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On the Stokes operator in general unbounded domains
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Abstract. It is known that the Stokes operator is not well-defined in Lq-spaces for

certain unbounded smooth domains unless q = 2. In this paper, we generalize a new

approach to the Stokes resolvent problem and to maximal regularity in general un-

bounded smooth domains from the three-dimensional case, see [7], to the n-dimensional

one, n ≥ 2, replacing the space Lq, 1 < q < ∞, by L̃q where L̃q = Lq ∩ L2 for q ≥ 2

and L̃q = Lq + L2 for 1 < q < 2. In particular, we show that the Stokes oper-

ator is well-defined in L̃q for every unbounded domain of uniform C1,1-type in Rn,

n ≥ 2, satisfies the classical resolvent estimate, generates an analytic semigroup and

has maximal regularity.

Key words: General unbounded domains, domains of uniform C1,1-type, Stokes oper-

ator, Stokes resolvent, Stokes semigroup, maximal regularity

1. Introduction

Let Ω ⊆ Rn, n ≥ 2, denote a general unbounded domain with uniform
C1,1-boundary ∂Ω 6= ∅, see Definition 1.1 below. As is well-known, the
analysis of the instationary Navier-Stokes equations requires Lq-estimates,
q 6= 2, to prove the strong energy estimate, the localized energy estimate
involving also the pressure function and Leray’s Structure Theorem for weak
solutions. Unfortunately, the standard approach to the Stokes equations in
Lq-spaces, 1 < q < ∞, cannot be extended to general unbounded domains
unless q = 2. On the one hand, the Helmholtz decomposition fails to exist
for certain unbounded smooth domains on Lq, q 6= 2, see [4], [14]. On the
other hand, in L2 the Helmholtz projection and the Stokes operator are
well-defined for every domain, the latter is self-adjoint, generates a bounded
analytic semigroup and has maximal regularity.

In order to work locally in Lq-spaces, but globally, to be more pre-
cise, near space infinity, in L2, the authors introduced in [7] in the three-
dimensional case the function space

L̃q(Ω) =

{
Lq(Ω) ∩ L2(Ω), 2 ≤ q < ∞
Lq(Ω) + L2(Ω), 1 < q < 2
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to define the Helmholtz decomposition and the space

L̃q
σ(Ω) =

{
Lq

σ(Ω) ∩ L2
σ(Ω), 2 ≤ q < ∞

Lq
σ(Ω) + L2

σ(Ω), 1 < q < 2

of solenoidal vector fields in L̃q(Ω) to define and to analyze the Stokes op-
erator. It was proved that for every unbounded domain Ω ⊆ R3 of uniform
C2-type the Stokes operator in L̃q

σ(Ω) satisfies the usual resolvent estimate,
generates an analytic semigroup and has maximal regularity. Moreover, for
every dimension n ≥ 2, the Helmholtz decomposition of L̃q(Ω) exists for
every unbounded domain Ω ⊆ Rn of uniform C1-type, see [8].

To describe this result, we introduce the space of gradients

G̃q(Ω) =

{
Gq(Ω) ∩G2(Ω), 2 ≤ q < ∞
Gq(Ω) + G2(Ω), 1 < q < 2

,

where Gq(Ω) = {∇p ∈ Lq(Ω) : p ∈ Lq
loc(Ω)}, and recall the notion of

domains of uniform Ck- and Ck,1-type.

Definition 1.1 A domain Ω ⊆ Rn, n ≥ 2, is called a uniform Ck-domain
of type (α, β,K) where k ∈ N, α > 0, β > 0, K > 0, if for each x0 ∈ ∂Ω
there exists a Cartesian coordinate system with origin at x0 and coordinates
y = (y′, yn), y′ = (y1, . . . , yn−1), and a Ck-function h(y′), |y′| ≤ α, with
Ck-norm ‖h‖Ck ≤ K such that the neighborhood

Uα,β,h(x0) := {y = (y′, yn) ∈ Rn : |yn − h(y′)| < β, |y′| < α}

of x0 implies Uα,β,h(x0) ∩ ∂Ω = {(y′, h(y′)) : |y′| < α} and

U−
α,β,h(x0) := {(y′, yn) : h(y′)− β < yn < h(y′), |y′| < α} = Uα,β,h(x0) ∩Ω.

By analogy, a domain Ω ⊆ Rn, n ≥ 2, is a uniform Ck,1-domain of type
(α, β,K), k ∈ N∪{0}, if the functions h mentioned above may be chosen in
Ck,1 such that the Ck,1-norm satisfies ‖h‖Ck,1 ≤ K.

Theorem 1.2 ([8]) Let Ω ⊆ Rn, n ≥ 2, be a uniform C1−domain of
type (α, β,K) and let q ∈ (1,∞). Then each u ∈ L̃q(Ω) has a unique
decomposition
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u = u0 +∇p, u0 ∈ L̃q
σ(Ω), ∇p ∈ G̃q(Ω),

satisfying the estimate

‖u0‖L̃q + ‖∇p‖L̃q ≤ c‖u‖L̃q , (1.1)

where c = c(α, β,K, q) > 0. In particular, the Helmholtz projection P̃q

defined by P̃qu = u0 is a bounded linear projection on L̃q(Ω) with range
L̃q

σ(Ω) and kernel G̃q(Ω). Moreover, L̃q
σ(Ω) is the closure in L̃q(Ω) of the

space C∞0,σ(Ω) = {u ∈ C∞0 (Ω) : div u = 0}, and the duality relations

(
L̃q

σ(Ω)
)′ = L̃q′

σ (Ω),
(
P̃q

)′ = P̃q′ ,

where q′ = q
q−1 , hold.

Using the Helmholtz projection P̃q, 1 < q < ∞, we define the Stokes
operator Ãq as the linear operator with domain

D(Ãq) =

{
Dq(Ω) ∩D2(Ω), 2 ≤ q < ∞
Dq(Ω) + D2(Ω), 1 < q < 2

,

where Dq(Ω) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lq

σ(Ω), by setting

Ãqu = −P̃q∆u, u ∈ D(Ãq).

By analogy, we define the Sobolev space W̃ 2,q(Ω) with norm

‖u‖W̃ 2,q = ‖u‖L̃q + ‖∇u‖L̃q + ‖∇2u‖L̃q ,

see also (2.3) below. Let I be the identity and Sε = {0 6= λ ∈ C; | arg λ| <
π
2 + ε}, 0 < ε < π

2 .
Then our first main result on the Stokes operator reads as follows:

Theorem 1.3 Let Ω ⊆ Rn, n ≥ 2, be a uniform C1,1-domain of type
(α, β,K), and let 1 < q < ∞, δ > 0, 0 < ε < π

2 .
(i) The operator

Ãq = −P̃q ∆ : D(Ãq) → L̃q
σ(Ω), D(Ãq) ⊂ L̃q

σ(Ω),
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is a densely defined closed operator.
(ii) For all λ ∈ Sε, its resolvent (λI + Ãq)−1 : L̃q

σ(Ω) → L̃q
σ(Ω) is

well-defined. Moreover, for every f ∈ L̃q
σ(Ω) the solution u ∈ L̃q

σ(Ω) of the
resolvent problem (λI + Ãq)u = f satisfies the estimate

‖λu‖L̃q
σ

+ ‖∇2u‖L̃q ≤ C‖f‖L̃q
σ
, |λ| ≥ δ, (1.2)

where C = C(q, ε, δ, α, β, K) > 0.
(iii) Given f ∈ L̃q(Ω)n, λ ∈ Sε, the Stokes resolvent equation

λu−∆u +∇p = f, div u = 0 in Ω, u = 0 on ∂Ω

has a unique solution (u,∇p) ∈ D(Ãq) × G̃q(Ω) defined by u = (λI +
Ãq)−1P̃qf and ∇p = (I − P̃q)(f + ∆u) and satisfying

‖λu‖L̃q + ‖∇2u‖L̃q + ‖∇p‖L̃q ≤ C‖f‖L̃q , |λ| ≥ δ, (1.3)

with a constant C = C(q, ε, δ, α, β,K) > 0.
(iv) The Stokes operator Ãq satisfies the duality relation (Ãq)′ = Ãq′ , in

particular, 〈Ãqu, v〉 = 〈u, Ãq′v〉 for all u ∈ D(Ãq), v ∈ D(Ãq′) and generates
an analytic semigroup e−tÃq , t ≥ 0, in L̃q

σ(Ω) with bound

‖e−tÃq f‖L̃q
σ
≤ Meδt ‖f‖L̃q

σ
, f ∈ L̃q

σ, t ≥ 0, (1.4)

where M = M(q, δ, α, β, K) > 0.

