On the Stokes operator in general unbounded domains

Reinhard Farwig, Hideo Kozono and Hermann Sohr

(Received June 27, 2007; Revised December 19, 2007)

Abstract

It is known that the Stokes operator is not well-defined in L^{q}-spaces for certain unbounded smooth domains unless $q=2$. In this paper, we generalize a new approach to the Stokes resolvent problem and to maximal regularity in general unbounded smooth domains from the three-dimensional case, see [7], to the n-dimensional one, $n \geq 2$, replacing the space $L^{q}, 1<q<\infty$, by \tilde{L}^{q} where $\tilde{L}^{q}=L^{q} \cap L^{2}$ for $q \geq 2$ and $\tilde{L}^{q}=L^{q}+L^{2}$ for $1<q<2$. In particular, we show that the Stokes operator is well-defined in \tilde{L}^{q} for every unbounded domain of uniform $C^{1,1}$-type in \mathbb{R}^{n}, $n \geq 2$, satisfies the classical resolvent estimate, generates an analytic semigroup and has maximal regularity.

Key words: General unbounded domains, domains of uniform $C^{1,1}$-type, Stokes operator, Stokes resolvent, Stokes semigroup, maximal regularity

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{n}, n \geq 2$, denote a general unbounded domain with uniform $C^{1,1}$-boundary $\partial \Omega \neq \emptyset$, see Definition 1.1 below. As is well-known, the analysis of the instationary Navier-Stokes equations requires L^{q}-estimates, $q \neq 2$, to prove the strong energy estimate, the localized energy estimate involving also the pressure function and Leray's Structure Theorem for weak solutions. Unfortunately, the standard approach to the Stokes equations in L^{q}-spaces, $1<q<\infty$, cannot be extended to general unbounded domains unless $q=2$. On the one hand, the Helmholtz decomposition fails to exist for certain unbounded smooth domains on $L^{q}, q \neq 2$, see [4], [14]. On the other hand, in L^{2} the Helmholtz projection and the Stokes operator are well-defined for every domain, the latter is self-adjoint, generates a bounded analytic semigroup and has maximal regularity.

In order to work locally in L^{q}-spaces, but globally, to be more precise, near space infinity, in L^{2}, the authors introduced in [7] in the threedimensional case the function space

$$
\tilde{L}^{q}(\Omega)= \begin{cases}L^{q}(\Omega) \cap L^{2}(\Omega), & 2 \leq q<\infty \\ L^{q}(\Omega)+L^{2}(\Omega), & 1<q<2\end{cases}
$$

2000 Mathematics Subject Classification : Primary 76D05; Secondary 35Q30.
to define the Helmholtz decomposition and the space

$$
\tilde{L}_{\sigma}^{q}(\Omega)= \begin{cases}L_{\sigma}^{q}(\Omega) \cap L_{\sigma}^{2}(\Omega), & 2 \leq q<\infty \\ L_{\sigma}^{q}(\Omega)+L_{\sigma}^{2}(\Omega), & 1<q<2\end{cases}
$$

of solenoidal vector fields in $\tilde{L}^{q}(\Omega)$ to define and to analyze the Stokes operator. It was proved that for every unbounded domain $\Omega \subseteq \mathbb{R}^{3}$ of uniform C^{2}-type the Stokes operator in $\tilde{L}_{\sigma}^{q}(\Omega)$ satisfies the usual resolvent estimate, generates an analytic semigroup and has maximal regularity. Moreover, for every dimension $n \geq 2$, the Helmholtz decomposition of $\tilde{L}^{q}(\Omega)$ exists for every unbounded domain $\Omega \subseteq \mathbb{R}^{n}$ of uniform C^{1}-type, see [8].

To describe this result, we introduce the space of gradients

$$
\tilde{G}^{q}(\Omega)= \begin{cases}G^{q}(\Omega) \cap G^{2}(\Omega), & 2 \leq q<\infty \\ G^{q}(\Omega)+G^{2}(\Omega), & 1<q<2\end{cases}
$$

where $G^{q}(\Omega)=\left\{\nabla p \in L^{q}(\Omega): p \in L_{\mathrm{loc}}^{q}(\Omega)\right\}$, and recall the notion of domains of uniform C^{k} - and $C^{k, 1}$-type.

