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Time regularity

for aperiodic or irreducible random walks on groups

Nick Dungey
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Abstract. This paper studies time regularity for the random walk governed by a prob-

ability measure µ on a locally compact, compactly generated group G. If µ is eventually

coset aperiodic on G and satisfies certain additional conditions, we establish that the

associated Markov operator Tµ is analytic in L2(G), that is, one has an estimate ‖(I −
Tµ)T n

µ ‖ ≤ cn−1, n ∈ N, in L2 operator norm. Alternatively, if µ is irreducible with

period d and satisfies certain conditions, we show that T d
µ is analytic in L2(G). To obtain

these results, we develop a number of interesting algebraic and spectral properties of coset

aperiodic or irreducible measures on groups.

Key words: Locally compact group, probability measure, convolution operator, irre-

ducible, random walk.

1. Introduction and statement of results

This paper continues the study of a fundamental question about time
regularity for random walks on a locally compact group G. Namely, if Tµ

denotes the Markov operator, acting in L2(G), associated with a probability
measure µ on G, one asks: for which µ does an estimate

‖(I − Tµ)Tn
µ ‖2→2 ≤ cn−1

hold for all n ∈ N := {1, 2, 3, . . .}? Here, ‖ · ‖p→p denotes the operator
norm for operators in Lp(G), 1 ≤ p ≤ ∞. Note that, more generally,
a bounded linear operator S ∈ L(X) in a Banach space X is said to be
analytic (see [6, 4]) if ‖(I−S)Sn‖ ≤ cn−1 for some c > 0 and all n ∈ N. For
example, it is well known that if the Markov operator Tµ is symmetric then
(Tµ)2 is analytic in L2(G) (this is a consequence of the spectral theorem
for self-adjoint operators). Our aim, though, is to consider more general
non-symmetric random walks.

The author recently studied analyticity of Tµ in [7] and [8], with the
most comprehensive results being obtained in [8]. See also [1, 2] for es-
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timates implying analyticity in the particular case of groups which have
polynomial volume growth. In the present paper, we extend the results of
[8] in two new directions, involving coset aperiodic or irreducible probability
measures. Our main theorems state that if µ is eventually coset aperiodic,
(or irreducible of period d ∈ N) and certain extra conditions hold, then Tµ

(or respectively, T d
µ ) is analytic in L2.

The hypotheses of these theorems are easy to check in particular cases,
and the theorems apply in great generality on locally compact, compactly
generated groups. We therefore feel that the current paper is a significant
advance on [8].

Moreover, the algebraic and spectral properties of coset aperiodic or
irreducible measures on groups, developed in the present paper, are of in-
dependent interest and might be useful in other studies.

To state our main results precisely we fix some notation (for further
background material, see [14, 9, 8, 7]). Throughout the paper, G will be
a compactly generated locally compact group and P(G) the set of regu-
lar Borel probability measures on G. For µ ∈ P(G), the (right-invariant)
Markov operator Tµ is defined by the convolution

(Tµf)(h) = (µ ∗ f)(h) =
∫

G
dµ(g)f(g−1h)

for h ∈ G and f ∈ Lp := Lp(G; dg), 1 ≤ p ≤ ∞, where dg is a fixed left
invariant Haar measure on G. Note that ‖Tµ‖p→p ≤ 1 and

Tn
µ f = µn ∗ f = Tµnf

for n ∈ N, where µn := µ ∗ µ ∗ · · · ∗ µ denotes the n-th convolution power of
µ.

For Borel measures ν1, ν2 on G, the notation ν1 ≥ ν2 will mean that
ν1 − ν2 is a positive measure. One says that µ ∈ P(G) is spread out if there
exist n ∈ N, c > 0 and a non-empty open set V ⊆ G such that µn ≥ cχV

(here, χV denotes the characteristic function of V or, more precisely, the
measure χV (g)dg on G).

Since G is compactly generated, we may fix an open, relatively compact
neighborhood U of the identity e ∈ G which is symmetric (that is, U = U−1)
and generates G. The modulus ρ = ρU : G → N is defined by

ρ(g) = inf{n ∈ N : g ∈ Un}, g ∈ G,
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where Un := {g1g2 · · · gn : g1, . . . , gn ∈ U}.
One says that µ ∈ P(G) is centered if∫

G
dµ(g)η(g) = 0

for all η ∈ Hom(G, R), where Hom(G, R) is the set of all continuous group
homomorphisms η : G → R, and the integral is assumed to converge abso-
lutely.

Let δg denote the probability measure concentrated at a point g ∈ G,
and for µ ∈ P(G) define the involute µ∗ ∈ P(G) by µ∗(A) = µ(A−1) for
Borel sets A ⊆ G. One says that µ is symmetric if µ = µ∗; it is easy to see
that any symmetric µ which satisfies

∫
G dµρ < ∞ is centered, but centered

measures need not be symmetric in general.
We recall (compare [9, 13]) some standard concepts involving the sup-

port supp(µ) of µ. One says that µ ∈ P(G) is adapted (respectively, irre-
ducible) if the smallest closed subgroup (respectively, the smallest closed
sub-semigroup) of G containing supp(µ) equals G. Clearly, an irreducible
measure is adapted. Irreducibility is equivalent to the condition that