Note that the bound δ > 0 in Theorem 1.3 may be chosen arbitrarily
small, but that it is not clear whether δ = 0 is allowed for a general un-
bounded domain and whether the semigroup e−tÃq is uniformly bounded in
L̃q

σ(Ω) for 0 ≤ t < ∞.
Our second main result concerns the instationary Stokes system

ut −∆u +∇p = f, div u = 0 in Ω× (0, T )

u(0) = u0, u|∂Ω = 0. (1.5)

Theorem 1.4 Let Ω ⊆ Rn, n ≥ 2, be a uniform C1,1-domain of type
(α, β,K), and let 0 < T < ∞, 1 < q, s < ∞.

Then for each f ∈ Ls(0, T ; L̃q
σ(Ω)) and each u0 ∈ D(Ãq) there exists a
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unique solution u ∈ Ls(0, T ;D(Ãq)) with ut ∈ Ls(0, T ; L̃q
σ(Ω)) of the system

(1.5) satisfying the estimates

‖ut‖Ls(0,T ;L̃q
σ) + ‖u‖Ls(0,T ;L̃q

σ) + ‖Ãqu‖Ls(0,T ;L̃q
σ)

≤ C
(‖u0‖D(Ãq) + ‖f‖Ls(0,T ;L̃q

σ)

)
(1.6)

and

‖ut‖Ls(0,T ;L̃q
σ) + ‖u‖Ls(0,T ;W̃ 2,q) ≤ C

(‖u0‖D(Ãq) + ‖f‖Ls(0,T ;L̃q
σ)

)
(1.7)

with C = C(q, s, T, α, β, K) > 0.

Remark 1.5 (i) The assumption u0 ∈ D(Ãq) in Theorem 1.4 is used for
simplicity and is not optimal. Actually, it may be replaced by the weaker
properties u0 ∈ L̃q

σ(Ω) and
∫ T

0
‖Ãqe

−tÃqu0‖s
L̃q

σ
dt < ∞. Then the term

‖u0‖D(Ãq) in (1.6), (1.7) can be substituted by the weaker norm

( ∫ T

0

∥∥Ãqe
−tÃqu0

∥∥s

L̃q
σ

dt

) 1
s

, 1 < q < ∞. (1.8)

(ii) Let f ∈ Ls(0, T ; L̃q
σ(Ω)) in Theorem 1.4 be replaced by f ∈

Ls(0, T ; L̃q(Ω)). Then u ∈ Ls(0, T ;D(Ãq)), defined by ut + Ãqu = P̃qf ,
u(0) = u0, and ∇p, defined by ∇p(t) = (I − P̃q)

(
f + ∆u

)
(t), is a unique

solution pair of the system

ut −∆u +∇p = f, u(0) = u0,

satisfying

‖ut‖Ls(0,T ;L̃q
σ) + ‖u‖Ls(0,T ;W̃ 2,q) + ‖∇p‖Ls(0,T ;L̃q)

≤ C
(‖u0‖D(Ãq) + ‖f‖Ls(0,T ;L̃q)

)
(1.9)

with C = C(q, s, T, α, β, K) > 0.
Using (2.1) below we see that in the case 1 < q < 2 the solution pair

u,∇p possesses a decomposition u = u(1) + u(2), ∇p = ∇p(1) +∇p(2) such
that
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u(1) ∈ Ls(0, T ;W 2,2(Ω)), u
(1)
t ∈ Ls(0, T ;L2

σ(Ω)),

u(2) ∈ Ls(0, T ;W 2,q(Ω)), u
(2)
t ∈ Ls(0, T ;Lq

σ(Ω)), (1.10)

∇p(1) ∈ Ls(0, T ;L2(Ω)), ∇p(2) ∈ Ls(0, T ;Lq(Ω)),

and

‖ut‖Ls(0,T ;L̃q
σ) + ‖u‖Ls(0,T ;L̃q

σ) + ‖∇2u‖Ls(0,T ;L̃q) + ‖∇p‖Ls(0,T ;L̃q)

= ‖u(1)
t ‖Ls,2 + ‖u(1)‖Ls,2 + ‖∇2u(1)‖Ls,2 + ‖∇p(1)‖Ls,2

+ ‖u(2)
t ‖Ls,q + ‖u(2)‖Ls,q + ‖∇2u(2)‖Ls,q + ‖∇p(2)‖Ls,q

where Ls,2 = Ls(0, T ;L2(Ω)), Ls,q = Ls(0, T ;Lq(Ω)).
(iii) Note that the constant C in (1.6), (1.7), (1.9) could depend on the

given interval (0, T ]. We do not know whether C can be chosen indepen-
dently of T as in the usual Lq-theory in bounded and exterior domains, see
[12].

2. Preliminaries

Let us recall some properties of sum and intersection spaces known from
interpolation theory, cf. [3], [18].

Consider two (complex) Banach spaces X1, X2 with norms ‖·‖X1 , ‖·‖X2 ,
respectively, and assume that both X1 and X2 are subspaces of a topological
vector space V with continuous embeddings. Further, we assume that X1 ∩
X2 is a dense subspace of both X1 and X2. Then the intersection space
X1 ∩X2 is a Banach space with norm

‖u‖X1∩X2 = max
(‖u‖X1 , ‖u‖X2

)
.

The sum space

X1 + X2 := {u1 + u2;u1 ∈ X1, u2 ∈ X2} ⊆ V

is a well-defined Banach space with the norm

‖u‖X1+X2 := inf
{‖u1‖X1 + ‖u2‖X2 ;u = u1 + u2, u1 ∈ X1, u2 ∈ X2

}
.
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If X1 and X2 are reflexive Banach spaces, an argument using weakly
convergent subsequences yields the following property:

u ∈ X1 + X2 ⇒ ∃u1 ∈ X1, u2 ∈ X2 : ‖u‖X1+X2 = ‖u1‖X1 + ‖u2‖X2 .

(2.1)

Concerning dual spaces we have

(X1 ∩X2)′ = X ′
1 + X ′

2

with the natural pairing 〈u, f1 + f2〉 = 〈u, f1〉+ 〈u, f2〉 for u ∈ X1 ∩X2 and
f = f1 + f2 ∈ X ′

1 + X ′
2, and

(X1 + X2)′ = X ′
1 ∩X ′

2

with the natural pairing 〈u, f〉 = 〈u1, f〉 + 〈u2, f〉 for all u = u1 + u2 ∈
X1 + X2, f ∈ X ′

1 ∩X ′
2. Thus it holds

‖u‖X1+X2 = sup
{ |〈u1, f〉+ 〈u2, f〉|

‖f‖X′
1∩X′

2

; 0 6= f ∈ X ′
1 ∩X ′

2

}

and

‖f‖X′
1∩X′

2
= sup

{ |〈u1, f〉+ 〈u2, f〉|
‖u‖X1+X2

; 0 6= u = u1 + u2 ∈ X1 + X2

}
;

see [3], [18].
Consider closed subspaces L1 ⊆ X1, L2 ⊆ X2 with norms ‖·‖L1 = ‖·‖X1 ,

