiseux expansion at infinity of $f=0$ (see [H-P] for more information about Puiseux expansions at infinity) and will be called a final result of sliding φ along f.

Lemma 3.2 ([H-D, Lemma 2.3]) Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be polynomials. For a series $x=\varphi(y)$, we put

$$
M(X, Y)=f\left(X+\varphi\left(\frac{1}{Y}\right), \frac{1}{Y}\right)
$$

and

$$
N(X, Y)=g\left(X+\varphi\left(\frac{1}{Y}\right), \frac{1}{Y}\right)
$$

Let $x=\varphi_{\infty}(y)$ be a final result of sliding φ along f and $\varphi_{\infty}^{\mathbb{R}}(y)$ be the real approximation of $\varphi_{\infty}(y)$. We have
(a) If $\theta_{M}>\theta_{N}$, then $\operatorname{deg} g\left(\varphi_{\infty}^{\mathbb{R}}(y), y\right)=\operatorname{deg} g(\varphi(y), y)$;
(b) If $\theta_{M}=\theta_{N}$, then $\operatorname{deg} g\left(\varphi_{\infty}^{\mathbb{R}}(y), y\right) \leq \operatorname{deg} g(\varphi(y), y)$,
in particular with $g=f$, we have $\operatorname{deg} f\left(\varphi_{\infty}^{\mathbb{R}}(y), y\right) \leq \operatorname{deg} f(\varphi(y), y)$.
Proof of Theorem 2.1. We know that $\mathcal{L}_{\infty}(f) \leq \max \left\{\operatorname{deg} f_{i}\right\}$. Assume that $\mathcal{L}_{\infty}(f)=\max \left\{\operatorname{deg} f_{i}\right\}$. From the hypothesis $\operatorname{deg} f_{i_{0}}=\operatorname{deg}_{x} f_{i_{0}}$, we have $\operatorname{deg} x_{j}(y) \leq 1$ and therefore $\operatorname{deg} x_{j}^{\mathbb{R}}(y) \leq 1$. It follows that $\operatorname{deg} f\left(x_{j}^{\mathbb{R}}(y), y\right) \leq$ $\operatorname{deg} f$. Thus

$$
\mathcal{L}_{\infty}(f)=\max \left\{\operatorname{deg} f_{i}\right\} \geq \min _{j}\left\{\operatorname{deg} f\left(x_{j}^{\mathbb{R}}(y), y\right)\right\}
$$

Hence

$$
\mathcal{L}_{\infty}(f)=\min _{j}\left\{\operatorname{deg} f\left(x_{j}^{\mathbb{R}}(y), y\right)\right\},
$$

since

$$
\mathcal{L}_{\infty}(f) \leq \min _{j}\left\{\operatorname{deg} f\left(x_{j}^{\mathbb{R}}(y), y\right)\right\} .
$$

Assume now that $\mathcal{L}_{\infty}(f)<\max \left\{\operatorname{deg} f_{i}\right\}$. Let $x=\varphi(y)$ be a any series satisfying the condition

$$
\frac{\operatorname{deg} f(\varphi(y), y)}{\operatorname{deg}(\varphi(y), y)}<\max \left\{\operatorname{deg} f_{i}\right\}=\operatorname{deg} f_{i_{0}}
$$

Then $\operatorname{deg} \varphi \leq 1$, since $\operatorname{deg} f_{i_{0}}=\operatorname{deg}_{x} f_{i_{0}}$. Put

$$
M_{i}(X, Y)=f_{i}\left(X+\varphi\left(\frac{1}{Y}\right), \frac{1}{Y}\right)
$$

Let $\theta_{M_{i_{0}}}=\max \left\{\theta_{M_{i}}\right\}$, Lemma 3.2 yields that

$$
\operatorname{deg} f_{i}\left(\varphi_{\infty}^{\mathbb{R}}(y), y\right) \leq \operatorname{deg} f_{i}(\varphi(y), y), \quad \forall i=1, \ldots, n
$$

where $x=\varphi_{\infty}(y)$ is the final result of the sliding φ along $f_{i_{0}}$. Thus

$$
\mathcal{L}_{\infty}(f) \geq \min _{j}\left\{\operatorname{deg} f\left(x_{j}^{\mathbb{R}}(y), y\right)\right\} .
$$

On the other hand, the inequality

$$
\mathcal{L}_{\infty}(f) \leq \min _{j}\left\{\operatorname{deg} f\left(x_{j}^{\mathbb{R}}(y), y\right)\right\}
$$

is always satisfied. Hence

$$
\mathcal{L}_{\infty}(f)=\min _{j}\left\{\operatorname{deg} f\left(x_{j}^{\mathbb{R}}(y), y\right)\right\}
$$

Acknowledgments The authors would like to thank the referee for his precious comments and suggestions which improved the presentation of this paper.

References

[C-K1] Chạdzyński J. and Krasiński T., The gradient of a polynomial at infinity. Kodai Math. J. 26 (2003), 317-339.
[C-K2] Chạdzyński J. and Krasiński T., Exponent of growth of polynomial mapping of \mathbb{C}^{2} into \mathbb{C}^{2}, Singularities (Warsaw, 1985), 147-160, Banach Center Publ., 20, PWN, Warsaw, 1988.
[C-G] Nguyen Van Chau; Gutierrez C., Properness and the Jacobian conjecture in \mathbb{R}^{2}. Vietnam J. Math. 31 (2003), no. 4, 421-427.
[H-D] Hà Huy Vui and Nguyen Hong Duc, On the Eojasiewicz exponent near the fibre of polynomial mappings. Ann. Polon. Math. 94 (2008), 43-52.
[H-P] Hà Huy Vui and Pham Tien Son, Critical values of Singularities at infinity of complex polynomial. Vietnam Journal of Mathematics. 36:1 (2008), 1-38.
[Je] Jelonek Z., Testing sets for properness of polynomial mappings. Math. Ann. 315 (1999), 1-35.
[K] Krasiński T., On the Łojasiewicz exponent at infinity of polynomial mappings. Acta Math. Vietnam 32 (2007), no. 2-3, 189-203.
[K-P] Kuo T-C. and Parusiński A., Newton polygon relative to an arc, Real and Complex singularities. Chapman \& HallCRC Res. Notes Math. 412 (2000), 76-93.
[P] Pinchuk S., A counterexample to the strong real Jacobian conjecture. Math. Z. 217 (1994), 1-4.
[R] Randall J.D., The real Jacobian Problem. Proc. Sympos. Pure Math. 40. AMS (1983), 411-414.
[S] Sakkalis T., A note on proper polynomial maps. Communications in Algebra. 33 (2005), 3359-3365.
[Sk] Skalski G., On the Eojasiewicz exponent near the fibre of a polynomial. Bull. Pol. Acad. Sci. Math. 52 (2004), no. 3, 231-236.

H. H. Vui
Institute of Mathematics
18 Hoang Quoc Viet Road
Cau Giay District
10307, Hanoi, Vietnam
E-mail: hhvui@math.ac.vn
N. H. Duc
Institute of Mathematics
18 Hoang Quoc Viet Road
Cau Giay District
10307, Hanoi, Vietnam
E-mail: nhduc@math.ac.vn

[^0]: 2000 Mathematics Subject Classification : Primary 14R25; Secondary 32A20, 32S05, 14R25.

