Seiberg-Witten theory and the geometric structure $\mathbf{R} \times H^{2}$

Mitsuhiro Itoh and Takahisa Yamase

(Received May 10, 2007; Revised April 4, 2008)

Abstract

The moduli space of the solutions to the monopole equations over an oriented closed 3-manifold M carrying the geometric structure $\mathbf{R} \times H^{2}$ is studied. Solving the parallel spinor equation, we obtain an explicit solution to the monopole equations. The moduli space consists of a single point with the Seiberg-Witten invariant ± 1. Further, the (anti-)canonical line bundle $K_{M}^{ \pm 1}$ gives a monopole class of M.

Key words: Seiberg-Witten theory, geometric structure, monopole class, parallel spinor.

1. Introduction

Similar to the four-dimensional Seiberg-Witten theory, the study of solutions to the three-dimensional monopole equations

$$
\left\{\begin{array}{l}
c\left(* F_{A}\right)=\Phi \otimes \Phi^{*}-\frac{1}{2}|\Phi|^{2} \mathrm{Id}_{W} \\
D_{A} \Phi=0
\end{array}\right.
$$

over an oriented closed 3-manifold provides a new invariant of topology, the so-called Seiberg-Witten invariant. A class $\alpha=c_{1}(L) \in H^{2}(M ; \mathbf{R})$ is called a basic class if the Seiberg-Witten invariant is non-trivial. Furthermore, as a larger class, α is called a monopole class if the monopole equations associated with α have a solution for any metric h on M.

A generalization of Lichnerowicz's theorem holds also in the threedimensional monopole equations as

$$
0=D_{A} D_{A} \Phi=\nabla_{A}^{*} \nabla_{A} \Phi+\frac{1}{4} s_{h} \Phi+\frac{1}{2} c\left(* F_{A}\right) \Phi
$$

which leads to the well-known strong maximum principle that M with a metric of positive scalar curvature does not admit an irreducible solution. Another implication of this formula is the L^{2}-inequality

$$
4 \int_{M}\left|F_{A}\right|^{2} d v_{h} \leq \int_{M} s_{h}^{2} d v_{h} \quad \text { so that } \quad\left\|\alpha_{h}\right\|_{\left(L^{2}, h\right)} \leq \frac{1}{4 \pi}\left\|s_{h}\right\|_{\left(L^{2}, h\right)}
$$

for the h-harmonic part α_{h} of the 2 -form representing α. In [3] we obtained that if we assume the extremal situation above, namely, a solution satisfying

$$
\begin{equation*}
\left\|\alpha_{h}\right\|_{\left(L^{2}, h\right)}=\frac{1}{4 \pi}\left\|s_{h}\right\|_{\left(L^{2}, h\right)}, \tag{1.1}
\end{equation*}
$$

then Φ and F_{A} are parallel and the scalar curvature s_{h} of h is negative constant so that the 3 -manifold (M, h) must carry the geometric structure $\mathbf{R} \times H^{2}$. In this article, we call (1.1) the monopole extremal condition.

The main aims of this article are to determine the monopole class α satisfying the monopole extremal condition above and to exhibit that under this condition the moduli space of solutions to the monopole equations consists of a single point, cut out transversely so that the Seiberg-Witten invariant is ± 1.

Main Theorem Let M be an oriented closed 3-manifold carrying the geometric structure $\mathbf{R} \times H^{2}$ with the (anti-) canonical line bundle $K_{M}^{ \pm 1}$. Here, $K_{M}^{ \pm 1} \rightarrow M$ is a complex line bundle naturally induced from the (anti-) canonical line bundle $K_{H^{2}}^{ \pm 1}$ over H^{2} by the quotient map: $\mathbf{R} \times H^{2} \rightarrow M$. Suppose $b_{1}(M)>1$. It follows then that (1) the moduli space of solutions to the monopole equations associated with the class $\alpha=c_{1}\left(K_{M}^{ \pm 1}\right)$ and the metric h such that $\pi^{*} h=d t^{2} \oplus a^{2} g_{H}$ consists of a single point and is transversal at this point and that (2) α is a monopole class.

Remark Proposition 5.1 in [4] is similar to the above theorem, although its proof is quite different from ours.

In Section 2, we review the three-dimensional Seiberg-Witten theory with the result of [3] and determine the monopole class $\alpha=c_{1}(L)$ under the monopole extremal condition as $L=K_{M}^{ \pm 1}$. An explicit form of spinor fields $\Phi \in \Gamma(M ; W)$, which are parallel with respect to the canonical metric h is given in Section 3. Making use of these parallel spinor fields which turn out to be solutions to the monopole equations, we examine in Section 4 the moduli space $\mathcal{M}(M ; \alpha, h)$ of solutions associated with the metric h stated in Main Theorem (1). We can furthermore exhibit by applying the perturbation argument which is a typical device in the Seiberg-Witten theory
that the moduli space $\mathcal{M}\left(M ; \alpha, h^{\prime}\right)$ of solutions associated with an arbitrary metric h^{\prime} cut out transversely so that the invariant $S W\left(M, K_{M}^{ \pm 1}\right)= \pm 1$ and as a byproduct that $\alpha=c_{1}\left(K_{M}^{ \pm 1}\right)$ becomes a monopole class of M. Here, we need the topological restriction $b_{1}(M)>1$ for the perturbation trick being valid.

