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On asymptotic behavior of positive solutions

of x′′ = −tαλ−2x1+α with α < 0 and λ = 0, −1

Ichiro Tsukamoto
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Abstract. Given an initial condition x(T ) = A, x′(T ) = B (′ = d/dt, 0 < T < ∞,

0 < A < ∞, −∞ < B < ∞) for the differential equation denoted in the title, we shall

conclude that if T , A are fixed arbitrarily, then there exists a number B∗ such that

in every case of B = B∗, B < B∗, B > B∗ we determine analytical expressions of the

solution of the initial value problem which shows asymptotic behavior of the solution.

That is, these analytical expressions are valid in neighborhoods of ends of the domain

of the solution. If λ = −1, then we shall treat the case T = 0, since there exists the

solution continuable to t = 0.

Key words: Emden and Fowler type differential equations, asymptotic behavior, an

initial condition, a first order rational differential equation, a two dimensional au-

tonomous system.

1. Introduction

Let us consider Emden and Fowler type differential equations

x′′ = −t−α−2x1+α (E−)

x′′ = −t−2x1+α (E0)

where ′ = d/dt, α is a negative parameter, and t, x are positive variables.
The differential equations (E−) and (E0) are obtained from putting λ = −1
and λ = 0 in

x′′ = −tαλ−2x1+α (E)

respectively.
These differential equations are regarded to have several interesting

physical applications (cf. [1]). Moreover these are equations of motion in
the potential field and so Euler’s equation of a variational problem. As
for the partial differential equations, these are equations which the positive
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radial solutions fulfill.
Actually many papers treated these in more general form (cf. [5], [7],

[8]) and discussed the solutions continuable to ∞. On the other hand, in
[15], [21], and [22] we showed asympotic behavior of solutions of (E) under
an initial condition

x(T ) = A, x′(T ) = B (I)

where

0 ≤ T < ∞, 0 < A < ∞, −∞ < B < ∞.

We treated the case α < 0 and λ > 0 in [15], the case α < 0 and λ < −1 or
λ > 0 in [21], and the case α < 0 and −1 < λ < 0 in [22].

However we did not consider (E−) and (E0). So in this paper we shall
show asymptotic behavior of solutions of (E−) and (E0) satisfying (I).

Our discussion will be carried out as follows: In Section 2, we shall state
our theorems on (E−). For preliminaries of the proof, we shall use Sections
3 and 4, and the proof will be completed in Section 5. In Section 6, we
shall state theorems on (E0) which will be obtained directly from applying
a transformation written in [9] to (E−).

2. Theorems on (E−)

First, suppose 0 < T < ∞ and fix T and A arbitrarily in (I). Then
if x = x(t) denotes a solution of an initial value problem (E−) and (I),
asymptotic behavior of x = x(t) is stated in the following theorems. Notice
that ω+ and ω− are finite positive numbers in this section and f(t) ∼ g(t)
as t → τ for some τ means limt→τ f(t)/g(t) = 1.

Theorem 1 There exists a number B∗ such that if B = B∗, then x(t) is
defined for 0 < t < ω+. Moreover x(t) is represented as

x(t) ∼ t

(α log t)1/α

{
1 +

∑
m+n>0

xmn

(
1

α log t
log

1
α log t

)m(
1

α log t

)n}

(2.1)

as t → 0. Here xmn are constants. In the neighborhood of t = ω+, x(t) is
represented as follows:
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x(t) = K(ω+ − t)
{

1 +
∑

j+k+l>0

xjkl(ω+ − t)j

× (ω+ − t)−(α/2)k(ω+ − t)((α+2)/2)l

}
(2.2)

where K and xjkl are constants, if −2 < α < 0.

x(t) = tU1−G(U,C)eCG(U,C) (2.3)

where

U ∼ −
√

2 log
t

ω+
as t → ω+

G(U,C) =
1
2
(C − log U)−1 log(C − log U)

+
∑

j+k+l≥2

djkl{U(C − log U)2}j(C − log U)−k/2

× {(C − log U)−1 log(C − log U)}l

djkl being constants, if α = −2.

