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Abstract. We discuss relations between the nonlinear Klein-Gordon equation and the

nonlinear Schrödinger equation in view of the global wellposedness in the energy space

and L2. In some critical cases, we show that the global wellposedness for the former

equation with some uniform bounds implies that for the latter.

Key words: nonlinear Klein-Gordon equation, nonlinear Schrödinger equation, wellposed-

ness, nonrelativistic limit.

1. Introduction

This article is an extension of the comment the author gave at Jun
Kato’s talk in the conference. It was in short that Strichartz-type space-
time estimates for the Schrödinger equation with the L2 scaling follow from
the same estimates for the Klein-Gordon equation with H1 initial data.

Kato’s talk was about his recent work with Tohru Ozawa on the end-
point Strichartz estimate in L2

t L
∞
r Lq

θ(R
1+2) for the Klein-Gordon equation,

and the above comment was to point out that their result immediately
implies the same bound for the Schrödinger equation with L2 initial data.

Although that observation seems almost trivial, the author decided to
present it here, with some nonlinear contexts, at least for the following three
reasons.
(1) It did not seem to be recognized very well, even among those experts

who attended the conference, despite the popularity of the Strichartz
estimate for both equations.

(2) Some nonlinear versions have very interesting implications for much
deeper questions, although they need some assumptions to be proved.

(3) Such an article seems to be most suited for this sort of proceedings,
where the contributions should be original and related to the con-
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ference, whereas it is not customary in mathematics to publish final
results in proceedings.

We will discuss the relation between the nonlinear Klein-Gordon equa-
tion (NLKG) and the nonlinear Schrödinger equation (NLS), given in the
following form:

utt − ∆u + u = f(u) := −µ|u|αu, (1.1)

2iut − ∆u = f(u), (1.2)

where u(t, x) : R1+d → C is the unknown function, α > 0 and µ ≥ 0 are
constants. The scaling invariance of f(u) is essential throughout the paper.
We will consider mainly the two critical cases:

α =
4
d
,

4
d − 2

. (1.3)

The invariant scaling for NLS in each case leaves invariant the L2
x norm and

the Ḣ1
x norm respectively of the solutions.

Our main claim is that we can transfer space-time estimates from NLKG
to NLS, and for some appropriate norms, it also transfers global wellposed-
ness together with scattering. To state our results precisely, we need a few
basic concepts.

First, the NLKG has the following energy conserved

EK(u; t) :=
1
2

∫
Rd

|u̇|2 + |∇u|2 + |u|2 + F (u)dx, (1.4)

where the function F is defined by

F (ϕ) :=
2µ

α + 2
|ϕ|α+2. (1.5)

Similarly, the NLS conserves the energy

ES(u; t) :=
1
2

∫
Rd

|∇u|2 + F (u)dx, (1.6)

and also the L2 norm

MS(u; t) :=
∫

Rd

|u|2dx. (1.7)

The corresponding quantity for the NLKG is defined by

MK(u; t) :=
∫

Rd

Im(u̇u)dx, (1.8)
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which is not sign definite. Linear combination of E and M makes a family
of conserved quantities. We denote in particular

E′
K(u; t) := EK(u; t) − MK(u; t)

=
1
2

∫
Rd

|u̇ − iu|2 + |∇u|2 + F (u)dx,
(1.9)

which is still positive definite and more related to the Schrödinger energy.
We will often drop the time t from the above notation, provided that the
quantity is conserved.

Next we introduce some invariance properties of function spaces
adapted for NLS.

Definition 1.1 For any u ∈ S ′(R1+d), β ∈ R and λ > 0, we define the
space-time function P β

λ u by

(P β
λ u)(t, x) = λβu(λ2t, λx). (1.10)

Let X ⊂ S ′(R1+d) be a semi-normed space. We say X is parabolically
homogeneous of degree β ∈ R if

‖P β
2 u‖X = ‖u‖X , (1.11)

for all u ∈ X. We say X is gauge invariant if

‖eitλu‖X = ‖u‖X (1.12)

for all u ∈ X and λ > 0. We say X has the Fatou property if for any
bounded sequence un ∈ X convergent in S ′(R1+d), the limit u∞ is in X and

‖u∞‖X ≤ lim inf
n→∞

‖un‖X . (1.13)

The last condition is required for the transfer argument, and satisfied
if X is a dual of some normed space Y in which S(R1+d) is dense. For
example, Lp

t L
q
x and Lp

t Ḃ
σ
q,r, where Ḃσ

q,r denotes the homogeneous Besov
space, are parabolically homogeneous of degree 2/p+d/q and 2/p+d/q−σ

respectively1. Moreover, they are gauge invariant, and for p, q, r > 1, they
have the Fatou property.

1We need to choose appropriate norms for the Besov spaces to have the equality in the

definition of homogeneity, for example using the dyadic decomposition constructed by

binary dilation, as usual [2].
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Finally we denote the frequency localization for ϕ ∈ S ′(Rd) at R > 0
by

ϕ<R = F−1
[
χ
( ξ

R

)
(Fϕ)(ξ)

]
, (1.14)

where F denotes the Fourier transform on S ′(Rd), and χ ∈ C∞
0 (Rd) is

arbitrarily chosen and fixed such that χ(ξ) = 1 for |ξ| < 1/2 and χ(ξ) = 0
for |ξ| > 2. The above notation extends to the space-time functions in the
obvious way.

Now we can state our main results.

