Seiberg-Witten theory and the geometric structure $\mathbf{R} \times H^2$

Mitsuhiro ITOH and Takahisa YAMASE

(Received May 10, 2007; Revised April 4, 2008)

Abstract. The moduli space of the solutions to the monopole equations over an oriented closed 3-manifold M carrying the geometric structure $\mathbf{R} \times H^2$ is studied. Solving the parallel spinor equation, we obtain an explicit solution to the monopole equations. The moduli space consists of a single point with the Seiberg-Witten invariant ± 1 . Further, the (anti-)canonical line bundle $K_M^{\pm 1}$ gives a monopole class of M.

 $Key\ words:$ Seiberg-Witten theory, geometric structure, monopole class, parallel spinor.

1. Introduction

Similar to the four-dimensional Seiberg-Witten theory, the study of solutions to the three-dimensional monopole equations

$$\begin{cases} c(*F_A) = \Phi \otimes \Phi^* - \frac{1}{2} |\Phi|^2 \mathrm{Id}_W \\ D_A \Phi = 0 \end{cases}$$

over an oriented closed 3-manifold provides a new invariant of topology, the so-called Seiberg-Witten invariant. A class $\alpha = c_1(L) \in H^2(M; \mathbf{R})$ is called a basic class if the Seiberg-Witten invariant is non-trivial. Furthermore, as a larger class, α is called a monopole class if the monopole equations associated with α have a solution for any metric h on M.

A generalization of Lichnerowicz's theorem holds also in the threedimensional monopole equations as

$$0 = D_A D_A \Phi = \nabla_A^* \nabla_A \Phi + \frac{1}{4} s_h \Phi + \frac{1}{2} c (*F_A) \Phi$$

which leads to the well-known strong maximum principle that M with a metric of positive scalar curvature does not admit an irreducible solution. Another implication of this formula is the L^2 -inequality

²⁰⁰⁰ Mathematics Subject Classification: 14J80, 57M50.

$$4\int_{M} |F_{A}|^{2} dv_{h} \leq \int_{M} s_{h}^{2} dv_{h} \quad \text{so that} \quad \|\alpha_{h}\|_{(L^{2},h)} \leq \frac{1}{4\pi} \|s_{h}\|_{(L^{2},h)}$$

for the *h*-harmonic part α_h of the 2-form representing α . In [3] we obtained that if we assume the extremal situation above, namely, a solution satisfying

$$\|\alpha_h\|_{(L^2,h)} = \frac{1}{4\pi} \|s_h\|_{(L^2,h)},\tag{1.1}$$

then Φ and F_A are parallel and the scalar curvature s_h of h is negative constant so that the 3-manifold (M, h) must carry the geometric structure $\mathbf{R} \times H^2$. In this article, we call (1.1) the monopole extremal condition.

The main aims of this article are to determine the monopole class α satisfying the monopole extremal condition above and to exhibit that under this condition the moduli space of solutions to the monopole equations consists of a single point, cut out transversely so that the Seiberg-Witten invariant is ± 1 .

Main Theorem Let M be an oriented closed 3-manifold carrying the geometric structure $\mathbf{R} \times H^2$ with the (anti-)canonical line bundle $K_M^{\pm 1}$. Here, $K_M^{\pm 1} \to M$ is a complex line bundle naturally induced from the (anti-)canonical line bundle $K_{H^2}^{\pm 1}$ over H^2 by the quotient map: $\mathbf{R} \times H^2 \to M$. Suppose $b_1(M) > 1$. It follows then that (1) the moduli space of solutions to the monopole equations associated with the class $\alpha = c_1(K_M^{\pm 1})$ and the metric h such that $\pi^*h = dt^2 \oplus a^2g_H$ consists of a single point and is transversal at this point and that (2) α is a monopole class.

Remark Proposition 5.1 in [4] is similar to the above theorem, although its proof is quite different from ours.

In Section 2, we review the three-dimensional Seiberg-Witten theory with the result of [3] and determine the monopole class $\alpha = c_1(L)$ under the monopole extremal condition as $L = K_M^{\pm 1}$. An explicit form of spinor fields $\Phi \in \Gamma(M; W)$, which are parallel with respect to the canonical metric h is given in Section 3. Making use of these parallel spinor fields which turn out to be solutions to the monopole equations, we examine in Section 4 the moduli space $\mathcal{M}(M; \alpha, h)$ of solutions associated with the metric h stated in Main Theorem (1). We can furthermore exhibit by applying the perturbation argument which is a typical device in the Seiberg-Witten theory

that the moduli space $\mathcal{M}(M; \alpha, h')$ of solutions associated with an arbitrary metric h' cut out transversely so that the invariant $SW(M, K_M^{\pm 1}) = \pm 1$ and as a byproduct that $\alpha = c_1(K_M^{\pm 1})$ becomes a monopole class of M. Here, we need the topological restriction $b_1(M) > 1$ for the perturbation trick being valid.