x(t) =
{
− 2(α + 2)ωα+2

+

α2

}1/α

(ω+ − t)−2/α

×
{

1 +
∑

m+n>0

xmn(ω+ − t)m(ω+ − t)(2(α+2)/α)n

}
(2.4)

where xmn are constants, if α < −4, −4 < α < −2.

x(t) =
√

2ω+ (ω+ − t)1/2

{
1 +

∞∑

k=1

(ω+ − t)kpk(log(ω+ − t))
}

(2.5)

where pk are polynomials with deg pk ≤ k, if α = −4.

If B 6= B∗, then we get the following:

Theorem 2 If B < B∗, then x(t) is defined for 0 < t < ω+. Furthermore
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in the neighborhood of t = 0, x(t) is represented as

x(t) = K

(
1 +

∑
m+n>0

xmnt−αmtn
)

(2.6)

if −1/α /∈ N , and as

x(t) = K

{
1 +

∞∑

k=1

t−αkpk(log t)
}

(2.7)

if −1/α ∈ N . Here K and xmn are constants and pk are polynomials with
deg pk ≤ [−αk] where [ ] denotes Gaussian symbol. In the neighborhood of
t = ω+ we have (2.2) through (2.5).

Theorem 3 If B > B∗, then x(t) is defined for ω− < t < ω+. Moreover
in the neighborhood of t = ω−, x(t) is represented as follows:

x(t) = K(t− ω−)
{

1 +
∑

j+k+l>0

xjkl(t− ω−)j

× (t− ω−)−(α/2)k(t− ω−)((α+2)/2)l

}
(2.8)

where K and xjkl are constants, if −2 < α < 0.

x(t) = tU1−G(U,C)eCG(U,C) (2.9)

where

U ∼
√

2 log
t

ω−
as t → ω−

and G(U,C) is defined in Theorem 1, if α = −2.

x(t) =
{
− 2(α + 2)ωα+2

−
α2

}1/α

(t− ω−)−2/α

×
{

1 +
∑

m+n>0

xmn(t− ω−)m(t− ω−)(2(α+2)/α)n

}
(2.10)
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where xmn are constants, if α < −4, −4 < α < −2.

x(t) =
√

2ω−(t− ω−)1/2

{
1 +

∞∑

k=1

(t− ω−)kpk(log(t− ω−))
}

(2.11)

where pk are polynomials with deg pk ≤ k, if α = −4. In the neighborhood
of t = ω+, we get (2.2) through (2.5).

Next, suppose

T = 0, 0 < A < ∞, −∞ ≤ B ≤ ∞

in (I). Then accurately speaking, (I) means

lim
t→0

x(t) = A, lim
t→0

x′(t) = B.

Moreover if x = x(t) denotes a solution of (E−) and (I) again, we state
existence and asymptotic behavior of x = x(t) as follows:

Theorem 4 Assume −1/α /∈ N and −1 < α < 0. Then if B = ∞, there
exist the infinitely many solution represented as

x(t) = A

{
1− Aα

α(α + 1)
t−α + x01t +

∑
m+n>1

xmnt−αmtn
}

(2.12)

in the neighborhood of t = 0. Here x01 is an arbitrary constant. Moreover
if B 6= ∞, there exist no solution.

Theorem 5 Suppose −1/α /∈ N and α < −1. Then if B 6= ±∞, there
exists the unique solution represented as

x(t) = A

{
1− Aα

α(α + 1)
t−α +

B

A
t +

∑
m+n>1

xmnt−αmtn
}

(2.13)

in the neighborhood of t = 0 and if B = ±∞, there exists no solution.

Next we consider the case −1/α ∈ N . If α = −1, then (E−) can be
solved explicitly as

x(t) = −t log t + Γt + A
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where Γ is an arbitrary constant. Obviously this implies that if B = ∞,
then the infinitely many solutions exist and if B 6= ∞, no solution exists.