1.1. L2 critical case
First for the L2 critical case α = 4/d, we have

Theorem 1.2 Let d ∈ N, α = 4/d and µ ≥ 0. Let X ⊂ S ′(R1+d) be a
semi-normed space parabolically homogeneous of degree d/2 and gauge in-
variant with the Fatou property. Suppose that for any finite energy solution
u of NLKG (1.1) we have

‖u<δ‖X ≤ CX(EK(u)), (1.15)

for some fixed δ > 0 and CX : [0, ∞) → [0, ∞) continuous. In the case µ >

0, suppose that the above holds also with X = Lp
t L

q
x for some p ∈ [2, ∞).

Then for any L2(Rd) initial data, we have a unique global solution w ∈
C(R; L2) ∩ L2+4/d(R1+d) for NLS (1.2), together with the scattering

lim
t→±∞

‖w(t) − w±(t)‖L2(Rd) = 0, (1.16)

for some free solutions w±, and the transferred bound

‖w‖X ≤ CX(MS(w)), (1.17)

for the same function CX as above.

It is well known that every finite energy initial data leads to a unique
global solution for NLKG in the above case.

In the linear case µ = 0, the Strichartz estimate gives

‖u‖Lp
t Bσ

q,2
. EK(u)1/2, σ = 1 − 1 + 4/d

p
> 0, (1.18)

when Lp
t L

q
x is parabolically homogeneous of degree d/2 and 2 ≤ p ≤ ∞,

except for the endpoint (p, q, d) = (2, ∞, 2). In this case, the conclu-



Transfer from NLKG to NLS 753

sion of the theorem is just the standard Strichartz estimate for the linear
Schrödinger.

However the above theorem itself is valid at the endpoint too. In par-
ticular, the Kato-Ozawa endpoint Strichartz estimate for the free Klein-
Gordon

‖u‖L2
t L∞

r Lq
θ(R1+2) ≤ Cq1/2EK(u)1/2 (q < ∞), (1.19)

implies the same bound for the free Schrödinger

‖w‖L2
t L∞

r Lq
θ(R1+2) ≤ Cq1/2MS(w)1/2 (q < ∞). (1.20)

The latter estimate was previously known only for q close to 2, by the result
of Tao [27]. Indeed it was shown in [17] that one cannot achieve the above
estimate for q > 6 by using Tao’s approach. Moreover Kato-Ozawa’s proof,
following the argument in [17] for the three dimensional wave equation,
seems simpler than Tao’s.

Concerning the nonlinear case µ > 0, the uniform bound (1.15) is ex-
pected to be true for the Strichartz norm Lp

t L
q
x, but unfortunately not yet

proven. Moreover, the global wellposedness of NLS in L2 still remains to be
an open problem. The uniform global bound on the Strichartz norms has
been proven only for the higher power 4/d < α ≤ 4/(d− 2), which holds for
the whole frequency as in (1.18). See [20, 21, 22] for α = 4/(d − 2), d ≤ 2,
and the general case, respectively. The finiteness had been known before for
d ≥ 3 with α < 4/(d − 2), see e.g. [12], which is sufficient for the scattering
of NLKG, but not transferable to NLS.

In the critical case α = 4/d for the NLKG, it is known that for any free
solution with finite energy, there exists a unique solution of NLKG which
has globally finite L

2+4/d
t,x norm and approaches the free one as t → ∞. For

small energy data, (1.18) (and so including all the other conclusions) is an
immediate consequence of the standard iteration by the Strichartz estimate.
However the asymptotic completeness, which is equivalent to finiteness of
the L

2+4/d
t,x norm of all solutions, remains an open question.

As for NLS, there has been recently intensive study on the global well-
posedness for α = 4/d, but it is so far achieved only for small data [29], or
in more regular space [5, 7, 8, 11, 30, 9, 10], or under the radial symmetry
[15, 16]. The above theorem suggests a totally different approach, but also
implying that global estimates for the NLKG with α = 4/d in H1 can be
just as difficult as the same problem for NLS in L2.
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1.2. H1 critical case
Next we consider the H1 critical case α = 4/(d − 2), d > 2. We recall

that the modified energy E′
K = EK − MK was defined in (1.9). For any

Banach space X, we denote by w -X the same space endowed with the weak
topology.

Theorem 1.3 Let d ≥ 3 and α = 4/(d−2) with µ ≥ 0. Let X ⊂ S ′(R1+d)
be a semi-normed space parabolically homogeneous of degree d/2 − 1 and
gauge invariant with the Fatou property. Suppose that for any finite energy
solution u of NLKG (1.1) we have

‖u<δ‖X ≤ CX(E′
K(u)), (1.21)

for some fixed δ > 0 and CX : [0, ∞) → [0, ∞) continuous. Then for
any Ḣ1(Rd) initial data, there exists a weak global solution w of NLS (1.2)
satisfying w ∈ C(R;w-Ḣ1(Rd)) and

‖w‖X ≤ CX(ES(w; 0)), (1.22)

with the same CX as above.
Moreover, if the above assumption holds with X = Lp

t Ḣ
1
q for some p ∈

[2, ∞), then we have the global wellposedness for the NLS, together with the
scattering

lim
t→±∞

‖w(t) − w±(t)‖Ḣ1(Rd) = 0, (1.23)

for some free solutions w±.

In the linear case µ = 0, the Strichartz estimate gives

‖u<1‖Lp
t Ḣ1

q
. E′

K(u)1/2, (1.24)

when LpḢ1
q is parabolically homogeneous of degree d/2− 1 and 2 ≤ p ≤ ∞

[18]. The last assertion in the theorem, namely the global wellposedness
with scattering for the Ḣ1 critical NLS, was proved for the radial data in
[4, 28, 14], and for general data in [6, 24, 31], but the proofs have been much
more complicated than those for the critical wave and NLKG equations
[13, 25, 1, 20]. The above theorem suggests a possibility of completely
different proof.

