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Abstract. This article is a review of [6], which is concerned with the scattering theory

for the Schrödinger-improved Boussinesq system in two space dimensions.
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1. Introduction

We study the asymptotic behavior in time of solutions, (in particular,
scattering theory), for the Schrödinger-improved Boussinesq system (here-
after referred to as the Schrödinger-IBq system) in two space dimensions: i∂tu +

1
2
∆u = vu,

∂2
t v − ∆v − ∆∂2

t v = ∆|u|2,
(1.1)

where (t, x) ∈ R × R2, ∂t = ∂/∂t, ∆ is the Laplace operator for the space
variable x, and u and v are complex-valued and real-valued unknown func-
tions of (t, x), respectively. Following [6], we consider the existence of wave
operators for the system (1.1).

There are several results on the local and global existence of solutions
and the asymptotic behavior in time of solutions to the Schrödinger-IBq
system (1.1). Ozawa and Tsutaya [4] proved the local well-posedness for
the system (1.1) in the space L2 × L2 × L2 3 (u, v, ∂tv), when the space
dimension n ≤ 3 by the Strichartz estimate for the Schrödinger equation.
They also showed the global well-posedness in the energy class H1 × L2 ×
(L2∩Ḣ−1) when n ≤ 2. Furthermore, in [4], when the space dimension n =
4, the local well-posedness for this system in the L2-level for small initial
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data was shown. Cho and Ozawa [2] proved the existence of a unique global
solution to the system (1.1) in the energy class for small initial data, when
the space dimension n = 3 or 4. Furthermore, in [2], when n = 4, it was
also shown that the small global solution has a free profile in L2×L2× Ḣ−1

by the Strichartz estimate for the Schrödinger equation on the time interval
[0, ∞). Recently, Akahori [1] proved the local well-posedness in Hs1×Hs2×
Hs2 for −1/4 < s1 < 0 and −1/2 < s2 < 0 when n ≤ 3, and the global
well-posedness in L2×L2×L2 when n ≤ 2. For investigating the large time
behavior of solutions to the system (1.1) in relatively low dimensional case,
(that is, n ≤ 3), it seems that the method via the Strichartz estimate for the
Schrödinger equation on the time interval [0, ∞) in four-dimensional case in
[2] does not work, because the Strichartz estimate for the solution u on the
time interval [0, ∞) does not derive the optimal time decay of the solution
(u, v). In [6], the author proved that when the space dimension n = 2, for
given asymptotic data, there exists an asymptotically free solution to the
system (1.1) if the Schrödinger data is sufficiently small.

We compare the full dynamical system given by (1.1) and the free dy-
namics. We summarize properties of the free solutions. We introduce the
following operators

U(t) = eit∆/2, L = i∂t +
1
2
∆,

Ω = (1 − ∆)1/2, A = (−∆)1/2(1 − ∆)−1/2,

K(t) = A−1 sin tA, K̇(t) = cos tA.

We note that the solution to the Cauchy problem of the free Schrödinger
equation i∂tu +

1
2
∆u = 0, (t, x) ∈ R × Rn,

u(0, x) = φ(x), x ∈ Rn

is given by u(t, · ) = U(t)φ, and that the solution to the Cauchy problem of
the free IBq equation{

∂2
t v − ∆v − ∆∂2

t v = 0, (t, x) ∈ R × Rn,

v(0, x) = ψ0(x), ∂tv(0, x) = ψ1(x), x ∈ Rn

is given by v(t, · ) = K̇(t)ψ0 + K(t)ψ1. It is well-known that the solutions
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to the free Schrödinger equation satisfy

‖U(t)φ‖L∞
x (Rn) ≤ C|t|−n/2‖φ‖L1(Rn) (1.2)

if t 6= 0. Cho and Ozawa [3] proved the estimate for the solution to the free
IBq equation

‖K̇(t)φ‖L∞
x (Rn) + ‖K(t)ψ‖L∞

x (Rn)

≤ C|t|−n/2(‖Ω2nAn/2−1φ‖Ḃ0
1,1

+ ‖Ω2nAn/2−2ψ‖Ḃ0
1,1

)
(1.3)

if t 6= 0, where Ḃ0
1,1 is the homogeneous Besov space defined later. Hence it

seems that ‖v(t)u(t)‖L2(Rn), where vu is the interaction of the Schrödinger
component in the system (1.1), decays like t−n/2 as t → ∞, and that the
scattering problem for the system (1.1) in relatively low dimension is rather
difficult because ‖v(t)u(t)‖L2(Rn) decays slowly in low dimension. Since the
system (1.1) has quadratic nonlinearities, according to the general theory,
the two-dimensional case is the borderline between the short range and the
long range scattering. In this article, following [6], we consider the existence
of wave operators for the system (1.1) in two space dimensions, when the
Schrödinger asymptotic data is suitably small. The three-dimensional case
is easier than the two-dimensional case, according to the decay rate of the
free solutions (see the estimates (1.2) and (1.3)), since deriving integrability
of the L2-norms of the nonlinearities in the former case is easier than in the
latter one.