Theorem 6 Assume −1/α ∈ N and −1 < α < 0. Then if B = ∞, there
exists the unique solution represented as

x(t) = A

{
1− Aα

(α + 1)α
t−α +

∞∑

k=2

t−αkpk(log t)
}

(2.14)

in the neighborhood of t = 0. Here pk are polynomials with deg pk ≤ [−αk].
Furthermore if B 6= ∞, then there exists no solution.

Since the solutions (2.12), (2.13), and (2.14) are obtained from (2.6) and
(2.7), we immediately get the following from Theorem 2:

Theorem 7 A solution of (E−) and (I) is defined for (0, ω+) and repre-
sented as (2.2) through (2.5) in the neighborhood of t = ω+.

From the proof of Theorems 1, 2, and 3, we shall not get the solution
in the cases B = ±∞. Hence it is not necessary to consider such cases if
0 < T < ∞.

3. Reduction of (E−) and investigation of the reduced equation

We use a transformation devised originally in [10]. Now we put

y = t−αxα (namely x = ty1/α), z = ty′ (T )

and get a first order rational differential equation

dz

dy
=

(α− 1)z2 − αyz − α2y3

αyz
. (R)

Using a parameter s, we write this a two dimensional autonomous system

dy

ds
= αyz,

dz

ds
= (α− 1)z2 − αyz − α2y3. (S)

The critical point of (S) is only (y, z) = (0, 0) and from (T ) and x > 0 we
always have y > 0.

Here let us consider (R) in the neighborhood of y = 0. For this we put
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u = y−2z (namely z = y2u) (3.1)

and get

du

dy
= −α2 + αu + (α + 1)yu2

αy2u
. (3.2)

In the righthand side of this, its numerator vanishes as y = 0, if and only if

u = −α.

So, suppose that a solution u of (3.2) accumulates to γ as y → 0. Then
we conclude the following:

Lemma 3.1 γ is a limit point and γ = −α, ±∞.

Proof. It suffices to follow the line of the proof of Lemma 3.1 of [19]. ¤

Lemma 3.2 If γ = −α, then from u we get a unique solution of (R)
represented as

z = −αy2

{
1 +

N−1∑
n=1

znyn + O(yN )
}

as y → 0 (3.3)

where N ∈ N and zn are constants. Moreover from (3.3) we have a solution
of (E−) expressed as (2.1).

Proof. Following discussion for obtaining (3.5) of [19], we get (3.3) and its
unique existence. In addition, from (T ) and the proof of Lemma 3.2 of [19]
we have (2.1). This completes the proof. ¤

Since (3.3) exists uniquely, we denote this z = z1(y).
Here suppose γ = ±∞. Then we put

u = 1/v, w = y−1v

and get

y
dw

dy
=

1
α

w + w2 + αyw3 (3.4)
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whose righthand side vanishes if and only if

w = 0, − 1
α

,

in the case y = 0. Now suppose that a solution w of (3.4) accumulates to δ

as y → 0. Then the following lemma holds:

Lemma 3.3 δ = −1/α and from w we get a solution of (R) represented
as

z = −αy

[
1 +

∑
m+n>0

zmnym{y−1/α(h log y + C)}n

]
(3.5)

in the neighborhood of y = 0. Here zmn, h, and C are constants and h = 0
if −1/α /∈ N . Moreover from this we have (2.6) and (2.7).

Proof. If δ 6= 0, −1/α, ±∞, then from (3.4) we obtain

dy

dw
=

y

(1/α)w + w2 + αyw3
.

Since the righthand side of this is holomorphic at (y, w) = (0, δ), we get a
contradiction y ≡ 0. Hence δ = 0, −1/α, ±∞.

If δ = 0, then we immediately have a contradiction w ≡ 0 from Lemma
2.5 of [16]. Moreover if δ = ±∞, then we see the proof of Lemma 3.3 of [19]
and get the contradiction from the discussion of the case δ = ±∞ of this.
Hence we obtain δ = −1/α.

So we put θ = w + 1/α and have

y
dθ

dy
= − 1

α
θ + θ2 + αy

(
θ − 1

α

)3

.

