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Global existence and asymptotic behavior
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Abstract. We consider the Cauchy problem for systems of semilinear wave equations

in 2D with small initial data, and introduce a sufficient condition for global existence of

small solutions. Our condition is weaker than the null condition for 2D wave equations,

and it is motivated by Alinhac’s condition for 3D. We also show that some global solutions

under our condition are not asymptotically free.

Key words: system of nonlinear wave equations, null condition, weak null condition;

grow-up of energy.

1. Introduction

Let n = 2 or 3. We consider the Cauchy problem for a system of
semilinear wave equations of the following type:

¤ui = Fi(u, ∂u) for (t, x) ∈ (0, ∞) × Rn (i = 1, 2, . . . , N) (1.1)

with initial data

ui(0, x) = εfi(x), (∂tui)(0, x) = εgi(x) for x ∈ Rn (1.2)

(i = 1, . . . , N), where ¤ = ∂2
t − ∆x is the d’Alembertian, u = (uj)1≤j≤N ,

and ∂u = (∂auj)0≤a≤n,1≤j≤N , while ε is a small positive parameter. Here
we have used the notation ∂0 = ∂t and ∂k = ∂xk

for 1 ≤ k ≤ n.
For simplicity, we suppose that each Fi = Fi(u, ∂u) (1 ≤ i ≤ N) is a

homogeneous polynomial of degree p in its arguments.
We say that we have small data global existence (or we say that (SDGE)

holds) if for any f = (fi)1≤i≤N and g = (gi)1≤i≤N ∈ C∞
0 (Rn; RN ), there ex-

ists a positive constant ε0 such that the Cauchy problem (1.1)–(1.2) admits
a unique global solution u ∈ C∞([0, ∞) × Rn; RN ) for any ε ∈ (0, ε0].
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We say that a nontrivial global solution u to (1.1)–(1.2) is asymptotically
free, if there exists a function ũ = ũ(t, x) ( 6≡ 0) solving ¤ũ = 0 such that

lim
t→∞

‖u(t, · ) − ũ(t, · )‖E = 0, (1.3)

where ‖ · ‖E is the energy norm, that is

‖ϕ(t, · )‖2
E =

∫
Rn

(|∂tϕ(t, x)|2 + |∇xϕ(t, x)|2)dx.

We say that (AF) holds when all the nontrivial global solutions to (1.1)–
(1.2) with sufficiently small ε are asymptotically free.

Let us recall the known results for the three space dimensional case
(n = 3) briefly. If the power of nonlinearity p ≥ 3, then (SDGE) and (AF)
hold. On the other hand, if p = 2, we do not have (SDGE) in general.
Hence p = 2 is the critical power for n = 3. Klainerman [19] introduced a
sufficient condition for (SDGE), which is called the null condition (see also
Christodoulou [7]). If the null condition is satisfied, then each Fi can be
written as a linear combination of Q0(uj , uk) and Qab(uj , uk), where the
null forms Q0 and Qab are defined by

Q0(ϕ, ψ) = (∂tϕ)(∂tψ) − (∇xϕ) · (∇xψ), (1.4)

Qab(ϕ, ψ) = (∂aϕ)(∂bψ) − (∂bϕ)(∂aψ) for 0 ≤ a, b ≤ n, (1.5)

respectively. It is easy to see that (AF) also holds under the null condition.
Alinhac [6] introduced a sufficient condition for (SDGE), which is

weaker than the null condition. But Katayama–Kubo [18] showed that
(AF) does not hold in general under the Alinhac condition. The simplest
example satisfying the Alinhac condition is{

¤u1 = (∂1u1)(∂1u2 − ∂2u1),

¤u2 = (∂2u1)(∂1u2 − ∂2u1).
(1.6)

(AF) does not hold for (1.6), though (SDGE) holds.
Now we turn our attention to the two space dimensional case (n = 2).

The critical power is p = 3 for n = 2. The null condition for (n, p) = (2, 3)
was also introduced, and (SDGE) under this null condition was obtained
(see Godin [8], Hoshiga [11], and the author [16, 17] for the quasi-linear
systems; see also Hoshiga–Kubo [14, 15] for the multiple propagation speeds
case). More precisely, we say that the null condition for (n, p) = (2, 3)
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holds, if each nonlinearity Fi can be written as a linear combination of
(∂αuj)Q0(uk, u`) and (∂αuj)Qab(uk, u`) with |α| ≤ 1, 1 ≤ j, k, ` ≤ N ,
and 0 ≤ a < b ≤ 2. Here and hereafter, for α = (α0, α1, α2), ∂α denotes
∂α0

0 ∂α1
1 ∂α2

2 . It is also easy to obtain (AF) under the null condition for
(n, p) = (2, 3).

This global existence result for (n, p) = (2, 3) has been extended in
various ways.

One way is to include nonlinear damping terms. Let us consider the
equation ¤u = −(∂tu)3 in (0, ∞) × R2. It is well-known that the nonlin-
earity −(∂tu)3 serves as a nonlinear damping term, and that there exists a
global solution even for large data (see Lions–Strauss [26]). Since the non-
linear damping term makes the energy decrease, (AF) does not hold for this
equation. In connection to this example, for single equations of the type
¤u = F (∂u) with (n, p) = (2, 3), Agemi [1] introduced a condition which
allows nonlinear damping terms as well as the terms satisfying the null con-
dition (thus his condition is weaker than the null condition for (n, p) =
(2, 3) as far as we consider the single equation of the above type). He con-
jectured that (SDGE) holds under his condition. Recently, this conjecture
turned out to be true (see Hoshiga [13] and Kubo [20]).

The other way is to include quadratic nonlinearities. Alinhac [2, 3]
considered the (quasi-linear) systems for the case (n, p) = (2, 2), and proved
(SDGE) assuming that the quadratic nonlinearities (as well as the cubic
ones if we consider higher perturbations) satisfy the null condition (see also
Hoshiga [12] for the multiple speeds case). We can also show that (AF)
holds under this assumption.

In this paper, we seek extension in another direction. Our aim here is to
obtain the two space dimensional analogue to the three space dimensional
results by Alinhac [6] and Katayama–Kubo [18], which we have mentioned
above. In other words, we present a class of nonlinearity for which (SDGE)
holds, but (AF) may fail to hold because the energy may increase as opposed
to the nonlinear damping case.

