Hokkaido Mathematical Journal Vol. 37 (2008) p. 861-870

Bilinear Strichartz estimates and applications to the cubic nonlinear Schrödinger equation in two space dimensions*

Hideo TAKAOKA

(Received March 11, 2008; Revised July 14, 2008)

Abstract. The initial value problem for the defocusing cubic nonlinear Schrödinger equation on \mathbb{R}^2 is locally well-posed in H^s for $s \ge 0$. The L^2 -space norm is invariant under rescaling to the equation, then the critical regularity is s = 0. In this note, we prove the global well-posedness in H^s for all s > 1/2. The proof uses the almost conservation approach by adding additional (non-resonant) correction terms to the original almost conserved energy.

Key words: Strichartz estimate, nonlinear Schrödinger equation, global well-posedness.

1. Introduction

This note concerns with the initial value problem (IVP) for the cubic nonlinear Schrödinger equation in \mathbb{R}^{1+2}

$$\begin{cases} i\partial_t u(t, x) + \Delta u(t, x) = |u(t, x)|^2 u(t, x), & (t, x) \in \mathbb{R}^{1+2} \\ u(0, x) = u_0(x) \in H^s(\mathbb{R}^2), \end{cases}$$
(1.1)

where $H^s(\mathbb{R}^2)$ denotes the inhomogeneous Sobolev space. In general, the conservation laws of L^2 -mass and \dot{H}^1 -energy can be used to obtain the global well-posedness results in L^2 and H^1 spaces. We will be interested in the global-in-time well-posedness of (1.1) for low-regularity s below the energy regularity.

The equation (1.1) has the L^2 -mass conservation law

$$\int_{\mathbb{R}^2} |u(t, x)|^2 dx = \int_{\mathbb{R}^2} |u_0(x)|^2 dx,$$
(1.2)

²⁰⁰⁰ Mathematics Subject Classification : 35Q55.

^{*}This is joint work with James Colliander, Markus Keel, Gigliola Staffilani and Terence Tao [8]. This note summarizes the result the author presented at the Nonlinear Wave Equations at Hokkaido University.

and the (total) energy conservation law

$$E[u(t)] := \int_{\mathbb{R}^2} \frac{1}{2} |\nabla u(t, x)|^2 + \frac{1}{4} |u(t, x)|^4 dx = E[u_0].$$
(1.3)

It is known that the IVP (1.1) is locally well-posed when $s \ge 0$, and the time-interval of existence of solution can be obtained in the term of H^s norm of the data when s > 0 (cf. [4, 14])¹. Moreover, the solution-map $u_0 \mapsto u(t)$ is continuous² for $s \ge 0$, and not uniformly continuous for s < 0.

The L^2 -space is the critical space for (1.1) with respect to the scale invariant space under the scaling symmetry

$$u(t, x) \mapsto \frac{1}{\lambda} u\left(\frac{t}{\lambda^2}, \frac{x}{\lambda}\right), \quad \lambda > 0$$
 (1.4)

or the Galilean invariant space under the Galilean symmetry

$$u(t, x) \mapsto e^{ix \cdot v + it(|v|^2/2)} u(t, x - vt), \quad v \in \mathbb{R}^2.$$

From the conservation laws (1.2)–(1.3) (and Sobolev inequality), we obtain the time-global a priori estimate for solutions in H^s for s = 0 or s = 1 of the form

$$\sup_{|t| \le T} \|u(t)\|_{H^s} \le C(s, \|u_0\|_{H^s}, T)$$
(1.5)

for all T > 0. This form of the a priori bound in conjunction with the proof of the local existence theory (in particular the time interval to guarantee the existence of solution depends on the H^s -norm of data) can be used to prove the global well-posedness in H^s for $s \ge 1$. The a priori estimate (1.5) holds for s = 0, but the lack of the L^2 -local well-posedness theorem can not immediately prove the global well-posedness result in L^2 (If data are small, the global well-posedness holds in L^2 including scattering result).

The first breakthrough to establish the H^s -global well-posedness for fractional exponent s of H^s has been developed by the Fourier truncation method of J. Bourgain [2] who obtained for s > 3/5. This result was improved by the Almost conserved quantities [7], which obtained the estimate (1.5) for s > 4/7. These two methods use a low-frequency/high-frequency

¹When s = 0, the time-interval of existence of solution depends upon the profile of data.