For the critical NLKG, the following uniform bound was proven in [20]:

‖u‖Lp
t Bσ

q,2
≤ C(EK(u)), (1.25)
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for the same left hand side as in (1.18), which is stronger than that in (1.24),
but the bound depends on the full energy EK(u). It is unfortunately not
known if the estimate of the type (1.24) holds or not.

1.3. Dyadic transition estimate
Next we consider L∞

t -type bounds which leads to the global wellposed-
ness in the critical case. Trivially, X = L∞

t Ḣ1
x satisfies the assumption in

the above theorem, but it is not sufficient even for the local unique exis-
tence. The reason is roughly speaking that the L∞

t bound does not contain
any finiteness information in the time direction, which is crucial for the
wellposedness in the critical case. Hence we have to blend some finiteness
information in time. Here is a candidate, which seems interesting by it-
self. Heuristically, it is designed to measure the duration in logarithmic
scale for the transition of the nonlinear solution from the initial state to the
scattering states at t = ±∞.

Definition 1.4 For any Banach space B ⊂ S ′(Rd) and p ∈ (1,∞), we
define the semi-norms Sp

1B and Sp
∞B as follows. For any u ∈ C1(R;S ′(Rd))

and T ∈ R, let uT be the solution to the free Klein-Gordon

[∂2
t − ∆ + 1]uT = 0, uT (T ) = u(T ), u̇T (T ) = u̇(T ). (1.26)

We define the Sp
1B semi-norm of u by

‖u‖p
Sp

1B
= sup

±
sup
T∈R

∑
j∈Z

sup
2j<t<2j+1

‖u(T ± t) − uT (T ± t)‖p
B. (1.27)

Similarly for any w ∈ C0(R;S ′(Rd)) and T ∈ R, let wT be the solution to
the free Schrödinger

[2i∂t − ∆]wT = 0, wT (T ) = w(T ). (1.28)

We define the Sp
∞B semi-norm of w by

‖w‖p
Sp
∞B

= sup
±

sup
T∈R

∑
j∈Z

sup
2j<t<2j+1

‖w(T ± t) − wT (T ± t)‖p
B. (1.29)

The subscripts 1 and ∞ stand for the propagation speeds of the referred
equations. By definition, those semi-norms vanish exactly on the set of free
solutions. Our next theorem deals with transfer of the above semi-norms
from NLKG to NLS in the H1 critical case.
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Theorem 1.5 Let d ≥ 3 and α = 4/(d − 2) with µ ≥ 0. Assume that
every solution (u, u̇) ∈ C(R; H1 × L2) of NLKG (1.1) satisfies

‖u<δ‖Sp
1L2∗ ≤ C(E′

K(u)), (1.30)

for some fixed p ∈ (1, ∞), δ > 0 and C : [0, ∞) → [0, ∞) continuous, where
2∗ = 2d/(d − 2) = p + 2 is the Sobolev critical exponent.

Then for any ϕ ∈ Ḣ1(Rd), there exists a unique global solution w of
NLS (1.2) satisfying w ∈ C(R; Ḣ1(Rd)) and

‖w‖Sp
∞L2∗

x
≤ C(ES(w)), (1.31)

where C and p are the same as above. Moreover we have the scattering

lim
t→±∞

‖w(t) − w±(t)‖Ḣ1(Rd) = 0, (1.32)

for some free Schrödinger solutions w±.

As mentioned in the previous theorem, the global wellposedness with
scattering for the NLS has been already proved, but in very complicated
ways. The above theorem suggests a possibility of another simpler proof.

The uniform bound on the Strichartz norms proved in [20] implies a
uniform bound on the S2

1 norm in terms of EK(u), which is true in the
other case of power. As in the case of Strichartz norms, the difference from
the assumption (1.30) is whether the bound is given in terms of EK or E′

K .

Theorem 1.6 Let d ≥ 3 and 4/d < α ≤ 4/(d − 2) with µ ≥ 0. Then for
any finite energy solution u of NLKG (1.1), we have

‖u<1‖S2
1L2∗ ≤ C(EK(u)). (1.33)

The same estimate for NLS follows from the uniform bounds given in
[3, 6].

Theorem 1.7 Let d ≥ 3 and 4/d < α ≤ 4/(d − 2) with µ ≥ 0. Then for
any finite energy solution w of NLS (1.2), we have

‖w‖S2
∞L2∗ ≤ C(ES(w) + MS(w)), (1.34)

where MS(w) is not necessary when α = 4/(d − 2).

We will prove linear estimates which connects the Strichartz bounds
and the dyadic transition norms. Strictly speaking in the above theorems,
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we should restrict the solution class to ensure the uniqueness in the critical
case α = 4/(d − 2), where the unconditional uniqueness of finite energy
solution is not known (see [26, 23, 19] for partial results).

The estimates (1.33) and (1.34) look interesting by themselves. The
summability for j → −∞ and j → ∞ comes from different reasons. The
former is due to the convergence at t = 0, but in general the nonlinear
solution approaches another free solution as t → ∞, so the subtraction of
the initial free solution does not help decay for t → ∞. The summability
for j → ∞ comes purely from the dispersion in L2∗

x at t → ∞, both for
the initial free solution and the asymptotic free solution. Moreover, by time
translation invariance, the transition from the initial approximation regime
to the dispersion regime can take place at any time. The estimates imply
that the duration of the transition (or “scattering”) is uniformly bounded
in the logarithmic time scale. In other words, after the nonlinear solution
u leaves from the initial free solution u0, both u AND u0 have to start
dispersing rather soon. Notice that the logarithmic scale is necessary at
least for the limit because of the scaling invariance.