In the following, for a family of functions {ϕλ}λ∈Λ and a function ψ,
we write ψ =

∑′
λ∈Λ ϕλ if there exist some constants cλ (λ ∈ Λ) such that

ψ =
∑

λ∈Λ cλϕλ.
We introduce the following assumption:
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(H) By writing u = (ui)1≤i≤N =
(
(vi)1≤i≤L, (wi)1≤i≤M

)
= (v, w) with

some L ∈ {1, · · · , N − 1} and M = N − L (to be specific, vi = ui for
1 ≤ i ≤ L, and wi = ui+L for 1 ≤ i ≤ M), each Fi (1 ≤ i ≤ N) has the
form

Fi(u, ∂u) = Ai(w, ∂v, ∂w) + Ni(u, ∂u) for 1 ≤ i ≤ L, (1.7)

Fi(u, ∂u) = Ni(u, ∂u) for L + 1 ≤ i ≤ N, (1.8)

where

Ai(w, ∂v, ∂w) =
∑′

1≤j≤L, 1≤k,`≤M
0≤a≤2, |α|,|β|≤1

(∂avj)(∂αwk)(∂βw`), (1.9)

and

Ni(u, ∂u) =
∑′

1≤j,k,`≤N
|α|≤1

(∂αuj)Q0(uk, u`)

+
∑′

1≤j,k,`≤N
|α|≤1, 0≤a<b≤2

(∂αuj)Qab(uk, u`). (1.10)

In other words, (H) means that (1.1) can be written as{
¤vi = Ai(w, ∂v, ∂w) + Ni

(
(v, w), (∂v, ∂w)

)
(1 ≤ i ≤ L),

¤wi = Ni+L

(
(v, w), (∂v, ∂w)

)
(1 ≤ i ≤ M).

(1.11)

Remark The assumption (H) with Ai ≡ 0 for all i ∈ {1, . . . , L} coincides
with the null condition for (n, p) = (2, 3).

Theorem 1.1 Let n = 2 and p = 3. Assume that (H) is fulfilled.
Then (SDGE) holds for the Cauchy problem (1.1)–(1.2).
Moreover, there exists (ṽ, w̃) solving

¤ṽi = Ai(w̃, ∂ṽ, ∂w̃) for 1 ≤ i ≤ L, (1.12)

¤w̃i = 0 for 1 ≤ i ≤ M (1.13)

such that

lim
t→∞

(‖v(t, · ) − ṽ(t, · )‖E + ‖w(t, · ) − w̃(t, · )‖E) = 0,

where u = (v, w) is the global solution to (1.1)–(1.2).
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There is a certain class of system which does not satisfy (H) explicitly,
but can be reduced to other system satisfying (H). For example, consider{

¤u1 = (∂1u1)(∂1u2 − ∂2u1)2,

¤u2 = (∂2u1)(∂1u2 − ∂2u1)2,
(1.14)

which does not satisfy (H). Setting

v1 = u1, v2 = u2, and w = ∂1u2 − ∂2u1,

we find that solving (1.14) is equivalent to solving{
¤v1 = (∂1v1)w2, ¤v2 = (∂2v1)w2,

¤w = 2wQ12(w, v1),
(1.15)

which satisfies the assumption (H). Observe that this example corresponds
to (1.6) for n = 3.

More precisely, we can get a two dimensional analogue to the Alinhac
condition in the following way: Suppose that each Fi (1 ≤ i ≤ N) in (1.1)
depends only on ∂u, i.e., Fi = Fi(∂u) = Fi

(
(∂auj)0≤a≤2,1≤j≤N

)
. For ω =

(ω1, ω2) ∈ S1 and X = (Xj)1≤j≤N , we define the reduced nonlinearity

F red
i (ω, X) ≡ Fi

(
(−ωaXj)0≤a≤2, 1≤j≤N

)
(1 ≤ i ≤ N),

whose right-hand side means that −ωaXj is substituted in place of ∂auj

(“red” in F red
i stands for “reduced”). Here and hereafter we put ω0 = −1.

Now we introduce an alternative assumption as follows:

(H’) There exist β(ω) =
(
βi(ω)

)
1≤i≤N

∈ RN , a function P (ω, X), some
number of bilinear forms

hj = hj(ω, X) =
∑

0≤a≤2, 1≤k≤N

hka
j ωaXk (1 ≤ j ≤ M) (1.16)

in (ω, X) (with real constants hka
j ), and linear forms gjk

i (ω, X) in X (with
smooth coefficients in ω), satisfying

F red
i (ω, X) = βi(ω)P (ω, X) (1 ≤ i ≤ N, ω ∈ S1, X ∈ RN ), (1.17)

F red
i (ω, X) =

∑
1≤j,k≤M

gjk
i (ω, X)hj(ω, X)hk(ω, X)

(1 ≤ i ≤ N,ω ∈ S1, X ∈ RN ), (1.18)
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hj

(
ω, β(ω)

)
≡ 0 (1 ≤ j ≤ M, ω ∈ S1). (1.19)

We can easily check that the system (1.14) satisfies (H’).

Remark (1.17), (1.18) and (1.19) yield

P
(
ω, β(ω)

)
= 0 (ω ∈ S1) (1.20)

if β(ω) 6= 0, while (1.20) is triviality when β(ω) = 0, because we can choose
P (ω, X) = 0 for such ω. The condition (AA) in [6] exactly coincides with
(1.17) and (1.20), while the condition (AA) in [6] corresponds to (1.18) and
(1.19). In [6], as we have mentioned, it is proved that the Alinhac condition,
which consists of (AA) and (AA), implies (SDGE) for (n, p) = (3, 2), but
Alinhac conjectures that (AA) would suffice for (SDGE) when (n, p) =
(3, 2).

Theorem 1.2 Let n = 2, p = 3 and Fi = Fi(∂u) for 1 ≤ i ≤ N in (1.1).
Assume that (H’) is fulfilled.

Then (SDGE) holds for the Cauchy problem (1.1)–(1.2).

Concerning the asymptotic behavior of the solutions, we have the fol-
lowing:

Theorem 1.3 Let n = 2, and consider (1.14) or (1.15).
Then, there exist f, g ∈ C∞

0 (R2) and two positive constants C0 and ε1

such that we have

‖u(t, · )‖E ≥ C0ε(1 + t)C0ε2

for all t ≥ 0 provided that ε ∈ (0, ε1], where u = (u1, u2) (resp. u =
(v1, v2, w)) is the global solution to (1.14) (resp. (1.15)) with initial data
u = εf and ∂tu = εg at t = 0.

If (AF) holds, then sup0≤t<∞ ‖u(t, · )‖E must be finite. Hence Theo-
rem 1.3 shows that (AF) does not hold in general under the assumptions
(H) or (H’), though Theorem 1.1 (resp. Theorem 1.2) ensures (SDGE) under
(H) (resp. (H’)).

Theorems 1.1, 1.2, and 1.3 will be proved in Sections 4, 5, and 6, re-
spectively.