G =
∞⋃

n=1

(supp(µ))n (1)

where the bar denotes topological closure.
Next, we say that µ ∈ P(G) is coset aperiodic if there do not exist g0 ∈ G

and a proper closed subgroup H of G such that supp(µ) is contained in g0H

(proper means that H 6= G). Since g0H = (g0Hg−1
0 )g0, one can equivalently

use right cosets Hg0 in place of left cosets g0H in this definition. Lastly, say
that µ ∈ P(G) is eventually coset aperiodic if µn0 is coset aperiodic for some
n0 ∈ N. A probability measure which is eventually coset aperiodic must be
adapted (for if µ were not adapted, one would have

⋃∞
n=1 supp(µn) ⊆ H for

some proper closed subgroup H ⊆ G). However, simple examples show that
(eventual) coset aperiodicity neither implies nor is implied by irreducibility:
consider the measures µ1 := 2−1(δ0 + δ1), µ2 := 2−1(δ1 + δ−1) on the group
Z of integers.

The most important results of [8] can be summarized in the following
theorem. Let D := {z ∈ C : |z| < 1} be the open unit disc in C, and denote
by σL2(S) the L2 spectrum of an operator S ∈ L(L2).
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Theorem 1.1 Let µ ∈ P(G) be centered, adapted, spread out, and such
that

∫
G dµρ2 < ∞. Then the semigroup (e−t(I−Tµ))t≥0 is bounded analytic

in L2, in the sense that one has an estimate

‖e−t(I−Tµ)‖2→2 + t‖(I − Tµ)e−t(I−Tµ)‖2→2 ≤ c

uniformly for all t > 0.
If, in addition, σL2(Tµ) ⊆ D ∪ {1}, then Tµ is analytic in L2.

The second part of Theorem 1.1 follows immediately from the first part
together with a general theorem of Nevanlinna (see [11, Theorem 4.5.4],
[12, Theorem 2.1], and [4, 5]) about analytic operators. Indeed, Nevan-
linna’s theorem states that an operator S ∈ L(X) is analytic and power-
bounded in the complex Banach space X (where power-bounded means that
supn∈N ‖Sn‖ < ∞) if, and only if, the semigroup (e−t(I−S))t≥0 is bounded
analytic and the spectrum of S is contained in D ∪ {1}.

Our main theorem for eventually coset aperiodic measures is the fol-
lowing.

Theorem 1.2 Let µ ∈ P(G) be spread out and eventually coset aperiodic.
Then σL2(Tµ) ⊆ D ∪ {1}.

If, in addition, µ is centered and
∫
G dµ ρ2 < ∞, then Tµ is analytic in

L2.

Observe that the second statement of Theorem 1.2 follows immediately
from the first statement together with Theorem 1.1.

When G is connected, we will see that every spread out probability
measure on G is eventually coset aperiodic (see Remark (3) in Section 2
below). Hence Theorem 1.2 implies the following result, which seems to be
new.

Corollary 1.3 Let G be connected and let µ ∈ P(G) be spread out. Then
σL2(Tµ) ⊆ D ∪ {1}.

If, in addition, µ is centered and
∫
G dµρ2 < ∞, then Tµ is analytic in

L2.

We mention that our results may fail for non-spread out measures. For
example, let µ ∈ P(R) be a measure on R such that supp(µ) = {−1, 21/2,
31/2}. Then µ is coset aperiodic, but straightforward arguments using the
Fourier transform (compare [8, Section 5]) show that {z ∈ C : |z| = 1} ⊆
σL2(Tµ).
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Let us now consider irreducible measures. If µ ∈ P(G) is irreducible
and spread out, one may show (see Lemma 3.1 below) that e ∈ supp(µn)
for some n ∈ N; hence the period

d = d(µ) := gcd{n ∈ N : e ∈ supp(µn)} (2)

of µ is a well-defined positive integer, where gcd(A) denotes the greatest
common divisor of a non-empty set A ⊆ N.

The basic properties of periods are well known in the situation of ir-
reducible Markov chains on discrete spaces (for example, see [15]). In our
setting, however, the group G need not be discrete and so some of the theory
needs to be re-developed.

Our main analyticity result for irreducible measures on groups is the
following.

Theorem 1.4 Let µ ∈ P(G) be centered, irreducible and spread out, such
that

∫
G dµρ2 < ∞. Then T d

µ is analytic in L2, where d is the period of µ.
Hence one has an estimate

‖(I − T d
µ )Tn

µ ‖2→2 ≤ cn−1

for all n ∈ N.

Theorem 1.4 is a fundamental result for the L2 analysis of irreducible
random walks, and appears to be new even in the well-studied case where
G is a discrete group.

It turns out that irreducibility and coset aperiodicity are linked as fol-
lows (see Proposition 3.3 and Corollary 3.4 below). For µ irreducible and
spread out of period d, µd is eventually coset aperiodic in the subgroup of G

generated by supp(µd). This fact will allow us to derive Theorem 1.4 using
Theorem 1.2.

We remark that, whenever µ ∈ P(G) is irreducible and spread out of
period d, one has σL2(Tµ) ⊆ D ∪ Rd where Rd is the set of complex d-th
roots of unity. See the end of Section 4 for details.

Finally, we should mention that our results only provide useful informa-
tion for groups which are amenable. In fact, if G is non-amenable and µ ∈
P(G) is adapted, it is known (see [3]) that the L2 spectral radius r(Tµ) :=
limn→∞(‖Tn

µ ‖2→2)1/n is strictly less than 1; then the norms ‖Tn
µ ‖2→2 de-

crease exponentially as n → ∞, and it follows trivially that Tµ is analytic
in L2.
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2. Coset aperiodicity and proof of Theorem 1.2

Before beginning the proof of Theorem 1.2, let us record some basic
facts about coset aperiodicity and eventual coset aperiodicity which will be
needed.