‖ · ‖L2 = ‖ · ‖X2 and assume that L1 ∩L2 is dense in both L1 and L2. Then
‖u‖L1∩L2 = ‖u‖X1∩X2 , u ∈ L1 ∩ L2, and an elementary argument using the
Hahn-Banach theorem shows that also

‖u‖L1+L2 = ‖u‖X1+X2 , u ∈ L1 + L2. (2.2)

In particular, we need the following special case. Let B1 : D(B1) → X1,
B2 : D(B2) → X2 be closed linear operators with dense domains D(B1) ⊆
X1, D(B2) ⊆ X2 equipped with graph norms

‖u‖D(B1) = ‖u‖X1 + ‖B1u‖X1 , ‖u‖D(B2) = ‖u‖X2 + ‖B2u‖X2 ,
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respectively. Obviously each functional F ∈ D(Bi)′, i = 1, 2, is given by
some pair f, g ∈ X ′

i in the form 〈u, F 〉 = 〈u, f〉 + 〈Biu, g〉. We assume
that the intersection D(B1) ∩ D(B2) is dense in both D(B1) and D(B2)
in the corresponding graph norms. Then (2.2) with Li = {(u,Biu);u ∈
D(Bi)} ⊆ Xi ×Xi, i = 1, 2, and the equality of norms ‖ · ‖(X1×X1)+(X2×X2)

and ‖·‖(X1+X2)×(X1+X2) on (X1×X1)+(X2×X2) yield the following result:
For each u ∈ D(B1) +D(B2) with decomposition u = u1 + u2, u1 ∈ D(B1),
u2 ∈ D(B2), to be more precise, for an element (u1, B1u1) + (u2, B2u2) ∈
L1 × L2 ⊂ (X1 ×X1) + (X2 ×X2),

‖u‖D(B1)+D(B2) = ‖u1 + u2‖X1+X2 + ‖B1u1 + B2u2‖X1+X2 . (2.3)

For instationary problems we need, given a Banach space X, the usual
Banach space Ls(0, T ;X), 0 < T ≤ ∞, of measurable X–valued (classes of)
functions u with norm

‖u‖Ls(0,T ;X) =
( ∫ T

0

‖u(t)‖s
X dt

) 1
s

, 1 ≤ s < ∞.

If X is reflexive and 1 < s < ∞, then

Ls(0, T ;X)′ = Ls′(0, T ;X ′), s′ =
s

s− 1
,

with the natural pairing 〈u, f〉T =
∫ T

0
〈u(t), f(t)〉 dt, where 〈·, ·〉 denotes the

pairing between X and its dual X ′.
Let X = Lq(Ω), 1 < q < ∞. Then we use the notation

Ls,q := Ls(Lq(Ω)) = Ls(0, T ;Lq(Ω)), ‖u‖Ls,q =
( ∫ T

0

‖u‖s
q dt

)1/s

.

The pairing of Ls(0, T ;Lq(Ω)) with its dual Ls′(0, T ;Lq′(Ω)) is given by
〈u, f〉T = 〈u, f〉Ω,T =

∫ T

0

( ∫
Ω

u · f dx
)
dt. Moreover, we see that

Ls,q ∩ Ls,2 = Ls(0, T ;Lq ∩ L2) and Ls,q + Ls,2 = Ls(0, T ;Lq + L2)

since



On the Stokes operator in general unbounded domains 119

(Ls,q + Ls,2)′ = (Ls,q)′ ∩ (Ls,2)′ = Ls′(0, T ;Lq′ ∩ L2) = Ls(0, T ;Lq + L2)′;

the pairing between Ls,q+Ls,2 and (Ls,q)′∩(Ls,2)′ is given by 〈u1+u2, f〉T =
〈u1, f〉T + 〈u2, f〉T for u1 ∈ Ls,q, u2 ∈ Ls,2, f ∈ (Ls,q)′ ∩ (Ls,2)′. Further-
more, we can choose the decomposition u = u1 + u2 ∈ Ls(0, T ;Lq + L2) in
such a way that

‖u‖Ls,q+Ls,2 = ‖u1‖Ls,q + ‖u2‖Ls,2 .

We conclude that

‖u1 + u2‖Ls,q+Ls,2 = sup
{ |〈u1 + u2, f〉T ‖
‖f‖(Ls,q)′∩(Ls,2)′

; 0 6= f ∈ Ls′(0, T ;Lq′ ∩ L2)
}

.

Let us introduce the short notation

L̃s,q =

{
Ls,q ∩ Ls,2, 2 ≤ q < ∞
Ls,q + Ls,2, 1 < q < 2

,

and note the duality relation
(
L̃s,q

)′ = L̃s′,q′ .
Concerning domains of uniform C1,1-type (α, β,K), see Definition 1.1,

we have to introduce further notations. Obviously, the axes ei, i = 1, . . . , n,
of the new coordinate system (y′, yn) may be chosen in such a way that
e1, . . . , en−1 are tangential to ∂Ω at x0. Hence at y′ = 0 the function
h ∈ C1,1 satisfies h(y′) = 0 and ∇′h(y′) = (∂h/∂y1, . . . , ∂h/∂yn−1)(y′) = 0.
By a continuity argument, for any given constant M0 > 0, we may choose
α > 0 sufficiently small such that ‖h‖C1 ≤ M0 is satisfied.

It is easily shown that there exists a covering of Ω by open balls Bj =
Br(xj) of fixed radius r > 0 with centers xj ∈ Ω, such that with suitable
functions hj ∈ C1,1 of type (α, β,K)

Bj ⊂ Uα,β,hj (xj) if xj ∈ ∂Ω, Bj ⊂ Ω if xj ∈ Ω. (2.4)

Here j runs from 1 to a finite number N = N(Ω) ∈ N if Ω is bounded,
and j ∈ N if Ω is unbounded. Moreover, as an important consequence,
the covering {Bj} of Ω may be constructed in such a way that not more
than a fixed number N0 = N0(α, β,K) ∈ N of these balls have a nonempty
intersection:
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If 1 ≤ j1 < j2 < · · · < jN and N > N0, then
N⋂

k=1

Bjk
= ∅. (2.5)

Related to the covering {Bj}, there exists a partition of unity {ϕj}, ϕj ∈
C∞0 (Rn), such that

0 ≤ ϕj ≤ 1, suppϕj ⊂ Bj , and
N∑

j=1

ϕj = 1 or
∞∑

j=1

ϕj = 1 on Ω. (2.6)

The functions ϕj may be chosen so that |∇ϕj(x)|+|∇2ϕj(x)| ≤ C uniformly
in j and x ∈ Ω with C = C(α, β,K).

If Ω is unbounded, then Ω can be represented as the union of an in-
creasing sequence of bounded uniform C1,1-domains Ωk ⊂ Ω, k ∈ N,

Ω1 ⊂ · · · ⊂ Ωk ⊂ Ωk+1 ⊂ · · · , Ω =
∞⋃

k=1

Ωk, (2.7)

where each Ωk is of the same type (α′, β′,K ′), see [13, p. 652]. Without loss
of generality we assume that α = α′, β = β′, K = K ′.

Using the partition of unity {ϕj} we will perform the analysis of the
Stokes operator by starting from well-known results for certain bounded
and unbounded domains. For this reason, given h ∈ C1,1(Rn−1) satisfying
h(0) = 0, ∇′h(0) = 0 and with compact support contained in the (n − 1)-
dimensional ball of radius r, 0 < r = r(α, β,K) < α, and center 0, we
introduce the bounded domain

H = Hα,β,h;r

=
{
y = (y′, yn) ∈ Rn : h(y′)− β < yn < h(y′), |y′| < α

} ∩Br(0);

here we assume that Br(0) ⊂ {y ∈ Rn : |yn − h(y′)| < β, |y′| < α}.
On H we consider the classical Sobolev spaces W k,q(H) and W k,q

0 (H),
k ∈ N, the dual space W−1,q(H) =

(
W 1,q′

0 (H)
)′ and the space

Lq
0(H) =

{
u ∈ Lq(H) :

∫

H

u dx = 0
}
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of Lq-functions with vanishing mean on H.