Therefore from −1/α > 0 we get

θ =
∑

m+n>0

θmnym{y−1/α(h log y + C)}n

where θmn, h, and C are constants, θ01 = 1, and h = 0 if −1/α /∈ N . Since
we put



On asymptotic behavior of positive solutions 161

z = y2u, u = 1/v, w = y−1v, θ = w + 1/α,

we eventually get (3.5). Furthermore from (T ) we have a differential equa-
tion

ty′ = −αy

[
1 +

∑
m+n>0

zmnym{y−1/α(h log y + C)}n

]
.

Solving this, we obtain

y = Γt−α

[
1 +

∑
m+n>0

ymnt−αm{t(h̃ log t + C̃)}n

]

where Γ and ymn are constants and

h̃ = −αh, C̃ = h log Γ + C.

Using (T ) again, we have

x(t) = Γ1/α

[
1 +

∑
m+n>0

xmnt−αm{t(h̃ log t + C̃)}n

]

where xmn are constants. Hence if −1/α /∈ N , then since h = h̃ = 0 we get
(2.6) where K = Γ1/α. Moreover if 1/α ∈ N , then we have

x(t) = K

{
1 +

∑
m+n>0

t−α(m−n/α)Pmn(log t)
}

where Pmn are polynomials with deg Pmn ≤ n. So if we put k = m − n/α

and pk = Pmn, then we get (2.7). Now the proof is complete. ¤

4. The investigation of the reduced equation (R) in the neighbor-
hood of y = ∞
First we show the following:

Lemma 4.1 If c denotes an arbitrary constant with 0 < c < ∞, then a
solution z(y) of (R) is bounded as y → c.
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Proof. Put z = 1/ζ in (R). Then we get

dζ

dy
= − (α− 1− αyz − α2y3ζ2)ζ

αy
. (4.1)

If this lemma is false, then there exists a sequence {yn} such that

yn → c, z(yn) → ±∞ as n →∞.

Hence ζ(y) = 1/z(y) is a solution of (4.1) such that ζ(yn) → 0 as yn →
c. Since the righthand side of (4.1) is holomorphic at (y, ζ) = (c, 0), we
therefore get a contradiction ζ(y) ≡ 0. This completes the proof. ¤

If we apply (T ) to a solution x = x(t) of (E−) and define (y, z), then z

is a solution of (R) and (y, z) a solution of (S). Let (ω−, ω+) be the domain
of x(t). Then we obtain the following:

Lemma 4.2 As t → ω±, (y, z) does not converge to a point in a region
0 < y < ∞, −∞ < z < ∞.

Since this is Lemma 2 of [17] or Lemma 4.1 of [19], the proof is omitted.
Here we consider (R) in the neighborhood of y = ∞. For this we put

y = 1/η in (4.1) and get

dζ

dη
=

(α− 1)η3ζ − αη2ζ2 − α2ζ3

αη4
.

Moreover putting w = η−3/2ζ and ξ = η1/2, we have

ξ
dw

dξ
= −α + 2

α
w − 2ξw2 − 2αw3. (4.2)

If the righthand side vanishes in the case ξ = 0, then we get

w = 0 as − 2 ≤ α < 0,

w = 0, ± ρ as α < −2,

where

ρ =
1
α

√
α + 2
−2

.
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Suppose that a solution w of (4.2) accumulates to γ as ξ → 0. Then we
have the following:

Lemma 4.3 γ is a limit point and γ = 0, ±ρ.

Proof. We get γ = 0, ±ρ, ±∞ directly from the reasoning in the proof of
Lemma 4.3 of [19]. Hence γ is a limit point. Moreover from the reasoning
in the same proof we have a contradiction, if γ = ±∞. Thus γ 6= ±∞ and
the proof is complete. ¤

Here suppose γ = 0. Then we conclude the following:

Lemma 4.4 If −2 < α < 0, then from w we get a solution z of (R)
represented as

z−1 = Cξ−(α+2)/α+3

{
1 +

∑
m+n>0

wmnξm(Cξ−(α+2)/α)n

}
(4.3)

in the neighborhood of ξ = 0. Here C and wmn are constants. Furthermore
from z we have a solution of x = x(t) of (E−) which is represented as (2.2)
if z > 0, and as (2.8) if z < 0.