We shall often use the fact that supp(ν1 ∗ ν2) = (supp(ν1))(supp(ν2))
for any probability measures ν1, ν2 ∈ P(G).

Lemma 2.1 Let µ ∈ P(G). The following conditions are all equivalent.
( I ) µ is coset aperiodic.
( II ) δg ∗ µ is adapted for all g ∈ G.
(III) µ ∗ δg is adapted for all g ∈ G.
(IV) µ∗ ∗ µ is adapted.

Moreover, if these conditions are satisfied, then ν ∗µ and µ∗ν are coset
aperiodic elements of P(G) for all ν ∈ P(G).

Proof. Given g ∈ G, observe that δg ∗ µ is not adapted if and only if
supp(δg ∗ µ) ⊆ H for some proper closed subgroup H of G, or in other
words, supp(µ) ⊆ g−1H. From this one sees that Conditions (I) and (II)
are equivalent.

An analogous argument shows that (I) and (III) are equivalent.
Next, given any ν ∈ P(G), let g0 ∈ supp(ν) and note that

supp(δgg0 ∗ µ) = gg0 supp(µ) ⊆ supp(δg ∗ ν ∗ µ)

for any g ∈ G. If Condition (II) holds for µ, then it follows that δg ∗ ν ∗µ is
adapted for all g ∈ G, and hence ν ∗µ is coset aperiodic, by the equivalence
of Conditions (I) and (II) applied to ν ∗ µ.

In particular, by setting ν = µ∗ we see that (II) implies (IV).
By a similar argument, Condition (III) implies that µ ∗ ν is coset ape-

riodic for any ν ∈ P(G).
Finally, if Condition (I) does not hold, then supp(µ) ⊆ Hg1 for some

g1 ∈ G and some proper closed subgroup H of G. Consequently

supp(µ∗ ∗ µ) ⊆ (Hg1)−1(Hg1) = g−1
1 Hg1,

so that µ∗ ∗ µ is not adapted. Thus (IV) implies (I), and the lemma is
completely proved. ¤

Here are some further useful remarks about coset aperiodicity and even-
tual coset aperiodicity.
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(1) A sufficient (though not necessary) condition for aperiodicity is
the following. If µ ∈ P(G) is adapted and e ∈ supp(µ) then µ is coset
aperiodic. (For, in this case

supp(µ) = e supp(µ) ⊆ supp(µ∗ ∗ µ)

which implies that µ∗ ∗ µ is adapted. Hence µ is coset aperiodic by Lemma
2.1.)

(2) If µ ∈ P(G) is eventually coset aperiodic, that is, µn0 is coset
aperiodic for some n0 ∈ N, then µn is coset aperiodic for all n ≥ n0 (this
remark follows by applying the last statement of Lemma 2.1 to µn0).

(3) If G is connected and µ ∈ P(G) is spread out, then µ is eventually
coset aperiodic. (To show this fact, choose n0 ∈ N such that µn0 ≥ cχV

for some c > 0 and some non-empty open set V ⊆ G. One easily deduces
that (µn0)∗ ∗ µn0 ≥ c′χW for some open neighborhood W of e. Since G is
connected one has G =

⋃∞
j=1 W j , hence (µn0)∗ ∗ µn0 is adapted and µn0 is

coset aperiodic.)
Note that Corollary 1.3 is a consequence of Theorem 1.2 together with

Remark (3) above.
We now begin the proof of Theorem 1.2. By Theorem 1.1, we only

have to show the inclusion σL2(Tµ) ⊆ D∪{1}. Our strategy is to first show
this inclusion under the extra assumptions that µ is coset aperiodic and∫
G dµρ2 < ∞, by a comparison of certain quadratic forms in L2. Then we

shall remove the extra assumptions.
Define the difference operators ∂g by (∂gf)(h) := f(g−1h) − f(h) for

g, h ∈ G and functions f : G → C. The “Dirichlet norm” Γ2 is defined by

Γ2(f) =
(∫

U
du‖∂uf‖2

2

)1/2

for all f ∈ L2. The following quadratic form estimates are variations of
estimates found in [8, 7] and [14, Chapter VII].

Proposition 2.2 Let µ ∈ P(G).
( I ) If µ is adapted and spread out, then there exists c > 0 such that

Re((I − Tµ)f, f) ≥ c−1Γ2(f)2

for all f ∈ L2.
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(II) If
∫
G dµρ2 < ∞, then there exists c′ > 0 such that

Re((I − Tµ)f, f) ≤ c′Γ2(f)2

for all f ∈ L2.

Proof. For part (I), see [8, Proposition 3.3].
To obtain part (II), one observes that

Re((I − Tµ)f, f) = ((I − Tµ)f, f)

for f ∈ L2, where µ ∈ P(G) is defined by µ := 2−1(µ + µ∗). A standard
calculation using the symmetry (µ)∗ = µ of µ yields

((I − Tµ)f, f) = 2−1

∫
G

dµ(g)‖∂gf‖2
2.