The semi-norm Sp
1L2∗ was inspired by the a priori bound for the H1

critical NLKG:∑
j∈Z

sup
2j<t<2j+1

∫
|x|<R|t|

|u(t, x)|2∗dx ≤ C(EK(u), R). (1.35)

More precisely, the above estimate was derived in [20] globally for the (mass-
less) wave equation, and locally on t ∈ [0, 1] for NLKG, as a quantitative
version of the L2∗ non-concentration argument in [25]. The global version
for NLKG follows from the uniform bound on the Strichartz norms given in
[20].

However the above estimate cannot hold if one replaces EK on the right
with E′

K , even in the linear case µ = 0. That is because if the estimate
remained true, then it would imply the same bound for NLS without the
restriction |x| < R|t|, which is clearly false for t → 0, or j → −∞.

2. Formal limit from NLKG to NLS

In this section we recall how NLS can be derived as a singular limit
from NLKG, using a combination of rescaling and phase change.

Let u be a solution to NLKG (1.1), and v := e−itu. Then the mass
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term is removed and we get the equation for v

vtt + 2ivt − ∆v = f(v), (2.1)

where we used the gauge invariance of f . Next we perform the parabolic
rescaling w := P

2/α
c v. Then we have u = eitc−2/αw(t/c2, x/c) and the

equation is transformed into

c−2wtt + 2iwt − ∆w = f(w). (2.2)

In the limit c → ∞, formally the first term disappears, and we get the NLS
(1.2) for the limit of w.

3. Limit of the energy

Next we investigate how the energy behaves in the above limit. Let
v = e−itu and w = P

2/α
c v as above. Then we have

EK(u) =
1
2

∫
Rd

|v̇ + iv|2 + |∇v|2 + |v|2 + F (v)dx

= cd−4/α
[1
2

∫
Rd

∣∣∣ ẇ
c

+ iw
∣∣∣2 +

∣∣∣∇w

c

∣∣∣2 + |w|2 + c−2F (w)dx
]
.

(3.1)

We observe that in the special case α = 4/d, the right hand side formally
converges to MS(w) as c → ∞.

For the mass we have

MK(u) =
∫

Rd

Im(v̇v) + |v|2dx

= cd−4/α

∫
Rd

c−2 Im(ẇw) + |w|2dx,

(3.2)

which formally converges to MS(w) as c → ∞ if α = 4/d. For the reduced
energy we have

E′
K(u) =

1
2

∫
Rd

|v̇|2 + |∇v|2 + F (v)dx

= cd−2−4/α
[1
2

∫
Rd

|ẇ/c|2 + |∇w|2 + F (w)dx
]
.

(3.3)

In the special case α = 4/(d − 2), the above converges formally to the
non-relativistic energy ES(w) as c → ∞.
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In the later arguments, we will choose a sequence of initial data de-
pending on the parameter c → ∞, such that the above formal limits can be
justified together with convergence of the solutions.

3.1. Proof for L2 critical case
In this section we prove the transfer Theorem 1.2 in the L2 critical case

α = 4/d. First we consider initial data ϕ ∈ H1(Rd). For a scaling parameter
c ∈ 2N, we define uc to be the solution of (1.1) with

uc(0) = c−d/2ϕ
(x

c

)
, u̇c(0) = −iuc(0). (3.4)

Next we define as before vc = eituc and wc = P
2/α
c vc. Then wc solves (2.2)

with

wc(0) = ϕ, ẇc(0) = 0. (3.5)

Hence as c → ∞

EK(uc) → ‖ϕ‖2
L2 . (3.6)

By the assumption (1.15) and the invariance of X, we have

lim sup
c→∞

‖(wc)<cδ‖X = lim sup
c→∞

‖(uc)<δ‖X

≤ lim sup
c→∞

CX(EK(uc)) = CX(MS(ϕ)).
(3.7)

Moreover, by the convergence result in [18] for the non-relativistic limit,
we have wc → w in C(R; H1), where w is the solution of NLS (1.2) with
w(0) = ϕ. Hence we have (wc)<cδ → w in C(R; H1), then by the Fatou
property we have w ∈ X and

‖w‖X ≤ CX(MS(ϕ)). (3.8)

Finally, we extend the above to the case ϕ ∈ L2. For n ∈ N, let wn be
the solution of (1.2) with wn(0) = ϕ<n ∈ H1. In the linear case µ = 0, it
is clear that wn converges to the solution w with initial data w(0) = ϕ in
C(R; L2), and then by the Fatou property we get the desired bound

‖w‖X ≤ lim inf
n→∞

‖wn‖X ≤ lim inf
n→∞

CX(‖wn‖2
L2) = CX(MS(w)). (3.9)

In the nonlinear case, we need to use the local wellposedness in the
critical case. For that purpose we may set, by the assumption, X = Lp

t L
q
x
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with 2 < p < ∞ and 2/p + d/q = d/2, where we may avoid p = 2 by
interpolation with the trivial L∞L2 bound.

Lemma 3.1 For any ϕ ∈ L2(Rd), there exists a unique T > 0 and a
unique solution w of NLS (1.2) on [0, T ) such that w ∈ C([0, T ′];L2) ∩
X(0, T ′) for any T ′ ∈ (0, T ) and either T = ∞ or ‖w‖X(0,T ) = ∞. If
‖w‖X(0,T ) < ∞, then all the other Strichartz norms are also finite.