²When s > 0, the H^s well-posedness is shown by the contraction mapping theorem. Then the solution-map is analytic.

decomposition approach, but estimate the nonlinear interactions (low-high energy cascade) in different ways.

<u>Fourier truncation method.</u> With a cut-off frequency $|\xi| = N$, we assess the low-frequency component in $|\xi| \leq N$ and the high-frequency component in $|\xi| > N$, respectively. Roughly, if the solution is decomposed into three components: low frequencies nonlinearly (via original equation (1.1)), high frequencies nonlinearly (via original equation (1.1)) and the low-high frequencies interaction nonlinearly (coupled equation of low-high frequencies). The low frequencies solution conserves the H^1 -energy (1.3), but this is large. One observes that the high frequencies solution an be approximated to evolve linearly. One prove that the low-high (high-high also) frequency interactions are small error in H^1 , under certain smoothing property, compared to the low-low frequency interactions, provided choosing N. On the other hand, the almost conserved quantities proceed slightly different with the method.

<u>Almost conserved quantities.</u> This method uses the modified energy $\overline{E_N[u(t)]} = E[I_Nu(t)]$, where $I = I_N$ is a Fourier multiplier operator mapping from H^s to H^1 (defined in Section 2.1). More precisely, I = identy for low frequency, while $I = N^{1-s} |\nabla|^{s-1}$ for high frequency. If N large, the modified energy $E_N[(u(t))]$ is qualifiedly equal to the original energy E[u(t)]. The low frequency interaction is estimated in H^1 energy space. The low-high (high-high also) frequency interaction is estimated with approximately conserved energy E_N in $I_N H^s$. Thus the multiplier operator I_N has an advantage of improving the estimate developed in [7] for the low-high frequency nonlinear interactions.

In this note we improve the result of [7] and present the following theorem.

Theorem 1 Let s > 1/2. Then the initial value problem (1.1) is globally well-posed in H^s . More specifically, for any $u_0 \in H^s$, there exists a unique global solution u(t) to (1.1) in $C_t(\mathbb{R}: H^s_x)$. rthermore, the a priori bound (1.5) holds.

The proof relies on the modification of the almost conserved quantities used in [7] by adding *resonant correction terms*.

Remark 1 Theorem 1 holds for the focusing cubic nonlinear Schrödinger equation (replacing the sign of nonlinearity), assuming the smallness of the L^2 -norm of the initial data $||u_0||_{L^2} < ||Q||_{L^2}$, where Q is the positive solution of $\Delta Q - Q = -Q^3$ (grand state solution for the focusing nonlinear Schrödinger equation).

Remark 2 Fang and Grillakis obtained the global well-posedness at s = 1/2 by using the interaction Morawetz estimate [11], and Colliander, Grillakis and Tzirakis [5] improved this for s > 2/5 by combining the Morawetz estimate with the almost conserved quantities. In more recently, Kllip, Tao and Visan [12] obtained global well-posedness and scattering for all $s \ge 0$, though radial data. But Theorem 1 (in particular Theorem 2) seems interesting, because the angularly constrained Strichartz estimate (Corollary 1) in conjunction with [5, 11] may improve the global well-posedness for s > 4/13 without radial condition on the initial data.

Open problem It is conjectured that (1.1) is globally well-posed and scatters to free solution for all data in L^2 . This conjecture still remains open.

2. Sketch of the proof of Theorem 1

The strategy of the almost conserved quantities is as follows: First fix an arbitrary time interval [0, T]. Let $E_N[u(t)]$ be a new energy for solutions in H^s depending on a parameter $N \gg 1$ and take the rescaling. We prove again the local well-posedness result in the space associated to $E_N[(u(t))]$ on time intervals of length $\delta \sim 1$. Finally, we perform the iteration on the time interval [0, T] to derive the a priori estimate of solutions with rescaling. How is it that our argument is successful? The variant of the energy E_N is very slowly in t. In particular, the energy E_N is almost conserved to evolve of (1.1). For Theorem 1, we use a slight variant $\widetilde{E}[u(t)] = \widetilde{E}_N[u(t)]$ of $E_N[u(t)]$.