Definition 1.1 A domain $\Omega \subseteq \mathbb{R}^{n}, n \geq 2$, is called a uniform C^{k}-domain of type (α, β, K) where $k \in \mathbb{N}, \alpha>0, \beta>0, K>0$, if for each $x_{0} \in \partial \Omega$ there exists a Cartesian coordinate system with origin at x_{0} and coordinates $y=\left(y^{\prime}, y_{n}\right), y^{\prime}=\left(y_{1}, \ldots, y_{n-1}\right)$, and a C^{k}-function $h\left(y^{\prime}\right),\left|y^{\prime}\right| \leq \alpha$, with C^{k}-norm $\|h\|_{C^{k}} \leq K$ such that the neighborhood

$$
U_{\alpha, \beta, h}\left(x_{0}\right):=\left\{y=\left(y^{\prime}, y_{n}\right) \in \mathbb{R}^{n}:\left|y_{n}-h\left(y^{\prime}\right)\right|<\beta,\left|y^{\prime}\right|<\alpha\right\}
$$

of x_{0} implies $U_{\alpha, \beta, h}\left(x_{0}\right) \cap \partial \Omega=\left\{\left(y^{\prime}, h\left(y^{\prime}\right)\right):\left|y^{\prime}\right|<\alpha\right\}$ and
$U_{\alpha, \beta, h}^{-}\left(x_{0}\right):=\left\{\left(y^{\prime}, y_{n}\right): h\left(y^{\prime}\right)-\beta<y_{n}<h\left(y^{\prime}\right),\left|y^{\prime}\right|<\alpha\right\}=U_{\alpha, \beta, h}\left(x_{0}\right) \cap \Omega$.
By analogy, a domain $\Omega \subseteq \mathbb{R}^{n}, n \geq 2$, is a uniform $C^{k, 1}$-domain of type $(\alpha, \beta, K), k \in \mathbb{N} \cup\{0\}$, if the functions h mentioned above may be chosen in $C^{k, 1}$ such that the $C^{k, 1}$-norm satisfies $\|h\|_{C^{k, 1}} \leq K$.

Theorem 1.2 ([8]) Let $\Omega \subseteq \mathbb{R}^{n}$, $n \geq 2$, be a uniform C^{1}-domain of type (α, β, K) and let $q \in(1, \infty)$. Then each $u \in \tilde{L}^{q}(\Omega)$ has a unique decomposition

$$
u=u_{0}+\nabla p, \quad u_{0} \in \tilde{L}_{\sigma}^{q}(\Omega), \quad \nabla p \in \tilde{G}^{q}(\Omega)
$$

satisfying the estimate

$$
\begin{equation*}
\left\|u_{0}\right\|_{\tilde{L}^{q}}+\|\nabla p\|_{\tilde{L}^{q}} \leq c\|u\|_{\tilde{L}^{q}} \tag{1.1}
\end{equation*}
$$

where $c=c(\alpha, \beta, K, q)>0$. In particular, the Helmholtz projection \tilde{P}_{q} defined by $\tilde{P}_{q} u=u_{0}$ is a bounded linear projection on $\tilde{L}^{q}(\Omega)$ with range $\tilde{L}_{\sigma}^{q}(\Omega)$ and kernel $\tilde{G}^{q}(\Omega)$. Moreover, $\tilde{L}_{\sigma}^{q}(\Omega)$ is the closure in $\tilde{L}^{q}(\Omega)$ of the space $C_{0, \sigma}^{\infty}(\Omega)=\left\{u \in C_{0}^{\infty}(\Omega): \operatorname{div} u=0\right\}$, and the duality relations

$$
\left(\tilde{L}_{\sigma}^{q}(\Omega)\right)^{\prime}=\tilde{L}_{\sigma}^{q^{\prime}}(\Omega), \quad\left(\tilde{P}_{q}\right)^{\prime}=\tilde{P}_{q^{\prime}}
$$