Throughout this paper, as usual, the letter C stands for a positive
constant, which may change line by line.
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2. Notation

We will use the notation given in this section throughout this paper.
Consider the Cauchy problem for the linear wave equation{

¤ϕ(t, x) = Φ(t, x) in (0, ∞) × R2,

ϕ(0, x) = ϕ0(x), (∂tϕ)(0, x) = ϕ1(x) for x ∈ R2.
(2.1)

We write U0[ϕ0, ϕ1] for the classical solution to (2.1) with Φ ≡ 0, and U [Φ]
for the classical solution to (2.1) with ϕ0 = ϕ1 ≡ 0, respectively.

For ρ > 0 and y ∈ R2, Bρ(y) denotes an open ball with radius ρ centered
at y.

We define

W±(t, x) = 〈t ± |x|〉 for (t, x) ∈ [0, ∞) × R2, (2.2)

where 〈a〉 =
√

1 + |a|2 for a ∈ R.
We introduce vector fields

S = t∂t + x · ∇x, Lj = xj∂t + t∂j (j = 1, 2), Ω12 = x1∂2 − x2∂1,

and we set

Γ0 = S, Γj = Lj (j = 1, 2), Γ3 = Ω12, Γa+4 = ∂a (0 ≤ a ≤ 2).

It is well-known that we have [S, ¤] = −2¤, [Γi, ¤] = 0 for 1 ≤ i ≤ 6. We
also have

[Γi, Γj ] =
∑′

0≤k≤6

Γk, [∂a, Γi] =
∑′

0≤b≤2

∂b

for 0 ≤ i, j ≤ 6 and 0 ≤ a ≤ 2. With a multi-index α = (α0, α1, . . . , α6),
we write Γα = Γα0

0 Γα1
1 · · ·Γα6

6 . For a nonnegative integer s, and a scalar or
vector-valued smooth function ϕ = ϕ(t, x), we define

|ϕ(t, x)|s =
∑
|α|≤s

|Γαϕ(t, x)|,

‖ϕ(t, · )‖s,q =
∥∥|ϕ(t, · )|s

∥∥
Lq(R2)

(1 ≤ q ≤ ∞).

We also introduce

Zj =
xj

|x|
∂t + ∂j (j = 1, 2). (2.3)
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Then we have

|Γaϕ(t, x)| ≤ C
(
|x||Zϕ(t, x)| + 〈t − |x|〉|∂ϕ(t, x)|

)
(2.4)

for 0 ≤ a ≤ 6 and any smooth function ϕ, where Zϕ = (Z1ϕ, Z2ϕ). In fact,
we have

S =
2∑

j=1

xjZj + (t − |x|)∂t, Lj = |x|Zj + (t − |x|)∂j (j = 1, 2),

Ω12 = x1Z2 − x2Z1,

while (2.4) is trivial for 4 ≤ a ≤ 6.
On the other hand, we also have |Zϕ(t, x)| ≤ C|∂ϕ(t, x)|,

Z1 =
x1

|x|
(∂t + ∂r) −

x2

|x|2
Ω12, Z2 =

x2

|x|
(∂t + ∂r) +

x1

|x|2
Ω12,

and

(t + |x|)(∂t + ∂r) = S +
2∑

j=1

( xj

|x|

)
Lj ,

where ∂r =
∑2

j=1(xj/|x|)∂j as usual. Hence we get

|Zϕ(t, x)| ≤ C〈|x|〉−1
∑
|α|=1

|Γαϕ(t, x)|. (2.5)

For a nonnegative integer s, and a scalar or vector-valued smooth func-
tion ϕ = ϕ(t, x), we define

|ϕ(t, x)|Z,s =
∑
|α|≤s

2∑
j=1

|ZjΓαϕ(t, x)|.

3. Preliminary Results

In this section, we state known estimates for linear wave equations, and
we make some necessary estimates. In what follows, we always suppose
that ϕ0, ϕ1 ∈ C∞

0 (R2), and that Φ = Φ(t, x) is a smooth function decaying
sufficiently fast at spatial infinity.

First of all, we introduce the improved energy estimate by Alinhac [5]
(see also Alinhac [4, 6] and Lindblad–Rodnianski [25]).
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Lemma 3.1 Let ϕ = U0[ϕ0, ϕ1] + U [Φ].
Then, for λ ≥ 0 and ρ > 0, there exists a constant C depending only

on ρ such that

〈t〉−λ‖ϕ(t, · )‖E +
( 2∑

j=1

∫ t

0

∫
R2

|Zjϕ(τ, x)|2

〈τ〉2λ〈τ − |x|〉1+ρ
dxdτ

)1/2

≤ C
(
‖∇xϕ0‖L2 + ‖ϕ1‖L2 +

∫ t

0
〈τ〉−λ‖Φ(τ, · )‖L2dτ

)
(3.1)

for t ≥ 0.

Outline of the proof. We set η(s) =
∫ s
−∞〈τ〉−(ρ+1)dτ for s ∈ R. Then fol-

lowing similar lines to the proof of the standard energy inequality, however
multiplying ¤ϕ by 〈t〉−2λeη(|x|−t)(∂tϕ) instead of ∂tϕ, we obtain

2
∫

R2

〈t〉−2λeη(|x|−t)(∂tϕ)Φdx

=
d

dt

∫
R2

〈t〉−2λeη(|x|−t){(∂tϕ)2 + |∇xϕ|2}dx

+
2∑

j=1

∫
R2

eη(|x|−t)|Zjϕ|2

〈t〉2λ〈|x| − t〉1+ρ
dx

+ 2λt〈t〉−2λ−2

∫
R2

eη(|x|−t){(∂tϕ)2 + |∇xϕ|2}dx, (3.2)

which implies Lemma 3.1 (observe that we have 1 ≤ eη(s) ≤ Cρ for all s ∈ R
with a constant Cρ depending on ρ, and that the last term on the right-hand
side of (3.2) is nonnegative). ¤

The following estimate is due to Hörmander [9] (see also the proof of
Lemma 3.1 in the author [16]).

Lemma 3.2 For κ ∈ [0, 1/2], there exists a constant C depending only on
κ such that we have

〈t + |x|〉1/2〈t − |x|〉κ|U [Φ](t, x)| ≤ C

∫ t

0

∫
R2

|Φ(τ, y)|1
〈τ + |y|〉(1/2)−κ

dydτ

for (t, x) ∈ [0, ∞) × R2.

The following L2-estimate will be used in the proof of Theorem 1.3.



698 S. Katayama

Lemma 3.3 For 0 < ρ ≤ 1, there exists a constant C depending only on
ρ such that we have

‖U0[ϕ0, ϕ1](t, · )‖L2(R2)

≤ C(‖ϕ0‖L2(R2) + t2ρ/(1+ρ)‖ϕ1‖L1+ρ(R2)), (3.3)

‖U [Φ](t, · )‖L2(R2) ≤ Ct2ρ/(1+ρ)

∫ t

0
‖Φ(τ, · )‖L1+ρ(R2)dτ (3.4)

for t ≥ 0.