We introduce several notations. For ψ ∈ S ′, we denote the Fourier
transform of ψ by ψ̂ or Fψ. For m, s ∈ R, we introduce the weighted
Sobolev space:

Hm,s = {ψ ∈ S ′; ‖ψ‖Hm,s = ‖(1 + |x|2)s/2(1 − ∆)m/2ψ‖L2 < ∞}.

Hm denotes Hm,0. Ḣm is the homogeneous Sobolev space:

Ḣm = {ψ ∈ S ′; ‖ψ‖Ḣm = ‖(−∆)m/2ψ‖L2 < ∞}.

For m ∈ R and 1 ≤ q, r ≤ ∞, the homogeneous Besov space Ḃm
q,r is defined

as follows:

Ḃm
q,r = {ψ ∈ S ′; ‖ψ‖Ḃm

q,r
= ‖{2jm‖ϕj ∗ ψ‖Lq}j‖lrj (Z) < ∞},

where ϕ̂j(ξ) = φ̂(2−jξ) − φ̂(2−(j+1)ξ) and φ ∈ S is a function such that
φ̂ ∈ C∞

0 with 0 ≤ φ̂ ≤ 1, φ̂(ξ) = 1 when |ξ| ≤ 1 and φ̂(ξ) = 0 when |ξ| ≥ 2.
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The following theorem is essentially obtained in [6].

Theorem 1.1 Let the space dimension n = 2, and let (u+, v+0, v+1) be
asymptotic data such that u+ is complex valued, v+0 and v+1 are real valued,
u+ ∈ L2, (1 + |x|)u+ ∈ L1, v+0 ∈ H0,1 ∩ Ḣ−2 ∩ Ω−4Ḃ0

1,1, xv+0 ∈ Ḣ−1,
A−1v+1 ∈ L2 ∩ Ḣ−2 ∩ Ω−4Ḃ0

1,1 and xv+1 ∈ Ḣ−1 ∩ Ḣ−3. Assume that
‖u+‖L1

x
is sufficiently small. Then the system (1.1) has a unique solution

(u, v) satisfying

u ∈ C(R; L2
x), v ∈ C1(R;L2

x), (1.4)

sup
t≥1

tk‖u(t) − U(t)u+‖L2
x

< ∞, (1.5)

sup
t≥1

tk‖u − U( · )u+‖L4((t,∞);L4
x) < ∞, (1.6)

sup
t≥1

tk(‖v(t) − (K̇(t)v+0 + K(t)v+1)‖L2
x

+ ‖∂tv(t) − ∂t(K̇(t)v+0 + K(t)v+1)‖L2
x
) < ∞,

(1.7)

where 1/2 < k ≤ 3/4. Furthermore the wave operator

W+ : (u+, v0+, v1+) 7→ (u(0), v(0), (∂tv)(0))

is well-defined.
A similar result holds for the negative time.

Remark 1.1 In [6], the existence and uniqueness of an asymptotically free
solution to the system (1.1) are proved by solving the local Cauchy problem
at t = +∞ on the interval [T, ∞) for sufficiently large T ≥ 1. According to
the result on the global well-posedness for that system in L2 × L2 × L2 by
Akahori [1], we can extend the (local) asymptotically free solution obtained
in [6] to the whole time interval R so that (1.4)–(1.7) hold.

2. Strategy of the proof of Theorem 1.1

We introduce the strategy of the proof of Theorem 1.1. For the detailed
proof of it, see [6].