where $q^{\prime}=\frac{q}{q-1}$, hold.
Using the Helmholtz projection $\tilde{P}_{q}, 1<q<\infty$, we define the Stokes operator \tilde{A}_{q} as the linear operator with domain

$$
\mathcal{D}\left(\tilde{A}_{q}\right)=\left\{\begin{array}{ll}
D^{q}(\Omega) \cap D^{2}(\Omega), & 2 \leq q<\infty \\
D^{q}(\Omega)+D^{2}(\Omega), & 1<q<2
\end{array},\right.
$$

where $D^{q}(\Omega)=W^{2, q}(\Omega) \cap W_{0}^{1, q}(\Omega) \cap L_{\sigma}^{q}(\Omega)$, by setting

$$
\tilde{A}_{q} u=-\tilde{P}_{q} \Delta u, \quad u \in \mathcal{D}\left(\tilde{A}_{q}\right)
$$

By analogy, we define the Sobolev space $\tilde{W}^{2, q}(\Omega)$ with norm

$$
\|u\|_{\tilde{W}^{2, q}}=\|u\|_{\tilde{L}^{q}}+\|\nabla u\|_{\tilde{L}^{q}}+\left\|\nabla^{2} u\right\|_{\tilde{L}^{q}}
$$

see also (2.3) below. Let I be the identity and $\mathcal{S}_{\varepsilon}=\{0 \neq \lambda \in \mathbb{C} ;|\arg \lambda|<$ $\left.\frac{\pi}{2}+\varepsilon\right\}, 0<\varepsilon<\frac{\pi}{2}$.

Then our first main result on the Stokes operator reads as follows:
Theorem 1.3 Let $\Omega \subseteq \mathbb{R}^{n}$, $n \geq 2$, be a uniform $C^{1,1}$-domain of type (α, β, K), and let $1<q<\infty, \delta>0,0<\varepsilon<\frac{\pi}{2}$.
(i) The operator

$$
\tilde{A}_{q}=-\tilde{P}_{q} \Delta: \mathcal{D}\left(\tilde{A}_{q}\right) \rightarrow \tilde{L}_{\sigma}^{q}(\Omega), \quad \mathcal{D}\left(\tilde{A}_{q}\right) \subset \tilde{L}_{\sigma}^{q}(\Omega)
$$

is a densely defined closed operator.
(ii) For all $\lambda \in \mathcal{S}_{\varepsilon}$, its resolvent $\left(\lambda I+\tilde{A}_{q}\right)^{-1}: \tilde{L}_{\sigma}^{q}(\Omega) \rightarrow \tilde{L}_{\sigma}^{q}(\Omega)$ is well-defined. Moreover, for every $f \in \tilde{L}_{\sigma}^{q}(\Omega)$ the solution $u \in \tilde{L}_{\sigma}^{q}(\Omega)$ of the resolvent problem $\left(\lambda I+\tilde{A}_{q}\right) u=f$ satisfies the estimate

$$
\begin{equation*}
\|\lambda u\|_{\tilde{L}_{\sigma}^{q}}+\left\|\nabla^{2} u\right\|_{\tilde{L}^{q}} \leq C\|f\|_{\tilde{L}_{\sigma}^{q}}, \quad|\lambda| \geq \delta \tag{1.2}
\end{equation*}
$$

where $C=C(q, \varepsilon, \delta, \alpha, \beta, K)>0$.
(iii) Given $f \in \tilde{L}^{q}(\Omega)^{n}, \lambda \in \mathcal{S}_{\varepsilon}$, the Stokes resolvent equation

$$
\lambda u-\Delta u+\nabla p=f, \quad \operatorname{div} u=0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

has a unique solution $(u, \nabla p) \in \mathcal{D}\left(\tilde{A}_{q}\right) \times \tilde{G}^{q}(\Omega)$ defined by $u=(\lambda I+$ $\left.\tilde{A}_{q}\right)^{-1} \tilde{P}_{q} f$ and $\nabla p=\left(I-\tilde{P}_{q}\right)(f+\Delta u)$ and satisfying