2. The monopole class and the (anti-)canonical line bundle

First, we will outline the three-dimensional Seiberg-Witten theory.

Let M be an oriented closed 3-manifold. Then there exists a $Spin(3)^c$ structure on M defining the principal $Spin(3)^c$ -bundle P associated with the orthonormal frame bundle SO(TM). Let W be the spinor bundle associated with P and $L = \det(W)$ be the determinant line bundle of W. The monopole equations are for a unitary connection A on L and a section Φ of W as follows.

$$\begin{cases} c(*F_A) = \Phi \otimes \Phi^* - \frac{1}{2} |\Phi|^2 \mathrm{Id}_W \\ D_A \Phi = 0 \end{cases}$$

Here, $c: T^*M \to End(W)$ denotes the Clifford multiplication and * is the Hodge star operation. Further F_A is the curvature form of A and D_A is the Dirac operator twisted with A:

$$D_A: \Gamma(M; W) \xrightarrow{\nabla_A} \Gamma(M; T^*M \otimes W) \xrightarrow{c} \Gamma(M; W),$$

where ∇_A is the spin connection on W.

As is well known, the monopole equations are invariant under the gauge action

$$(A, \Phi) \mapsto (A + g^{-1}dg, g^{-1}\Phi), \quad g \in \mathcal{G} = \Gamma(M; U(1))$$

so that we can define the moduli space of solutions to the monopole equations by the gauge action, namely, $\mathcal{M} = \mathcal{S}/\mathcal{G}$. Here, \mathcal{S} is the set of the solutions. It is known that \mathcal{M} has 0-dimensional compact oriented manifold structure ([1]). $b_1(\mathcal{M}) > 0$ guarantees that every solution (\mathcal{A}, Φ) is irreducible, that is, $\Phi \neq 0$. We usually define the Seiberg-Witten invariant $SW(\mathcal{M}, L)$ as the number of irreducible points, counted with sign in \mathcal{M} . Notice that \mathcal{M} has irreducible points, provided $SW(M, L) \neq 0$.

In [3], for an oriented closed 3-manifold M and a monopole class α of M we obtained that if M has a smooth metric h satisfying the monopole extremal condition, then Φ and F_A are parallel and the scalar curvature s_h is negative constant. Moreover, in this article, we will get the explicit form of the monopole class α when the monopole extremal condition is fulfilled. For this, denote by $\pi : \mathbf{R} \times H^2 \to M$ the universal covering projection of M.

Proposition 2.1 Let α be a monopole class of an oriented closed 3manifold M. Suppose that there exists a smooth metric h on M which satisfies the monopole extremal condition. Then, the harmonic part α_h is

$$\alpha_h = \pm \frac{1}{2\pi} d\sigma_H,$$

where $d\sigma_H$ denotes the 2-form on M whose lift $\pi^* d\sigma_H$ is the area form of (H^2, g_H) .

Proof. From the argument in [3], the *h*-harmonic part α_h of the monopole class α is $\alpha_h = \frac{i}{2\pi} F_A$ which is parallel. Then the lift $\pi^* \alpha_h$ is parallel and symplectic over H^2 so that it is proportional to the area form of (H^2, g_H) :

$$\alpha_h = \frac{i}{2\pi} F_A = \frac{c}{2\pi} d\sigma_H$$

for some real constant c. To determine c, we take the pull-back metric π^*h described as

$$\pi^*h = dt^2 \oplus a^2 g_H,$$

where a > 0 and $g_H = (dx^2 + dy^2)/y^2$ is the hyperbolic metric. Regarding H^2 as the upper half plane $\{z = x + iy \mid y > 0\}$, we see that the scalar curvature s_h of h is $-2/a^2$. Since s_h is constant, we obtain

$$\|s_h\|_{(L^2,h)} = \sqrt{\int_M s_h^2 dv_h} = |s_h| \sqrt{Vol(M,h)} = \frac{2}{a^2} \sqrt{Vol(M,h)}.$$

Therefore, we get from the monopole extremal condition

Seiberg-Witten theory and the geometric structure $\mathbf{R} \times H^2$

$$\frac{|c|}{2\pi a^2} = \frac{1}{4\pi} \cdot \frac{2}{a^2}$$

so that $c = \pm 1$ and hence $\alpha_h = \pm \frac{1}{2\pi} d\sigma_H$.

Conversely, if the monopole class $\alpha = c_1(L)$ satisfies $\alpha_h = \pm \frac{1}{2\pi} d\sigma_H$, then, as is easily seen, the monopole extremal condition holds.