2. The monopole class and the (anti-)canonical line bundle

First, we will outline the three-dimensional Seiberg-Witten theory.
Let M be an oriented closed 3-manifold. Then there exists a $\operatorname{Spin}(3)^{c}$ structure on M defining the principal $\operatorname{Spin}(3)^{c}$-bundle P associated with the orthonormal frame bundle $S O(T M)$. Let W be the spinor bundle associated with P and $L=\operatorname{det}(W)$ be the determinant line bundle of W. The monopole equations are for a unitary connection A on L and a section Φ of W as follows.

$$
\left\{\begin{array}{l}
c\left(* F_{A}\right)=\Phi \otimes \Phi^{*}-\frac{1}{2}|\Phi|^{2} \mathrm{Id}_{W} \\
D_{A} \Phi=0
\end{array}\right.
$$

Here, $c: T^{*} M \rightarrow \operatorname{End}(W)$ denotes the Clifford multiplication and $*$ is the Hodge star operation. Further F_{A} is the curvature form of A and D_{A} is the Dirac operator twisted with A :

$$
D_{A}: \Gamma(M ; W) \xrightarrow{\nabla_{A}} \Gamma\left(M ; T^{*} M \otimes W\right) \xrightarrow{c} \Gamma(M ; W),
$$

where ∇_{A} is the spin connection on W.
As is well known, the monopole equations are invariant under the gauge action

$$
(A, \Phi) \mapsto\left(A+g^{-1} d g, g^{-1} \Phi\right), \quad g \in \mathcal{G}=\Gamma(M ; U(1))
$$

so that we can define the moduli space of solutions to the monopole equations by the gauge action, namely, $\mathcal{M}=\mathcal{S} / \mathcal{G}$. Here, \mathcal{S} is the set of the solutions. It is known that \mathcal{M} has 0 -dimensional compact oriented manifold structure ([1]). $b_{1}(M)>0$ guarantees that every solution (A, Φ) is irreducible, that is, $\Phi \neq 0$. We usually define the Seiberg-Witten invariant $S W(M, L)$ as the number of irreducible points, counted with sign in \mathcal{M}. Notice that \mathcal{M} has
irreducible points, provided $S W(M, L) \neq 0$.
In [3], for an oriented closed 3-manifold M and a monopole class α of M we obtained that if M has a smooth metric h satisfying the monopole extremal condition, then Φ and F_{A} are parallel and the scalar curvature s_{h} is negative constant. Moreover, in this article, we will get the explicit form of the monopole class α when the monopole extremal condition is fulfilled. For this, denote by $\pi: \mathbf{R} \times H^{2} \rightarrow M$ the universal covering projection of M.

Proposition 2.1 Let α be a monopole class of an oriented closed 3manifold M. Suppose that there exists a smooth metric h on M which satisfies the monopole extremal condition. Then, the harmonic part α_{h} is

$$
\alpha_{h}= \pm \frac{1}{2 \pi} d \sigma_{H}
$$

where $d \sigma_{H}$ denotes the 2 -form on M whose lift $\pi^{*} d \sigma_{H}$ is the area form of $\left(H^{2}, g_{H}\right)$.

Proof. From the argument in [3], the h-harmonic part α_{h} of the monopole class α is $\alpha_{h}=\frac{i}{2 \pi} F_{A}$ which is parallel. Then the lift $\pi^{*} \alpha_{h}$ is parallel and symplectic over H^{2} so that it is proportional to the area form of $\left(H^{2}, g_{H}\right)$:

$$
\alpha_{h}=\frac{i}{2 \pi} F_{A}=\frac{c}{2 \pi} d \sigma_{H}
$$

for some real constant c. To determine c, we take the pull-back metric $\pi^{*} h$ described as

$$
\pi^{*} h=d t^{2} \oplus a^{2} g_{H}
$$

where $a>0$ and $g_{H}=\left(d x^{2}+d y^{2}\right) / y^{2}$ is the hyperbolic metric. Regarding H^{2} as the upper half plane $\{z=x+i y \mid y>0\}$, we see that the scalar curvature s_{h} of h is $-2 / a^{2}$. Since s_{h} is constant, we obtain

$$
\left\|s_{h}\right\|_{\left(L^{2}, h\right)}=\sqrt{\int_{M} s_{h}^{2} d v_{h}}=\left|s_{h}\right| \sqrt{\operatorname{Vol}(M, h)}=\frac{2}{a^{2}} \sqrt{\operatorname{Vol}(M, h)}
$$

Therefore, we get from the monopole extremal condition

$$
\frac{|c|}{2 \pi a^{2}}=\frac{1}{4 \pi} \cdot \frac{2}{a^{2}}
$$

so that $c= \pm 1$ and hence $\alpha_{h}= \pm \frac{1}{2 \pi} d \sigma_{H}$.
Conversely, if the monopole class $\alpha=c_{1}(L)$ satisfies $\alpha_{h}= \pm \frac{1}{2 \pi} d \sigma_{H}$, then, as is easily seen, the monopole extremal condition holds.