Proof. From (4.2) we have

w = Cξ−(α+2)/α

{
1 +

∑
m+n>0

wmnξm(Cξ−(α+2)/α)n

}
,

since −(α + 2)/α > 0 from −2 < α < 0 and w devides the righthand side of
(4.2). Hence from w = η−3/2ζ and ζ = 1/z we get (4.3).

On the other hand, we have

y′ =
(

1
η

)′
= −2ξ−3ξ′. (4.4)

Therefore applying (T ) to (4.3), we obtain

Cξ−(α+2)/α

{
1 +

∑
m+n>0

wmnξm(Cξ−(α+2)/α)n

}
ξ′ = − 1

2t

and integrating both sides,
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−α

2
Cξ−2/α

{
1 +

∑
m+n>0

ŵmnξm(Cξ−(α+2)/α)n

}
= −1

2
log t + Γ (4.5)

where ŵmn and Γ are constants. Here suppose that

t → τ as ξ → 0.

Then we get

Γ =
1
2

log τ.

Hence determining ξ from (4.5), we have

ξ =
(

1
αC

log
t

τ

)−α/2[
1 +

∑
m+n>0

ξmn

(
1

αC
log

t

τ

)−(α/2)m

×
{

C

(
1

αC
log

t

τ

)(α+2)/2}n]
(4.6)

where ξmn are constants.
Recalling that (ω−, ω+) denotes the domain of the solution x = x(t) of

(E−), we get

τ = ω+ if z > 0, τ = ω− if z < 0.

Indeed, if z > 0 then from (T ) we have y′ > 0 and from (4.4), ξ′ < 0.
Therefore as ξ ↓ 0, y tends to the right end of its domain which is (ω−, ω+)
from (T ). If z < 0, then the similar discussion follows.

Consequently expanding log t/τ as

log
t

ω−
=

t− ω−
ω−

− 1
2

(
t− ω−

ω−

)2

+ · · · ,

log
t

ω+
= −ω+ − t

ω+
− 1

2

(
ω+ − t

ω+

)2

− · · · ,

in (4.6), we get (2.2) if z > 0, and (2.8) if z < 0. Now the proof is complete.
¤
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Lemma 4.5 If α = −2, then from w we have a solution z of (R) repre-
sented as

z−1 = ±
√

2
4

ξ3(C − log ξ)−1/2

×
{

1 +
∑

1≤2j+k<2(N+1)

wjkξj(C − log ξ)−k/2 + Ω
}

(4.7)

in the neighborhood of ξ = 0. Here C and wjk are constants, N ∈ N , and
Ω is a function with

|Ω| ≤ K| log ξ|−N

where K is a constant. Moreover from z we get a solution x = x(t) of (E−)
which is represented as (2.3), if z > 0, and as (2.9), if z < 0.

Proof. If α = −2, then −(α+2)/α vanishes. So we apply the theory of [3]
to (4.2) and have

w = ±
√

2
4

(C − log ξ)−1/2

×
{

1 +
∑

1≤2j+k<2(N+1)

wjkξj(C − log ξ)−k/2 + Ω
}

in the neighborhood of ξ = 0. Therefore we get (4.7).
Next applying (T ) to (4.7) and discussing as in Section 2 of [18] (or

Section 5 of [21]), we have (2.3) and (2.9). As in the proof of Lemma 4.4 we
conclude whether we obtain (2.3) or (2.9). Now the proof is complete. ¤

In the case −2 ≤ α < 0 we got the solutions of (E−) from a solution w

of (4.2). However in the case α < −2 we conclude the following:

Lemma 4.6 If α < −2, then there is no solution of (E−) obtained from
w.