Assume that M admits the geometric structure $\mathbf{R} \times H^2$. The (anti-) canonical line bundle $K_{H^2}^{\pm 1}$ over H^2 induce a complex line bundle denoted by $K_M^{\pm 1}$. This is because M is a Γ -quotient of $\mathbf{R} \times H^2$, where Γ is the discrete subgroup of $Isom^+(\mathbf{R} \times H^2)$, and the frame field $\frac{1}{y}dz$ of K_{H^2} or $\frac{1}{y}d\bar{z}$ of $K_{H^2}^{-1}$ is invariant respectively under the action

$$z \mapsto \frac{az+b}{cz+d}, \ a, b, c, d \in \mathbf{R}, \ ad-bc = 1$$

so that $K_{H^2}^{\pm 1}$ over $\mathbf{R} \times H^2$ well descends to the bundle $K_M^{\pm 1}$ over M, which we call the (anti-)canonical line bundle over M.

As a corollary of Main Theorem in [3], we can determine the complex line bundle L under the monopole extremal condition.

Corollary 2.2 Let L be a complex line bundle over an oriented closed 3-manifold M. Assume that the first Chern class of L is a monopole class α of M and satisfies the monopole extremal condition. Then, L must be bundle-isomorphic to $F \otimes K_M^{\pm 1}$, where F is a complex line bundle with a flat connection and $K_M^{\pm 1}$ is the (anti-)canonical line bundle over M.

Proof. For simplicity, we write $K_M^{\pm 1} = K$. It suffices to show that

$$c_1(L \otimes K^{-1}) = c_1(L) - c_1(K) = 0 \ (= c_1(F)),$$

since over M the multiplicative group $H^1(M; \mathcal{D}^{\times})$, the space of all equivalence classes of complex line bundle over M, is isomorphic to $H^2(M; \mathbb{Z})$ via the map assigning a complex line bundle to its first Chern class (see [2]).

For this purpose, let D be the Hermitian holomorphic connection on K_{H^2} induced from the Levi-Civita connection ∇ . Its connection form A is easily computed as $A = -\frac{i}{y}dz$ and $F_A = dA = -i(dx \wedge dy)/y^2$ so that $c_1(K_{H^2})$ coincides with $\frac{1}{2\pi}[d\sigma_H]$. This completes the proof. \Box

71

 \square

3. Parallel spinor solutions to the monopole equations

From now on, we take $L = K_M^{\pm 1}$ and investigate an explicit form of the solutions to the monopole equations. The spinor bundle W is described as $W = W_0 \otimes L_1$, where W_0 is the product bundle $W_0 = M \times \mathbb{C}^2$ and L_1 is some complex line bundle. Taking care that $L = \det(W)$, we obtain $K_M^{\pm 1} = L_1^2$ so that $L_1 = K_M^{\pm 1/2}$. Hence we can take spinor fields

$$\Phi_0 = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \otimes \sqrt{dz}, \quad \Phi_0^- = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \otimes \sqrt{d\overline{z}} \in \Gamma(M; W), \quad W = W_0 \otimes K_M^{\pm 1/2},$$

where dz and $d\bar{z}$ are regarded as sections of $K_M^{\pm 1}$. Under these conditions, we can show the following proposition.

Proposition 3.1 If $\nabla_{A_0} \Phi_0 = \nabla_{A_0^-} \Phi_0^- = 0$, where A_0 and A_0^- are the connections of $K_M^{\pm 1}$ associated with the Levi-Civita connection of (M, h), then

$$\Phi_0 = \begin{pmatrix} C/\sqrt{y} \\ 0 \end{pmatrix} \otimes \sqrt{dz}, \quad \Phi_0^- = \begin{pmatrix} 0 \\ C/\sqrt{y} \end{pmatrix} \otimes \sqrt{d\overline{z}}, \quad C = \pm \sqrt{-s_h}.$$

Proof. We consider the case for (A_0, Φ_0) with $L = K_M$. (The case for (A_0^-, Φ_0^-) is similar.) First, we see

$$(\nabla_{A_0})_X \Phi_0 = \left(\nabla_X \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}\right) \otimes \sqrt{dz} + \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \otimes \left((\nabla_{A_0})_X \sqrt{dz}\right), \quad (3.1.1)$$

where X is any tangent vector to M. By the definition of the spin connection, the first term is computed as follows.