2.1. Almost conserved quantity

An almost conserved quantity is defined as follows: Let $N \gg 1$ and

$$\widehat{Iu}(\xi) = \widehat{I_N u}(\xi) = m(\xi)\widehat{u}(\xi)$$

where $m(\xi)$ is an even C^{∞} -monotone function which equals to 1 for $|\xi| < N$ and equals to $(|\xi|/N)^{s-1}$ for $|\xi| > 2N$. We define

Nonlinear Schrödinger equation

$$E_N[u(t)] = E[Iu(t)].$$
 (2.1)

This quantity is almost conserved to evolve the solution of (1.1) in the following sense:

$$\frac{d}{dt}E_N[u(t)] = -2\operatorname{Re}\int_{\mathbb{R}^2}\overline{I\partial_t u}(I(|u|^2u) - |Iu|^2Iu)dx$$
$$= O(N^{-\alpha}), \qquad (2.2)$$

for some $\alpha > 0$ ($\alpha = 3/2 - \varepsilon$ is obtained in [7]). With E_N , we obtain the a priori estimate (1.5) for s > 4/7.

2.2. Resonant correction terms

Improving the error term $N^{-\alpha}$ in (2.2), we try to remove the biquadratic term in (2.2). At the present, we use the following modified energy functional $\tilde{E}[u(t)]$:

$$\widetilde{E}[u(t)] = \Lambda_2(\sigma_2; u) + \Lambda_4(\widetilde{\sigma_4}; u)$$

where

$$\begin{split} \Lambda_k(\sigma; u) &= \int_{\xi_1 + \dots + \xi_k = 0} \sigma(\xi_1, \dots, \xi_k) \widehat{u}(\xi_1) \cdots \widehat{\overline{u}}(\xi_k), \\ \sigma_2 &= -\frac{1}{2} \xi_1 m_1 \xi_2 m_2, \\ \widetilde{\sigma_4} &= \frac{|\xi_1|^2 m_1^2 - |\xi_2|^2 m_2^2 + |\xi_3|^2 m_3^2 - |\xi_4|^2 m_4^2}{4(|\xi_1|^2 - |\xi_2|^2 + |\xi_3|^2 - |\xi_4|^2)} \mathbb{1}_{\Omega_{nr}}, \\ \Omega_{nr} &= \{(\xi_1, \dots, \xi_4) \colon \max |\xi_k| \le N \text{ or } |\cos \angle (\xi_{12}, \xi_{14})| \ge \theta > 0\}, \end{split}$$

 $(\xi_{ij} = \xi_i + \xi_j \text{ etc}) \ \mathbf{1}_{\Omega_{nr}}$ is the characteristic function on Ω_{nr} , and $m_k = m(\xi_k)$. $\theta = \theta(N) > 0$ is defined later depending on N (Section 2.4).

Remark 3 With the above functions, we can write the first generation of the modified energy $E_N[u(t)]$ as follows:

$$E_N[u(t)] = \Lambda_2(\sigma_2; u) + \Lambda_4(\sigma_4; u),$$

where

$$\sigma_4 = \frac{1}{4}m_1m_2m_3m_4.$$

Remark 4 The resonant sets

$$\xi_1 + \xi_2 + \xi_3 + \xi_4 = 0,$$

$$0 = |\xi_1|^2 - |\xi_2|^2 + |\xi_3|^2 - |\xi_4|^2 = 2\xi_{12} \cdot \xi_{14},$$

 $(\xi_{12} \text{ and } \xi_{14} \text{ are almost orthogonal})$ are almost canceled from the biquadratic form of $\Lambda_4(\sigma_4; u)$ in the following sense

$$\frac{d}{dt}\widetilde{E}[u(t)] = \Lambda_4(\widetilde{\sigma_4}; u) + \Lambda_6(\widetilde{\sigma_6}; u)$$
(2.3)

where

$$\widetilde{\sigma_4} = (|\xi_1|^2 m_1^2 - |\xi_2|^2 m_2^2 + |\xi_3|^2 m_3^2 - |\xi_4|^2 m_4^2) \mathbf{1}_{\Omega_r}$$

$$\Omega_r = \{(\xi_1, \dots, \xi_4) \colon \max |\xi_k| > N \text{ and } |\cos \angle (\xi_{12}, \xi_{14})| < \theta\}$$

(we skip the details for the symbol $\widetilde{\sigma_6}$ in this note, because the biquadratic term is leading). Exploiting the presence of resonance condition Ω_r is our improvement of the previous work in [7].