$$
\begin{equation*}
\|\lambda u\|_{\tilde{L}^{q}}+\left\|\nabla^{2} u\right\|_{\tilde{L}^{q}}+\|\nabla p\|_{\tilde{L}^{q}} \leq C\|f\|_{\tilde{L}^{q}}, \quad|\lambda| \geq \delta \tag{1.3}
\end{equation*}
$$

with a constant $C=C(q, \varepsilon, \delta, \alpha, \beta, K)>0$.
(iv) The Stokes operator \tilde{A}_{q} satisfies the duality relation $\left(\tilde{A}_{q}\right)^{\prime}=\tilde{A}_{q^{\prime}}$, in particular, $\left\langle\tilde{A}_{q} u, v\right\rangle=\left\langle u, \tilde{A}_{q^{\prime}} v\right\rangle$ for all $u \in \mathcal{D}\left(\tilde{A}_{q}\right), v \in \mathcal{D}\left(\tilde{A}_{q^{\prime}}\right)$ and generates an analytic semigroup $e^{-t \tilde{A}_{q}}, t \geq 0$, in $\tilde{L}_{\sigma}^{q}(\Omega)$ with bound

$$
\begin{equation*}
\left\|e^{-t \tilde{A}_{q}} f\right\|_{\tilde{L}_{\sigma}^{q}} \leq M e^{\delta t}\|f\|_{\tilde{L}_{\sigma}^{q}}, \quad f \in \tilde{L}_{\sigma}^{q}, t \geq 0 \tag{1.4}
\end{equation*}
$$

where $M=M(q, \delta, \alpha, \beta, K)>0$.
Note that the bound $\delta>0$ in Theorem 1.3 may be chosen arbitrarily small, but that it is not clear whether $\delta=0$ is allowed for a general unbounded domain and whether the semigroup $e^{-t \tilde{A}_{q}}$ is uniformly bounded in $\tilde{L}_{\sigma}^{q}(\Omega)$ for $0 \leq t<\infty$.

Our second main result concerns the instationary Stokes system

$$
\begin{align*}
u_{t}-\Delta u+\nabla p & =f, \quad \operatorname{div} u=0 \quad \text { in } \Omega \times(0, T) \\
u(0) & =u_{0},\left.\quad u\right|_{\partial \Omega}=0 . \tag{1.5}
\end{align*}
$$

Theorem 1.4 Let $\Omega \subseteq \mathbb{R}^{n}$, $n \geq 2$, be a uniform $C^{1,1}$-domain of type (α, β, K), and let $0<T<\infty, 1<q, s<\infty$.

Then for each $f \in L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}(\Omega)\right)$ and each $u_{0} \in \mathcal{D}\left(\tilde{A}_{q}\right)$ there exists a
unique solution $u \in L^{s}\left(0, T ; \mathcal{D}\left(\tilde{A}_{q}\right)\right)$ with $u_{t} \in L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}(\Omega)\right)$ of the system (1.5) satisfying the estimates

$$
\begin{align*}
& \left\|u_{t}\right\|_{L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}\right)}+\|u\|_{L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}\right)}+\left\|\tilde{A}_{q} u\right\|_{L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}\right)} \\
& \quad \leq C\left(\left\|u_{0}\right\|_{D\left(\tilde{A}_{q}\right)}+\|f\|_{L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}\right)}\right) \tag{1.6}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|u_{t}\right\|_{L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}\right)}+\|u\|_{L^{s}\left(0, T ; \tilde{W}^{2, q}\right)} \leq C\left(\left\|u_{0}\right\|_{D\left(\tilde{A}_{q}\right)}+\|f\|_{L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}\right)}\right) \tag{1.7}
\end{equation*}
$$