$$\nabla_X \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \begin{pmatrix} X\phi_1 \\ X\phi_2 \end{pmatrix} - \frac{1}{2} \sum_{i < j}^3 \omega_{ij}(X)c(e_i)c(e_j) \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$$
$$= \begin{pmatrix} X\phi_1 \\ X\phi_2 \end{pmatrix} - \frac{i}{2}\omega_{23}(X) \begin{pmatrix} \phi_1 \\ -\phi_2 \end{pmatrix}, \qquad (3.1.2)$$

where ω_{ij} are the connection forms of (M, h) with respect to the orthonormal frame $\{dt, \frac{1}{ay}dx, \frac{1}{ay}dy\}$. Here, the lift of h is $dt^2 \oplus a^2g_H$. On the other

hand, since dz is regarded as a section of K_M , the second term of (3.1.1) is computed for $X = \frac{\partial}{\partial z}$ as

$$(\nabla_{A_0})_{\frac{\partial}{\partial z}}\sqrt{dz} = \left(\frac{\partial}{\partial z}\log y\right)\sqrt{dz},\tag{3.1.3}$$

where z = x + iy. Moreover from the local product structure of M, we see

$$(\nabla_{A_0})_{\frac{\partial}{\partial t}}\sqrt{dz} = 0, \quad (\nabla_{A_0})_{\frac{\partial}{\partial \overline{z}}}\sqrt{dz} = 0.$$

Substituting (3.1.2) and (3.1.3) into (3.1.1), from $(\nabla_{A_0})_X \Phi_0 = 0$ for $X = \frac{\partial}{\partial z}$, we obtain

$$X\phi_1 - \frac{i}{2}\omega_{23}(X)\phi_1 + \left(\frac{\partial}{\partial z}\log y\right)\phi_1 = 0,$$
$$X\phi_2 + \frac{i}{2}\omega_{23}(X)\phi_2 + \left(\frac{\partial}{\partial z}\log y\right)\phi_2 = 0.$$

Using $\omega_{23} = -\frac{1}{y}dx$, we get

$$\frac{\partial \phi_1}{\partial z} - \frac{i}{4y}\phi_1 = 0, \quad \frac{\partial \phi_2}{\partial z} - \frac{3i}{4y}\phi_2 = 0.$$

Similarly, for $X = \frac{\partial}{\partial \bar{z}}$ we get

$$\frac{\partial \phi_1}{\partial \bar{z}} + \frac{i}{4y}\phi_1 = 0, \quad \frac{\partial \phi_2}{\partial \bar{z}} - \frac{i}{4y}\phi_2 = 0.$$

Solving the simultaneous equations for ϕ_1 and ϕ_2 , we get $\phi_1 = \frac{C}{\sqrt{y}}$ and $\phi_2 = 0$.

Now we obtain

$$\Phi_0 = \begin{pmatrix} C/\sqrt{y} \\ 0 \end{pmatrix} \otimes \sqrt{dz}.$$

On the other hand, using $\nabla_{A_0} \Phi_0 = 0$ and Lichnerowicz's formula, we get

$$s_h = -|\Phi_0|^2$$
 so that $C = \pm \sqrt{-s_h}$.

Moreover, we can show the following corollary.

Corollary 3.2 For the monopole class α whose h-harmonic part is

$$\alpha_h = \frac{i}{2\pi} F_{A_0} = \frac{1}{2\pi} d\sigma_H \quad or \quad \alpha_h = \frac{i}{2\pi} F_{A_0^-} = -\frac{1}{2\pi} d\sigma_H,$$

 (A_0, Φ_0) or (A_0^-, Φ_0^-) with $|\Phi_0| = |\Phi_0^-| = \sqrt{2}$ is a solution to the monopole equations for $L = K_M$ or $L = K_M^{-1}$, respectively.

Proof. We consider the case for (A_0, Φ_0) with $L = K_M$. (The case for (A_0^-, Φ_0^-) is similar.) Since $D_A = c \circ \nabla_A$, it is clear that $D_{A_0} \Phi_0 = 0$. On the other hand, the curvature form of A_0 is described as

$$F_{A_0} = \pm i d\sigma_H = \pm i e^2 \wedge e^3,$$

where e^1, e^2, e^3 are the dual orthonormal frame of (M, h). Therefore we obtain

$$c(*F_{A_0}) = \pm \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}.$$

In general for $\Phi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}$, we get

$$\Phi \otimes \Phi^* - \frac{1}{2} |\Phi|^2 \mathrm{Id}_W = \begin{pmatrix} \frac{1}{2} (|\varphi_1|^2 - |\varphi_2|^2) & \varphi_1 \overline{\varphi_2} \\ \\ \overline{\varphi_1} \varphi_2 & \frac{1}{2} (|\varphi_2|^2 - |\varphi_1|^2) \end{pmatrix}.$$

Therefore for $\Phi_0 = \begin{pmatrix} \varphi \\ 0 \end{pmatrix}$, we obtain

$$\begin{split} \Phi_0 \otimes \Phi_0^* &- \frac{1}{2} |\Phi_0|^2 \mathrm{Id}_W = \begin{pmatrix} \frac{1}{2} |\varphi|^2 & 0\\ 0 & -\frac{1}{2} |\varphi|^2 \end{pmatrix} \\ &= -\frac{1}{2} |\varphi|^2 \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} = -\frac{1}{2} |\Phi_0|^2 \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}, \end{split}$$