Then by the standard estimate (see [14, Proposition VII.3.2])

‖∂gf‖2
2 ≤ cρ(g)2Γ2(f)2

for all g ∈ G, f ∈ L2, since
∫
G dµρ2 =

∫
G dµρ2 < ∞ we obtain the estimate

of part (II). ¤

The next lemma establishes a special case of Theorem 1.2. For a
bounded linear operator S ∈ L(L2), one defines the “numerical range”

Θ(S) := {(Sf, f) : f ∈ L2, ‖f‖2 = 1} ⊆ C.

It is a standard fact (see [10, Corollary V.3.3]) that

σL2(S) ⊆ Θ(S)

where the bar denotes closure in C.

Lemma 2.3 Let µ ∈ P(G) be coset aperiodic. Suppose that
∫
G dµρ2 < ∞

and that µ ≥ cχV for some c > 0 and some non-empty open set V ⊆ G.
Then σL2(Tµ) ⊆ Θ(Tµ) ⊆ D ∪ {1}.

Proof. The hypotheses imply that the symmetric measure µ∗ ∗µ is spread
out and, by Lemma 2.1, adapted. Thus Proposition 2.2 (I) yields an esti-
mate

Re((I − Tµ∗∗µ)f, f) = ((I − Tµ∗∗µ)f, f)

= ‖f‖2 − ‖Tµf‖2
2 ≥ c−1Γ2(f)2
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for all f ∈ L2. Also, Re((I − Tµ)f, f) ≤ c′Γ2(f)2 by Proposition 2.2 (II).
Hence for some b > 0 we have

‖f‖2
2 − ‖Tµf‖2

2 ≥ b Re((I − Tµ)f, f)

for all f ∈ L2. Taking ‖f‖2 = 1, and noting that ‖Tµf‖2
2 ≥ |(Tµf, f)|2 by

Cauchy-Schwartz, it follows that

Θ(Tµ) ⊆ Γb

where by definition Γb := {z ∈ C : |z| ≤ 1 and 1 − |z|2 ≥ b(1 − Re(z))}.
Since Γb is closed in C, and Γb ⊆ D ∪ {1}, the lemma follows. ¤

Remark The last part of the proof of Lemma 2.3 is a quite general obser-
vation: for a bounded operator S in L2 (or more generally in Hilbert space)
with ‖S‖ ≤ 1, a quadratic form estimate of the type

‖f‖2
2 − ‖Sf‖2

2 ≥ b Re((I − S)f, f), f ∈ L2,

implies that σL2(S) ⊆ Θ(S) ⊆ D ∪ {1}.

The following comparison lemma (which is a generalization of [8, The-
orem 1.7]) will allow us to extend the result of Lemma 2.3.

Lemma 2.4 Let µ, ν ∈ P(G) satisfy µ ≥ αν for some constant α > 0. If
Θ(Tν) ⊆ D ∪ {1}, then σL2(Tµ) ⊆ Θ(Tµ) ⊆ D ∪ {1}.

Proof. Consider the operator S := Tµ − αTν , which acts by Sf = (µ −
αν)∗f for all f ∈ L2. Since µ−αν is a positive measure by hypothesis, and
(µ − αν)(G) = 1 − α, it follows that α ∈ (0, 1] and that ‖S‖2→2 ≤ 1 − α.
For f ∈ L2 with ‖f‖2 = 1, we have

(Tµf, f) = (Sf, f) + α(Tνf, f) ∈ {z ∈ C : |z| ≤ 1 − α} + αΘ(Tν).

As a consequence,

Θ(Tµ)⊆{z ∈ C : |z| ≤ 1 − α} + αΘ(Tν)

⊆{z ∈ C : |z| ≤ 1 − α} + α(D ∪ {1}) ⊆ D ∪ {1},

where the last inclusion used that α ∈ (0, 1]. ¤

The next lemma is elementary and not new, but we give a proof for the
convenience of the reader.
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Lemma 2.5 (See [8, Lemma 4.1]) Let µ, ν ∈ P(G) and g0, h0 ∈ G. Sup-
pose that g0 ∈ supp(µ) and that ν ≥ cχV for some c > 0 and some relatively
compact open set V with h0 ∈ V . Then there exists c′ > 0 and a relatively
compact open set W such that g0h0 ∈ W and µ ∗ ν ≥ c′χW . Moreover, W

can be chosen to depend only on g0, h0 and V .

Proof. Note that (µ ∗ χV )(g) = µ(gV −1) for all g ∈ G. By continuity of
the group multiplication, we can choose relatively compact open sets W, W ′

with g0h0 ∈ W , g0 ∈ W ′ and (W ′)−1W ⊆ V . It follows that gV −1 ⊇ W ′

for all g ∈ W , and setting ε := µ(W ′) > 0 we have

(µ ∗ χV )(g) = µ(gV −1) ≥ ε

for all g ∈ W . Then µ ∗ ν ≥ c(µ ∗ χV ) ≥ cεχW . ¤

Proof of Theorem 1.2. Let µ ∈ P(G) be spread out and eventually coset
aperiodic. Since µ is spread out and by using Lemma 2.5, there exists an
n1 ∈ N such that

µn ≥ cnχVn

for all n ≥ n1, where cn > 0 are constants and Vn ⊆ G are non-empty open
sets. Also, by Remark (2) after Lemma 2.1 we may choose an n2 ∈ N such
that µn is coset aperiodic for all n ≥ n2.