Assume that M admits the geometric structure $\mathbf{R} \times H^{2}$. The (anti-) canonical line bundle $K_{H^{2}}^{ \pm 1}$ over H^{2} induce a complex line bundle denoted by $K_{M}^{ \pm 1}$. This is because M is a Γ-quotient of $\mathbf{R} \times H^{2}$, where Γ is the discrete subgroup of $I \operatorname{som}^{+}\left(\mathbf{R} \times H^{2}\right)$, and the frame field $\frac{1}{y} d z$ of $K_{H^{2}}$ or $\frac{1}{y} d \bar{z}$ of $K_{H^{2}}^{-1}$ is invariant respectively under the action

$$
z \mapsto \frac{a z+b}{c z+d}, \quad a, b, c, d \in \mathbf{R}, \quad a d-b c=1
$$

so that $K_{H^{2}}^{ \pm 1}$ over $\mathbf{R} \times H^{2}$ well descends to the bundle $K_{M}^{ \pm 1}$ over M, which we call the (anti-)canonical line bundle over M.

As a corollary of Main Theorem in [3], we can determine the complex line bundle L under the monopole extremal condition.

Corollary 2.2 Let L be a complex line bundle over an oriented closed 3-manifold M. Assume that the first Chern class of L is a monopole class α of M and satisfies the monopole extremal condition. Then, L must be bundle-isomorphic to $F \otimes K_{M}^{ \pm 1}$, where F is a complex line bundle with a flat connection and $K_{M}^{ \pm 1}$ is the (anti-) canonical line bundle over M.

Proof. For simplicity, we write $K_{M}^{ \pm 1}=K$. It suffices to show that

$$
c_{1}\left(L \otimes K^{-1}\right)=c_{1}(L)-c_{1}(K)=0\left(=c_{1}(F)\right)
$$

since over M the multiplicative group $H^{1}\left(M ; \mathcal{D}^{\times}\right)$, the space of all equivalence classes of complex line bundle over M, is isomorphic to $H^{2}(M ; \mathbf{Z})$ via the map assigning a complex line bundle to its first Chern class (see [2]).

For this purpose, let D be the Hermitian holomorphic connection on $K_{H^{2}}$ induced from the Levi-Civita connection ∇. Its connection form A is easily computed as $A=-\frac{i}{y} d z$ and $F_{A}=d A=-i(d x \wedge d y) / y^{2}$ so that $c_{1}\left(K_{H^{2}}\right)$ coincides with $\frac{1}{2 \pi}\left[d \sigma_{H}\right]$. This completes the proof.

3. Parallel spinor solutions to the monopole equations

From now on, we take $L=K_{M}^{ \pm 1}$ and investigate an explicit form of the solutions to the monopole equations. The spinor bundle W is described as $W=W_{0} \otimes L_{1}$, where W_{0} is the product bundle $W_{0}=M \times \mathbf{C}^{2}$ and L_{1} is some complex line bundle. Taking care that $L=\operatorname{det}(W)$, we obtain $K_{M}^{ \pm 1}=L_{1}^{2}$ so that $L_{1}=K_{M}^{ \pm 1 / 2}$. Hence we can take spinor fields
$\Phi_{0}=\binom{\phi_{1}}{\phi_{2}} \otimes \sqrt{d z}, \quad \Phi_{0}^{-}=\binom{\phi_{1}}{\phi_{2}} \otimes \sqrt{d \bar{z}} \in \Gamma(M ; W), \quad W=W_{0} \otimes K_{M}^{ \pm 1 / 2}$,
where $d z$ and $d \bar{z}$ are regarded as sections of $K_{M}^{ \pm 1}$. Under these conditions, we can show the following proposition.

Proposition 3.1 If $\nabla_{A_{0}} \Phi_{0}=\nabla_{A_{0}^{-}} \Phi_{0}^{-}=0$, where A_{0} and A_{0}^{-}are the connections of $K_{M}^{ \pm 1}$ associated with the Levi-Civita connection of (M, h), then

$$
\Phi_{0}=\binom{C / \sqrt{y}}{0} \otimes \sqrt{d z}, \quad \Phi_{0}^{-}=\binom{0}{C / \sqrt{y}} \otimes \sqrt{d \bar{z}}, \quad C= \pm \sqrt{-s_{h}}
$$

Proof. We consider the case for $\left(A_{0}, \Phi_{0}\right)$ with $L=K_{M}$. (The case for $\left(A_{0}^{-}, \Phi_{0}^{-}\right)$is similar.) First, we see

$$
\begin{equation*}
\left(\nabla_{A_{0}}\right)_{X} \Phi_{0}=\left(\nabla_{X}\binom{\phi_{1}}{\phi_{2}}\right) \otimes \sqrt{d z}+\binom{\phi_{1}}{\phi_{2}} \otimes\left(\left(\nabla_{A_{0}}\right)_{X} \sqrt{d z}\right) \tag{3.1.1}
\end{equation*}
$$

where X is any tangent vector to M. By the definition of the spin connection, the first term is computed as follows.