Moreover, for any sequence ϕn → ϕ converging in L2, the corresponding
solution wn exists on [0, T ′] for large n and wn → w in L∞L2 ∩ X(0, T ′)
for any T ′ ∈ (0, T ).

Proof. We give the proof for the sake of completeness, though it is a well
known fact. First we construct the solution on small interval (0, S). Let
‖ϕ‖L2 = Q, w0 := e−it∆/2ϕ and ‖w0‖X(0,S) = ε. Define Y := Lρ

t L
η
x by

4
dp

+
1
ρ

= 1 − 1
ρ
,

4
dq

+
1
η

= 1 − 1
η
. (3.10)

Then we have 2 < ρ < ∞ and 2/ρ + d/η = d/2. Define a sequence wj by

wj+1 = w0 +
1
2i

∫ t

0
e−i(t−s)∆/2f(wj(s))ds. (3.11)

By the Strichartz estimate together with the Hölder inequality, we have

‖w1 − w0‖L∞L2∩X∩Y (0,S) . ‖w0‖Y (0,S)‖w0‖4/d
X(0,S) . Qε4/d,

‖wj+1 − wj‖L∞L2∩X∩Y (0,S)

. ‖wj − wj−1‖Y (0,S)‖(wj , wj−1)‖4/d
X(0,S).

(3.12)

Hence if ε + Qε4/d ¿ 1 is sufficiently small, then wj → ∃w converges in
L∞L2 ∩ X ∩ Y (0, S), and w solves NLS on (0, S). The uniqueness follows
from the same estimate as wj+1 − wj above. In addition, we get

‖w‖L∞L2∩X∩Y (0,S) . Q,

‖w − w0‖L∞L2∩X∩Y (0,S) . ‖w‖Y (0,S)‖w‖4/d
X(0,S).

(3.13)

Now suppose that ‖w‖X(0,S) ≤ εd/4+1 ¿ ε. Then the above inequality
implies

‖w − w0‖X(0,S) . Qε1+4/d ¿ ε, (3.14)
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thus ‖w0‖X(0,S) ¿ ε, contradicting the definition of ε. Hence

‖w‖X(0,S) ≥ εd/4+1. (3.15)

Since ‖w(t)‖L2 = Q is preserved, we can repeat the above argument from
t = S, and so on. Then either we get a global solution in finite steps, or
infinite increasing sequence 0 = S0 < S1 < · · · such that ‖w‖X(Sj ,Sj+1) ≥
εd/4+1 with a fixed small ε > 0. In the first case, we finish the proof with
T = ∞, and all the Strichartz norms are finite. In the second case, we let
T = limj→∞ Sj . Then w is a unique solution on (0, T ) in L∞L2 ∩X(0, T ′)
for any T ′ < T , and we have ‖w‖X(0,T ) = ∞.

Finally we prove the continuity. Let w0
n = e−it∆/2ϕn. Then w0

n → w0

in L∞L2∩X∩Y , and hence for large n the solution wn is obtained on (0, S)
by the above iteration. Moreover we have

‖wn − w‖L∞L2∩X∩Y (0,S)

. ‖wn(0) − w(0)‖L2 + ‖wn − w‖Y (0,S)‖(wn, w)‖4/d
X(0,S),

(3.16)

and

‖(wn, w)‖4/d
X(0,S) . (ε + Qε4/d)4/d ¿ 1. (3.17)

Hence

‖wn − w‖L∞L2∩X∩Y (0,S) . ‖wn(0) − w(0)‖L2 → 0. (3.18)

We can repeat this argument to cover any interval [0, T ′] ⊂ [0, T ). ¤

Now it is easy to finish the theorem. Let w be the unique solution given
by the above lemma and T > 0 be the maximal existence time. Then for
any T ′ ∈ (0, T ), we have wn → w in X(0, T ′). Hence

‖w‖X(0,T ′) = lim
n→∞

‖wn‖X(0,T ′) ≤ CX(MS(w)), (3.19)

and by Fatou’s lemma for T ′ → T − 0, we get T = ∞ and

‖w‖X(0,∞) ≤ CX(MS(w)). (3.20)

Finally by the translation invariance in t, we obtain

‖w‖X(R) ≤ CX(MS(w)), (3.21)

and moreover, wn → w in C(R; L2). Since all the Strichartz norms are finite
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for w, it is quite standard to get the scattering result. As for the general X

in the theorem, we obtain the desired bound on w by transfer from wn by
the Fatou property.

4. Proof for H1 critical case

We prove the results in the H1 critical case, Theorems 1.5, 1.6 and 1.7.
Since one of our goals (which is not yet achieved) is to give another proof
for the global wellposedness of the NLS, we will not use that result in the
arguments, except for the final step of Theorem 1.7, which is not related to
our goals.

4.1. General transfer
Here we prove the transfer for general homogeneous spaces (Theo-

rem 1.3). The idea is almost the same as in the L2 critical case. Let
ϕ ∈ Ḣ1, and for a scaling parameter c ∈ 2N, let wc be the solution of (2.2)
with the initial data

wc(0) = ϕ − ϕ<1/c ∈ H1, ẇc(0) = 0. (4.1)

Let vc = P
2/α
1/c wc and uc = eitvc. Then uc is the solution of NLKG (1.1)

with

E′
K(uc) =

1
2

∫
Rd

∣∣∣ ẇc

c

∣∣∣2 + |∇wc|2 + F (wc)dx

=
1
2

∫
|∇wc(0)|2 + F (wc(0))dx < ∞,

MK(uc) = c2

∫
|wc(0)|2dx < ∞.