The interest of the resonance condition lies in the following estimate.

Theorem 2 Angularly refined bilinear Strichartz estimate Let $0 < N_1 < N_2$ and $\theta \in (0, 1/100)$. For $\phi_1, \phi_2 \in L^2$ with Fourier frequencies N_1, N_2 , respectively, we have

$$||F||_{L^2_{t,x}} \lesssim \min\left\{\theta, \frac{N_1}{N_2}\right\}^{1/2} ||\phi_1||_{L^2} ||\phi_2||_{L^2}$$

where

$$F(t, x) = \int_{\xi_1 + \xi_2 = 0} e^{ix(\xi_1 + \xi_2)} 1_{|\cos \angle (\xi_1, \xi_2)| \le \theta} \widehat{e^{it\Delta}\phi_1}(\xi_1) \widehat{e^{it\Delta}\phi_2}(\xi_2).$$

The above estimate without angularly constrained was already obtained in [2]. The proof of Theorem 2 follows an argument in [2] under the additional restriction on the angle between interacting frequencies.

We recall the Fourier restriction norm space $X_{s,b}[0, T]$ with the following norm [1]:

$$||f||_{X_{s,b}[0,T]} = \inf\{||g||_{X_{s,b}} \mid f = g \text{ on } (t, x) \in [0, T] \times \mathbb{R}^2\}$$

where

$$\|g\|_{X_{s,b}}^2 = \int_{\mathbb{R}^3} (1 + |\tau + |\xi|^2|)^{2b} (1 + |\xi|)^{2s} |\widehat{g}(\tau, \xi)|^2 d\xi d\tau$$

The following corollary immediately follows from Theorem 2.

Corollary 1 Let $0 < N_1 < N_2$ and $\theta \in (0, 1/100)$. For $u_1, u_2 \in X_{0,1/2+\varepsilon}$ such that

$$\operatorname{supp} \widehat{u_1}(t, \xi) = \{ |\xi| \sim N_1 \}, \ \operatorname{supp} \widehat{u_2}(t, \xi) = \{ |\xi| \sim N_2 \},\$$

and $|\cos \angle (\xi_1, \xi_2)| \leq \theta$ for $\xi_1 \in \operatorname{supp} \widehat{u_1}(t, \xi)$ and $\xi_2 \in \operatorname{supp} \widehat{u_2}(t, \xi)$, we have

$$\|u_1 u_2\|_{L^2(\mathbb{R}^{1+2})} \lesssim \min\left\{\theta, \frac{N_1}{N_2}\right\}^{1/2} \|u_1\|_{X_{0,1/2+\varepsilon}} \|u_2\|_{X_{0,1/2+\varepsilon}}.$$
 (2.4)

2.3. Local well-posedness in IH^s -space

In this section we prove the local well-posedness of the initial value problem obtained by acting on (1.1) with the operator I

$$\begin{cases} iIu_t(t, x) + \Delta Iu(t, x) = I(|u(t, x)|^2 u(t, x)), \\ Iu(0, x) = Iu_0(x). \end{cases}$$
(2.5)

We still have the following local well-posedness theorem (cf. [4, 14, 7]).

Lemma 1 (Modified Local well-posedness) Let s > 0. The Cauchy problem (2.5) is locally well-posed on $[0, T_0], T_0 = T_0(||Iu_0||_{H^1})$ with solution u(t) such that

$$Iu \in C([0, T]: H^1), \quad ||Iu||_{X_{1,1/2+\varepsilon}[0,T_0]} \lesssim (||Iu_0||_{H^1}).$$

Next we give that $\widetilde{E}[u(t)]$ controls data size as follows:

Lemma 2 Let $u(t) \in H^s$ (s > 1/2) be a solution to (1.1). Then

$$\|Iu(t)\|_{\dot{H}^1}^2 \le \widetilde{E}[u(t)] + \frac{c}{\theta N^{2-\varepsilon}} \|Iu(t)\|_{\dot{H}^1}^2 \|Iu(t)\|_{\dot{H}^1}^2,$$

where θ is given by (2.3).