$$
\begin{align*}
\nabla_{X}\binom{\phi_{1}}{\phi_{2}} & =\binom{X \phi_{1}}{X \phi_{2}}-\frac{1}{2} \sum_{i<j}^{3} \omega_{i j}(X) c\left(e_{i}\right) c\left(e_{j}\right)\binom{\phi_{1}}{\phi_{2}} \\
& =\binom{X \phi_{1}}{X \phi_{2}}-\frac{i}{2} \omega_{23}(X)\binom{\phi_{1}}{-\phi_{2}} \tag{3.1.2}
\end{align*}
$$

where $\omega_{i j}$ are the connection forms of (M, h) with respect to the orthonormal frame $\left\{d t, \frac{1}{a y} d x, \frac{1}{a y} d y\right\}$. Here, the lift of h is $d t^{2} \oplus a^{2} g_{H}$. On the other
hand, since $d z$ is regarded as a section of K_{M}, the second term of (3.1.1) is computed for $X=\frac{\partial}{\partial z}$ as

$$
\begin{equation*}
\left(\nabla_{A_{0}}\right)_{\frac{\partial}{\partial z}} \sqrt{d z}=\left(\frac{\partial}{\partial z} \log y\right) \sqrt{d z} \tag{3.1.3}
\end{equation*}
$$

where $z=x+i y$. Moreover from the local product structure of M, we see

$$
\left(\nabla_{A_{0}}\right)_{\frac{\partial}{\partial t}} \sqrt{d z}=0, \quad\left(\nabla_{A_{0}}\right)_{\frac{\partial}{\partial \bar{z}}} \sqrt{d z}=0
$$

Substituting (3.1.2) and (3.1.3) into (3.1.1), from $\left(\nabla_{A_{0}}\right)_{X} \Phi_{0}=0$ for $X=\frac{\partial}{\partial z}$, we obtain

$$
\begin{aligned}
& X \phi_{1}-\frac{i}{2} \omega_{23}(X) \phi_{1}+\left(\frac{\partial}{\partial z} \log y\right) \phi_{1}=0 \\
& X \phi_{2}+\frac{i}{2} \omega_{23}(X) \phi_{2}+\left(\frac{\partial}{\partial z} \log y\right) \phi_{2}=0
\end{aligned}
$$

Using $\omega_{23}=-\frac{1}{y} d x$, we get

$$
\frac{\partial \phi_{1}}{\partial z}-\frac{i}{4 y} \phi_{1}=0, \quad \frac{\partial \phi_{2}}{\partial z}-\frac{3 i}{4 y} \phi_{2}=0 .
$$

Similarly, for $X=\frac{\partial}{\partial \bar{z}}$ we get

$$
\frac{\partial \phi_{1}}{\partial \bar{z}}+\frac{i}{4 y} \phi_{1}=0, \quad \frac{\partial \phi_{2}}{\partial \bar{z}}-\frac{i}{4 y} \phi_{2}=0
$$

Solving the simultaneous equations for ϕ_{1} and ϕ_{2}, we get $\phi_{1}=\frac{C}{\sqrt{y}}$ and $\phi_{2}=0$.

Now we obtain

$$
\Phi_{0}=\binom{C / \sqrt{y}}{0} \otimes \sqrt{d z}
$$

On the other hand, using $\nabla_{A_{0}} \Phi_{0}=0$ and Lichnerowicz's formula, we get

$$
s_{h}=-\left|\Phi_{0}\right|^{2} \quad \text { so that } \quad C= \pm \sqrt{-s_{h}}
$$

Moreover, we can show the following corollary.
Corollary 3.2 For the monopole class α whose h-harmonic part is

$$
\alpha_{h}=\frac{i}{2 \pi} F_{A_{0}}=\frac{1}{2 \pi} d \sigma_{H} \quad \text { or } \quad \alpha_{h}=\frac{i}{2 \pi} F_{A_{0}^{-}}=-\frac{1}{2 \pi} d \sigma_{H}
$$

$\left(A_{0}, \Phi_{0}\right)$ or $\left(A_{0}^{-}, \Phi_{0}^{-}\right)$with $\left|\Phi_{0}\right|=\left|\Phi_{0}^{-}\right|=\sqrt{2}$ is a solution to the monopole equations for $L=K_{M}$ or $L=K_{M}^{-1}$, respectively.

Proof. We consider the case for $\left(A_{0}, \Phi_{0}\right)$ with $L=K_{M}$. (The case for $\left(A_{0}^{-}, \Phi_{0}^{-}\right)$is similar.) Since $D_{A}=c \circ \nabla_{A}$, it is clear that $D_{A_{0}} \Phi_{0}=0$. On the other hand, the curvature form of A_{0} is described as

$$
F_{A_{0}}= \pm i d \sigma_{H}= \pm i e^{2} \wedge e^{3}
$$

where e^{1}, e^{2}, e^{3} are the dual orthonormal frame of (M, h). Therefore we obtain

$$
c\left(* F_{A_{0}}\right)= \pm\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

In general for $\Phi=\binom{\varphi_{1}}{\varphi_{2}}$, we get

$$
\Phi \otimes \Phi^{*}-\frac{1}{2}|\Phi|^{2} \operatorname{Id}_{W}=\left(\begin{array}{cc}
\frac{1}{2}\left(\left|\varphi_{1}\right|^{2}-\left|\varphi_{2}\right|^{2}\right) & \varphi_{1} \overline{\varphi_{2}} \\
\overline{\varphi_{1}} \varphi_{2} & \frac{1}{2}\left(\left|\varphi_{2}\right|^{2}-\left|\varphi_{1}\right|^{2}\right)
\end{array}\right) .
$$