with $C=C(q, s, T, \alpha, \beta, K)>0$.
Remark 1.5 (i) The assumption $u_{0} \in \mathcal{D}\left(\tilde{A}_{q}\right)$ in Theorem 1.4 is used for simplicity and is not optimal. Actually, it may be replaced by the weaker properties $u_{0} \in \tilde{L}_{\sigma}^{q}(\Omega)$ and $\int_{0}^{T}\left\|\tilde{A}_{q} e^{-t \tilde{A}_{q}} u_{0}\right\|_{\tilde{L}_{\sigma}^{q}}^{s} d t<\infty$. Then the term $\left\|u_{0}\right\|_{\mathcal{D}\left(\tilde{A}_{q}\right)}$ in (1.6), (1.7) can be substituted by the weaker norm

$$
\begin{equation*}
\left(\int_{0}^{T}\left\|\tilde{A}_{q} e^{-t \tilde{A}_{q}} u_{0}\right\|_{\tilde{L}_{\sigma}^{q}}^{s} d t\right)^{\frac{1}{s}}, 1<q<\infty \tag{1.8}
\end{equation*}
$$

(ii) Let $f \in L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}(\Omega)\right)$ in Theorem 1.4 be replaced by $f \in$ $L^{s}\left(0, T ; \tilde{L}^{q}(\Omega)\right)$. Then $u \in L^{s}\left(0, T ; \mathcal{D}\left(\tilde{A}_{q}\right)\right)$, defined by $u_{t}+\tilde{A}_{q} u=\tilde{P}_{q} f$, $u(0)=u_{0}$, and ∇p, defined by $\nabla p(t)=\left(I-\tilde{P}_{q}\right)(f+\Delta u)(t)$, is a unique solution pair of the system

$$
u_{t}-\Delta u+\nabla p=f, u(0)=u_{0}
$$

satisfying

$$
\begin{align*}
& \left\|u_{t}\right\|_{L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}\right)}+\|u\|_{L^{s}\left(0, T ; \tilde{W}^{2, q}\right)}+\|\nabla p\|_{L^{s}\left(0, T ; \tilde{L}^{q}\right)} \\
& \quad \leq C\left(\left\|u_{0}\right\|_{D\left(\tilde{A}_{q}\right)}+\|f\|_{L^{s}\left(0, T ; \tilde{L}^{q}\right)}\right) \tag{1.9}
\end{align*}
$$

with $C=C(q, s, T, \alpha, \beta, K)>0$.
Using (2.1) below we see that in the case $1<q<2$ the solution pair $u, \nabla p$ possesses a decomposition $u=u^{(1)}+u^{(2)}, \nabla p=\nabla p^{(1)}+\nabla p^{(2)}$ such that

$$
\begin{gather*}
u^{(1)} \in L^{s}\left(0, T ; W^{2,2}(\Omega)\right), \quad u_{t}^{(1)} \in L^{s}\left(0, T ; L_{\sigma}^{2}(\Omega)\right), \\
u^{(2)} \in L^{s}\left(0, T ; W^{2, q}(\Omega)\right), \quad u_{t}^{(2)} \in L^{s}\left(0, T ; L_{\sigma}^{q}(\Omega)\right), \tag{1.10}\\
\nabla p^{(1)} \in L^{s}\left(0, T ; L^{2}(\Omega)\right), \quad \nabla p^{(2)} \in L^{s}\left(0, T ; L^{q}(\Omega)\right),
\end{gather*}
$$

and

$$
\begin{aligned}
& \left\|u_{t}\right\|_{L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}\right)}+\|u\|_{L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}\right)}+\left\|\nabla^{2} u\right\|_{L^{s}\left(0, T ; \tilde{L}^{q}\right)}+\|\nabla p\|_{L^{s}\left(0, T ; \tilde{L}^{q}\right)} \\
& =\left\|u_{t}^{(1)}\right\|_{L^{s, 2}}+\left\|u^{(1)}\right\|_{L^{s, 2}}+\left\|\nabla^{2} u^{(1)}\right\|_{L^{s, 2}}+\left\|\nabla p^{(1)}\right\|_{L^{s, 2}} \\
& \quad+\left\|u_{t}^{(2)}\right\|_{L^{s, q}}+\left\|u^{(2)}\right\|_{L^{s, q}}+\left\|\nabla^{2} u^{(2)}\right\|_{L^{s, q}}+\left\|\nabla p^{(2)}\right\|_{L^{s, q}}
\end{aligned}
$$

where $L^{s, 2}=L^{s}\left(0, T ; L^{2}(\Omega)\right), L^{s, q}=L^{s}\left(0, T ; L^{q}(\Omega)\right)$.
(iii) Note that the constant C in (1.6), (1.7), (1.9) could depend on the given interval $(0, T]$. We do not know whether C can be chosen independently of T as in the usual L^{q}-theory in bounded and exterior domains, see [12].