The proof consists of the following three steps.
( I ) Solving the Cauchy problem at infinite initial time. We introduce

the following function space:
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X([T, ∞)) = {(w, z) ∈ C([T, ∞);L2
x) ⊕ C1([T, ∞);L2

x);

‖(w, z)‖X([T,∞)) < ∞},
‖(w, z)‖X([T,∞)) =sup

t≥T
(tk‖w(t)‖L2

x
+ tk‖w‖L4((t,∞);L4

x)

+ tk(‖z(t)‖L2
x

+ ‖∂tz(t)‖L2
x
)),

where k > 1/2. By the contraction argument, for any functions
(ua, va) satisfying

‖ua(t)‖L∞
x

≤ at−1, (2.1)

‖va(t)‖L∞
x

≤ bt−1, (2.2)

‖R1(ua, va)‖L1((t,∞)L2
x) ≤ r1t

−α, (2.3)

‖A−1R2(ua, va)‖L1((t,∞);H−2
x ) ≤ r2t

−β , (2.4)

where

R1(ua, va) = Lua − vaua, (2.5)

R2(ua, va) = (∂2
t − ∆ − ∆∂2

t )va − ∆|ua|2,

α > k and β > k, we prove the existence and uniqueness of a solution
(u, v) to the system (1.1) such that (u− ua, v − va) ∈ X([T, ∞)) for
sufficiently large T ≥ 1 and sufficiently small a > 0. (For the proof,
see Section 3 in [6].) The condition k > 1/2 comes from the following
reason. We put (w, z) = (u − ua, v − va) and intend to solve the
integral equation

w(t) = i

∫ ∞

t
U(t − s){z(s)w(s) + va(s)w(s)

+ z(s)ua(s) + R1(ua, va)(s)}ds,

z(t) =
∫ ∞

t
K(t − s){A2(|w(s)|2 + 2Re(w(s)ua(s)))

+ (1 − ∆)−1R2(ua, va)(s)}ds

in X([T, ∞)). To show the existence and uniqueness of a solution
(w, z) ∈ X([T, ∞)) to the above system, by the Strichartz esti-
mate for the Schrödinger equation, we estimate ‖zw‖L4/3((t,∞);L4/3)

for (w, z) ∈ X([T, ∞)). For t ≥ T ,

‖zw‖
L4/3((t,∞);L

4/3
x )

≤ ‖z‖L2((t,∞);L2
x)‖w‖L4((t,∞);L4

x),

so z ∈ L2((t, ∞);L2
x) is required. To realize z ∈ L2((t, ∞);L2

x), we
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assume k > 1/2. Furthermore, roughly speaking, we assume the
smallness condition only on a and do not need the smallness of b,
because the nonlinearities vu and ∆|u|2 of the system (1.1) involve
the Schrödinger component u of the solution, but the nonlinearity
∆|u|2 in the IBq component does not contain the IBq component v.

( II ) Constructing an approximate solution for large time. Let (u+, v+0,

v+1) be given asymptotic data. We construct an approximate so-
lution (ua, va) satisfying the estimates (2.1)–(2.4) explicitly. It is
natural to define the principal terms u1 and v1 by

u1(t, · ) = U(t)u+ (2.6)

and

v1(t, · ) = K̇(t)v+0 + K(t)v+1, (2.7)

which are free solutions to the Schrödinger and the IBq equations,
respectively. But ‖v1(t)u1(t)‖L2

x
∼ t−1, and hence ‖v1(t)u1(t)‖L2

x

is not integrable over the interval [1, ∞). Therefore we see that if
we choose an asymptotics as (ua, va) = (u1, v1), then the estimate
(2.3) is not satisfied. So we determine our asymptotics of the form
(ua, va) = (u1 + u2, v1) and choose a second correcting term u2 such
that (ua, va) satisfies the estimates (2.1)–(2.4) with a = ‖u+‖L1 and
α = β = 1. For the explicit representation of the correcting term u2

and how to find it, see Section 3. Combining with Part (I), we have
the unique existence of a solution (u, v) to the system (1.1) such that
(u− ua, v − va) = (u− u1 − u2, v − v1) ∈ X([T, ∞)) with 1/2 < k <

1, when ‖u+‖L1 is sufficiently small and T is sufficiently large. The
condition k ≤ 3/4 in Theorem 1.1 comes from the following reason.
Since ‖u2‖L4((t,∞);L4

x) only decays as t−3/4 (see the estimate (3.17)
below), we see that (u−u1, v−v1) ∈ X([T, ∞)) under the condition
1/2 < k ≤ 3/4.

(III) Extending the solution globally. As in Remark 1.1, by Akahori’s re-
sult [1] on the global well-posedness in L2 × L2 × L2, we extend the
local solution of the system (1.1) on [T, ∞) obtained in the above
two steps to whole time interval.

These three steps imply Theorem 1.1.
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3. Construction of an approximate solution

For convenience for readers, we illustrate construction of an asymptotics
(ua, va) mentioned in Part (II) in Section 2, though the construction of it
in this section is the same as in [6].