Lemma 2.1 Let 1 < q < ∞ and H = Hα,β,h;r.

(i) There exists a bounded linear operator

R : Lq
0(H) → W 1,q

0 (H)

such that div ◦ R = I on Lq
0(H) and R

(
Lq

0(H) ∩ W 1,q
0 (H)

) ⊂ W 2,q
0 (H).

Moreover, there exists a constant C = C(α, β,K, q) > 0 such that

‖Rf‖W 1,q ≤ C‖f‖Lq for all f ∈ Lq
0(H)

‖Rf‖W 2,q ≤ C‖f‖W 1,q for all f ∈ Lq
0(H) ∩W 1,q

0 (H) .
(2.8)

(ii) There exists C = C(α, β,K, q) > 0 such that for every p ∈ Lq
0(H)

‖p‖q ≤ C‖∇p‖W−1,q = C sup
{ |〈p, div v〉|

‖∇v‖q′
: 0 6= v ∈ W 1,q′

0 (H)
}

. (2.9)

(iii) For given f ∈ Lq(H) let u ∈ Lq
σ(H) ∩ W 1,q

0 (H) ∩ W 2,q(H), p ∈
W 1,q(H) satisfy the Stokes resolvent equation λu−∆u+∇p = f with λ ∈ Sε,
0 < ε < π

2 . Moreover, assume that suppu∪ supp p ⊂ Br(0). Then there are
constants λ0 = λ0(q, α, β, K) > 0, C = C(q, ε, α, β, K) > 0 such that

‖λu‖Lq(H) + ‖u‖W 2,q(H) + ‖∇p‖Lq(H) ≤ C‖f‖Lq(H) (2.10)

if |λ| ≥ λ0.

Proof. (i) It is well-known that there exists a bounded linear operator
R : Lq

0(H) → W 1,q
0 (H) such that u = Rf solves the divergence problem

div u = f . Moreover, the estimate (2.8)1 holds with C = C(α, β,K, q) > 0,
see [10, III, Theorem 3.1]. The second part follows from [10, III, Theorem
3.2].

(ii) A duality argument and (i) yield (ii), see [8], [16, II.2.1].
(iii) We extend u, p by zero so that (u,∇p) may be considered as a

solution of the Stokes resolvent system in a bent half space; then we refer to
[6, Theorem 3.1, (i)]. ¤

The next lemma concerns the instationary Stokes systems
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ut −∆u +∇p = f, u(0) = u0 or − ut −∆u +∇p = f, u(T ) = u0,

(2.11)

in the domain H. To describe this crucial result we define the Stokes op-
erator as usual by Aq = −Pq∆ with domain D(Aq) = Lq

σ(H) ∩W 1,q
0 (H) ∩

W 2,q(H).

Lemma 2.2 Let 0 < T < ∞, u0 ∈ D(Aq) and f ∈ Lq(0, T ;Lq(H)) be
given. Assume that u ∈ Lq(0, T,D(Aq)), p ∈ Lq(0, T ;W 1,q(H)) solve one of
the systems in (2.11) and satisfy suppu0 ∪ suppu(t)∪ supp p(t) ⊆ Br(0) for
a.a. t ∈ [0, T ].

Then there is a constant C = C(q, α, β, K, T ) > 0 such that

‖ut‖Lq(0,T ;Lq(H)) + ‖u‖Lq(0,T ;W 2,q(H)) + ‖∇p‖Lq(0,T ;Lq(H))

≤ C
(‖u0‖W 2,q(H) + ‖f‖Lq(0,T ;Lq(H))

)
. (2.12)

Proof. In the case u(0) = u0 this estimate follows from [17, Theorem 4.1,
(4.2) and (4.21’)], see also [15]. A careful inspection of the proofs shows that
the constant C in (2.12) depends only on the type (α, β,K) and on q, T ;
actually, it suffices to assume the boundary regularity C1,1 since only the
boundedness of second order derivatives of functions locally describing the
boundary is used.

The second case −ut − ∆u + ∇p = f , u(T ) = u0, can be reduced
to the first one by the transformation ũ(t) = u(T − t), f̃(t) = f(T − t),
p̃(t) = p(T − t). ¤

We note that the assumption u0 ∈ D(Aq) is used for simplicity and can
be weakened as in Remark 1.5 (i). Since ut ∈ Lq(0, T ;Lq

σ), the conditions
u(0) = u0 or u(T ) = u0, resp., are well defined.

Next we collect several results on Sobolev embedding estimates and on
the Stokes operator Aq, 1 < q < ∞, on bounded C1,1-domains.

Lemma 2.3 Let Ω ⊆ Rn be a bounded C1,1-domain of type (α, β,K).
(i) Let 1 < q < ∞. Then for every M ∈ (0, 1) there exists some constant

C = C(q, M,α, β, K) > 0 such that

‖∇u‖Lq ≤ M‖∇2u‖Lq + C‖u‖Lq , u ∈ W 2,q(Ω). (2.13)
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(ii) Let 2 ≤ q < ∞. Then for every M ∈ (0, 1) there exists a constant
C = C(q, M,α, β, K) > 0 such that

‖u‖Lq ≤ M‖∇2u‖Lq + C
(‖∇2u‖L2 + ‖u‖L2

)
, u ∈ W 2,q(Ω). (2.14)

Proof. The proofs of (i), (ii) are easily reduced to the case u ∈ W 2,q(Rn),
using an extension operator on Sobolev spaces the norm of which is shown
to depend only on q and (α, β,K). In (ii) we choose an r ∈ [2, q) such that
‖u‖Lq ≤ M‖∇2u‖Lr + C‖u‖Lr and use the interpolation inequality

‖v‖Lr ≤ γ

(
1
ε

)1/γ

‖v‖L2 + (1− γ)ε1/(1−γ)‖v‖Lq , (2.15)

with γ ∈ (0, 1), 1
r = γ

2 + 1−γ
q , for v = u and v = ∇2u for suitable ε > 0 to

get (2.14). For basic details see [1, IV, Theorem 4.28], [9] and [16, II.1.3]. ¤

Lemma 2.4 Let 1 < q < ∞ and let Ω ⊆ Rn be a bounded C1,1-domain.
(i) The Stokes operator Aq = −Pq∆ : D(Aq) → Lq

σ(Ω), where D(Aq) =
Lq

σ(Ω) ∩W 1,q
0 (Ω) ∩W 2,q(Ω), satisfies the resolvent estimate

‖λu‖Lq + ‖Aqu‖Lq ≤ C‖f‖Lq , C = C(ε, q, Ω) > 0, (2.16)

where u ∈ D(Aq), λu + Aqu = f ∈ Lq
σ(Ω), λ ∈ Sε, 0 < ε < π

2 , and it holds
the estimate

‖u‖W 2,q ≤ C‖Aqu‖Lq , C = C(q, Ω).

Moreover, 〈Aqu, v〉 = 〈u,Aq′v〉 for all u ∈ D(Aq), v ∈ D(Aq′) and A′q = Aq′ .
(ii) If q = 2, then the resolvent problem λu + A2u = f ∈ L2

σ(Ω), λ ∈ Sε,
has a unique solution u ∈ D(A2) satisfying the estimate

‖λu‖L2 + ‖A2u‖L2 ≤ C‖f‖L2 (2.17)

with the constant C = 1 + 2/ cos ε independent of Ω. Moreover, A2 is self-

adjoint and 〈A2u, u〉 = ‖A
1
2
2 u‖2L2 = ‖∇u‖2L2 for all u ∈ D(A2).