(4.2)

Hence it is global and by the assumption

‖(wc)<cδ‖X = ‖(uc)<δ‖X ≤ CX(E′
K(uc)). (4.3)

Next we consider the weak limit of wc. By the bound on E′
K(uc), wc is

uniformly bounded in Ḣ1
x. As for the time continuity, we use the equation

for wc:

T
S =

∫ T

S
ẇc(t)dt =

i

2

∫ T

S
c−2ẅc − ∆wc − f(wc)dt

=
i

2

{
[c−2ẇc]TS −

∫ T

S
∆wc + f(wc)dt

}
.

(4.4)
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Putting the first and the third expressions into the norms, we get

‖[wc]TS‖L2 ≤
∫ T

S
‖ẇc(t)‖L2dt . |T − S|cE′

K(uc)1/2,

‖[wc]TS‖H−1 . ‖c−2[ẇc]TS‖L2 +
∫ T

S
‖∆wc‖Ḣ−1 + ‖f(wc)‖L2∗dt

. c−1 + |T − S|(E′
K(uc)1/2 + E′

K(uc)α+1).

(4.5)

Using the upper estimate for c
√

|T − S| < 1 and otherwise the lower one,
we deduce that wc is uniformly bounded in C1/2(R;H−1). Then using the
standard compactness argument, we get a subsequence of c → ∞ where wc

converges in C(R;w -Ḣ1 ∩ Lp
loc), for any p < 2∗, and hence the limit w ∈

C(R;w -Ḣ1) is a weak solution of (1.2). Then we have also (wc)<cδ → w in
C(R;w -Ḣ1), and by the Fatou property of X, we have w ∈ X with

‖w‖X ≤ lim sup
c→∞

‖(wc)<cδ‖X

≤ lim sup
c→∞

CX(E′
K(uc)) = CX(ES(w; 0)).

(4.6)

Next, if we can choose X = Lp
t Ḣ

1
q,x with 2 ≤ p < ∞, then it coincides

with the unique local solution w′ ∈ C([0, T ]; Ḣ1) with the full Strichartz
norms on [0, T ], which is constructed by the iteration. The reason is as
follows. First we can assume that 1/p < 1/2− 1/(2d) by interpolating with
the L∞

t Ḣ1 bound. Then we have q < d. For 0 < S < T , we estimate the
difference by the endpoint Strichartz

‖w − w′‖L2L2∗ (0,S) . ‖(w,w′)‖4/(d−2)

LpḢ1
q (0,S)

‖w − w′‖L2L2∗ (0,S), (4.7)

where we used the embedding Ḣ1
q ⊂ Lqd/(q−d). Since p < ∞, the LpḢ1

q

norm tends to 0 for both w and w′, and the L2L2∗ norm is finite by the
Sobolev embedding, w = w′ on such (0, S). Repeating the same argument
from S, we get w = w′ as long as they are in LpḢ1

q , so w′ is also global.
For any ε > 0, there is T > 0, such that ‖w‖LpḢ1

q (T,∞) < ε, because p < ∞.
Then by the same estimate as above, we get

‖w − wT ‖
L2Ḣ1

2∗ (T, eT )
. ε4/(d−2)‖w‖

L2Ḣ1
2∗ (T, eT )

, (4.8)

where wT = e−i(t−T )∆/2w(T ). Hence if ε > 0 is small enough, we have

‖w‖
L2Ḣ1

2∗ (T, eT )
≤ 2‖wT ‖

L2Ḣ1
2∗ (T, eT )

. ‖w(T )‖Ḣ1 . (4.9)
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By the limit T̃ → ∞, we deduce that w ∈ L2Ḣ1
2∗(0, ∞). Now that w has

by interpolation all the Strichartz norms (of Ḣ1 regularity) finite, it is quite
standard to get the scattering in Ḣ1.

4.2. Transfer of dyadic transition
Now we turn to the specific norm of the dyadic transition. First we

prove Theorem 1.5 by the non-relativistic limit. In this case, the norm is
not scaling invariant, but it converges to the Schrödinger counterpart.

Proof of Theorem 1.5. Let wc, vc and uc with c ∈ 2N as in the previous
section. Let uT

c and wT
c be the free solutions sharing the same data at t = T

with uc and wc respectively. Then we have

C(E′
K(uc))p ≥ ‖(uc)<δ‖p

Sp
1L2∗

=sup
±

sup
T∈R

∑
j∈Z

sup
2j<t<2j+1

‖[wc − wT
c ]<cδ(T ± t)‖p

L2∗
x

.
(4.10)

By the same argument as in the previous section, we get a subsequence c →
∞ along which wc → w in C(R;w -Ḣ1 ∩Lp

loc) for p < 2∗, where w is a weak
solution of NLS. Then wT

c also converges to the free Schrödinger solution
wT in C(R;w -Ḣ1) for each T ∈ R. By the embedding Ḣ1 ⊂ L2∗ together
with the Fatou property of Lp for p > 1, the above bound transfers into

‖w‖Sp
∞L2∗ ≤ lim sup

c→∞
C(E′

K(uc)) = C(ES(w; 0)). (4.11)