For the proof, see Li–Zhou [23, Lemma 2.8], or the author [16, Proposi-
tion 3.2] for instance (see also Strichartz [29], Peral [28], Marshall–Strauss-
Wainger [27], and Li–Yu–Zhou [22] for related results). Note that Lemma
3.3 fails to hold for ρ = 0 (see [16, Remark 3] for the counterexample).

To treat the null forms, we use the following:

Lemma 3.4 Let s be a nonnegative integer, u = (uj)1≤j≤N be a smooth
function, and Ni be given by (1.10). Then we have

|Ni(u, ∂u)|s ≤ Cs〈t + |x|〉−1|u|[s/2]+1

× (|u|[s/2]+1|∂u|s + |∂u|[s/2]|u|s+1), (3.5)

and

|Ni(u, ∂u)|s ≤ Cs〈t + |x|〉−1|u|[s/2]+1

×
(
|u|[s/2]+1 + 〈t − |x|〉|∂u|[s/2]

)
|∂u|s

+ C|u|[s/2]+1|∂u|[s/2]|u|Z,s (3.6)

at (t, x) ∈ [0, ∞) × R2, where Cs is a positive constant depending only on
s.

Proof. For a null form Q, it is well known that we have

|Q(uj , uk)|s ≤ C〈t + |x|〉−1(|u|[s/2]+1|∂u|s + |∂u|[s/2]|u|s+1) (3.7)

(see Klainerman [19]), which immediately yields (3.5) (see also the author
[16, 17]). Since we have |u|s+1 ≤ |u| +

∑
1≤|α|≤s+1 |Γαu|, by using (2.4) to

evaluate |Γαu| for 1 ≤ |α| ≤ s + 1, we obtain (3.6) from (3.5) (see also
Alinhac [6]). ¤

For the proof of Theorem 1.3 we need the following:



Systems of semilinear wave equations 699

Lemma 3.5 There exists a positive constant C such that∫
B4δ(0)∩Bt(x)

dy√
t2 − |x − y|2

≥ C
δ3/2

(2δ + t)1/2
(3.8)

for any δ > 0 and any (t, x) ∈ [0, ∞) × R2 satisfying

4δ ≤ t + δ ≤ |x| ≤ t + 2δ. (3.9)

Proof. By setting a = |x| − t, (3.9) implies

t ≥ 3δ and δ ≤ a ≤ 2δ. (3.10)

Switching to the polar coordinates centered at x, we obtain∫
B4δ(0)∩Bt(x)

dy√
t2 − |x − y|2

≥ 2θ0

∫ t

t−b

λ√
t2 − λ2

dλ

= 2θ0

√
2bt − b2, (3.11)

where b = (4δ − a)/2, and θ0 ∈ (0, π/2) is determined by

(t − b)2 sin2 θ0 + (t + a − (t − b) cos θ0)2 = (4δ)2. (3.12)

From (3.12), we find

θ2
0 ≥ sin2 θ0 =

(
2 − (4δ − a)(12δ + a)

8(t + a)(t − b)

)(4δ − a)(12δ + a)
8(t + a)(t − b)

. (3.13)

By (3.10), we obtain

13δ2

4(2δ + t)(t − b)
≤ (4δ − a)(12δ + a)

8(t + a)(t − b)
≤ 7

8
. (3.14)

On the other hand, (3.10) also leads to

2bt − b2

t − b
= 2b +

b2

t − b
≥ 2b ≥ 2δ. (3.15)

Now (3.11)–(3.15) imply∫
B4δ(0)∩Bt(x)

dy√
t2 − |x − y|2

≥ 3
√

13
2

δ3/2

(2δ + t)1/2
.

This completes the proof. ¤
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Since it is well known that we have

U0[0, ϕ1](t, x) =
1
2π

∫
Bt(x)

ϕ1(y)√
t2 − |x − y|2

dy,

Lemma 3.5 immediately implies the following:

Corollary 3.6 Fix ω∗ ∈ S1 and a neighborhood Λ of ω∗ on S1. Set

ΩΛ = {y ∈ R2; there exists η ∈ Λ such that y · η ≥ 0}. (3.16)

If ϕ1 ∈ C∞
0 (R2) satisfies

ϕ1(y) ≥ 0 for y ∈ ΩΛ, and ϕ1(y) ≥ ζ0 for y ∈ ΩΛ ∩ B4δ(0) (3.17)

with some positive constants δ and ζ0, then we have

U0[0, ϕ1](t, x) ≥ C

2π

δ3/2ζ0

(2δ + t)1/2
(3.18)

for any (t, x) satisfying (3.9) and x/|x| ∈ Λ, where C is the same constant
as in (3.8).

To prove Corollary 3.6, we only have to notice that (3.9) and x/|x| ∈ Λ
imply Bt(x) ⊂ ΩΛ.

Finally we recall the following Hardy type inequality.

Lemma 3.7 Let R > 0 be given. Then we have∥∥∥ ϕ(t, · )
W−(t, · )

∥∥∥
L2(R2)

≤ CR‖∂ϕ(t, · )‖L2(R2) (3.19)

for any smooth function ϕ satisfying suppϕ(t, · ) ⊂ Bt+R(0), where the
constant CR depends only on R.

For the proof, see Lindblad [24] and the author [17].

4. Proof of Theorem 1.1

Suppose that all the assumptions in Theorem 1.1 are fulfilled.
Let u = (v, w) ∈ C∞(

[0, T0) × R2; RN
)

be the local solution to (1.1)–
(1.2) with some T0 > 0. Assume that supp f ∪ supp g ⊂ BR(0) with some
R > 0. Then it is well-known that we have supp u(t, · ) ⊂ Bt+R(0) for
t ∈ [0, T0). Accordingly, we also find that Γαu is uniformly continuous on
[0, T ] × R2 for any T ∈ (0, T0), and any multi-index α.
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We define

dk[u](t, x) = 〈t + r〉1/2

×
(
〈t + r〉−γε2 |v(t, x)|k+1 + 〈t − r〉ν |w(t, x)|k+1

)
,

where r = |x|, k is a nonnegative integer, 1/4 < ν < 1/2 and γ > 0. Since
we have

〈t − r〉|∂ϕ(t, x)| ≤ C|ϕ(t, x)|1 (4.1)

for any smooth function ϕ (for the proof, see Lindblad [24] and the author
[17]), we obtain

〈t + r〉(1/2)−γε2〈t − r〉|∂v(t, x)|k + 〈t + r〉1/2〈t − r〉1+ν |∂w(t, x)|k
≤ Cdk[u](t, x) for any (t, x) ∈ [0, T0) × R2,

where C is a positive constant independent of T0. We set

E2k[u](t) = 〈t〉−γε2‖∂v(t, · )‖2k,2 + ‖∂w(t, · )‖2k,2

+
(∫ t

0

∫
R2

〈τ〉−4γε2〈τ − |x|〉−2|u(τ, x)|2Z,2kdxdτ
)1/2

.