Proof. For (i) see [6], [11], [17]. For (ii) – including even general unbounded
domains – we refer to [16]. ¤



124 R. Farwig, H. Kozono and H. Sohr

Finally we return to the instationary Stokes system for a bounded C1,1-
domain Ω ⊆ Rn, written in the form of the abstract evolution problem

ut + Aqu = f, u(0) = u0, (2.18)

with initial value u0 ∈ D(Aq) and f ∈ Ls(0, T ;Lq
σ(Ω)), 1 < q, s < ∞. In

view of the variation of constants formula we define the operators Js,q, J ′s,q

by

Js,qf(t) =
∫ t

0

e−(t−τ)Aqf(τ)dτ, J ′s,qf(t) =
∫ T

t

e−(τ−t)Aqf(τ)dτ. (2.19)

Lemma 2.5 Let Ω ⊆ Rn be a bounded C1,1-domain.
(i) Let 1 < q, s < ∞ and 0 < T < ∞. Then for every initial value

u0 ∈ D(Aq) and external force f ∈ Ls(0, T ;Lq
σ(Ω)) the nonstationary Stokes

system (2.18) has a unique solution u ∈ Ls(0, T ;D(Aq)) given by

u(t) = e−tAqu0 + Js,qf(t)

satisfying the estimate

‖ut‖Ls,q + ‖u‖Ls,q + ‖Aqu‖Ls,q ≤ C
(‖u0‖D(Aq) + ‖f‖Ls,q

)
(2.20)

with a constant C = C(q, s, T, Ω). Analogously, the nonstationary Stokes
system −ut + Aqu = f , u(T ) = u0, has a unique solution u ∈
Ls(0, T ;D(Aq)), namely, u(t) = e−(T−t)Aqu0 + (J ′s,qf)(t); this solution sat-
isfies (2.20) with the same constant C. Moreover, there holds the duality
relation (Js,q)′ = J ′s′,q′ .

(ii) In the case q = 2 the constant C = C(2, s, T, Ω) = C(s, T ) in (2.20)
does not depend on the domain Ω.

Proof. For (i) see [12], [17]. The assertions on J ′s,q follow from the trans-
formation ũ(t) = u(T − t), f̃(t) = f(T − t) and by duality arguments. For
(ii) – including even general unbounded domains – we refer to [16, IV.1.6].

¤

Note that in (2.16) and (2.20) it is not clear up to now how the constant
C will depend on the underlying bounded domain Ω except for q = 2.
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3. Proofs

After a preliminary result on the norm ‖u‖W 2,q and the graph norm
‖u‖D(Aq) = ‖u‖Lq + ‖Aqu‖Lq , u ∈ D(Aq), for bounded domains Ω ⊆ Rn we
turn to the proofs of Theorem 1.3, see Subsection 3.1, and of Theorem 1.4,
see Subsection 3.2. In both cases we consider first of all bounded domains
for q > 2, then for 1 < q < 2, and finally unbounded domains.

Lemma 3.1 Let Ω ⊆ Rn be a bounded C1,1-domain of type (α, β,K).
Then there exists a constant C = C(q, α, β, K) > 0 such that

C‖u‖W 2,q ≤ ‖u‖D(Aq), u ∈ D(Aq). (3.1)

Proof. We use the system of functions {hj}, 1 ≤ j ≤ N , parametrizing ∂Ω,
the covering of Ω by balls {Bj}, and the partition of unity {ϕj} as described
in Section 2. Let

Uj = U−
α,β,hj

(xj)∩Bj if xj ∈ ∂Ω and Uj = Bj if xj ∈ Ω, 1 ≤ j ≤ N. (3.2)

Given f ∈ Lq
σ(Ω) and u ∈ D(Aq) satisfying Aqu = f , i.e. −∆u+∇p = f ,

div u = 0 in Ω, let wj = R
(
(∇ϕj) · u

) ∈ W 2,q
0 (Uj) be the solution of the

divergence equation div wj = div (ϕju) = (∇ϕj) · u in Uj , 1 ≤ j ≤ N .
Moreover, let Mj = Mj(p) be the constant such that p − Mj ∈ Lq

0(Uj).
By Lemma 2.1 (i), (ii) and the equation ∇p = f + ∆u we conclude that
‖wj‖W 1,q(Uj) ≤ C‖u‖Lq(Uj), ‖wj‖W 2,q(Uj) ≤ C‖u‖W 1,q(Uj) as well as

‖p−Mj‖Lq(Uj) ≤ C
(‖f‖Lq(Uj) + ‖∇u‖Lq(Uj)

)

with C = C(q, α, β, K) > 0 independent of j. Finally, let λ0 > 0 denote
the constant in Lemma 2.1 (iii). Then ϕju−wj satisfies the local resolvent
equation

λ0(ϕju− wj)−∆(ϕju− wj) +∇(
ϕj(p−Mj)

)

= ϕjf + ∆wj − 2∇ϕj · ∇u− (∆ϕj)u + (∇ϕj)(p−Mj) + λ0(ϕju− wj)

in Uj . By (2.10) with λ = λ0 and the previous a priori estimates we get the
local inequalities



126 R. Farwig, H. Kozono and H. Sohr

‖ϕj∇2u‖q
Lq(Uj)

+ ‖ϕj∇p‖q
Lq(Uj)

≤ C
(‖f‖q

Lq(Uj)
+ ‖u‖q

W 1,q(Uj)

)
, (3.3)

1 ≤ j ≤ N . Taking the sum over j = 1, . . . , N and exploiting the crucial
property of the number N0, see (2.5), we are led to the estimate

‖∇2u‖q
Lq(Ω) + ‖∇p‖q

Lq(Ω) =
∫

Ω

(( ∑

j

ϕj |∇2u|
)q

+
( ∑

j

ϕj |∇p|
)q)

dx

≤
∫

Ω

N
q
q′
0

( ∑

j

|ϕj∇2u|q +
∑

j

|ϕj∇p|q
)

dx

≤ CN
q
q′
0

( ∑

j

‖f‖q
Lq(Uj)

+
∑

j

‖u‖q
W 1,q(Uj)

)
.

(3.4)

Next we use (2.13) for the term ‖u‖W 1,q(Uj). Choosing M > 0 sufficiently
small in (2.13), exploiting the absorption principle and again the property
of the number N0, (3.4) may be simplified to the estimate

‖∇2u‖Lq(Ω) ≤ C
(‖f‖Lq(Ω) + ‖u‖Lq(Ω)

)
(3.5)

where C = C(q, α, β, K) > 0. Since f = Aqu, the proof is complete. ¤

3.1. Proof of Theorem 1.3
3.1.1 The Stokes resolvent in a bounded domain Ω when q ≥ 2

We consider for λ ∈ Sε, 0 < ε < π
2 , the resolvent equation

λu + Aqu = λu−∆u +∇p = f in Ω

with f ∈ Lq
σ(Ω), where 2 ≤ q < ∞. Our aim is to prove for its solution

u ∈ D(Aq) and ∇p = (I − Pq)∆u the estimate

‖λu‖Lq∩L2 + ‖∇2u‖Lq∩L2 + ‖∇p‖Lq∩L2 ≤ C‖f‖Lq∩L2 , |λ| ≥ δ > 0 (3.6)

with a constant C = C(q, ε, δ, α, β,K) > 0. Note that this estimate is well-
known for bounded domains with a constant C = C(q, ε, δ, Ω) > 0. As in
Subsection 3.1 let wj = R

(
(∇ϕj) · u

) ∈ W 2,q
0 (Uj) and choose a constant

Mj = Mj(p) such that p−Mj ∈ Lq
0(Uj). Then we obtain the local equation
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λ(ϕju− wj)−∆(ϕju− wj) +∇(
ϕj(p−Mj)

)

= ϕjf + ∆wj − 2∇ϕj · ∇u− (∆ϕj)u− λwj + (∇ϕj)(p−Mj) (3.7)

Concerning the term λwj , we apply the embedding W 1,r(Uj) ⊂ Lq(Uj)
for some r ∈ [2, q), then Lemma 2.1(i) and use the interpolation estimate
(2.15) for v = u to get for M ∈ (0, 1) that

‖wj‖Lq(Uj) ≤ C1‖wj‖W 1,r(Uj) ≤ M‖u‖Lq(Uj) + C2‖u‖L2(Uj);

here Ci = Ci(M, q, r, α, β, K) > 0 (i = 1, 2). Moreover, ‖∇2wj‖Lq(Uj) ≤
C‖∇u‖Lq(Uj). For p−Mj we use (2.9) and the equation ∇p = −λu+∆u+f

to see that

‖p−Mj‖Lq(Uj)

≤ C

(
‖f‖Lq(Uj) + ‖∇u‖Lq(Uj) + sup

{ |〈λu, v〉|
‖∇v‖q′

: 0 6= v ∈ W 1,q′
0 (Uj)

})
,

where C = C(q, α, β, K) > 0. Again we choose r ∈ [2, q), use the embedding
W 1,q′(Uj) ⊂ Lr′(Uj), then (2.15) for v = λu to get that

‖p−Mj‖Lq(Uj) ≤ C
(‖f‖Lq(Uj) + ‖∇u‖Lq(Uj) + ‖λu‖L2(Uj)

)
+ M‖λu‖Lq(Uj).