It remains to prove that w is the strong solution. First, the above Sp
∞L2∗

bound implies that for any T ∈ R

lim
t→0

‖w(T + t) − wT (T + t)‖L2∗ = 0, (4.12)

because p < ∞. Hence w ∈ C(R; L2∗). We show that such a solution coin-
cides with the local strong solution constructed by the Strichartz estimate,
starting from any time. The idea for showing the uniqueness is essentially
in [23], though our situation is easier. By the time translation invariance,
it suffices to start with t = 0. Let w′ be the local strong solution given by
the standard iteration with an existence time T > 0, and let w = w′ + γ.
Then we have

γ(t) =
1
2i

∫ t

0
e−i(t−s)∆/2[f(w′ + γ) − f(w′)](s)ds, (4.13)
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for 0 < t < T . Since |f(w′ + γ) − f(w′)| . |γ|(|w′| + |γ|)2∗−2, we have by
the Strichartz estimate,

‖γ‖L2
t L2∗

x
. ‖(w′)2

∗−2γ‖L
p1
t L

q1
x

+ ‖γ2∗−1‖L2
t L2∗

x

. [‖w′‖L
p3
t,x

+ ‖γ‖L∞
t L2∗

x
]2

∗−2‖γ‖L2
t L2∗

x
,

(4.14)

on any time interval (0, S) ⊂ (0, T ), where 2∗ = 2d/(d + 2), p3 = 2(d +
2)/(d − 2),( 1

p1
,

1
q1

)
=

(1
2
,

1
2∗

)
+

2∗ − 2
p3

(1, 1)

=
( d + 6

2(d + 2)
,

d2 + 4d − 4
2d(d + 2)

)
.

(4.15)

Since limt→0 ‖γ(t)‖L2∗ = 0 and w′ ∈ Lp3
t,x, the right hand side of (4.14)

becomes much smaller than the left as S → +0, unless ‖γ‖L2L2∗ (0,S) = 0.
Hence w = w′ near t = 0. Since the above argument works around any time,
w is the unique strong solution, and moreover global. Namely, we have the
global wellposedness for the NLS. In particular, w has the Strichartz bounds
locally in time, and the energy ES(w) is conserved in time.

Moreover, we get the scattering result as follows. Since the free solution
satisfies ‖w0(t)‖L2∗ → 0 as t → ∞ (it is easily seen by approximating the
initial data by C∞

0 functions), we also have ‖w(t)‖L2∗ → 0 by the Sp
∞L2∗

bound. Then for T > S À 1 we have by the Strichartz,

‖[eit∆/2w(t)]TS‖Ḣ1 + ‖w − wS‖L2Ḣ1
2∗ (S, T )

. ‖f(w)‖L2
t Ḣ1

2∗ (S, T )

. ‖w‖L2Ḣ1
2∗ (S, T )‖w‖2∗−2

L∞
t L2∗

x (S, T )
.

(4.16)

Since the last norm tends to 0 as S → ∞, and wS is bounded in L2Ḣ1
2∗ , we

deduce that w is bounded in L2Ḣ1
2∗(S, T ) for sufficiently large S. This im-

plies also that the other Strichartz norms of Ḣ1 level are globally bounded.
Then the above inequality implies that the left hand side tends to 0 as S →
∞, which gives the scattering for w. ¤

In the rest of the section, we prove linear estimates for the Sp
∗L

2∗ norms,
from which Theorems 1.6 and 1.7 will follow.
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Lemma 4.1 Let d ≥ 3. Assume u(t, x), w(t, x) and F (t, x) satisfy

ü − ∆u + u = 2iẇ − ∆w = F (4.17)

on R1+d. Then we have

‖u<1‖S2
1B0

2∗,2
+ ‖u̇<1‖S2

1B0
2∗,2

. ‖F<1‖L2
t Ḃ1

2∗,2
,

‖w‖S2
1B0

2∗,2
. ‖F‖L2

t Ḃ1
2∗,2

,
(4.18)

where 2∗ := 2d/(d + 2) denotes the dual Sobolev exponent.

The norm on the right is the dual endpoint Strichartz on the Ḣ1 level
for the Schrödinger equation, which is valid on the restricted frequency |ξ| .
1 for the Klein-Gordon as well. We have the embedding B0

2∗,2 ⊂ L2∗ and
Ḃ1

2∗,2 ⊃ Ḣ1
2∗ .

Proof. First of all, the above estimate for the Klein-Gordon is transferred
to the Schrödinger by the same argument as in the above proof of Theo-
rem 1.5, because the norm of F has the right scaling property. Hence it
suffices to prove the Klein-Gordon case. However, it is indeed more compli-
cated because of the mixed scaling present in the equation.

By the symmetry for the time inversion and translation, it suffices to
bound the sup for T = 0 and t > 0. Since the semi-norms are trivial on
the free solutions, we may assume that u(0) = u̇(0) = 0. Moreover, we can
decompose u and F dyadically in the frequency

u =
∑
k∈Z

uk, F =
∑
k∈Z

Fk, (4.19)

where uk := u<2k − u<2k−1 . Then by the Minkowski inequality, it suffices
to give uniform estimate for each k ≤ 0.

Let v := eitu and F ′ := eitF . Then after the dyadic decomposition we
have

v̈k + 2iv̇k − ∆vk = F ′
k. (4.20)

Note that

|(uk, u̇k)| ∼ |(vk, v̇k)|, (4.21)

as vectors at every t, x, k.
Now we start estimation with smaller j. Let Ĩj := (0, 2j+1). By inte-
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gration in t, we have

‖(vk, v̇k)‖L∞
t L2∗

x (eIj)
≤ ‖(v̇k, v̈k)‖L1

t L2∗
x (eIj)

, (4.22)

and the right hand side is bounded by the Sobolev and the equation

‖v̇k‖L1
t L2∗

x (eIj)
. 2j+k‖v̇k‖L∞

t L2 ,

‖v̈k‖L1
t L2∗

x (eIj)
. 2j+k‖v̇k‖L∞

t L2 + 2j+2k‖vk‖L∞
t Ḣ1

+ 2j/2+2k‖Fk‖L2
t Ḣ−1 .