We fix some ν ∈ (1/4, 1/2) and k ≥ 5. We assume that we have

sup
0≤t<T

{
‖dk[u](t, · )‖L∞(R2) + E2k[u](t)

}
≤ Kε (4.2)

for some K > 0 and some T > 0 (note that we have ‖dk[u](0, · )‖L∞(R2) +
E2k[u](0) ≤ Kε/2 for sufficiently large K and consequently (4.2) is true for
small T , because of the uniform continuity of |u(t, x)|k+1 on [0, T ] × R2).
We are going to prove that, if we choose sufficiently large K and γ, then
(4.2) implies

sup
0≤t<T

{
‖dk[u](t, · )‖L∞(R2) + E2k[u](t)

}
≤ K

2
ε (4.3)

for sufficiently small ε. Once such an estimate is established, then by
the well-known continuity argument (see the proof of Theorem 6.5.2 in
Hörmander [10] for example), we obtain the global existence of the solution
immediately.

Now we start the proof of (4.3). In the following, we always assume
that K is large enough and ε is small enough.
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By (3.6) in Lemma 3.4, we get

|Ni(u, ∂u)|s ≤ CW−1
+ |u|[s/2]+1

(
|u|[s/2]+1 + W−|∂u|[s/2]

)
|∂u|s

+ C|u|[s/2]+1(W−|∂u|[s/2])
|u|Z,s

W−
(4.4)

for 1 ≤ i ≤ N and a nonnegative integer s.
From (4.2) and (4.4), we get∫ t

0
‖Ni(u, ∂u)(τ, · )‖2k,2dτ

≤ CK3ε3

∫ t

0
〈τ〉−2+3γε2

dτ + CK3ε3
(∫ t

0
〈τ〉−2+8γε2

dτ
)1/2

≤ CK3ε3 (4.5)

for 1 ≤ i ≤ N , provided that 8γε2 < 1/4, say. Here we have evaluated the
term coming from the last term on the right-hand side of (4.4) by∫ t

0

∥∥∥|u|k+1(W−|∂u|k)
|u|Z,2k

W−

∥∥∥
L2

dτ

≤ K2ε2

∫ t

0
〈τ〉−1+2γε2

∥∥∥ |u|Z,2k

W−

∥∥∥
L2

dτ

≤ K2ε2
(∫ t

0
〈τ〉−2+8γε2

dτ
)1/2(∫ t

0
〈τ〉−4γε2

∥∥∥ |u|Z,2k

W−

∥∥∥2

L2
dτ

)1/2
.

On the other hand, since we have

|Ai(w, ∂v, ∂w)|s ≤ C|w|2[s/2]+1|∂v|s + C|w|[s/2]+1|∂v|[s/2]|∂w|s

+ C|w|[s/2]+1(W−|∂v|[s/2])
|w|s
W−

(4.6)

for 1 ≤ i ≤ L and a nonnegative integer s, we obtain∫ t

0
‖Ai(τ, · )‖2k,2dτ ≤ CK3ε3

∫ t

0
〈τ〉γε2−1dτ ≤ C

K2

γ
Kε〈t〉γε2

(4.7)

with the help of (3.19). Therefore, (4.5) and (4.7) with the standard energy
inequality lead to

〈t〉−γε2‖∂v(t, · )‖2k,2 + ‖∂w(t, · )‖2k,2 ≤ C
(
ε +

K2

γ
Kε + K3ε3

)
.
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Similarly to (4.7), we get∫ t

0
〈τ〉−2γε2‖Ai(τ, · )‖2k,2dτ ≤ C

K2

γ
Kε. (4.8)

From Lemma 3.1, (4.5) and (4.8), we find(∫ t

0

∫
R2

|u(τ, x)|2Z,2k

〈τ〉4γε2〈τ − |x|〉2
dxdτ

)1/2
≤ C

(
ε +

K2

γ
Kε + K3ε3

)
.

Summing up, we have shown

E2k[u](t) ≤ C
(
ε +

K2

γ
Kε + K3ε3

)
(4.9)

for 0 ≤ t < T .
Now we turn our attention to dk[u]. It is well-known that we have

〈t + r〉1/2〈t − r〉1/2|U0[εfi, εgi](t, x)|s ≤ Csε (4.10)

for a nonnegative integer s (see Kubota [21] for instance). Since (3.5) of
Lemma 3.4 implies

|Ni(u, ∂u)|s ≤ CW−1
+ |u|2[s/2]+1|∂u|s

+ CW−1
+ |u|[s/2]+1(W−|∂u|[s/2])

( |u|s+1

W−

)
(4.11)

for a nonnegative integer s, we get∥∥∥ |Ni(t)|2k−1

W(1/2)−ν
+ (t)

∥∥∥
L1

≤CK2ε2
∥∥∥W−(5/2)+2γε2+ν

+

∥∥∥
L2
‖∂u‖2k,2

≤CK3ε3〈t〉−(3/2)+3γε2+ν (4.12)

for 1 ≤ i ≤ N . Hence by Lemma 3.2 we obtain

〈t + r〉1/2〈t − r〉ν |w(t, x)|2k−2 ≤ C(ε + CK3ε3) ≤ CKε, (4.13)

provided that 3γε2 < (1/2) − ν.
On the other hand, since we have k + 3 ≤ 2k− 2, (4.6) and (4.13) yield∥∥∥ |Ai(t)|k+2

W1/2
+ (t)

∥∥∥
L1

≤CK2ε2‖W−3/2
+ W−2ν

− ‖L2‖∂v‖2k,2

+ CK3ε3〈t〉γε2‖W−2
+ W−1−2ν

− ‖L1

≤CK3ε3〈t〉γε2−1, (4.14)
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because we have

‖W−3/2
+ (t)W−2ν

− (t)‖L2 + ‖W−2
+ (t)W−1−2ν

− (t)‖L1 ≤ C〈t〉−1

for 1/4 < ν < 1/2. By (4.12), (4.14), and Lemma 3.2 with κ = 0, we obtain

〈t + r〉1/2|v(t, x)|k+1 ≤ C
(
ε +

K2

γ
Kε〈t〉γε2

+ K3ε3
)
. (4.15)

Finally (4.9), (4.13) and (4.15) yield

sup
0≤t<T

{
‖dk[u](t, · )‖L∞(R2) + E2k[u](t)

}
≤ C0

(
ε +

K2

γ
Kε + K3ε3

)
,

with some positive constant C0. This inequality leads to (4.3), if we assume

K ≥ 6C0, γ ≥ 6C0K
2, C0K

2ε2 ≤ 1
6
.