Finally, we apply to the local resolvent equation (3.7) the estimate (2.10)
with λ replaced by λ + λ′0 where λ′0 ≥ 0 is sufficiently large such that
|λ + λ′0| ≥ λ0 for |λ| ≥ δ, λ0 as in (2.10).

Now we combine these estimates and are led to the local inequality

‖λϕju‖Lq(Uj) + ‖ϕj∇2u‖Lq(Uj) + ‖ϕj∇p‖Lq(Uj)

≤ C
(‖f‖Lq(Uj) + ‖u‖Lq(Uj) + ‖∇u‖Lq(Uj) + ‖λu‖L2(Uj)

)
+ M‖λu‖Lq(Uj)

(3.8)

with C = C(M, q, δ, ε, α, β, K) > 0. Raising each term in (3.8) to the qth
power, taking the sum over j = 1, . . . , N in the same way as in (3.3)–(3.5)
and using the crucial property (2.5) of the integer N0 we get the inequality
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‖λu‖Lq(Ω) + ‖∇2u‖Lq(Ω) + ‖∇p‖Lq(Ω)

≤ C
(‖f‖Lq(Ω) + ‖u‖Lq(Ω) + ‖∇u‖Lq(Ω) + ‖λu‖L2(Ω)

)
+ M‖λu‖Lq(Ω)

(3.9)

with C = C(M, q, δ, ε, α, β, K) > 0, |λ| ≥ δ. For the proof of (3.9) we also
used the reverse Hölder inequality

( ∑
j aq

j

)1/q ≤ ( ∑
j a2

j

)1/2 for the real
numbers aj = ‖λu‖L2(Uj) valid for q ≥ 2. Applying (2.13) and choosing M

sufficiently small we remove the terms ‖∇u‖Lq(Ω) and ‖λu‖Lq(Ω) from the
right-hand side in (3.9) by the absorption principle. The term ‖u‖Lq(Ω) is
removed with the help of (2.14). Hence we get that

‖λu‖q + ‖∇2u‖q + ‖∇p‖q ≤ C
(‖f‖q + ‖λu‖2 + ‖u‖2 + ‖∇2u‖2

)
.

Now we combine this inequality with the estimate (2.17) for |λ| ≥ δ and we
apply (3.1) with q = 2. This proves the desired estimate (3.6) for 2 ≤ q < ∞.

3.1.2 The case Ω bounded, 1 < q < 2
We consider for f ∈ L2

σ + Lq
σ = Lq

σ and λ ∈ Sε, |λ| ≥ δ, the equation
λu − ∆u + ∇p = f and its unique solution u ∈ D(Aq) + D(A2) = D(Aq),
∇p = (I − P̃q)∆u. Note that Aq = Ãq, Pq = P̃q and that C∞0,σ(Ω) is
dense in Lq′

σ (Ω) ∩ L2
σ(Ω) = Lq′

σ (Ω). Using f = λu − P̃q∆u, the density of
D(Aq′) ∩ D(A2) = D(Aq′) in Lq′

σ ∩ L2
σ, (3.6) with q replaced by q′ > 2, and

setting g = λv + Ãq′v for v ∈ D(Aq′) ∩ D(A2) we obtain that

‖f‖L2
σ+Lq

σ
= sup

{ |〈λu + Ãqu, v〉|
‖v‖

Lq′
σ ∩L2

σ

; 0 6= v ∈ D(Aq′) ∩ D(A2)
}

= sup
{ |〈u, λv + Ãq′v〉|

‖v‖
Lq′

σ ∩L2
σ

; 0 6= v ∈ D(Aq′) ∩ D(A2)
}

= sup
{ |〈u, g〉|
‖(λI − P̃q′∆)−1g‖

Lq′
σ ∩L2

σ

; 0 6= g ∈ Lq′
σ ∩ L2

σ

}

≥ |λ|C−1 sup
{ |〈u, g〉|
‖g‖

Lq′
σ ∩L2

σ

; 0 6= g ∈ Lq′
σ ∩ L2

σ

}
. (3.10)

By Section 2 the last term sup{. . .} in (3.10) defines a norm on Lq
σ+L2

σ which
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is equivalent to the norm ‖ · ‖Lq
σ+L2

σ
; the constants in this norm equivalence

are related to the norm of P̃q′ and depend only on q and (α, β,K), cf.
Theorem 1.2. Hence we proved the estimate ‖λu‖Lq

σ+L2
σ
≤ C‖f‖Lq

σ+L2
σ

and
even

‖λu‖Lq
σ+L2

σ
+ ‖u‖Lq

σ+L2
σ

+ ‖Aqu‖Lq
σ+L2

σ
≤ C‖f‖Lq

σ+L2
σ
, λ ∈ Sε, |λ| ≥ δ.

(3.11)

By virtue of Lemma 3.1 and (2.3) with B1 = Aq, B2 = A2, we conclude
that ‖u‖W 2,q+W 2,2 ≤ c

(‖u‖Lq
σ+L2

σ
+ ‖Aqu‖Lq

σ+L2
σ

)
with a constant c > 0

depending only on q and (α, β,K). Then (3.11) and the identity ∇p =
f − λu + ∆u lead to the estimate

‖λu‖Lq
σ+L2

σ
+ ‖u‖W 2,q+W 2,2 + ‖∇p‖Lq+L2 ≤ C‖f‖Lq

σ+L2
σ

with C = C(q, δ, ε, α, β,K) > 0. Hence we proved for every q ∈ (1,∞) the
inequality

‖λu‖L̃q
σ

+ ‖u‖W̃ 2,q + ‖∇p‖L̃q ≤ C‖f‖L̃q
σ
, u ∈ D(Ãq), (3.12)

with C = C(q, δ, ε, α, β,K) > 0 when |λ| ≥ δ > 0. Now the proof of
Theorem 1.3 (i) – (iii) is complete for bounded domains.

3.1.3 The case Ω unbounded
Consider the sequence of bounded subdomains Ωj ⊆ Ω, j ∈ N, of uni-

form C1,1-type as in (2.7), let f ∈ L̃q
σ(Ω) and fj := P̃qf |Ωj

. Then consider
the solution (uj ,∇pj) of the Stokes resolvent equation

λuj − P̃q∆uj = λuj −∆uj +∇pj = fj , ∇pj = (I − P̃q)∆uj in Ωj .

From (3.12) we obtain the uniform estimate

‖λuj‖L̃q
σ(Ωj)

+ ‖uj‖W̃ 2,q(Ωj)
+ ‖∇pj‖L̃q(Ωj)

≤ C‖f‖L̃q
σ(Ω) (3.13)

with |λ| ≥ δ > 0, C = C(q, δ, ε, α, β,K) > 0. Extending uj and ∇pj by 0 to
vector fields on Ω we find, suppressing subsequences, weak limits

u = w– lim
j→∞

uj in L̃q
σ(Ω), ∇p = w– lim

j→∞
∇pj in L̃q(Ω)n
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satisfying u ∈ D(Ãq), λu−∆u+∇p = λu− P̃q∆u = f in Ω and the a priori
estimates (1.2), (1.3). Note that each ∇pj when extended by 0 need not be
a gradient field on Ω; however, by de Rham’s argument, the weak limit of
the sequence {∇pj} is a gradient field on Ω. Hence we solved the Stokes
resolvent problem λu + Ãqu = λu−∆u +∇p = f in Ω.