Hence in order for (A_0, Φ_0) to satisfy the first monopole equation, we may take

$$F_{A_0} = -id\sigma_H, \quad |\Phi_0| = \sqrt{2}.$$

4. The moduli space

Proof of Main Theorem (1). We consider the case for $\alpha = c_1(K_M)$. (The case for $\alpha = c_1(K_M^{-1})$ is similar.) In this case, $\alpha_h = \frac{1}{2\pi} d\sigma_H$ so that by the proof of Proposition 2.1, we obtain the monopole extremal condition

$$\|\alpha_h\|_{(L^2,h)} = \frac{1}{4\pi} \|s_h\|_{(L^2,h)}$$

for the metric h whose lift π^*h has the form $dt^2 \oplus a^2g_H$. Let (A, Φ) be an arbitrary solution associated with the class α and the metric h. In this case, recall that $\nabla_A \Phi = 0$ holds. Now we take (A_0, Φ_0) which satisfies

$$\alpha = \frac{1}{2\pi} d\sigma_H = \frac{i}{2\pi} F_{A_0}$$
 and $\Phi_0 = \begin{pmatrix} \sqrt{2/y} \\ 0 \end{pmatrix} \otimes \sqrt{dz}.$

From Corollary 3.2, (A_0, Φ_0) is a solution. We can show that any solution (A, Φ) is gauge equivalent to (A_0, Φ_0) .

For this, we take $A = A_0 + ia$, $a \in \Omega^1(M)$ so that $F_A = F_{A_0} + ida$. Since F_A and F_{A_0} are harmonic, we obtain da = 0 and $F_A = F_{A_0}$. Moreover, by the first monopole equation, we get $|\Phi_0|^2 = 2|F_{A_0}| = 2|F_A| = |\Phi|^2$ and

$$\Phi_0 \otimes \Phi_0^* - \frac{1}{2} |\Phi_0|^2 \mathrm{Id}_W = c(*F_{A_0}) = c(*F_A) = \Phi \otimes \Phi^* - \frac{1}{2} |\Phi|^2 \mathrm{Id}_W$$

so that $\Phi_0 \otimes \Phi_0^* = \Phi \otimes \Phi^*$. Taking $\Phi_0 = \begin{pmatrix} \varphi \\ 0 \end{pmatrix}$ and $\Phi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}$, we get $|\varphi|^2 = |\varphi_1|^2$ and $|\varphi_2|^2 = 0$ so that there exists $g \in \mathcal{G}$ such that $\Phi = g^{-1}\Phi_0$. Therefore

$$0 = \nabla_A \Phi = dg^{-1} \otimes \Phi_0 + g^{-1} \nabla_A \Phi_0$$

= $dg^{-1} \otimes \Phi_0 + g^{-1} \nabla_{A_0} \Phi_0 + g^{-1} ia \otimes \Phi_0$
= $dg^{-1} \otimes \Phi_0 + g^{-1} ia \otimes \Phi_0$

and hence

$$ia \otimes \Phi_0 = -gdg^{-1} \otimes \Phi_0 = g^{-1}dg \otimes \Phi_0$$
, namely, $(A, \Phi) = (A_0 + g^{-1}dg, g^{-1}\Phi_0),$

which implies that (A, Φ) is gauge equivalent to (A_0, Φ_0) .

From now on, we will show the transversality of the moduli space \mathcal{M} . To show this, we consider the following complex which turns out to be elliptic by the subsequent lemma, Lemma 4.1.

$$\mathcal{C} : 0 \to \Omega^0(M) \xrightarrow{G} \Omega^1(M) \oplus \Gamma(W) \xrightarrow{T} \Omega^1(M) \oplus \Gamma(W) \xrightarrow{S} \Omega^0(M) \to 0,$$

where

$$G_{(A_0,\Phi_0)}(u) = (du, -iu\Phi_0), \quad S_{(A_0,\Phi_0)}(a,\varphi) = \delta a + i \operatorname{Im} \langle \Phi_0, \varphi \rangle$$

and $T_{(A_0,\Phi_0)}(a,\varphi) = (b,\psi)$, where

$$b = c(i * da) - \Phi_0 \otimes \varphi^* - \varphi \otimes \Phi_0^* + \frac{1}{2} (\langle \Phi_0, \varphi \rangle + \langle \varphi, \Phi_0 \rangle) \mathrm{Id}_W,$$

$$\psi = D_{A_0} \varphi + ic(a) \Phi_0.$$

Lemma 4.1 (1) $T \circ G = 0$, (2) $S \circ T = 0$, (3) $Index(\mathcal{C}) = 0$.