The proof of Lemma 2 is essentially similar to [7]. Therefore we omit details.

2.4. $\tilde{E}[u(t)]$ obeys the almost conservation law

Lemma 3 (Almost conservation) Let $u(t) \in H^s$ (s > 1/2) be a solution to (1.1). For $t \ge 0$, we have

$$\widetilde{E}[u(t)] \leq \widetilde{E}[u(0)] + \Big(\frac{1}{N^{2-\varepsilon}} + \frac{\theta^{1/2}}{N^{3/2-\varepsilon}} + \frac{1}{\theta N^{3-\varepsilon}}\Big)C(\|Iu\|_{X_{1,1/2+\varepsilon}[0,t]}).$$

Note that the choice $\theta = 1/N$ produces the pre-factor $cN^{-2+\varepsilon}$.

A brief outline of the proof of Lemma 3. By (2.3), we have

$$\widetilde{E}[u(t)] - \widetilde{E}[u(0)] = \int_0^t \Lambda_4(\widetilde{\sigma_4}; u) + \Lambda_6(\widetilde{\sigma_6}; u) ds$$
$$= I_1 + I_2.$$

We aim to show

$$I_1 + I_2 \le \left(\frac{1}{N^{2-\varepsilon}} + \frac{\theta^{1/2}}{N^{3/2-\varepsilon}} + \frac{1}{\theta N^{3-\varepsilon}}\right) C(\|Iu\|_{X_{1,1/2+\varepsilon}[0,t]}).$$
(2.6)

We use the Littlewood-Paley decomposition and break u into $u = \sum_N u_N$ where $\operatorname{supp} \widehat{u}(\xi) = \{ |\xi| \sim N \}.$

We consider (2.6) for the term I_1 and provide proofs for some special cases: $N_1 \sim N_2 \geq N$, $N_3 \gg N_4$ under the resonant condition $|\cos \angle (\xi_{12}, \xi_{14})| \leq \theta$. We need the following calculations

$$\begin{aligned} |\widetilde{\sigma_4}| &\le c(m(N_1)^2 N_1 N_3 \theta + m(N_3)^2 N_3^2), \\ |\cos \angle (\xi_1, \, \xi_3)| &= |\cos \angle (\xi_{14}, \, \xi_{34})| + O\left(\frac{N_4}{N_3}\right) \le \theta + O\left(\frac{N_4}{N_3}\right). \end{aligned}$$

Then taking $u_{N_2}u_{N_4}$ in L^2 , and $u_{N_1}u_{N_3}$ in L^2 , respectively, and using Corollary 1, we can estimate

$$\leq c \left(m(N_1)^2 N_1 N_3 \theta + m(N_3)^2 N_3^2 \right) \left(\frac{N_4}{N_2} \right)^{1/2} \left(\theta + \frac{N_4}{N_3} \right)^{1/2} \\ \times \prod_{j=1}^4 \| u_{N_j} \|_{X_{0,1/2+\varepsilon}},$$

this is bounded by

$$\leq c \frac{m(N_1)^2 N_1 N_3 \theta + m(N_3)^2 N_3^2}{m(N_1)^2 N_1^2 N_3 m(N_3) N_4} \left(\frac{N_4}{N_2}\right)^{1/2} \left(\theta + \frac{N_4}{N_3}\right)^{1/2} \\ \times \prod_{j=1}^4 \|I u_{N_j}\|_{X_{1,1/2+\varepsilon}}.$$

Splitting into two cases; $N_3 \ge N_4/\theta$ and $N_3 < N_4/\theta$ and summing over $N_1 \sim N_2 \ge N, N_3 \gg N_4$, we have the bound (2.6).

2.5. Induction energy implies the a priori estimate (1.5)

Finally, we give a sketch of the induction argument that Lemmas 1, 2 and 3 imply Theorem 1.