This completes the proof for global existence of the solution.
Now we have

‖dk[u](t, · )‖L∞(R2) + E2k[u](t) ≤ Cε for all t ∈ [0, ∞), (4.16)

and a similar argument to the proof of Theorem 1.1 in [18] implies the
existence of ṽ and w̃. We omit the details here.

5. Proof of Theorem 1.2

We are going to show that the proof of Theorem 1.2 can be essentially
reduced to that of Theorem 1.1, by following the arguments in [6].

Assume that all the assumptions in Theorem 1.2 are fulfilled, and let u

be the solution to (1.1)–(1.2). Since Fi(∂u) (1 ≤ i ≤ N) are homogeneous
polynomials of degree 3 with respect to ∂u, we can write them as

Fi(∂u) =
∑

1≤j≤k≤`≤N
0≤a,b,c≤2

Ci,jk`
abc (∂auj)(∂buk)(∂cu`) (5.1)

with appropriate constants Ci,jk`
abc . We set

wj = −
∑

0≤a≤2, 1≤k≤N

hka
j ∂auk (5.2)

for 1 ≤ j ≤ M , where the constants hka
j and M are from (1.16). We define

u∗ = (v, w), where v = (u, ∂u) and w = (wj)1≤j≤M . Then u∗ satisfies the
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system 
¤ui = Fi(∂u),

¤(∂aui) = Fi,a(∂v)
(
≡ ∂a

(
Fi(∂u)

))
,

¤wj = Gj(∂v)
(
≡ −

∑
0≤a≤2, 1≤k≤N

hka
j ∂a

(
Fk(∂u)

))
.

(5.3)

In the following, we put r = |x|, and ωj = xj/|x| for j = 1, 2. We also set
ω0 = −1, as before.

We assume that (4.2) with u replaced by u∗ = (v, w) holds. When
r < (1 + t)/2, since we have 〈t + r〉 ≤ C〈t − r〉, (4.1) and (4.2) yield

|Fi|s + |Fi,a|s + |Gj |s ≤C|∂v|2[s/2]|∂v|s

≤CM2ε2〈t + r〉−3+2γε2 |∂v|s (5.4)

for r < (1 + t)/2, if s ≤ 2k.
From now on, we suppose r ≥ (1+t)/2. Note that we have 〈t+r〉 ≤ Cr.

Set Z0 = 0. Then, using Zj (j = 1, 2) defined in (2.3), we have

∂a = Za − ωa∂t for 0 ≤ a ≤ 2. (5.5)

We set

Hi(ω, ∂u)≡Fi(∂u) − F red
i (ω, ∂tu)

=
∑

1≤j≤k≤`≤N
0≤a,b,c≤2

Ci,jk`
abc Ξjk`

abc(ω, ∂u), (5.6)

Ξjk`
abc(ω, ∂u) = (∂auj)(∂buk)(∂cu`) + ωaωbωc(∂tuj)(∂tuk)(∂tu`).(5.7)

By replacing ∂a, ∂b and ∂c in (5.7) with (5.5), and remembering the defini-
tion of Za (0 ≤ a ≤ 2), we obtain

|Ξjkl
abc(ω, ∂u)| =

∑′

1≤j′,k′,`′≤N
0≤a′,b′,c′≤2
|α|=|β|=1

ωa′ωb′(∂αuj′)(∂βuk′)(Zc′u`′). (5.8)

Observing that [Γa, Zj ] (0 ≤ a ≤ 6, j = 1, 2) can be written as linear
combinations of ωbZk, (ωkω`/r)∂t and

(
ωkω`(t−r)/r

)
∂t with 0 ≤ b ≤ 2 and

1 ≤ k, ` ≤ 2, we obtain
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|Hi|s ≤ C
(
〈t + r〉−1〈t − r〉|u|[s/2]+1|∂u|[s/2]|∂u|s

+ |∂u|2[s/2]|u|Z,s

)
(5.9)

in view of (2.5).
We define

Ai(ω, w, ∂u) =
∑

1≤j,k≤M

gjk
i (ω, ∂tu)wjwk, (5.10)

where gjk
i ’s are from (1.18). (5.5) leads to

hj(ω, ∂tu) − wj =
∑

0≤a≤2
1≤k≤N

hka
j Zauk.

Hence, similarly to (5.9), by (1.18) we obtain

|F red
i (ω, ∂tu) − Ai(ω, w, ∂u)|s

≤ C
(
〈t + r〉−1〈t − r〉|u|[s/2]+1|∂u|[s/2]|∂u|s + |∂u|2[s/2]|u|Z,s

)
. (5.11)

From now on, for Φ = Φ(ω, ∂u∗) and Ψ = Ψ(ω, ∂u∗), we write Φ ≈ Ψ
if for any nonnegative integer s, there exists a positive constant Cs such
that

|Φ − Ψ|s ≤ Cs|u∗|[s/2]+1|∂u∗|[s/2]

(〈t − r〉
〈t + r〉

|∂u∗|s + |u∗|Z,s

)
. (5.12)

Thanks to (2.5), if Φ ≈ Ψ, we get

|Φ − Ψ|s ≤Cs〈t + r〉−1|u∗|[s/2]+1|∂u∗|[s/2]

×
(
〈t − r〉|∂u∗|s + |u∗|s+1

)
≤Cs〈t + r〉−1|u∗|[s/2]+1

×
(
|u∗|[s/2]+1|∂u∗|s + |∂u∗|[s/2]|u∗|s+1

)
, (5.13)

where we have used (4.1) to obtain the last inequality.
Since we have

∂ahj(ω, ∂tu) − ∂awj =
∑

0≤a≤2
1≤k≤N

hkb
j

(
(∂aωb)∂tuk + Zb(∂auk)

)
and ∂aωb =

∑′
1≤j,k≤2 ωjωk/r, following similar lines to (5.6)–(5.11), we
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can also obtain

∂a

(
Fi(∂u)

)
≈ ∂a

(
Ai(ω, w, ∂u)

)
. (5.14)