Finally, to prove uniqueness of u we assume that there is some v ∈ D(Ãq)
and λ ∈ Sε satisfying λv − P̃q∆v = 0. Given f ′ ∈ L̃q′(Ω)n let u ∈ D(Ãq′)
be a solution of λu− P̃q′∆u = P̃q′f

′. Then

0 = 〈λv − P̃q∆v, u〉 = 〈v, (λ− P̃q′∆)u〉 = 〈v, P̃q′f
′〉 = 〈v, f ′〉

for all f ′ ∈ L̃q′(Ω)n; hence, v = 0.
Now Theorem 1.3 (i) – (iii) is proved. The assertions (iv) of this Theo-

rem are proved by standard duality arguments and semigroup theory. ¤

3.2. Proof of Theorem 1.4
Let 0 < T < ∞, 1 < s, q < ∞, and consider a domain Ω ⊆

Rn, n ≥ 2, of uniform C1,1-type (α, β,K). Then we define the subspace
L̃s,q

σ := Ls(0, T ; L̃q
σ(Ω)) of L̃s,q := Ls(0, T ; L̃q(Ω)) with norm ‖ · ‖L̃s,q

σ
=

‖ · ‖Ls(0,T ;L̃q(Ω)σ). In addition to the operators Js,q, J ′s,q for bounded do-
mains, see Lemma 2.4, we define J̃s,q, J̃ ′s,q by

J̃s,qf(t) =
∫ t

0

e−(t−τ)Ãqf(τ) dτ, J̃ ′s,qf(t) =
∫ T

t

e−(τ−t)Ãqf(τ) dτ,

for f ∈ L̃s,q
σ and 0 ≤ t ≤ T . Since (Ãq)′ = Ãq′ , we obtain for all f ∈ L̃s,q

σ ,
g ∈ L̃s′,q′

σ that

〈J̃s,qf, g〉T = 〈f, J̃ ′s′,q′g〉T .

3.2.1 Maximal regularity in a bounded domain Ω when s = q ≥ 2
First we consider the case u0 = 0 and s = q. Then u = J̃q,qf solves

the equation ut + Ãqu = f , u(0) = 0, and u = J̃ ′q,qf is the solution of
the system −ut + Ãqu = f , u(T ) = 0. Our aim is to prove in both cases
the estimate (1.7) with a constant C = C(T, q, α, β, K) > 0. Obviously it
suffices to consider the case u = J̃q,qf since the other case follows using the
transformation ũ(t) = u(T − t), f̃(t) = f(T − t). By Lemma 2.5 we know
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that u = J̃q,q solves the equation

ut + Ãqu = ut −∆u +∇p = f ∈ Lq(0, T ; L̃q
σ), u(0) = 0,

with ∇p = (I − P̃q)∆u, and that u satisfies (2.20) with a constant C =
C(Ω, q) > 0; note that the norms ‖u‖W 2,q and ‖u‖D(Aq) are equivalent.
Thus it remains to prove that C in (2.20) can be chosen depending only on
T, q and (α, β,K).

For this reason, we use the system of functions {hj}, 1 ≤ j ≤ N , the
covering of Ω by balls {Bj}, and the partition of unity {ϕj} as described
in Section 2 as well as the bounded sets Uj ⊂ Bj , cf. (3.2). On Uj define
w = R((∇ϕj) ·u) ∈ Lq(0, T ;W 2,q

0 (Uj)), and let Mj = Mj(p) be the constant
depending on t ∈ (0, T ) such that p − Mj ∈ Lq(0, T ;Lq

0(Uj)), see Lemma
2.1. Since div w = (∇ϕj) · u and div wt = (∇ϕj) · ut for a.a. t ∈ (0, T ), the
term (ϕju− w) solves in Uj the local equation

(ϕju− w)t −∆(ϕju− w) +∇(
ϕj(p−Mj)

)

= ϕjf − wt + ∆w − 2∇ϕj · ∇u− (∆ϕj)u + (∇ϕj)(p−Mj). (3.14)

From (2.8), (2.9) using wt = R((∇ϕj) · ut) and ∇p = f − ut + ∆u we
will prove for all ε ∈ (0, 1) the estimates

‖wt‖Lq(Lq(Uj)) ≤ C‖ut‖Lq(L2(Uj)) + ε‖ut‖Lq(Lq(Uj)),

‖∇2w‖Lq(Lq(Uj)) ≤ C
(‖u‖Lq(Lq(Uj)) + ‖∇u‖Lq(Lq(Uj))

)
, (3.15)

‖p−Mj‖Lq(Lq(Uj)) ≤ C
(‖f‖Lq(Lq(Uj)) + ‖ut‖Lq(L2(Uj)) + ‖∇u‖Lq(Lq(Uj))

)

+ ε‖ut‖Lq(Lq(Uj))

with C = C(q, T, ε, α, β,K) > 0. In fact, for the proof of (3.15)1, choose r ∈
[2, q) such that the embedding W 1,r(Uj) ⊂ Lq(Uj) holds with an embedding
constant c = c(q, r, α, β, K) > 0 independent of j. Moreover,

‖wt‖Lq(Uj) ≤ c‖wt‖W 1,r(Uj) ≤ c‖ut‖Lr(Uj)

for a.a. t ∈ (0, t). Then the interpolation inequality (2.15) proves (3.15)1,
and (2.8)2 implies (3.15)2. For the proof of (3.15)3 we use (2.9), the embed-
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ding W 1,q′(Uj) ⊂ Lr′(Uj) with an embedding constant c = c(q, r, α, β, K) >

0 independent of j and apply the previous interpolation argument to ut.
Applying the local estimate (2.12) to (3.14) and using (3.15) we get that

‖ϕjut‖Lq(Lq(Uj)) + ‖ϕju‖Lq(Lq(Uj)) + ‖ϕj∇2u‖Lq(Lq(Uj)) + ‖ϕj∇p‖Lq(Lq(Uj))

≤ C
(‖f‖Lq(Lq(Uj)) + ‖u‖Lq(W 1,q(Uj)) + ‖ut‖Lq(L2(Uj))

)
+ ε‖ut‖Lq(Lq(Uj))

with C = C(T, q, ε, α, β,K) > 0. Raising this inequality to its qth power,
taking the sum over j = 1, . . . , N and exploiting the crucial property of the
number N0, see (2.5), we are led to the estimate

‖ut‖q
Lq,q + ‖u‖q

Lq,q + ‖∇2u‖q
Lq,q + ‖∇p‖q

Lq,q

=
∫ T

0

∫

Ω

(∣∣∣∣
∑

j

ϕjut

∣∣∣∣
q

+
∣∣∣∣
∑

j

ϕju

∣∣∣∣
q

+
∣∣∣∣
∑

j

ϕj∇2u

∣∣∣∣
q

+
∣∣∣∣
∑

j

ϕj∇p

∣∣∣∣
q)

dx dt

≤
∫ T

0

∫

Ω

N
q
q′
0

( ∑

j

|ϕjut|q +
∑

j

|ϕju|q +
∑

j

|ϕj∇2u|q +
∑

j

|ϕj∇p|q
)

dx dt

≤ CN
q
q′
0

( ∑

j

‖f‖q
Lq(0,T ;Lq(Uj))

+
∑

j

‖u‖q
Lq(0,T ;W 1,q(Uj))

+
∑

j

‖ut‖q
Lq(0,T ;L2(Uj))

)
+ εN

q
q′
0

∑

j

‖ut‖q
Lq(0,T ;Lq(Uj))

. (3.16)

Choosing ε > 0 sufficiently small, exploiting the absorption principle
and again the property of the number N0, we may simplify (3.16) to the
estimate

‖ut‖Lq,q + ‖u‖Lq,q + ‖∇2u‖Lq,q + ‖∇p‖Lq,q

≤ C
(‖f‖Lq,q + ‖u‖Lq,q + ‖ut‖Lq,2

)
(3.17)

where C = C(q, α, β, K) > 0; note that in order to deal with the sum of the
terms ‖ut‖Lq(0,T ;L2(Uj)) we also used the reverse Hölder inequality. Now,
concerning the term ‖u‖Lq,q , we use (2.14) with ε > 0 sufficiently small and
exploit the absorption principle. Finally we apply Lemma 2.5 (ii), i.e., we
add the estimate (2.20) with q = 2 to (3.17), to prove the estimate (1.7) for
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bounded domains when s = q > 2, u(0) = 0. Since the operator norm of
P̃q is bounded by a constant c = c(q, α, β, K) > 0 we get (1.6) for s = q,
u(0) = 0.