2. Preliminaries

Let us recall some properties of sum and intersection spaces known from interpolation theory, cf. [3], [18].

Consider two (complex) Banach spaces X_{1}, X_{2} with norms $\|\cdot\|_{X_{1}},\|\cdot\|_{X_{2}}$, respectively, and assume that both X_{1} and X_{2} are subspaces of a topological vector space V with continuous embeddings. Further, we assume that $X_{1} \cap$ X_{2} is a dense subspace of both X_{1} and X_{2}. Then the intersection space $X_{1} \cap X_{2}$ is a Banach space with norm

$$
\|u\|_{X_{1} \cap X_{2}}=\max \left(\|u\|_{X_{1}},\|u\|_{X_{2}}\right) .
$$

The sum space

$$
X_{1}+X_{2}:=\left\{u_{1}+u_{2} ; u_{1} \in X_{1}, u_{2} \in X_{2}\right\} \subseteq V
$$

is a well-defined Banach space with the norm

$$
\|u\|_{X_{1}+X_{2}}:=\inf \left\{\left\|u_{1}\right\|_{X_{1}}+\left\|u_{2}\right\|_{X_{2}} ; u=u_{1}+u_{2}, u_{1} \in X_{1}, u_{2} \in X_{2}\right\} .
$$

If X_{1} and X_{2} are reflexive Banach spaces, an argument using weakly convergent subsequences yields the following property:

$$
\begin{equation*}
u \in X_{1}+X_{2} \quad \Rightarrow \exists u_{1} \in X_{1}, u_{2} \in X_{2}: \quad\|u\|_{X_{1}+X_{2}}=\left\|u_{1}\right\|_{X_{1}}+\left\|u_{2}\right\|_{X_{2}} \tag{2.1}
\end{equation*}
$$

Concerning dual spaces we have

$$
\left(X_{1} \cap X_{2}\right)^{\prime}=X_{1}^{\prime}+X_{2}^{\prime}
$$

with the natural pairing $\left\langle u, f_{1}+f_{2}\right\rangle=\left\langle u, f_{1}\right\rangle+\left\langle u, f_{2}\right\rangle$ for $u \in X_{1} \cap X_{2}$ and $f=f_{1}+f_{2} \in X_{1}^{\prime}+X_{2}^{\prime}$, and

$$
\left(X_{1}+X_{2}\right)^{\prime}=X_{1}^{\prime} \cap X_{2}^{\prime}
$$

with the natural pairing $\langle u, f\rangle=\left\langle u_{1}, f\right\rangle+\left\langle u_{2}, f\right\rangle$ for all $u=u_{1}+u_{2} \in$ $X_{1}+X_{2}, f \in X_{1}^{\prime} \cap X_{2}^{\prime}$. Thus it holds

$$
\|u\|_{X_{1}+X_{2}}=\sup \left\{\frac{\left|\left\langle u_{1}, f\right\rangle+\left\langle u_{2}, f\right\rangle\right|}{\|f\|_{X_{1}^{\prime} \cap X_{2}^{\prime}}} ; 0 \neq f \in X_{1}^{\prime} \cap X_{2}^{\prime}\right\}
$$

and

$$
\|f\|_{X_{1}^{\prime} \cap X_{2}^{\prime}}=\sup \left\{\frac{\left|\left\langle u_{1}, f\right\rangle+\left\langle u_{2}, f\right\rangle\right|}{\|u\|_{X_{1}+X_{2}}} ; 0 \neq u=u_{1}+u_{2} \in X_{1}+X_{2}\right\}
$$