Writing P (ω, X) =
∑

1≤j≤k≤`≤N P jk`(ω)XjXkX`, we define

F̃ red
i (ω, X, Y )=−

∑
1≤j≤k≤`≤N

0≤a,b,c≤2

Ci,jk`
abc ωaωbωc[X, X, Y ]j,k,`,

P̃ (ω, X, Y )=
∑

1≤j≤k≤`≤N

P jk`(ω)[X, X, Y ]j,k,`

for X, Y ∈ RN and ω ∈ S1, where the constants Ci,jk`
abc are from (5.1), and

[X, X, Y ]j,k,` = YjXkX` + XjYkX` + XjXkY`. Since (1.17) implies

−
∑

0≤a,b,c≤2

Ci,jk`
abc ωaωbωc = βi(ω)P jk`(ω)

for any 1 ≤ i ≤ N and 1 ≤ j ≤ k ≤ ` ≤ N , we find

F̃ red
i (ω, X, Y ) = βi(ω)P̃ (ω, X, Y ) (5.15)

for any X, Y ∈ RN and ω ∈ S1.
By (5.5) we have

∂a∂bϕ = (ZaZbϕ) − Za(ωb∂tϕ) − ωaZb∂tϕ + ωaωb∂
2
t ϕ,

which yields

∂a

(
Fi(∂u)

)
≈ −ωaF̃

red
i (ω, ∂tu, ∂2

t u)

as before. Hence, by (5.15) and (1.19), we obtain

Gj =−
∑
k,a

hka
j ∂a

(
Fk(∂u)

)
≈

∑
k,a

hka
j ωaF̃

red
k (ω, ∂tu, ∂2

t u)

=
∑
k,a

hka
j ωaβk(ω)P̃ (ω, ∂tu, ∂2

t u) = hj

(
ω, β(ω)

)
P̃ (ω, ∂tu, ∂2

t u)

= 0.

Summing up, we have proved
¤ui = Fi(∂u) ≈ Ai(ω, w, ∂u),

¤(∂aui) = Fi,a(∂v) ≈ ∂a

(
Ai(ω, w, ∂u)

)
,

¤wj = Gj(∂v) ≈ 0

(5.16)
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for r ≥ (1 + t)/2. Observe that (5.16) has a similar structure to that in
(H). The only difference between these structures is dependence on ω, which
causes no difficulty. Now, using (5.12) and (5.13) in place of Lemma 3.5,
we can follow the proof of Theorem 1.1 to treat the nonlinearity in (5.16)
for r ≥ (1 + t)/2, while (5.4) provides a far better estimate than we need
for r < (1 + t)/2. In this way, we obtain (4.3) with u replaced by u∗. This
completes the proof.

6. Proof of Theorem 1.3

Suppose that all the assumptions in Theorem 1.3 are fulfilled. First we
consider (1.15).

Let Λ be a small neighborhood of (−1, 0) on S1, and ΩΛ be given
by (3.16). Choosing some positive constants ζ, δ and δ0 (≤ δ), we give the
following assumption on f = (f1, f2, f3) and g = (g1, g2, g3) ∈ C∞

0 (R2; R3):
( i ) f3 ≡ 0. g3 ≥ 0 on ΩΛ, and g3 ≥ 2ζ on ΩΛ ∩ B4δ(0).
(ii) f1 ≡ 0. g1 is radially symmetric,

supp g1 ⊂ Xδ0 ≡ {x ∈ R2; δ ≤ |x| ≤ δ + δ0(≤ 2δ)},

and ‖g1‖L2(Θ0) > 0, where

Θ0 ≡
{

x ∈ R2; δ ≤ |x| ≤ 2δ,
x

|x|
∈ Λ

}
.

Let u = (v1, v2, w) be the global solution to (1.15) with initial data
u = εf and ∂tu = εg at t = 0.

We fix some ζ and δ from now on, while δ0 (≤ δ) will be chosen later. In
the following, C∗ indicates a positive constant which may depend on some
norms of g1, while C is a constant independent of g1 and δ0.

By the assumption (i) and Corollary 3.6, we have

U0[0, g3](t, x) ≥ 2C1ζ(1 + t)−1/2 (6.1)

for t ≥ 3δ and x ∈ Θt, where C1 is a positive constant depending only on
δ, and Θt is defined by

Θt ≡
{

x ∈ R2; t + δ ≤ |x| ≤ t + 2δ,
x

|x|
∈ Λ

}
for t ≥ 0. (6.2)

Hence, by (4.12) and Lemma 3.2, we obtain

w(t, x)≥ 2C1ζε(1 + t)−1/2 − C∗ε
3(1 + t)−1/2
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≥C1ζε(1 + t)−1/2 (6.3)

for t ≥ 3δ and x ∈ Θt, provided that ε is sufficiently small to satisfy C∗ε
2 ≤

C1ζ.
We can decompose v1 as

v1(t, x) = U0[0, εg1](t, x) + U [w2∂1v1](t, x). (6.4)

By (4.16), we have

‖(w2∂1v1)(t)‖2,1+ρ ≤C∗ε
2‖W−1

+ W−2ν
− ‖L2(1+ρ)/(1−ρ)‖∂v1(t)‖2,2

≤C∗ε
3〈t〉C∗ε2−1+(1−ρ)(2+2ρ)−1

(6.5)

for ρ ∈ (0, 1). Therefore, Lemma 3.3 leads to

‖U [(w2∂1v1)](t)‖2,2 ≤C∗ε
3〈t〉C∗ε2+(1+3ρ)(2+2ρ)−1

≤C∗ε
3〈t〉3/4, (6.6)

if ε and ρ are sufficiently small.
On the other hand, Lemma 3.3 also implies

‖U0[0, εg1](t)‖L2 ≤ Cε〈t〉2ρ/(1+ρ)‖g1‖L1+ρ ≤ Cε〈t〉1/4‖g1‖L1+ρ , (6.7)

‖Ω2
12U0[0, εg1](t)‖L2 = 0, (6.8)

‖U0[0, εg1](t)‖1,2 ≤ C∗ε〈t〉2ρ/(1+ρ) ≤ C∗ε〈t〉1/4 (6.9)

for small ρ ∈ (0, 1/7), where we have used the assumption (ii).
We define D± = ∂t ± ∂r, and set V (t, r, ω) = r1/2v1(t, rω) for (t, r) ∈

[0, ∞) × [0, ∞) and ω = (ω1, ω2) ∈ S1. We also define

Ẽ(t) =
(∫ t+2δ

t+δ

∫
Λ
|(D−V )(t, r, ω)|2dSωdr

)1/2
,

where dSω is the surface measure on S1. We have

¤ = ∂2
t − ∂2

r − r−1∂r − r−2Ω2
12,

∂1 = ω1∂r −
ω2

r
Ω12 =

ω1

2
(D+ − D−) − ω2

r
Ω12.

Therefore we find

D+D−V = −ω1

2
w2D−V +

r1/2

2
(P1 + P2), (6.10)
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where

P1 =
v1 + 4Ω2

12v1

2r2
, P2 = w2

(
ω1D+v1 −

2ω2Ω12v1

r
− ω1v1

2r

)
. (6.11)

By integrating (6.10) multiplied by D−V , we get

d

dt
Ẽ2(t) =

∫ t+2δ

t+δ

∫
Λ

(
−ω1w

2|D−V |2 + r1/2(P1 + P2)D−V
)
dSωdr.