Let u(t) be a smooth solution of (1.1). By (1.4), consider the rescaled solution u_{λ}

$$u_{\lambda}(t, x) = \frac{1}{\lambda} u\left(\frac{t}{\lambda^2}, \frac{x}{\lambda}\right), \quad \lambda > 0.$$

Fix an arbitrary time interval [0, T]. We prove Theorem 1, if we construct a rescaled solution u_{λ} on $[0, \lambda^2 T]$. As in [6, 7, 8] the idea is to reach time $t = \lambda^2 T$ inductively using the energy estimates in Lemmas 2 and 3 and the local theory in Lemma 1. An easy computation shows that

$$||Iu_0||_{\dot{H}^1} \le c\lambda^{-s}N^{1-s}||u_0||_{H^s} \ll 1$$

provided we choose $\lambda \gg ||u_0||_{H^s}^{1/s} N^{(1-s)/s}$. From Lemmas 2 and 3, u(t) has the a priori estimate

$$\|Iu(t)\|_{\dot{H}^{1}} \leq \widetilde{E}[u(t)] \\ \leq \widetilde{E}[u(0)] + cN^{-2+\varepsilon}C(\|Iu\|_{X_{1,1/2+\varepsilon}[0,t]}).$$
(2.7)

We will show that by Lemma 1, $||Iu||_{X_{1,1/2+\varepsilon}[0,T_0]} \leq C$ and $T_0 = 1$ whenever $||Iu_0||_{\dot{H}^1} \ll 1$. Thus there is an increment in the energy of size at most $N^{-2+\varepsilon}$, if $||Iu||_{X_{1,1/2+\varepsilon}} \leq C$ in (2.7). Hence we want to ensure

$$N^{2-\varepsilon} \ge c\lambda^2 T = N^{2(1-s)/s} TC(||u_0||_{H^s})$$

which is achieved for s > 1/2 by letting N = N(T) sufficiently large. Notice that

$$\frac{1}{2} \|u(t)\|_{H^s}^2 \le \widetilde{E}[u(t)] + c \|u(t)\|_{L^2}^2.$$

This proves Theorem 1, using the L^2 -conservation law (1.2).

References

- Bourgain J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Schrödinger equations, The periodic KdV equation. Geom. Funct. Anal. 3 (1993), 107–156, 209–262.
- [2] Bourgain J., Refinement of Strichartz inequality and applications to 2D-NLS with critical nonlinearity. Internat. Math. Res. Notices 5 (1998), 253–283.

- [3] Bourgain J., Global solutions of nonlinear Schrödinger equations. AMS Colloquium Publications 46 (1999).
- [4] Cazenave T. and Weissler F.B., The Cauchy problem for the critical nonlinear Schrödinger equation. Non. Anal. TMA 14 (1990), 807–836.
- [5] Colliander J., Grillakis M. and Tzirakis N., Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on R². preprint (2007).
- [6] Colliander J., Keel M., Staffilani G., Takaoka H. and Tao T., Sharp Global wellposedness of KdV and modified KdV on the ℝ and T. J. Amer. Math. Soc. 16 (2003), 705–749.
- [7] Colliander J., Keel M., Staffilani G., Takaoka H. and Tao T., Almost conservation laws and global rough solutions to a Nonlinear Schrödinger Equation. Math. Res. Letters 9 (2002), 1–24.
- [8] Colliander J., Keel M., Staffilani G., Takaoka H. and Tao T., Resonant decompositions and the I-method for cubic nonlinear Schrödinger on ℝ². accepted in Discrete Cont. Dynam. Systems.
- [9] Colliander J., Keel M., Staffilani G., Takaoka H. and Tao, T., Weak turbulence for 2d periodic cubic defousing NLS. in preparation.
- [10] Ginibre J. and Velo G., Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. 64 (1985), 363–401.
- [11] Grillakis M. and Fang Y., On the global existence of rough solutions of the cubic defocusing Schrödinger equation in R²⁺¹. to appear in J.H.D.E. (2007).
- [12] Kllip R., Tao T. and Visan M., The cubic nonlinear Schrödinger equation in two dimensions with radial data. preprint, 2007.
- [13] Tao T., Visan M. and Zhang X., Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions. Duke Math. J. 140 (2007), 165–202.
- [14] Tsutsumi Y., L²-solutions for nonlinear Schrödinger equations and nonlinear groups. Funk. Ekva. 30 (1987), 115–125.

Department of Mathematics Kobe University