Now set N := max{n1, n2}, and take an arbitrary n ∈ N with n ≥ N .
Consider the measure

ν := γρ−2µn,

where the constant γ := (
∫
G dµnρ−2)−1 > 0 is such that ν ∈ P(G). Then∫

G dνρ2 < ∞, and since the function g 7→ ρ(g)−2 is strictly positive on G, it
is clear that the measure ν satisfies all the hypotheses of Lemma 2.3. Hence
Θ(Tν) ⊆ D ∪ {1} by Lemma 2.3. Because ρ−2 ≤ 1 we have µn ≥ γ−1ν, so
that applying Lemma 2.4 yields

σL2(Tn
µ ) ⊆ D ∪ {1}.

But the spectral mapping theorem for bounded linear operators (see for
example [16, Section VIII.7]) implies that σL2(Tn

µ ) = {λn : λ ∈ σL2(Tµ)}.
Therefore

σL2(Tµ) ⊆ D ∪ Rn
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for any n ∈ N with n ≥ N , where Rn := {τ ∈ C : τn = 1} denotes the set of
n-th roots of unity. Since RN ∩ RN+1 = {1}, we conclude that σL2(Tµ) ⊆
D ∪ {1}. The proof of Theorem 1.2 is complete. ¤

We end this section with a simple example for which µ2 is coset aperi-
odic although µ is not coset aperiodic. This demonstrates that, in general,
coset aperiodicity is a stronger condition than eventual coset aperiodicity.

In what follows, for m ∈ N we use the notation Zm := {0, 1, . . . , m−1}
for the finite cyclic group of integers modulo m, under the operation +m of
addition modulo m.

Example Fix an odd integer m ≥ 3, and let G be the semidirect product
of Zm with Z2 with respect to the action γ : Z2 → Aut(Zm) defined by

γ(0)s = s, γ(1)s = −s

for all s ∈ Zm, where −s denotes the Zm-inverse of s. Thus G = {(s, z) : s ∈
Zm, z ∈ Z2} is a finite solvable discrete group with product (s, z)(s′, z′) =
(s+mγ(z)s′, z+2z′). In fact, G is the dihedral group of motions of a regular
m-gon.

Consider the subgroup H = {(0, 0), (0, 1)} of G, let g0 := (1, 0) ∈ G,
and let µ ∈ P(G) be such that

supp(µ) = g0H = {(1, 0), (1, 1)}.

Thus µ is not coset aperiodic. But one computes that

supp(µ2) = (g0H)(g0H) = {(0, 0), (2, 0), (2, 1), (0, 1)}.

Since m is odd, the element (2, 0) generates the subgroup {(s, 0) : s ∈ Zm}
of G. One easily deduces that the set supp(µ2) generates G, and since
e = (0, 0) ∈ supp(µ2) we conclude from Remark (1) above that µ2 is coset
aperiodic.

3. Irreducible measures

In this section, we develop the basic properties of irreducible, spread out
measures on G. The key result is Proposition 3.3 below, which gives a finite
partition of G into cosets such that, roughly speaking, the random walk on
G governed by µ moves cyclically between the elements of the partition. The
existence of such a partition is already well known for irreducible Markov
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chains on discrete spaces (see for example [15, p.3]).
Before giving Proposition 3.3, we need some lemmas. Adopt the con-

vention that µ0 := δe for any µ ∈ P(G).

Lemma 3.1 Let µ ∈ P(G) be irreducible and spread out. Then for any
g ∈ G, there exist n ∈ N, c > 0, and a non-empty open neighborhood V of
g, such that

µn ≥ cχV .

As a consequence,

G =
⋃
n∈N

supp(µn). (3)

Lemma 3.1 implies that {n ∈ N : e ∈ supp(µn)} is non-empty, so that
the period d of µ is well defined (see (2)).

Proof of Lemma 3.1. Since µ is spread out, one has µn1 ≥ cχW for some
n1 ∈ N, c > 0 and a non-empty open set W . Because µ is irreducible, by
(1) there exists an n2 ∈ N such that gW−1 ∩ supp(µn2) is non-empty. By
choosing a w ∈ W such that gw−1 ∈ supp(µn2), and writing g = (gw−1)w,
we see from Lemma 2.5 that µn1+n2 ≥ c′χV for some open set V containing
g. ¤

Lemma 3.2 Let µ ∈ P(G) be irreducible and spread out with period d. Let
k, l ∈ N0 := {0, 1, 2, . . .} and let g, h ∈ G with g ∈ supp(µk), h ∈ supp(µl).
Then gh ∈ supp(µk+l), and there exists an n ∈ N such that nd > k and
g−1 ∈ supp(µnd−k). If, in addition, g ∈ supp(µk′

) for some k′ ∈ N0, then
k′ − k = md for some m ∈ Z.

Proof. That gh ∈ supp(µk+l) is clear. Next, by (3) we have g−1 ∈ supp(µj)
for some j ∈ N. Then

e = gg−1 ∈ supp(µk+j),

and it follows from the definition of the period that d divides k + j. Thus
j = nd − k for some n ∈ N, as desired.

Finally, suppose also that g ∈ supp(µk′
). By what was just proved, we

have g−1 ∈ supp(µsd−k′
) for some s ∈ N with sd > k′. Then e = gg−1 ∈

supp(µk+sd−k′
) and consequently d divides k − k′, as required. ¤
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Proposition 3.3 Let µ ∈ P(G) be irreducible and spread out with period
d. Define G′ :=

⋃
n∈N0

supp(µnd). Then G′ is an open normal subgroup of
G, supp(µd) ⊆ G′, and G/G′ ∼= Zd.