Proof of (1). By definition,

$$(b,\psi) = T \circ G_{(A_0,\Phi_0)}(u) = T_{(A_0,\Phi_0)}(du, -iu\Phi_0),$$

where

$$b = c(i * d(du)) - iu|\Phi_0|^2 + iu|\Phi_0|^2 + \frac{1}{2}(iu|\Phi_0|^2 - iu|\Phi_0|^2)\mathrm{Id}_W,$$

$$\psi = D_{A_0}(-iu\Phi_0) + ic(du)\Phi_0 = -i(c(du)\Phi_0 + uD_{A_0}\Phi_0) + ic(du)\Phi_0.$$

Obviously b and ψ vanish.

Proof of (2). Let $S \circ T_{(A_0,\Phi_0)}(a,\varphi) = S_{(A_0,\Phi_0)}(b,\psi)$. It is sufficient to show $\int_M \langle S(b,\psi), u \rangle dv_h = 0 \text{ for any } u \in \Omega^0(M).$

By definition,

$$b = *da + ic^{-1} \bigg(\Phi_0 \otimes \varphi^* + \varphi \otimes \Phi_0^* - \frac{1}{2} (\langle \Phi_0, \varphi \rangle + \langle \varphi, \Phi_0 \rangle) \mathrm{Id}_W \bigg),$$

$$\psi = D_{A_0}\varphi + ic(a)\Phi_0$$

so that

$$\begin{split} S(b,\psi) &= \delta \bigg(* da + ic^{-1} \bigg(\Phi_0 \otimes \varphi^* + \varphi \otimes \Phi_0^* - \frac{1}{2} (\langle \Phi_0, \varphi \rangle + \langle \varphi, \Phi_0 \rangle) \mathrm{Id}_W \bigg) \bigg) \\ &+ i \mathrm{Im} \langle \Phi_0, D_{A_0} \varphi + ic(a) \Phi_0 \rangle \\ &= i \delta \bigg(c^{-1} \bigg(\Phi_0 \otimes \varphi^* + \varphi \otimes \Phi_0^* - \frac{1}{2} (\langle \Phi_0, \varphi \rangle + \langle \varphi, \Phi_0 \rangle) \mathrm{Id}_W \bigg) \bigg) \\ &+ i \mathrm{Im} \langle \Phi_0, D_{A_0} \varphi \rangle. \end{split}$$

Therefore

$$\begin{split} &\int_{M} \langle S(b,\psi), u \rangle dv_{h} \\ &= \int_{M} \left\langle i\delta \left(c^{-1} \left(\Phi_{0} \otimes \varphi^{*} + \varphi \otimes \Phi_{0}^{*} - \frac{1}{2} (\langle \Phi_{0}, \varphi \rangle + \langle \varphi, \Phi_{0} \rangle) \mathrm{Id}_{W} \right) \right) \right. \\ &+ i\mathrm{Im} \langle \Phi_{0}, D_{A_{0}} \varphi \rangle, u \right\rangle dv_{h} \\ &= i \int_{M} \left\langle \Phi_{0} \otimes \varphi^{*} + \varphi \otimes \Phi_{0}^{*}, c(du) \right\rangle dv_{h} \\ &+ i \int_{M} \frac{1}{2} u (\langle \Phi_{0}, D_{A_{0}} \varphi \rangle - \langle D_{A_{0}} \varphi, \Phi_{0} \rangle) dv_{h} \\ &= i \int_{M} \left\langle \Phi_{0} \otimes \varphi^{*} + \varphi \otimes \Phi_{0}^{*}, c(du) \right\rangle dv_{h} \\ &+ \frac{i}{2} \int_{M} \left(\langle c(du) \Phi_{0}, \varphi \rangle - \langle \varphi, c(du) \Phi_{0} \rangle \right) dv_{h} \\ &= i \int_{M} \frac{1}{2} \mathrm{tr} \left(\frac{\varphi_{01} \overline{\varphi_{1}} + \varphi_{1} \overline{\varphi_{01}} - \varphi_{01} \overline{\varphi_{2}} \right) \left(\begin{array}{c} -ia_{1} & -a_{2} - ia_{3} \\ a_{2} - ia_{3} & ia_{1} \end{array} \right) dv_{h} \\ &+ \frac{i}{2} \int_{M} \left(\left\langle \left(\begin{array}{c} ia_{1} \varphi_{01} \\ -a_{2} \varphi_{01} + ia_{3} \varphi_{01} \end{array} \right), \left(\begin{array}{c} \varphi_{1} \\ \varphi_{2} \end{array} \right) \right) \\ &- \left\langle \left(\begin{array}{c} \varphi_{1} \\ \varphi_{2} \end{array} \right), \left(\begin{array}{c} -ia_{2} \varphi_{01} + ia_{3} \varphi_{01} \\ -a_{2} \varphi_{01} + ia_{3} \varphi_{01} \end{array} \right) \right\rangle \right) dv_{h} = 0. \end{array}$$