Therefore for $\Phi_{0}=\binom{\varphi}{0}$, we obtain

$$
\begin{aligned}
\Phi_{0} \otimes \Phi_{0}^{*}-\frac{1}{2}\left|\Phi_{0}\right|^{2} \mathrm{Id}_{W} & =\left(\begin{array}{cc}
\frac{1}{2}|\varphi|^{2} & 0 \\
0 & -\frac{1}{2}|\varphi|^{2}
\end{array}\right) \\
& =-\frac{1}{2}|\varphi|^{2}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=-\frac{1}{2}\left|\Phi_{0}\right|^{2}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Hence in order for $\left(A_{0}, \Phi_{0}\right)$ to satisfy the first monopole equation, we may take

$$
F_{A_{0}}=-i d \sigma_{H}, \quad\left|\Phi_{0}\right|=\sqrt{2}
$$

4. The moduli space

Proof of Main Theorem (1). We consider the case for $\alpha=c_{1}\left(K_{M}\right)$. (The case for $\alpha=c_{1}\left(K_{M}^{-1}\right)$ is similar.) In this case, $\alpha_{h}=\frac{1}{2 \pi} d \sigma_{H}$ so that by the proof of Proposition 2.1, we obtain the monopole extremal condition

$$
\left\|\alpha_{h}\right\|_{\left(L^{2}, h\right)}=\frac{1}{4 \pi}\left\|s_{h}\right\|_{\left(L^{2}, h\right)}
$$

for the metric h whose lift $\pi^{*} h$ has the form $d t^{2} \oplus a^{2} g_{H}$. Let (A, Φ) be an arbitrary solution associated with the class α and the metric h. In this case, recall that $\nabla_{A} \Phi=0$ holds. Now we take $\left(A_{0}, \Phi_{0}\right)$ which satisfies

$$
\alpha=\frac{1}{2 \pi} d \sigma_{H}=\frac{i}{2 \pi} F_{A_{0}} \quad \text { and } \quad \Phi_{0}=\binom{\sqrt{2 / y}}{0} \otimes \sqrt{d z}
$$

From Corollary $3.2,\left(A_{0}, \Phi_{0}\right)$ is a solution. We can show that any solution (A, Φ) is gauge equivalent to $\left(A_{0}, \Phi_{0}\right)$.

For this, we take $A=A_{0}+i a, a \in \Omega^{1}(M)$ so that $F_{A}=F_{A_{0}}+i d a$. Since F_{A} and $F_{A_{0}}$ are harmonic, we obtain $d a=0$ and $F_{A}=F_{A_{0}}$. Moreover, by the first monopole equation, we get $\left|\Phi_{0}\right|^{2}=2\left|F_{A_{0}}\right|=2\left|F_{A}\right|=|\Phi|^{2}$ and

$$
\Phi_{0} \otimes \Phi_{0}^{*}-\frac{1}{2}\left|\Phi_{0}\right|^{2} \operatorname{Id}_{W}=c\left(* F_{A_{0}}\right)=c\left(* F_{A}\right)=\Phi \otimes \Phi^{*}-\frac{1}{2}|\Phi|^{2} \operatorname{Id}_{W}
$$

so that $\Phi_{0} \otimes \Phi_{0}^{*}=\Phi \otimes \Phi^{*}$. Taking $\Phi_{0}=\binom{\varphi}{0}$ and $\Phi=\binom{\varphi_{1}}{\varphi_{2}}$, we get $|\varphi|^{2}=\left|\varphi_{1}\right|^{2}$ and $\left|\varphi_{2}\right|^{2}=0$ so that there exists $g \in \mathcal{G}$ such that $\Phi=g^{-1} \Phi_{0}$. Therefore

$$
\begin{aligned}
0=\nabla_{A} \Phi & =d g^{-1} \otimes \Phi_{0}+g^{-1} \nabla_{A} \Phi_{0} \\
& =d g^{-1} \otimes \Phi_{0}+g^{-1} \nabla_{A_{0}} \Phi_{0}+g^{-1} i a \otimes \Phi_{0} \\
& =d g^{-1} \otimes \Phi_{0}+g^{-1} i a \otimes \Phi_{0}
\end{aligned}
$$

and hence
$i a \otimes \Phi_{0}=-g d g^{-1} \otimes \Phi_{0}=g^{-1} d g \otimes \Phi_{0}, \quad$ namely, $\quad(A, \Phi)=\left(A_{0}+g^{-1} d g, g^{-1} \Phi_{0}\right)$,
which implies that (A, Φ) is gauge equivalent to $\left(A_{0}, \Phi_{0}\right)$.
From now on, we will show the transversality of the moduli space \mathcal{M}. To show this, we consider the following complex which turns out to be elliptic by the subsequent lemma, Lemma 4.1.

$$
\mathcal{C}: 0 \rightarrow \Omega^{0}(M) \xrightarrow{G} \Omega^{1}(M) \oplus \Gamma(W) \xrightarrow{T} \Omega^{1}(M) \oplus \Gamma(W) \xrightarrow{S} \Omega^{0}(M) \rightarrow 0,
$$

where

$$
G_{\left(A_{0}, \Phi_{0}\right)}(u)=\left(d u,-i u \Phi_{0}\right), \quad S_{\left(A_{0}, \Phi_{0}\right)}(a, \varphi)=\delta a+i \operatorname{Im}\left\langle\Phi_{0}, \varphi\right\rangle
$$

and $T_{\left(A_{0}, \Phi_{0}\right)}(a, \varphi)=(b, \psi)$, where

$$
\begin{aligned}
b & =c(i * d a)-\Phi_{0} \otimes \varphi^{*}-\varphi \otimes \Phi_{0}^{*}+\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle+\left\langle\varphi, \Phi_{0}\right\rangle\right) \operatorname{Id}_{W} \\
\psi & =D_{A_{0}} \varphi+i c(a) \Phi_{0}
\end{aligned}
$$