Let y ∈ supp(µ). Then yG′ generates the group G/G′, and G/G′ =
{yjG′ : j = 0, 1, . . . , d − 1}. Moreover, supp(µ) ⊆ yG′.

If f ∈ Lp and supp(f) ⊆ yjG′ for some j ∈ {0, 1, . . . , d − 1}, then
supp(µn ∗ f) ⊆ yn+djG′ for all n ∈ N0 (where +d denotes addition modulo
d).

When regarded as an element of P(G′), the measure µd is irreducible
and spread out with period 1, and eventually coset aperiodic.

Proof of Proposition 3.3. For each j ∈ {0, 1, . . . , d − 1} define a subset
Yj ⊆ G by

Yj :=
⋃

n∈N0

supp(µnd+j),

and put G′ := Y0. Then G =
⋃d−1

j=0 Yj by Lemma 3.1, and the Yj ’s are
pairwise disjoint by the last statement of Lemma 3.2. Lemma 3.2 also
implies that

Y −1
0 = Y0, Y −1

j = Yd−j

for j ∈ {1, . . . , d − 1}, and that

YkYk′ ⊆ Yk+dk′

for all k, k′ ∈ {0, 1, . . . , d − 1}, where +d denotes addition modulo d. In
particular, it follows that G′ = Y0 is a subgroup of G. Since µd is spread
out, G′ has non-empty interior and is therefore an open subgroup of G.

Fix an element y ∈ supp(µ). For j ∈ {1, . . . , d − 1}, since yj ∈ Yj and
y−j ∈ Yd−j , we find that

yjY0 ⊆ YjY0 ⊆ Yj = yj(y−jYj) ⊆ yjY0,

proving that Yj = yjY0. A similar argument yields that Yj = Y0y
j . We

conclude that G′ = Y0 is a normal subgroup of G, and that the group G/G′

consists of the d distinct elements yjG′, j ∈ {0, 1, . . . , d − 1}. Thus yG′ ∈
G/G′ generates G/G′, and G/G′ ∼= Zd.

Next, it is obvious from the definitions that supp(µd) ⊆ Y0 = G′ and
supp(µ) ⊆ Y1 = yG′. The statement about supp(µn ∗ f) follows easily from
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what we have already proved.
It is clear that µd is spread out and irreducible as an element of P(G′).

Moreover, the definition of d implies that gcd(S′) = 1, where by definition

S′ := {n ∈ N : e ∈ supp(µnd)}.

Thus µd has period 1 as an element of P(G′).
Finally, we show that µd is eventually coset aperiodic in G′. Now S′ has

the semigroup property that n, n′ ∈ S′ implies n + n′ ∈ S′; since gcd(S′) =
1, it follows that there exist n1, n2 ∈ S′ with n2 − n1 = 1. Then

supp(µd) = e supp(µd) ⊆ supp(µn1d) supp(µd) ⊆ supp(µn2d),

and it follows that µn2d is adapted in G′. But e ∈ supp(µn2d), so by Re-
mark (1) in Section 2, µn2d is coset aperiodic in G′. ¤

Corollary 3.4 Let µ ∈ P(G) be irreducible and spread out with period d.
Then µ is eventually coset aperiodic in G if and only if d = 1.

Proof of Corollary 3.4. If d = 1, the statement of the corollary is contained
in Proposition 3.3. If d ≥ 2, then it is clear from Proposition 3.3 that for
every n ∈ N, µnd is not adapted in G, hence µ cannot be eventually coset
aperiodic in G (see Remark (2) in Section 2). ¤

We remark that in the example at the end of Section 2, µ ∈ P(G) is
irreducible and spread out with period 1, eventually coset aperiodic but not
coset aperiodic.

Corollary 3.5 Let µ ∈ P(G) be irreducible and spread out with period d.
If G is connected, then d = 1.

Proof. By Remark (3) in Section 2, µ is eventually coset aperiodic, and
hence d = 1 by Corollary 3.4. ¤

The following positivity result (which is not used in the rest of the
paper) gives further information on the convolution powers of an irreducible
measure.

Proposition 3.6 Adopt the hypotheses and notation of Proposition 3.3.
If K is any compact subset of G′, then there exists an N ∈ N and numbers
cn > 0 such that

µnd ≥ cnχK (4)
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for all n ∈ N with n ≥ N .

Proof. Since µd is irreducible in the group G′ with period 1, we will assume
without loss of generality that d = 1 and G′ = G.

Let n1 be as in the proof of Proposition 3.3, so that e ∈ supp(µn1) and
e ∈ supp(µn1+1). For n ∈ N with n ≥ n2

1, by division

n = qn1 + r = (q − r)n1 + r(n1 + 1)

for some integers q, r with q ≥ n1 and 0 ≤ r < n1. It follows that

e ∈ supp(µn)

for all n ≥ n2
1. Combining this result with Lemmas 3.1 and 2.5, it is easy

to argue that for any g ∈ G there exist an open neighborhood Vg of g and
N(g) ∈ N such that

µn ≥ c(n, g)χVg

for all n ≥ N(g) and some numbers c(n, g) > 0. The Proposition then
follows by compactness of K. ¤

4. Proof of Theorem 1.4

Essentially, Theorem 1.4 will be derived by applying Theorem 1.2 to
the measure µd where d is the period. To see that µd is centered in the
subgroup of G generated by supp(µd), we will need the following non-trivial
result, whose proof is deferred until Section 5.