Proof of (3). Split C into the direct sum of the following complexes;

$$\mathcal{C}_1 : 0 \to \Omega^0(M) \xrightarrow{d} \Omega^1(M) \xrightarrow{*d} \Omega^1(M) \xrightarrow{\delta} \Omega^0(M) \to 0$$

$$\mathcal{C}_2 : 0 \to \Gamma(W) \xrightarrow{D_{A_0}} \Gamma(W) \to 0.$$

The first one is equivalent to the de Rham complex so that $\operatorname{Index}(\mathcal{C}_1) = \chi(M) = 0$. The second one is the spin complex and so $\operatorname{Index}(\mathcal{C}_2) = \operatorname{Index} D_{A_0} = 0$. Therefore

$$\operatorname{Index}(\mathcal{C}) = \operatorname{Index}(\mathcal{C}_1) + \operatorname{Index}(\mathcal{C}_2) = 0.$$

Using Lemma 4.1 (3), by definition,

$$\operatorname{Index}(\mathcal{C}) = \dim H^0(\mathcal{C}) - \dim H^1(\mathcal{C}) + \dim H^2(\mathcal{C}) - \dim H^3(\mathcal{C}) = 0.$$

Since the solution is irreducible, if $u \in \Omega^0(M)$ satisfies

$$G_{(A_0,\Phi_0)}(u) = (du, -iu\Phi_0) = (0,0),$$

then u = 0 so that $H^0(\mathcal{C}) = \operatorname{Ker} G = \{0\}$. Moreover since $S^*_{(A_0, \Phi_0)}(u) = (du, iu\Phi_0)$, we have $S^*_{(A_0, \Phi_0)} = G_{(A_0, -\Phi_0)}$ so that $\operatorname{Ker} S^* = \{0\}$. Therefore $H^3(\mathcal{C}) = \Omega^0(M)/\operatorname{Im} S$ is isomorphic to $\operatorname{Ker} S^* = \{0\}$ and hence $H^3(\mathcal{C}) = \{0\}$. Consequently, $H^1(\mathcal{C}) \cong H^2(\mathcal{C})$. Therefore the surjectivity of T is equivalent to $\operatorname{Ker} S/\operatorname{Im} T = \{0\}$ which is equivalent to $\operatorname{Ker} T/\operatorname{Im} G = \{0\}$. This is also equivalent to

$$\left\{ (a,\varphi) \mid T_{(A_0,\Phi_0)}(a,\varphi) = (0,0), \ G^*_{(A_0,\Phi_0)}(a,\varphi) = 0 \right\} = \{(0,0)\},$$

where

$$G^*_{(A_0,\Phi_0)}(a,\varphi) = \delta a - i \operatorname{Im} \langle \Phi_0, \varphi \rangle.$$

It is clear that $T_{(A_0,\Phi_0)}(a,\varphi) = 0$ implies

$$c(da) = -i \bigg(\Phi_0 \otimes \varphi^* + \varphi \otimes \Phi_0^* - \frac{1}{2} (\langle \Phi_0, \varphi \rangle + \langle \varphi, \Phi_0 \rangle) \mathrm{Id}_W \bigg),$$
$$D_{A_0} \varphi = -ic(a) \Phi_0$$

and that $G^*_{(A_0,\Phi_0)}(a,\varphi) = 0$ implies

$$\delta a = i \mathrm{Im} \langle \Phi_0, \varphi \rangle = \frac{i}{2} (\langle \Phi_0, \varphi \rangle - \langle \varphi, \Phi_0 \rangle).$$

By the direct computation together with the fact that $\nabla_{A_0} \Phi_0 = D_{A_0} \Phi_0 = 0$, we get

$$D_{A_0}D_{A_0}\varphi = -iD_{A_0}(c(a)\Phi_0)$$

= $-i((\delta a)\Phi_0 - 2(\nabla_{A_0})_{a\sharp}\Phi_0 + c(da)\Phi_0 - c(a)D_{A_0}\Phi_0)$
= $\frac{1}{2}(\langle \Phi_0, \varphi \rangle - \langle \varphi, \Phi_0 \rangle)\Phi_0 - ic(da)\Phi_0.$