Since we may assume ω1 ≤ −1/2 for ω ∈ Λ, by (6.3) we obtain

2
d

dt
Ẽ(t) ≥ C2

1ζ2ε2

2
(1 + t)−1Ẽ(t)

− ‖P1(t)‖L2(Θt) − ‖P2(t)‖L2(Θt) (6.12)

for t ≥ 3δ. We also have

2
d

dt
Ẽ(t) ≥ −‖P1(t)‖L2(Θt) − ‖P2(t)‖L2(Θt) (6.13)

for t ≥ 0.
Observing that r ≥ C〈t〉 in Θt, from (6.6), (6.7) and (6.8), we obtain

‖P1(t)‖L2(Θt) ≤ Cε〈t〉−7/4‖g1‖L1+ρ + C∗ε
3〈t〉−5/4, (6.14)

in view of (6.4). Since D+ = (t + r)−1(S + ω1L1 + ω2L2), by (4.16), (6.6)
and (6.9) we obtain

‖P2(t)‖L2(Θt) ≤ C〈t〉−1‖w(t)‖2
L∞‖v1(t)‖1,2 ≤ C∗ε

3〈t〉−5/4. (6.15)

Now (6.12), (6.14) and (6.15) lead to

d

dt
Ẽ(t) ≥ C0ε

2(1 + t)−1Ẽ(t) − Cε(1 + t)−7/4‖g1‖L1+ρ

− C∗ε
3(1 + t)−5/4 (6.16)

for t ≥ 3δ with C0 = C2
1ζ2/4, which yields

(1 + t)−C0ε2
Ẽ(t)≥ Ẽ(3δ)(1 + 3δ)−C0ε2 − 4Cε

3
‖g1‖L1+ρ − 4C∗ε

3

≥ Ẽ(3δ)
4

− 4Cε

3
‖g1‖L1+ρ − 4C∗ε

3

for t ≥ 3δ, provided that δ ≤ 1 and C0ε
2 ≤ 1.
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Similarly, using (6.13) instead of (6.12), we get

Ẽ(3δ) ≥ Ẽ(0) − 4Cε

3
‖g1‖L1+ρ − 4C∗ε

3.

Hence we obtain

(1 + t)−C0ε2
Ẽ(t) ≥ Ẽ(0)

4
− Cε‖g1‖L1+ρ(R2) − C∗ε

3 (6.17)

for t ≥ 3δ with appropriate positive constants C and C∗.
Since g1 is radially symmetric and supported on Xδ0(⊂ Θ0), we have

‖g1‖L2(R2) = C‖g1‖L2(Θ0)

with some constant C determined only by the size of Λ. Now it follows from
the support condition on g1 and Hölder’s inequality that

‖g1‖L1+ρ(R2) ≤C{(δ + δ0)2 − δ2}(1−ρ)/(2+2ρ)‖g1‖L2(R2)

≤Cδ
(1−ρ)/(2+2ρ)
0 ‖g1‖L2(Θ0). (6.18)

Since we have Ẽ(0) = ε‖g1‖L2(Θ0) > 0, we obtain

Ẽ(0)
4

− Cε‖g1‖L1+ρ(R2) ≥
(1

4
− Cδ

(1−ρ)/(2+2ρ)
0

)
ε‖g1‖L2(Θ0)

≥ ε

8
‖g1‖L2(Θ0), (6.19)

provided that δ0 was chosen to be sufficiently small.
Now, by (6.17) and (6.19), we get

Ẽ(t)≥
(ε

8
‖g1‖L2(Θ0) − C∗ε

3
)
(1 + t)C0ε2

≥ ε

16
‖g1‖L2(Θ0)(1 + t)C0ε2

(6.20)

for t ≥ 3δ, provided that ε satisfies 16C∗ε
2 ≤ ‖g1‖L2(Θ0).

Switching to the polar coordinates, and then by direct calculations, we
have

‖v1(t)‖2
E ≥

∫ t+2δ

t+δ

∫
Λ
(|∂tv1|2 + |∇v1|2)(t, rω)rdSωdr

=
1
2
Ẽ2(t) +

∫ t+2δ

t+δ

∫
Λ

P3(t, r, ω)rdSωdr, (6.21)
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where

P3 =
(D+v1)2

2
+

v1(D−v1)
2r

− v2
1

8r2
+

(Ω12v1)2

r2
.

As before, from (4.16), (6.6) and (6.9), we get∫ t+2δ

t+δ

∫
Λ
|P3(t, r, ω)|rdSωdr ≤C∗ε

2〈t〉−1/4+C∗ε2

≤C∗ε
2〈t〉−1/8 (6.22)

for small ε.
Finally, (6.20), (6.21) and (6.22) yield

‖v1(t)‖2
E ≥ ε2

512
‖g1‖2

L2(Θ0)(1 + t)2C0ε2 − C∗ε
2(1 + t)−1/8

≥ ε2

1024
‖g1‖2

L2(Θ0)(1 + t)2C0ε2
(6.23)

for large t. This completes the proof for the system (1.15).
We turn our attention to the system (1.14). As we have mentioned, it

is equivalent to (1.15) with f3 = ∂1f2 − ∂2f1 and g3 = ∂1g2 − ∂2g1.
Let f1 = f2 ≡ 0. Then we have f3 = 0. Let g1 satisfy the assumption

(ii), and we choose ψ ∈ C∞
0 (R2) satisfying ψ ≥ 0 on ΩΛ, and ψ ≥ 2ζ on

ΩΛ ∩ B4δ(0), like g3 in the assumption (i).
Since g1 and ψ are compactly supported, there exists R0 > 0 such that

supp g1 ∪ suppψ ⊂ BR0(0). We define

Ω̃Λ = ΩΛ ∩ {(x1, x2) ∈ R2;x1 ≥ −(R2
0 − x2

2)
1/2, |x2| ≤ R0}.

Then we see that Ω̃Λ is a compact set. We choose some nonnegative C∞
0 (R2)

function χ satisfying χ ≡ 1 on an open neighborhood of Ω̃Λ. Now we define
g2 ∈ C∞

0 (R2) by

g2(x) = χ(x)
∫ x1

−∞
(ψ + ∂2g1)(y, x2)dy. (6.24)

It is easy to see

g3(x) = ∂1g2(x) − ∂2g1(x) = ψ(x) (6.25)

for x ∈ ΩΛ. Hence the assumption (i) is fulfilled for this g3. Now we find
that (6.23) with v1 = u1 is valid for (1.14). This completes the proof. ¤
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