Proof. Since −(α + 2)/α < 0 in this case, we get w ≡ 0 from Lemma 2.5
of [16]. This completes the proof. ¤

Finally suppose α < −2 and γ = ±ρ. Then we have the following:
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Lemma 4.7 We get a solution z of (R) represented as

z−1 = ξ3

[
γ +

∑
m+n>0

umnξm{ξ2(α+2)/α(h log ξ + C)}n

]
(4.8)

in the neighborhood of ξ = 0. Here umn, h, and C are constants and h = 0
if α 6= −4. Furthermore from (4.8) we have a solution of (E−) which is
represented as (2.4) and (2.5), if γ = ρ, and as (2.10) and (2.11), if γ = −ρ.

Proof. Putting u = w − γ, we get

z−1 = ξ3(γ + u).

This is similar to the transformation used in Section 3 of [11]. Hence it
suffices to follow the discussion of this. Since in the neighborhood of ξ = 0
we have z > 0 and z < 0 respectively from γ = ρ and γ = −ρ. Therefore as
in the proof of Lemma 4.4 we again conclude whether we get (2.4), (2.5) or
(2.10), (2.11). Now the proof is complete. ¤

5. Proofs of our theorems

Recall the conclusions obtained in Sections 3 and 4. Then if a solution
z = z(y) of (R) is continuable to y = 0, z = z(y) is given only as (3.3) and
(3.5). (3.3) (namely z = z1(y)) exists uniquely. It follows from Lemma 4.1
that z(y) is bounded as y → c (0 < c < ∞). If z(y) can be continued to
y = ∞, then z(y) is given only as (4.3), (4.7) and (4.8). From these we get

z(y) → ±∞ as y →∞.

Furthermore on the y axis we have

dz

ds
= −α2y3 < 0

from (S). Therefore an orbit of (S) passes the y axis at most once. Now
notice that a solution of (R) is an orbit of (S). Then the phase portrait of
(S) is as in Figure below. Here the direction of the orbits of (S) are judged
from the sign of dy/ds in (S).

Now we consider the case 0 < T < ∞ in (I).
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Proof of Theorem 1. From (T ) we get

z = −αy

(
1− tx′

x

)
(5.1)

and putting t = T in (5.1),

z(y0) = z0 (5.2)

where

y0 = T−αAα, z0 = −αy0

(
1− TB

A

)
.

Therefore from the solution of (E−) and (I) we have a solution of (R)
satisfying the initial condition (5.2). Conversely from the solution (R) and
(5.2) we get the solution of (E−) and (I).

Here fix T and A in (I). Then y0 is fixed and z0 is a decreasing function
of B. Let a point (y0, z0) be an intersection of a line y = y0 and an orbit
z = z1(y). Then we suppose that B attains the value B∗. Moreover if we
define y, z from applying (T ) to a solution x = x(t) of (E−) and (I), then
(y, z) lies on the orbit z = z1(y) and from Lemma 4.2 we get

y → 0 as t → ω−, y →∞ as t → ω+ (5.3)

where (ω−, ω+) denotes the domain of x(t) also here. In fact from z1(y) =
ty′ > 0, y is an increasing function of t. On the other hand, from Lemma
3.2 we have (2.1) and ω− = 0. In addition from Lemmas 4.4 through 4.7,
we get (2.2) through (2.5), and ω+ < ∞. These complete the proof. ¤

Proof of Theorem 2. Since z0 is decreasing in B, if B < B∗ then (y0, z0)
lies above z = z1(y). Moreover we conclude (5.3) as above. Therefore from
Figure below and Lemma 3.3 we get (2.6), (2.7), and ω− = 0. The rest
of the proof is the same as in the proof of Theorem 1. Thus the proof is
complete. ¤

Proof of Theorem 3. If B > B∗, then (y0, z0) lies under z = z1(y). There-
fore if we define y, z as in the proof of Theorem 1, then (y, z) lies also under
z = z1(y) and from Lemma 4.2, Figure, and the sign of z we have
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y →∞ as t → ω±.