Here we made use of the formula:

$$D_A(c(a)\Phi) = (\delta a)\Phi - 2(\nabla_A)_X\Phi + c(da)\Phi,$$

 $a\in \Omega^1(M)$ and $X=a^{\sharp}\in \mathcal{X}(M).$ Now we have

$$c(da)\Phi_{0} = -i\left(\Phi_{0}\otimes\varphi^{*}+\varphi\otimes\Phi_{0}^{*}-\frac{1}{2}(\langle\Phi_{0},\varphi\rangle+\langle\varphi,\Phi_{0}\rangle)\mathrm{Id}_{W}\right)\Phi_{0}$$
$$= -i\left(\langle\Phi_{0},\varphi\rangle\Phi_{0}+|\Phi_{0}|^{2}\varphi-\frac{1}{2}(\langle\Phi_{0},\varphi\rangle+\langle\varphi,\Phi_{0}\rangle)\Phi_{0}\right)$$
$$= -i\left(|\Phi_{0}|^{2}\varphi+\frac{1}{2}(\langle\Phi_{0},\varphi\rangle-\langle\varphi,\Phi_{0}\rangle)\Phi_{0}\right),$$

so that the term $D_{A_0}D_{A_0}\varphi$ becomes

$$\begin{split} D_{A_0} D_{A_0} \varphi &= \frac{1}{2} (\langle \Phi_0, \varphi \rangle - \langle \varphi, \Phi_0 \rangle) \Phi_0 - ic(da) \Phi_0 \\ &= \frac{1}{2} (\langle \Phi_0, \varphi \rangle - \langle \varphi, \Phi_0 \rangle) \Phi_0 - |\Phi_0|^2 \varphi - \frac{1}{2} (\langle \Phi_0, \varphi \rangle - \langle \varphi, \Phi_0 \rangle) \Phi_0 \\ &= -|\Phi_0|^2 \varphi. \end{split}$$

Therefore

$$\begin{split} \int_{M} \langle D_{A_0} D_{A_0} \varphi, \varphi \rangle dv_h &= -\int_{M} |\Phi_0|^2 |\varphi|^2 dv_h \quad \text{or} \\ \int_{M} |D_{A_0} \varphi|^2 dv_h &= -\int_{M} |\Phi_0|^2 |\varphi|^2 dv_h. \end{split}$$

 $|\Phi_0|$ is positive constant because the solution (A_0, Φ_0) is irreducible and Φ_0 is parallel. Hence we conclude $\varphi = 0$ so that a = 0 by $-ic(a)\Phi_0 = D_{A_0}\varphi = 0$. From the above arguments, the transversality of \mathcal{M} is completely derived.

Proof of Main Theorem (2). In order to see that the class $\alpha = c_1(K_M)$ is a monopole class, we show that the Seiberg-Witten invariant does not vanish with respect to an arbitrary metric on M. We consider the case where a given metric h is arbitrary. In this case, we cannot always make use of the condition $\nabla_A \Phi = 0$. We usually think of the perturbed monopole equations as follows.

$$\begin{cases} c(*F_A + i\rho) = \Phi \otimes \Phi^* - \frac{1}{2} |\Phi|^2 \mathrm{Id}_W \\ D_A \Phi = 0 \end{cases}$$

Here, ρ is a co-closed 1-form. With respect to these perturbed equations, it is known that the Seiberg-Witten invariant is independent of metrics g and perturbations ρ ([1]). More precisely, given a generic path $(g_t, \rho_t), t \in [0, 1]$ connecting (g_0, ρ_0) and (g_1, ρ_1) , it is known that

$$SW_{(g_0,\rho_0)}(M,L) = SW_{(g_1,\rho_1)}(M,L).$$

To apply the perturbed argument to our case, we take $L = K_M$ and $(g_0, \rho_0) = (h, 0)$. Main Theorem (1) together with the definition of the Seiberg-Witten invariant implies $SW_{(h,0)}(M, K_M) = \pm 1$ so that

$$SW(M, K_M) = \pm 1 \ (\neq 0).$$

This implies that the monopole equations associated with $\alpha = c_1(K_M)$ has solutions which are irreducible by $b_1(M) > 1$. Hence α is a monopole class.

Acknowledgement The authors would like to thank Professor Y. Nagatomo for his valuable comment about a complex line bundle argument. We also thank the referee for useful comments.

References

- Auckly D., The Thurston norm and three-dimensional Seiberg-Witten theory, Osaka J. Math. 33 (1996), 737–750.
- [2] Griffiths P. and Harris J., *Principles of Algebraic Geometry*, John Wiley and Sons 1978.
- [3] Itoh M. and Yamase T., The dual Thurston norm and the geometry of closed 3-manifolds, Osaka J. Math. 43 (2006), 121–129.
- [4] Morgan J.W., Szabó Z. and Taubes C.H., A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture, J. Differential Geometry, Vol. 44 (1996), 706–788.

Mitsuhiro Itoh Institute of Mathematics University of Tsukuba 305-8571, TSUKUBA, JAPAN e-mail: itohm@sakura.cc.tsukuba.ac.jp

Takahisa Yamase Graduate School of Pure and Applied Sciences University of Tsukuba 305-8571, TSUKUBA, JAPAN e-mail: ks7gauge@math.tsukuba.ac.jp