To prove (1.6) with u0 ∈ D(Ãq) we solve the system ũt + Ãqũ = f̃ ,
ũ(0) = 0, with f̃ = f − Ãqu0. Then u(t) = ũ(t) + u0 yields the desired
solution with u0 ∈ D(Ãq). This proves Theorem 1.4 for bounded Ω and
s = q ≥ 2.

3.2.2 The case Ω bounded, 1 < s = q < 2
In this case we consider for f ∈ Lq,q

σ + Lq,2
σ = Lq,q

σ and the initial value
u0 = 0 the Stokes system ut+Ãqu = f , u(0) = 0. By Lemma 2.5 there exists
a unique solution u(t) = Jq,qf(t) = J̃q,qf(t); here we used that P̃q = Pq

and Ãq = Aq. For the following duality argument we need that the space

C∞0 (C∞0,σ) =
{
v ∈ C∞0 (Ω× (0, T )); div v(x, t) = 0 ∀t ∈ (0, T )

}

is dense in Lq′,q′
σ ∩ Lq′,2

σ =
(
Lq,q

σ + Lq,2
σ

)′. Then the identity

〈ut + Ãqu, Ãq′v〉 = 〈u, (−∂t + Ãq′)Ãq′v〉 = 〈Ãqu, (−∂t + Ãq′)v〉

holds for u = Jq,qf and every v ∈ Ã−1
q′

(
C∞0 (C∞0,σ)

)
, since (J̃ ′q′,q′)′ = J̃q,q.

Let g = −vt + Ãq′v. Then we obtain by (1.6) with s = q replaced by
s′ = q′ ≥ 2 and u replaced by v that

‖f‖Lq,q
σ +Lq,2

σ
= sup

{ |〈ut + Ãqu, Ãq′v〉T |
‖Ãq′v‖Lq′,q′

σ ∩Lq′,2
σ

; 0 6= v ∈ Ã−1
q′

(
C∞0 (C∞0,σ)

)}

= sup
{ |〈Ãqu, g〉T |
‖Ãq′v‖Lq′,q′

σ ∩Lq′,2
σ

; 0 6= v ∈ Ã−1
q′

(
C∞0 (C∞0,σ)

)}

≥ 1
C
‖Ãqu‖Lq,q

σ +Lq,2
σ

, (3.18)

where C = C(T, q′, α, β, K) > 0. Here we used that the estimate (1.6) with
q, s replaced by q′, s′ also holds with u, u0, f replaced by v, v(T ) = 0, g due
to the transformation in time in the proof of Lemma 2.5, and exploited the
norm equivalence
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‖ · ‖Lq
σ+L2

σ
∼ sup

{ |〈·, h〉|
‖h‖

Lq′
σ ∩L2

σ

; 0 6= h ∈ Lq′
σ ∩ L2

σ

}

with constants depending only on q and (α, β,K), cf. Theorem 1.2. Hence
we obtain the estimate ‖Ãqu‖Lq,q

σ +Lq,2
σ
≤ C‖f‖Lq,q

σ +Lq,2
σ

, and it follows

‖ut‖Lq,q
σ +Lq,2

σ
+ ‖Ãqu‖Lq,q

σ +Lq,2
σ
≤ C‖f‖Lq,q

σ +Lq,2
σ

. (3.19)

Since ‖u‖W 2,q+W 2,2 ≤ c
(‖u‖Lq

σ+L2
σ

+ ‖Ãqu‖Lq
σ+L2

σ

)
with a constant c > 0

depending only on q and (α, β,K), (3.19) and the identity ∇p = f−ut +∆u

lead to the estimate

‖ut‖Lq,q
σ +Lq,2

σ
+ ‖u‖Lq(0,T ;W 2,q+W 2,2) + ‖∇p‖Lq,q+Lq,2 ≤ C‖f‖Lq,q

σ +Lq,2
σ

(3.20)

with C = C(q, ε, α, β, K) > 0.
Now the proof of Theorem 1.4 is complete for bounded domains in the

case s = q, u(0) = 0. The case u0 ∈ D(Ãq) is treated as in 3.3.1.

3.2.3 The case Ω unbounded
Consider the sequence of bounded subdomains Ωj ⊆ Ω, j ∈ N, of uni-

form C1,1-type as in (2.7), let f ∈ L̃q,q
σ and fj := P̃

(j)
q f |Ωj

where P̃
(j)
q

denotes the Helmholtz projection in L̃q(Ωj). Then consider the solution
(uj ,∇pj) of the instationary Stokes equation

∂tuj−P̃q∆uj = ∂tuj−∆uj+∇pj = fj , ∇pj = (I−P̃q)∆uj in Ωj×(0, T )

with initial condition uj(0) = 0. From (1.6) with s = q we obtain the
estimate

‖∂tuj‖L̃q,q + ‖uj‖Lq(0,T ;W̃ 2,q(Ωj))
+ ‖∇pj‖L̃q,q ≤ C‖f‖L̃q,q

σ
(3.21)

on Ωj with C = C(T, q, α, β, K) > 0 independent of j ∈ N. Extending uj

and ∇pj for a.a. t ∈ (0, T ) from Ωj by 0 to vector fields on Ω we find,
suppressing subsequences, weak limits

u = w– lim
j→∞

uj in L̃q,q
σ (Ω), ∇p = w– lim

j→∞
∇pj in L̃q,q(Ω)
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satisfying u ∈ Lq(0, T ; L̃q
σ(Ω), ∂tu−∆u+∇p = ∂tu+ Ãqu = f in Ω× (0, T )

and the a priori estimate (1.6) with u0 = 0; it follows (1.7) for this case.
Hence we solved the instationary Stokes equation ∂tu + Ãqu = ∂tu−∆u +
∇p = f , u(0) = 0, in Ω× (0, T ) and proved (1.6), (1.7).

Up to now we considered only the case when s = q, u(0) = 0. However,
an abstract extrapolation argument shows that the validity of (1.6) with
s = q immediately extends to all s ∈ (1,∞), see [2, p. 191] and [5, (1.12)],
where A has to be replaced by −Ãq − δI with δ > 0 as in (1.4). The case
u(0) = u0 6= 0 can be reduced to the case u0 = 0 in the same way as before.

Finally, to prove uniqueness let v ∈ Ls(0, T ; W̃ 2,q) satisfy ∂tv + Ãqv = 0
and v(0) = 0. Given f ′ ∈ L̃s′,q′ let u ∈ Ls′(0, T ; W̃ 2,q′) be a solution of
−ut + Ãq′u = P̃q′f

′, u(T ) = 0. Then

0 = 〈vt + Ãqv, u〉T = 〈v, (−∂t + Ãq′)u〉T = 〈v, P̃q′f
′〉T = 〈v, f ′〉T

for all f ′ ∈ L̃s′,q′ ; hence, v = 0.
Now Theorem 1.4 is proved. ¤
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