Lemma 4.1 (1) $T \circ G=0$, (2) $S \circ T=0$, (3) $\operatorname{Index}(\mathcal{C})=0$.
Proof of (1). By definition,

$$
(b, \psi)=T \circ G_{\left(A_{0}, \Phi_{0}\right)}(u)=T_{\left(A_{0}, \Phi_{0}\right)}\left(d u,-i u \Phi_{0}\right),
$$

where

$$
\begin{aligned}
b & =c(i * d(d u))-i u\left|\Phi_{0}\right|^{2}+i u\left|\Phi_{0}\right|^{2}+\frac{1}{2}\left(i u\left|\Phi_{0}\right|^{2}-i u\left|\Phi_{0}\right|^{2}\right) \operatorname{Id}_{W} \\
\psi & =D_{A_{0}}\left(-i u \Phi_{0}\right)+i c(d u) \Phi_{0}=-i\left(c(d u) \Phi_{0}+u D_{A_{0}} \Phi_{0}\right)+i c(d u) \Phi_{0}
\end{aligned}
$$

Obviously b and ψ vanish.
Proof of (2). Let $S \circ T_{\left(A_{0}, \Phi_{0}\right)}(a, \varphi)=S_{\left(A_{0}, \Phi_{0}\right)}(b, \psi)$. It is sufficient to show

$$
\int_{M}\langle S(b, \psi), u\rangle d v_{h}=0 \text { for any } u \in \Omega^{0}(M)
$$

By definition,

$$
b=* d a+i c^{-1}\left(\Phi_{0} \otimes \varphi^{*}+\varphi \otimes \Phi_{0}^{*}-\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle+\left\langle\varphi, \Phi_{0}\right\rangle\right) \operatorname{Id}_{W}\right)
$$

$$
\psi=D_{A_{0}} \varphi+i c(a) \Phi_{0}
$$

so that

$$
\begin{aligned}
S(b, \psi)= & \delta\left(* d a+i c^{-1}\left(\Phi_{0} \otimes \varphi^{*}+\varphi \otimes \Phi_{0}^{*}-\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle+\left\langle\varphi, \Phi_{0}\right\rangle\right) \operatorname{Id}_{W}\right)\right) \\
& +i \operatorname{Im}\left\langle\Phi_{0}, D_{A_{0}} \varphi+i c(a) \Phi_{0}\right\rangle \\
= & i \delta\left(c^{-1}\left(\Phi_{0} \otimes \varphi^{*}+\varphi \otimes \Phi_{0}^{*}-\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle+\left\langle\varphi, \Phi_{0}\right\rangle\right) \operatorname{Id}_{W}\right)\right) \\
& +i \operatorname{Im}\left\langle\Phi_{0}, D_{A_{0}} \varphi\right\rangle .
\end{aligned}
$$

Therefore

$$
\left.\left.\begin{array}{rl}
\int_{M}\langle & S(b, \psi), u\rangle d v_{h} \\
= & \int_{M}\left\langle i \delta\left(c^{-1}\left(\Phi_{0} \otimes \varphi^{*}+\varphi \otimes \Phi_{0}^{*}-\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle+\left\langle\varphi, \Phi_{0}\right\rangle\right) \operatorname{Id}_{W}\right)\right)\right. \\
& \left.+i \operatorname{Im}\left\langle\Phi_{0}, D_{A_{0}} \varphi\right\rangle, u\right\rangle d v_{h} \\
= & i \int_{M}\left\langle\Phi_{0} \otimes \varphi^{*}+\varphi \otimes \Phi_{0}^{*}, c(d u)\right\rangle d v_{h} \\
& +i \int_{M} \frac{1}{2} u\left(\left\langle\Phi_{0}, D_{A_{0}} \varphi\right\rangle-\left\langle D_{A_{0}} \varphi, \Phi_{0}\right\rangle\right) d v_{h} \\
= & i \int_{M}\left\langle\Phi_{0} \otimes \varphi^{*}+\varphi \otimes \Phi_{0}^{*}, c(d u)\right\rangle d v_{h} \\
& +\frac{i}{2} \int_{M}\left(\left\langle c(d u) \Phi_{0}, \varphi\right\rangle-\left\langle\varphi, c(d u) \Phi_{0}\right\rangle\right) d v_{h} \\
= & i \int_{M} \frac{1}{2} \operatorname{tr}\left(\begin{array}{c}
\varphi_{01} \overline{\varphi_{1}}+\varphi_{1} \overline{\varphi_{01}} \\
\varphi_{2} \varphi_{01} \overline{\varphi_{01}} \\
0
\end{array}\right)\left(\begin{array}{c}
-i a_{1} \\
a_{2}-i a_{3}
\end{array} \quad-a_{2}-i a_{3}\right. \\
i a_{1}
\end{array}\right) d v_{h}\right)
$$