Here z is not a single-valued function of y. Hence Lemmas 4.4 through 4.7
completes the proof. ¤

Theorems 4, 5, and 6 are got from the solutions (2.6) and (2.7), since
from Theorems 1, 2, and 3 only these are solutions of (E−) continuable to
t = 0 and satisfying x(0) > 0. In order to start the proofs of Theorems 4, 5,
and 6, put T = 0 in (I).

Proof of Theorem 4. From −1/α /∈ N , we require only (2.6). Substituting
(2.6) into (E−), we get

K
∑

m+n>0

(−αm + n)(−αm + n− 1)xmnt−αm+n−2

= −K1+αt−α−2

{
1 +

∑
m+n>0

Pmn(xMN )t−αm+n

}

where Pmn(xMN ) are polynomials of xMN with M ≤ m and N ≤ n. There-
fore we have

∑
m+n>0

(−αm + n)(−αm + n− 1)xmnt−αm+n

= −Kαt−α −
∑

m+n>1

Qmn(xMN )t−αm+n

where Qmn = KαPm−1n and hence Qmn are polynomials of xMN with
M ≤ m− 1 and N ≤ n. From this we conclude that

x10 = − Kα

α(α + 1)

and x01 is an arbitrary constant. Moreover we get

x0n = 0 (n ≥ 2),

xmn = − Qmn(xMN )
(αm− n)(αm− n + 1)

(m ≥ 1, n ≥ 1).
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Therefore if we fix x01, then xmn are uniquely determined. Furthermore
applying (I) to (2.6) we have (2.12) and

x′(t) ∼ Aα+1

α + 1
t−α−1 as t → 0.

Hence we get

x′(t) →∞ as t → 0

which implies nonexistence of the solution, if B 6= ∞. This completes the
proof. ¤

Proof of Theorem 5. In the same way, we have (2.12). Therefore from
α < −1 we get

x′(t) ∼ Ax01 as t → 0 (5.4)

and from (I),

x01 =
B

A
.

Thus we get (2.13). Moreover if B = ±∞, then there exists no solution from
(5.4). Now the proof is complete. ¤

Proof of Theorem 6. Here we require only (2.7), since −1/α ∈ N . Substi-
tuting this into (E−), we have

∞∑

k=1

t−αk{p̈k(s)− (2αk + 1)ṗk(s) + (αk + 1)αkpk(s)}

= −Kαt−α −
∞∑

k=2

t−αkKαPk−1(pK)

where s = log t, ˙ = d/ds, and Pk are polynomials of pK with K ≤ k.
Therefore if k = 1, then we get

p̈1(s)− (2α + 1)ṗ1(s) + (α + 1)αp1(s) = −Kα
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and from deg p1 ≤ 1,

p1(s) = − Kα

(α + 1)α
.

Moreover if k ≥ 2, then we have

p̈k(s)− (2αk + 1)ṗk(s) + (αk + 1)αkpk(s) = −KαPk−1(pK)

and solving this,

pk(s) = Kα

{
tαk

∫
Pk−1(pK)s−αkds− tαk+1

∫
Pk−1(pK)s−(αk+1)ds

}
,

since pk(s) are polynomials of s. Thus pk are uniquely determined. Moreover
applying (I) to (2.7), we get (2.14). From (2.14) we have

x′(t) ∼ Aα+1

α + 1
t−α−1 →∞ as t → 0.

Hence if B 6= ∞, then there exists no solution. This completes the proof. ¤

Finally notice that the proof of Theorem 7 has been already given in
Section 2.