Let (u+, v+0, v+1) be asymptotic data satisfying the assumptions of
the theorem. We construct an approximate solution (ua, va) satisfying the
estimates (2.1)–(2.4) explicitly. We determine the asymptotics (ua, va) of
the form

(ua, va) = (u1 + u2, v1),

where u1 and v1 are the free solutions defined by (2.6) and (2.7), respectively.
As we mentioned in Part (II) in Section 2, ‖v1(t)u1(t)‖L2

x
∼ t−1, and hence

‖v1(t)u1(t)‖L2
x

is not integrable over the interval [1, ∞). So we find a second
correcting term u2 such that (ua, va) satisfies the estimates (2.1)–(2.4). We
consider the error term R1(ua, va) defined by (2.5). Since Lu1 = 0, we
obtain

R1(ua, va) = (Lu2 − v1u1) − v1u2.

Therefore, roughly speaking, it is sufficient to find u2 such that Lu2 −
v1u1 and u2 decay faster than v1u1 and u1, respectively. We remark that
the nonlinearity ∆|u|2 in the IBq equation does not cause such difficulty,
because derivatives of |u1(t)|2 decay faster than |u1(t)|2. (See Lemma 2.3
in [6].) Hence we do not need a correction term for the IBq component.
Hereafter we concentrate on the Schrödinger component.

Construction of u2 is as follows. We find u2 of the form

u2 = V u1, (3.1)

where u1 is the free solution for the Schrödinger equation defined by (2.6),

V (t, · ) = K̇(t)φ0 + K(t)φ1 (3.2)

is a solution to the free IBq equation, and φ0 and φ1 are complex-valued
functions of x ∈ R2 which will be determined later. We determine V

(namely φ0 and φ1) so that Lu2 − v1u1 and u2 decay faster than v1u1

and u1, respectively. We compute Lu2. Since Lu1 = 0, we have
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Lu2 =
1
2
u1∆V +

i

t
u1PV − i

t
(Ju1) · ∇V + V Lu1

=
1
2
u1∆V +

i

t
u1PV − i

t
(Ju1) · ∇V,

(3.3)

where J and P are the operators defined by

J = x + it∇, P = t∂t + x · ∇.

Noting that u1 and ∇V are solutions to the free Schrödinger and the free
IBq equations, respectively, we see that the third term in the right hand
side of (3.3) is a remainder term. We consider the first and the second
terms in the right hand side of (3.3). We calculate PV in the second term
as follows. Since (∂2

t − ∆ − ∆∂2
t )P = (P + 2)(∂2

t − ∆ − ∆∂2
t ) − 2∆∂2

t and
(∂2

t − ∆ − ∆∂2
t )V = 0, PV satisfies

(∂2
t − ∆ − ∆∂2

t )PV = −2∆∂2
t V. (3.4)

It is easy to check that

(PV )(0, x) = x · ∇φ0(x), (3.5)

(∂t(PV ))(0, x) = φ1(x) + x · ∇φ1(x). (3.6)

By the equalities (3.4)–(3.6), we obtain

PV (t) =K̇(t)(x · ∇φ0) + K(t)(φ1 + x · ∇φ1)

+ 2
∫ t

0
K(t − s)A2∂2

sV (s)ds

=K̇(t)(x · ∇φ0) + K(t)(φ1 + x · ∇φ1)

− 2A4

∫ t

0
K(t − s)V (s)ds.

(3.7)

By a direct calculation, we have∫ t

0
K(t − s)(K̇(s)φ0)ds =

t

2
K(t)φ0,∫ t

0
K(t − s)(K(s)φ1)ds = − t

2
A−2K̇(t)φ1 +

1
2
A−2K(t)φ1.

The above identities and the equality (3.7) imply
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PV (t) =tK̇(t)(A2φ1) − tK(t)(A4φ0)

+ K̇(t)(x · ∇φ0) + K(t)(φ1 + x · ∇φ1 − A2φ1)

=tK̇(t)(A2φ1) − tK(t)(A4φ0)

+ K̇(t)(x · ∇φ0) + K(t)(x · ∇φ1 + (1 − ∆)−1φ1).