(4.23)

Thus we get∑
j≤−k

‖(vk, v̇k)‖L∞
t L2∗

x (Ij)

. ‖v̇k‖L∞
t L2

x
+ 2k‖vk‖L∞

t Ḣ1
x

+ 23k/2‖Fk‖L2
t Ḣ−1 .

(4.24)

Next we consider the sum over −k < j ≤ −2k. By using the equation

2ivk = −v̇k +
∫ t

0
(∆vk + F ′

k)(s)ds, (4.25)

we have

‖(vk, v̇k)‖L∞
t L2∗

x (eIj)
. ‖v̇k‖L∞

t L2∗
x

+ ‖∆vk + F ′
k‖L1

t L2∗
x (eIj)

. 2k‖v̇k‖L∞L2 + 2j+2k‖vk‖L∞
t L2∗

x
+ 2j/2+2k‖Fk‖L2

t Ḣ−1
x

.
(4.26)

Summing it over −k < j ≤ −2k, and adding (4.24), we get∑
j≤−2k

‖(vk, v̇k)‖L∞
t L2∗

x (Ij)

. ‖v̇k‖L∞
t L2

x
+ ‖vk‖L∞

t L2∗
x

+ 2k‖Fk‖L2
t Ḣ−1 .

(4.27)

Finally we consider the sum over −2k < j. We use the identity

∂t[|uk|2 + |u̇k|2] = 2〈u̇k, ük + uk〉 = 2〈v̇k + ivk, ∆vk + F ′
k〉, (4.28)

Integrating in t, we get

oscIj (|uk|2 + |u̇k|2) ≤ 2‖v̇k + ivk‖L2
t (Ij)

‖∆vk + F ′
k‖L2

t (Ij)
, (4.29)

where we denote

oscI f(t) = sup
t∈I

f(t) − inf
t∈I

f(t). (4.30)
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Integrating in x, we get

oscIj ‖(uk, u̇k)‖2
L2∗

x

. ‖v̇k + ivk‖L2∗
x L2

t (Ij)
‖∆vk + F ′

k‖L2∗
x L2

t (Ij)
.

(4.31)

Hence we obtain∑
j∈Z

oscIj ‖(uk, u̇k)‖2
L2∗

x
. ‖v̇k + ivk‖L2

t L2∗
x
‖∆vk + F ′

k‖L2
t L2∗

x
. (4.32)

The right hand side can be estimated by the Strichartz

‖v̇k‖L2
t L2∗

x
+ 2k‖vk‖L2

t L2∗
x

. 2k‖Fk‖L2
t L2∗

x
, (4.33)

and by the Sobolev

‖Fk‖L2
t L2∗

x
. 22k‖Fk‖L2

t L2∗
x

. (4.34)

Thus we obtain for k ≤ 0,∑
j∈Z

oscIj ‖(uk, u̇k)‖L2∗
x

. 22k‖Fk‖L2
t L2∗

x
. (4.35)

On the other hand we have

|Ij |1/2 inf
Ij

‖(uk, u̇k)‖L2∗
x

≤ ‖(vk, v̇k)‖L2
t L2∗

x
, (4.36)

Applying the Strichartz on the right, we get

inf
Ij

‖(uk, u̇k)‖L2∗
x

. 2−j/2‖Fk‖L2
t L2∗

x
. (4.37)

Summing over j + 2k ≥ 0,∑
j≥2k

inf
Ij

‖(uk, u̇k)‖L2∗
x

. 2k‖Fk‖L2
t L2∗

x
. (4.38)

Adding it to (4.35),∑
j≥2k

sup
Ij

‖(uk, u̇k)‖2
L2∗

x
. 22k‖Fk‖2

L2
t L2∗

x
. (4.39)

Summing it with (4.27), we obtain

‖(uk, u̇k)‖`2jL∞
t L2∗

x (Ij)

. ‖vk‖L∞
t L2∗

x
+ ‖v̇k‖L∞

t L2
x

+ 2k‖Fk‖L2
t L2∗

x
.

(4.40)
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Since the first two terms on the right are bounded by the last one through
the Strichartz estimate, we get the desired estimate. ¤

Proof of Theorem 1.6. By the results in [20, 21], we can bound the non-
linearity in some appropriate dual Strichartz norms in terms of the energy
EK(u). Then by the Strichartz estimate we get (in the following C(EK(u))
denotes arbitrary continuous functions of EK(u))

‖u‖L2
t L2∗

x
≤ C(EK(u)), (4.41)

then by the Hölder and Sobolev inequalities,

‖f(u)‖L2
t L2∗

x
. ‖u‖α

L∞
t L

αd/2
x

‖u‖L2
t L2∗

x
≤ C(EK(u)), (4.42)

where we can use H1
x ⊂ L

αd/2
x , because 4/d ≤ α ≤ 4/(d − 2) implies

2 ≤ αd/2 ≤ 2∗. It is much stronger than what is required in the above
lemma. ¤

Theorem 1.7 is proved in the same way using the above lemma and
uniform bound on the Strichartz norm, which was first proved in [3] for
d = 3, which is essentially valid as far as d ≥ 3 and 4/d < α < 4/(d − 2).
The case α = 4/(d − 2) was solved in [6, 24, 31].
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