Theorem 4.1 Let G′ be an open, normal subgroup of G such that G/G′ ∼=
Zd for some d ∈ N. Fix y ∈ G such that the element yG′ ∈ G/G′ generates
the group G/G′, and let µ ∈ P(G) with supp(µ) ⊆ yG′. Then supp(µd) ⊆
G′, so that we may regard µd as an element of P(G′).

If, in addition,
∫
G dµρ < ∞ and µ is centered in G, then µd is centered

in G′.

Note that in the statement of Theorem 4.1, µ is not assumed to be
irreducible and the integer d need not be the period.

Let us prove Theorem 1.4. Take µ ∈ P(G) as in the hypothesis of the
Theorem, with period d, and let G′ be defined as in Proposition 3.3. Fix an
element y ∈ supp(µ). By Proposition 3.3, µd ∈ P(G′) is irreducible, spread
out, and eventually coset aperiodic on G′. Theorem 4.1 shows that µd is
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centered in G′.
Fix a modulus function ρ′ : G′ → N for the compactly generated group

G′. Since G/G′ is finite, it is easy to see that for some c > 0 one has

c−1ρ(g′) ≤ ρ′(g′) ≤ cρ(g′) (5)

for all g′ ∈ G′. From the assumption
∫
G dµρ2 < ∞ it is then easy to

deduce that
∫
G′ dµd(ρ′)2 < ∞. Thus µd satisfies all of the hypotheses of

Theorem 1.2 on the group G′, so by Theorem 1.2 Tµd is analytic in L2(G′),
that is,

‖(I − T d
µ )Tnd

µ f‖L2(G′) ≤ cn−1‖f‖L2(G′) (6)

for all n ∈ N and f ∈ L2(G′).
Since G′ is an open subgroup of G, we may identify L2(G′) with the

subspace of L2(G) consisting of functions with support contained in G′ (to
justify this, note that left Haar measure on G′ is just the restriction to
G′ of left Haar measure dg on G). Define the right translation operators
R(g) ∈ L(L2(G)), g ∈ G, by (R(g)f)(h) := f(hg), f ∈ L2(G), h ∈ G. For
any f ∈ L2(G), since G is the disjoint union of the sets yjG′ = G′yj for
j ∈ {0, 1, . . . , d − 1}, we can write

f =
d−1∑
j=0

R(yj)fj

where

fj := R(y−j)(χyjG′f) ∈ L2(G′) ⊆ L2(G).

Because ‖R(g)F‖2 = ∆(g)−1/2‖F‖2 for any F ∈ L2(G), g ∈ G, where
∆: G → (0, ∞) is the modular function of G, one has

‖fj‖2 ≤ c‖f‖2

where c > 0 is a constant independent of f . By these observations, together
with (6) and the fact that R(yj) commutes with Tµ, we obtain an estimate

‖(I − T d
µ )Tnd

µ f‖2 =
∥∥∥d−1∑

j=0

R(yj)(I − T d
µ )Tnd

µ fj

∥∥∥
2
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≤ c′
d−1∑
j=0

‖(I − T d
µ )Tnd

µ fj‖2

≤ cn−1
d−1∑
j=0

‖fj‖2 ≤ c′n−1‖f‖2

for all f ∈ L2(G) and n ∈ N. This proves Theorem 1.4. ¤

Remark For any µ ∈ P(G) which is irreducible and spread out with period
d, one has

σL2(Tµ) ⊆ D ∪ Rd

where Rd = {τ ∈ C : τd = 1}. To see this, first apply Theorem 1.2 to the
measure µd ∈ P(G′) to obtain that

σL2(G′)(Tµd) ⊆ D ∪ {1}.

But by reasoning similar to the last part of the proof of Theorem 1.4, one
can show that σL2(G′)(Tµd) = σL2(G)(Tµd). Then the claimed result follows
by the spectral mapping theorem.

Note that for irreducible random walks on discrete spaces, related spec-
tral results are given in, for example, [15, p. 94–96].

5. Proof of Theorem 4.1

In this section, we shall assume the hypotheses of Theorem 4.1. In
particular, G′ is an open normal subgroup of G with G/G′ ∼= Zd for some
d ∈ N, and y ∈ G is a fixed element such that yG′ generates G/G′.

The first statement of Theorem 4.1 is easy to prove: for µ ∈ P(G) with
supp(µ) ⊆ yG′, one has

supp(µd) ⊆ (yG′)d = ydG′ = G′

as claimed, using the fact that yd ∈ G′.
It is not trivial, however, to show that µd is centered in G′. The reason

is that a probability measure on G′ need not be centered in G′ even if it is
centered in G (it is easy to find examples of this where G is a finite extension
of G′ ∼= Rs for some s).

Recall that Hom(H, R) denotes the vector space of continuous homo-
morphisms from a locally compact group H into R. To compare centered-
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ness on G and on G′, the following concept is useful. An element η ∈
Hom(G′, R) is said to be G-invariant if

η(gxg−1) = η(x)

for all x ∈ G′ and g ∈ G. The G-invariant elements form a vector subspace,
denoted HomG(G′, R), of Hom(G′, R).

Lemma 5.1 Given η ∈ Hom(G′, R), the following two conditions are
equivalent.
( I ) There exists an η ∈ Hom(G, R) which is an extension of η, that is,

η(x) = η(x) for all x ∈ G′.
(II) η is G-invariant.