(3.8)

By the equalities (3.3) and (3.8), and the representation (3.2) of V , we have

Lu2 =
1
2
u1{K̇(t)(∆φ0 + 2iA2φ1) + K(t)(−2iA4φ0 + ∆φ1)}

+
i

t
u1{K̇(t)(x · ∇φ0) + K(t)(x · ∇φ1 + (1 − ∆)−1φ1)}

− i

t
(Ju1) · ∇V,

(3.9)

Note that the most slowly decaying term in the right hand side of (3.9) is
the first one. Now we define functions φ0 = F−1φ̂0 and φ1 = F−1φ̂1 by

φ̂0(ξ) = − 2(1 + |ξ|2)3

|ξ|6 + 3|ξ|4 − |ξ|2 + 1

×
( 1
|ξ|2

v̂+0(ξ) +
2i

|ξ|2(1 + |ξ|2)
v̂+1(ξ)

)
, (3.10)

φ̂1(ξ) =
2(1 + |ξ|2)3

|ξ|6 + 3|ξ|4 − |ξ|2 + 1

×
( 2i

(1 + |ξ|2)2
v̂+0(ξ) −

1
|ξ|2

v̂+1(ξ)
)
. (3.11)

Namely, we determine the second correcting term u2 by (3.1), (3.2), (3.10)
and (3.11). Then we see that

− 1
2
|ξ|2φ̂0 + i

|ξ|2

1 + |ξ|2
φ̂1 = v̂+0,

− i
|ξ|4

(1 + |ξ|2)2
φ̂0 −

1
2
|ξ|2φ̂1 = v̂+1.

(3.12)

By the definition (2.7) of v1, we have

1
2
u1{K̇(t)(∆φ0 − 2iA2φ1) + K(t)(−2iA4φ0 + ∆φ1)} = v1u1.(3.13)

In fact, we have constructed the functions φ̂0 and φ̂1 by solving the system
(3.12). We note that the factor 2(1 + |ξ|2)3/(|ξ|6 + 3|ξ|4 − |ξ|2 + 1) in (3.10)
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and (3.11) is a smooth and bounded function on R2, since |ξ|6 + 3|ξ|4 −
|ξ|2 + 1 = |ξ|6 + 3(|ξ|2 − 1/6)2 + 11/12 ≥ 11/12 for any ξ ∈ R2. Therefore
it follows from the equalities (3.9) and (3.13) that

Lu2 − v1u1 =
i

t
u1{K̇(t)(x · ∇φ0)

+ K(t)(x · ∇φ1 + (1 − ∆)−1φ1)} −
i

t
(Ju1) · ∇V.

(3.14)

The equality (3.14) yields that Lu2 − v1u1 decays faster than v1u1. In fact,
we have the following estimates related to u2. There exists a constant C > 0
such that for t ≥ 1,

‖u2(t)‖L2
x
≤ Ct−1‖u+‖L1

x
(‖v+0‖Ḣ−1∩Ḣ−2 + ‖A−1v+1‖Ḣ−2), (3.15)

‖u2(t)‖L∞
x

≤Ct−1‖u+‖L1
x

× (‖v+0‖L2∩Ḣ−2 + ‖A−1v+1‖L2∩Ḣ−2),
(3.16)

‖u2‖L4((t,∞);L4
x) ≤Ct−3/4‖u+‖L1

x

× (‖v+0‖L2∩Ḣ−2 + ‖A−1v+1‖L2∩Ḣ−2),
(3.17)

‖v1(t)u2(t)‖L2
x
≤Ct−2‖u+‖L1

x

× (‖v+0‖L2∩Ḣ−2 + ‖A−1v+1‖L2∩Ḣ−2)

× (‖Ω4v+0‖Ḃ0
1,1

+ ‖Ω4A−1v+1‖Ḃ0
1,1

),
(3.18)

‖Lu2(t) − v1(t)u1(t)‖L2
x

≤Ct−2(‖u+‖L1
x

+ ‖xu+‖L1
x
)(‖v+0‖H0,1∩Ḣ−2 + ‖xv+0‖Ḣ−1

+ ‖A−1v+1‖Ḣ−1∩Ḣ−2 + ‖xv+1‖Ḣ−1∩Ḣ−3).

(3.19)

Remark 3.1 The estimates (3.15)–(3.19) were obtained in Lemma 4.2 in
[6]. The author found a misprint in the statement of that lemma in [6],
and he would like to revise it. In the estimate (4.18) for ‖u2‖L4((t,∞);L4

x) in
Lemma 4.2 of [6], there is the factor t−1. But the factor t−1 is a misprint,
and it should be substituted by t−3/4 as the above estimate (3.17). (The
above estimate (3.17) is correct.) The proof of (4.18) in [6] is described
correctly, and this misprint does not bring any trouble for the rest of [6].

As we mentioned above, we put (ua, va) = (u1 + u2, v1). Then by the
estimates (1.2), (1.3) and (3.15)–(3.19), we see that the estimates (2.1)–
(2.4) are satisfied with a = ‖u+‖L1 and α = β = 1. (For the proof, see
Proposition 4.1 in [6].) We complete the construction of (ua, va).
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