Proof of (3). Split \mathcal{C} into the direct sum of the following complexes;

$$
\begin{aligned}
& \mathcal{C}_{1}: 0 \rightarrow \Omega^{0}(M) \xrightarrow{d} \Omega^{1}(M) \xrightarrow{* d} \Omega^{1}(M) \xrightarrow{\delta} \Omega^{0}(M) \rightarrow 0 \\
& \mathcal{C}_{2}: 0 \rightarrow \Gamma(W) \xrightarrow{D_{A_{0}}} \Gamma(W) \rightarrow 0 .
\end{aligned}
$$

The first one is equivalent to the de Rham complex so that $\operatorname{Index}\left(\mathcal{C}_{1}\right)=$ $\chi(M)=0$. The second one is the spin complex and so $\operatorname{Index}\left(\mathcal{C}_{2}\right)=$ Index $D_{A_{0}}=0$. Therefore

$$
\operatorname{Index}(\mathcal{C})=\operatorname{Index}\left(\mathcal{C}_{1}\right)+\operatorname{Index}\left(\mathcal{C}_{2}\right)=0
$$

Using Lemma 4.1 (3), by definition,

$$
\operatorname{Index}(\mathcal{C})=\operatorname{dim} H^{0}(\mathcal{C})-\operatorname{dim} H^{1}(\mathcal{C})+\operatorname{dim} H^{2}(\mathcal{C})-\operatorname{dim} H^{3}(\mathcal{C})=0
$$

Since the solution is irreducible, if $u \in \Omega^{0}(M)$ satisfies

$$
G_{\left(A_{0}, \Phi_{0}\right)}(u)=\left(d u,-i u \Phi_{0}\right)=(0,0),
$$

then $u=0$ so that $H^{0}(\mathcal{C})=\operatorname{Ker} G=\{0\}$. Moreover since $S_{\left(A_{0}, \Phi_{0}\right)}^{*}(u)=$ $\left(d u, i u \Phi_{0}\right)$, we have $S_{\left(A_{0}, \Phi_{0}\right)}^{*}=G_{\left(A_{0},-\Phi_{0}\right)}$ so that $\operatorname{Ker} S^{*}=\{0\}$. Therefore $H^{3}(\mathcal{C})=\Omega^{0}(M) / \operatorname{Im} S$ is isomorphic to $\operatorname{Ker} S^{*}=\{0\}$ and hence $H^{3}(\mathcal{C})=\{0\}$. Consequently, $H^{1}(\mathcal{C}) \cong H^{2}(\mathcal{C})$. Therefore the surjectivity of T is equivalent to $\operatorname{Ker} S / \operatorname{Im} T=\{0\}$ which is equivalent to $\operatorname{Ker} T / \operatorname{Im} G=\{0\}$. This is also equivalent to

$$
\left\{(a, \varphi) \mid T_{\left(A_{0}, \Phi_{0}\right)}(a, \varphi)=(0,0), G_{\left(A_{0}, \Phi_{0}\right)}^{*}(a, \varphi)=0\right\}=\{(0,0)\}
$$

where

$$
G_{\left(A_{0}, \Phi_{0}\right)}^{*}(a, \varphi)=\delta a-i \operatorname{Im}\left\langle\Phi_{0}, \varphi\right\rangle
$$

It is clear that $T_{\left(A_{0}, \Phi_{0}\right)}(a, \varphi)=0$ implies

$$
\begin{aligned}
c(d a) & =-i\left(\Phi_{0} \otimes \varphi^{*}+\varphi \otimes \Phi_{0}^{*}-\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle+\left\langle\varphi, \Phi_{0}\right\rangle\right) \operatorname{Id}_{W}\right) \\
D_{A_{0}} \varphi & =-i c(a) \Phi_{0}
\end{aligned}
$$

and that $G_{\left(A_{0}, \Phi_{0}\right)}^{*}(a, \varphi)=0$ implies

$$
\delta a=i \operatorname{Im}\left\langle\Phi_{0}, \varphi\right\rangle=\frac{i}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle-\left\langle\varphi, \Phi_{0}\right\rangle\right) .
$$

By the direct computation together with the fact that $\nabla_{A_{0}} \Phi_{0}=D_{A_{0}} \Phi_{0}=0$, we get

$$
\begin{aligned}
D_{A_{0}} D_{A_{0}} \varphi & =-i D_{A_{0}}\left(c(a) \Phi_{0}\right) \\
& =-i\left((\delta a) \Phi_{0}-2\left(\nabla_{A_{0}}\right)_{a^{\sharp}} \Phi_{0}+c(d a) \Phi_{0}-c(a) D_{A_{0}} \Phi_{0}\right) \\
& =\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle-\left\langle\varphi, \Phi_{0}\right\rangle\right) \Phi_{0}-i c(d a) \Phi_{0} .
\end{aligned}
$$

Here we made use of the formula:

$$
D_{A}(c(a) \Phi)=(\delta a) \Phi-2\left(\nabla_{A}\right)_{X} \Phi+c(d a) \Phi
$$