Moreover, if these conditions are satisfied, then the extension η ∈
Hom(G, R) of η is unique.

Remark Lemma 5.1 implies that Hom(G, R) is isomorphic as a vector
space with HomG(G′, R).

Proof of Lemma 5.1. If Condition (I) holds then η(gxg−1) = η(x) for all
x ∈ G′ and g ∈ G, because η ∈ Hom(G, R). Thus (II) holds.

Conversely, to prove that (II) implies (I), let η ∈ Hom(G′, R) be G-
invariant. Since G is the disjoint union of the sets yjG′ for j ∈ {0, 1, . . . , d−
1}, we may define η : G → R by

η(yjx) := jd−1η(yd) + η(x) (7)

for j ∈ {0, 1, . . . , d − 1} and x ∈ G′. By taking j = 0, it is clear that η is
an extension of η. To show that η ∈ Hom(G, R), we shall check that

η((yjz)(ykw)) = η(yjz) + η(ykw) (8)

for all j, k ∈ {0, 1, . . . , d − 1} and z, w ∈ G′. One writes

(yjz)(ykw) = yj+k((y−kzyk)w)

in case j + k ≤ d − 1, or

(yjz)(ykw) = yj+k−d(yd(y−kzyk)w)

in case j + k ≥ d, and uses the G-invariance of η to see that both sides of
(8) are equal to

(j + k)d−1η(yd) + η(z) + η(w)
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(we leave the details to the reader). Thus η ∈ Hom(G, R), proving that (II)
implies (I).

For the final statement of the lemma, observe that if η1 ∈ Hom(G, R)
is an extension of η ∈ Hom(G′, R) then η1 is uniquely determined by the
formula

η1(g) = d−1η1(gd) = d−1η(gd)

for all g ∈ G, because gd ∈ G′. ¤

The idea of the next result is that by averaging with respect to the
action of the finite group G/G′, we can associate a G-invariant element
with any element of Hom(G′, R).

Lemma 5.2 Given η ∈ Hom(G′, R), there exists a unique element η̂ ∈
Hom(G, R) such that

η̂(x) =
1
d

d−1∑
j=0

η(yjxy−j) (9)

for all x ∈ G′.

Proof. Define a map η̂ : G′ → R by equation (9), and note that η̂ ∈
Hom(G′, R). Because yd ∈ G′, one has η(ydxy−d) = η(x) for all x ∈ G′.
From this and (9), it is easy to see that

η̂(ykxy−k) = η̂(x)

for all x ∈ G′ and k ∈ {0, 1, . . . , d − 1}. Since any g ∈ G can be written
as g = ykz with k ∈ {0, 1, . . . , d − 1} and z ∈ G′, we deduce that η̂ is
G-invariant. Hence by Lemma 5.1, η̂ extends uniquely to an element η̂ ∈
Hom(G, R). ¤

Now the key result to obtain Theorem 4.1 is the following.

Lemma 5.3 Let µ ∈ P(G) satisfy
∫
G dµρ < ∞ and supp(µ) ⊆ yG′. Then

for any η ∈ Hom(G′, R) one has∫
G′

dµd(x)η(x) = d
(∫

G
dµ(g)η̂(g)

)
, (10)

where η̂ ∈ Hom(G, R) is as in Lemma 5.2.
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Proof. Because supp(µ) ⊆ yG′ = G′y, the measure

ν0 := µ ∗ δy−1 ∈ P(G)

has support contained in G′, and can therefore be regarded as an element
of P(G′). Similarly, for j ∈ {1, . . . , d− 1} the measures νj := δyj ∗ ν0 ∗ δy−j

are elements of P(G′). Now the crucial observation is that

µd = (ν0 ∗ δy)d = ν0 ∗ ν1 ∗ · · · ∗ νd−1 ∗ δyd , (11)

where the convolutions on the right side can be regarded as taking place on
the group G′. Also note that

∫
G′ dνjρ

′ < ∞ where ρ′ is a modulus on G′

(see (5)).
For any τ1, τ2 ∈ P(G′) satisfying the moment condition

∫
G′ dτiρ

′ < ∞,
i = 1, 2, it is easy to see that∫

G′
d(τ1 ∗ τ2)η =

∫
G′

dτ1η +
∫

G′
dτ2η

for all η ∈ Hom(G′, R) (the moment condition ensures that the integrals
are all finite). Combining this fact with (11) and (9), one obtains∫

G′
dµd(x)η(x) =

d−1∑
j=0

∫
G′

dνj(x)η(x) +
∫

G′
dδyd(x)η(x)

=
d−1∑
j=0

(∫
G′

dν0(x)η(yjxy−j)
)

+ η(yd)

= d
(∫

G
dν0(g)η̂(g)

)
+ η(yd);

in the last line, we used the fact that supp(ν0) ⊆ G′ to change the integration
space from G′ to G. But since ν0 = µ ∗ δy−1 and η̂ ∈ Hom(G, R), we have∫

G
dν0(g)η̂(g) =

∫
G

dµ(g)η̂(g) + η̂(y−1)

and η̂(y−1) = −d−1η̂(yd) = −d−1η(yd), with the last equality a consequence
of (9). Combining these equalities yields (10). ¤

The second statement of Theorem 4.1 follows immediately from Lemma
5.3, since for µ centered in G the right side of (10) equals zero. This finishes
the proof of Theorem 4.1 and Theorem 1.4.
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