Figure. The phase portrait of (S).
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6. On positive solutions of (E0)

In this section, let us consider (E0), namely

x′′ = −t−2x1+α

under the initial condition (I). First, suppose 0 < T < ∞ and fix T and
A. Then if x = x(t) is a solution of an initial value problem (E0) and (I),
and ω± are finite positive numbers with ω− < ω+ again, we conclude the
following:

Theorem 8 There exists a number B∗ such that if B = B∗, then x(t) is
defined for (ω−,∞). Moreover x(t) is represented as

x(t) ∼
( −1

α log t

)1/α{
1 +

∑
m+n>0

xmn

(
log(−α log t)

α log t

)m( −1
α log t

)n}
(6.1)

as t →∞. Here xmn are constants. In the neighborhood of t = ω−, x(t) is
represented as follows:

x(t) = K(t− ω−)
{

1 +
∑

j+k+l>0

xjkl(t− ω−)j

× (t− ω−)−(α/2)k(t− ω−)((α+2)/2)l

}
(6.2)

where K and xjkl are constants, if −2 < α < 0.

x(t) = U1−G(U,C)eCG(U,C) (6.3)

where

U ∼
√

2 log
t

ω−
as t → ω−

and G(U,C) is defined in Theorem 1, if α = −2.
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x(t) =
{
− 2(α + 2)ω2

−
α2

}1/α

(t− ω−)−2/α

×
{

1 +
∑

m+n>0

xmn(t− ω−)m(t− ω−)(2(α+2)/α)n

}
(6.4)

where xmn are constants, if α < −4, −4 < α < −2.

x(t) =

√
2

ω−
(t− ω−)1/2

{
1 +

∞∑

k=1

(t− ω−)kpk(log(t− ω−))
}

(6.5)

where pk are polynomials with deg pk ≤ k, if α = −4.

Proof. Replace x, t with w, τ respectively in (E−) and put

w =
x

t
, τ =

1
t
.

Then it follows from [9] that we get (E0) from (E−). Moreover if the initial
condition of (E−) is given as

w(T̃ ) = Ã, w′(T̃ ) = B̃,

then in the initial condition (I) of (E0) we have

T =
1
T̃

, A =
Ã

T̃
, B = Ã− B̃T̃

since

x′(t) = w(τ)− τw′(τ).

Therefore letting B∗ of our theorem be Ã − B∗T̃ where B∗ appeared in
Theorem 1, we complete the proof from Theorem 1. ¤

Theorem 9 If B < B∗, then x(t) is defined for ω− < t < ω+. Moreover in
the neighborhood of t = ω−, we get (6.2) through (6.5). In the neighborhood
of t = ω+, x(t) is represented as follows:
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x(t) = K(ω+ − t)
{

1 +
∑

j+k+l>0

xjkl(ω+ − t)j

× (ω+ − t)−(α/2)k(ω+ − t)((α+2)/2)l

}
(6.6)

where K and xjkl are constants, if −2 < α < 0.

x(t) = U1−G(U,C)eCG(U,C) (6.7)

where

U ∼ −
√

2 log
t

ω+
as t → ω+

and G(U,C) is defined in Theorem 1, if α = −2.

x(t) =
{
− 2(α + 2)ω2

+

α2

}1/α

(ω+ − t)−2/α

×
{

1 +
∑

m+n>0

xmn(ω+ − t)m(ω+ − t)(2(α+2)/α)n

}
(6.8)

where xmn are constants, if α < −4, −4 < α < −2.

x(t) =

√
2

ω+
(ω+ − t)1/2

{
1 +

∞∑

k=1

(ω+ − t)kpk(log(ω+ − t))
}

(6.9)

where pk are polynomials with deg pk ≤ k, if α = −4.

Proof. Change the variables as in the proof of Theorem 8. Then noticing
that B is a decreasing function of B̃ for fixed T̃ , Ã, we conclude our theorem
from Theorem 3. ¤

Theorem 10 If B > B∗, then x(t) is defined for (ω−,∞). Furthermore in
the neighborhood of t = ω−, we get (6.2) through (6.5). In the neighborhood
of t = ∞, x(t) is represented as

x(t) = Kt

(
1 +

∑
m+n>0

xmntαmt−n

)
(6.10)
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if −1/α /∈ N , and as

x(t) = Kt

{
1 +

∞∑

k=1

tαkpk(log t)
}

(6.11)

if −1/α ∈ N , where K and xmn are constants and pk are polynomials with
deg pk ≤ [−αk].

Proof. As in the proof of Theorem 9, we obtain our theorem directly from
Theorem 2. ¤
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