$a \in \Omega^{1}(M)$ and $X=a^{\sharp} \in \mathcal{X}(M)$. Now we have

$$
\begin{aligned}
c(d a) \Phi_{0} & =-i\left(\Phi_{0} \otimes \varphi^{*}+\varphi \otimes \Phi_{0}^{*}-\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle+\left\langle\varphi, \Phi_{0}\right\rangle\right) \mathrm{Id}_{W}\right) \Phi_{0} \\
& =-i\left(\left\langle\Phi_{0}, \varphi\right\rangle \Phi_{0}+\left|\Phi_{0}\right|^{2} \varphi-\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle+\left\langle\varphi, \Phi_{0}\right\rangle\right) \Phi_{0}\right) \\
& =-i\left(\left|\Phi_{0}\right|^{2} \varphi+\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle-\left\langle\varphi, \Phi_{0}\right\rangle\right) \Phi_{0}\right)
\end{aligned}
$$

so that the term $D_{A_{0}} D_{A_{0}} \varphi$ becomes

$$
\begin{aligned}
D_{A_{0}} D_{A_{0}} \varphi & =\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle-\left\langle\varphi, \Phi_{0}\right\rangle\right) \Phi_{0}-i c(d a) \Phi_{0} \\
& =\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle-\left\langle\varphi, \Phi_{0}\right\rangle\right) \Phi_{0}-\left|\Phi_{0}\right|^{2} \varphi-\frac{1}{2}\left(\left\langle\Phi_{0}, \varphi\right\rangle-\left\langle\varphi, \Phi_{0}\right\rangle\right) \Phi_{0} \\
& =-\left|\Phi_{0}\right|^{2} \varphi
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{M}\left\langle D_{A_{0}} D_{A_{0}} \varphi, \varphi\right\rangle d v_{h} & =-\int_{M}\left|\Phi_{0}\right|^{2}|\varphi|^{2} d v_{h} \quad \text { or } \\
\int_{M}\left|D_{A_{0}} \varphi\right|^{2} d v_{h} & =-\int_{M}\left|\Phi_{0}\right|^{2}|\varphi|^{2} d v_{h}
\end{aligned}
$$

$\left|\Phi_{0}\right|$ is positive constant because the solution $\left(A_{0}, \Phi_{0}\right)$ is irreducible and Φ_{0} is parallel. Hence we conclude $\varphi=0$ so that $a=0$ by $-i c(a) \Phi_{0}=D_{A_{0}} \varphi=0$. From the above arguments, the transversality of \mathcal{M} is completely derived.

Proof of Main Theorem (2). In order to see that the class $\alpha=c_{1}\left(K_{M}\right)$ is a monopole class, we show that the Seiberg-Witten invariant does not vanish with respect to an arbitrary metric on M. We consider the case where a given metric h is arbitrary. In this case, we cannot always make use of the condition $\nabla_{A} \Phi=0$. We usually think of the perturbed monopole equations as follows.

$$
\left\{\begin{array}{l}
c\left(* F_{A}+i \rho\right)=\Phi \otimes \Phi^{*}-\frac{1}{2}|\Phi|^{2} \mathrm{Id}_{W} \\
D_{A} \Phi=0
\end{array}\right.
$$

Here, ρ is a co-closed 1-form. With respect to these perturbed equations, it is known that the Seiberg-Witten invariant is independent of metrics g and perturbations $\rho([1])$. More precisely, given a generic path $\left(g_{t}, \rho_{t}\right), t \in[0,1]$ connecting $\left(g_{0}, \rho_{0}\right)$ and $\left(g_{1}, \rho_{1}\right)$, it is known that

$$
S W_{\left(g_{0}, \rho_{0}\right)}(M, L)=S W_{\left(g_{1}, \rho_{1}\right)}(M, L) .
$$

To apply the perturbed argument to our case, we take $L=K_{M}$ and $\left(g_{0}, \rho_{0}\right)$ $=(h, 0)$. Main Theorem (1) together with the definition of the SeibergWitten invariant implies $S W_{(h, 0)}\left(M, K_{M}\right)= \pm 1$ so that

$$
S W\left(M, K_{M}\right)= \pm 1(\neq 0) .
$$

This implies that the monopole equations associated with $\alpha=c_{1}\left(K_{M}\right)$ has solutions which are irreducible by $b_{1}(M)>1$. Hence α is a monopole class.

Acknowledgement The authors would like to thank Professor Y. Nagatomo for his valuable comment about a complex line bundle argument. We also thank the referee for useful comments.

References

[1] Auckly D., The Thurston norm and three-dimensional Seiberg-Witten theory, Osaka J. Math. 33 (1996), 737-750.
[2] Griffiths P. and Harris J., Principles of Algebraic Geometry, John Wiley and Sons 1978.
[3] Itoh M. and Yamase T., The dual Thurston norm and the geometry of closed 3-manifolds, Osaka J. Math. 43 (2006), 121-129.
[4] Morgan J.W., Szabó Z. and Taubes C.H., A product formula for the SeibergWitten invariants and the generalized Thom conjecture, J. Differential Geometry, Vol. 44 (1996), 706-788.

Mitsuhiro Itoh
Institute of Mathematics
University of Tsukuba
305-8571, TSUKUBA, JAPAN
e-mail: itohm@sakura.cc.tsukuba.ac.jp
Takahisa Yamase
Graduate School of Pure and Applied Sciences
University of Tsukuba
305-8571, TSUKUBA, JAPAN
e-mail: ks7gauge@math.tsukuba.ac.jp