see [3], [18].
Consider closed subspaces $L_{1} \subseteq X_{1}, L_{2} \subseteq X_{2}$ with norms $\|\cdot\|_{L_{1}}=\|\cdot\|_{X_{1}}$, $\|\cdot\|_{L_{2}}=\|\cdot\|_{X_{2}}$ and assume that $L_{1} \cap L_{2}$ is dense in both L_{1} and L_{2}. Then $\|u\|_{L_{1} \cap L_{2}}=\|u\|_{X_{1} \cap X_{2}}, u \in L_{1} \cap L_{2}$, and an elementary argument using the Hahn-Banach theorem shows that also

$$
\begin{equation*}
\|u\|_{L_{1}+L_{2}}=\|u\|_{X_{1}+X_{2}}, \quad u \in L_{1}+L_{2} \tag{2.2}
\end{equation*}
$$

In particular, we need the following special case. Let $B_{1}: \mathcal{D}\left(B_{1}\right) \rightarrow X_{1}$, $B_{2}: \mathcal{D}\left(B_{2}\right) \rightarrow X_{2}$ be closed linear operators with dense domains $\mathcal{D}\left(B_{1}\right) \subseteq$ $X_{1}, \mathcal{D}\left(B_{2}\right) \subseteq X_{2}$ equipped with graph norms

$$
\|u\|_{\mathcal{D}\left(B_{1}\right)}=\|u\|_{X_{1}}+\left\|B_{1} u\right\|_{X_{1}}, \quad\|u\|_{\mathcal{D}\left(B_{2}\right)}=\|u\|_{X_{2}}+\left\|B_{2} u\right\|_{X_{2}},
$$

respectively. Obviously each functional $F \in \mathcal{D}\left(B_{i}\right)^{\prime}, i=1,2$, is given by some pair $f, g \in X_{i}^{\prime}$ in the form $\langle u, F\rangle=\langle u, f\rangle+\left\langle B_{i} u, g\right\rangle$. We assume that the intersection $\mathcal{D}\left(B_{1}\right) \cap \mathcal{D}\left(B_{2}\right)$ is dense in both $\mathcal{D}\left(B_{1}\right)$ and $\mathcal{D}\left(B_{2}\right)$ in the corresponding graph norms. Then (2.2) with $L_{i}=\left\{\left(u, B_{i} u\right) ; u \in\right.$ $\left.\mathcal{D}\left(B_{i}\right)\right\} \subseteq X_{i} \times X_{i}, i=1,2$, and the equality of norms $\|\cdot\|_{\left(X_{1} \times X_{1}\right)+\left(X_{2} \times X_{2}\right)}$ and $\|\cdot\|_{\left(X_{1}+X_{2}\right) \times\left(X_{1}+X_{2}\right)}$ on $\left(X_{1} \times X_{1}\right)+\left(X_{2} \times X_{2}\right)$ yield the following result: For each $u \in \mathcal{D}\left(B_{1}\right)+\mathcal{D}\left(B_{2}\right)$ with decomposition $u=u_{1}+u_{2}, u_{1} \in \mathcal{D}\left(B_{1}\right)$, $u_{2} \in \mathcal{D}\left(B_{2}\right)$, to be more precise, for an element $\left(u_{1}, B_{1} u_{1}\right)+\left(u_{2}, B_{2} u_{2}\right) \in$ $L_{1} \times L_{2} \subset\left(X_{1} \times X_{1}\right)+\left(X_{2} \times X_{2}\right)$,

$$
\begin{equation*}
\|u\|_{\mathcal{D}\left(B_{1}\right)+\mathcal{D}\left(B_{2}\right)}=\left\|u_{1}+u_{2}\right\|_{X_{1}+X_{2}}+\left\|B_{1} u_{1}+B_{2} u_{2}\right\|_{X_{1}+X_{2}} \tag{2.3}
\end{equation*}
$$

For instationary problems we need, given a Banach space X, the usual Banach space $L^{s}(0, T ; X), 0<T \leq \infty$, of measurable X-valued (classes of) functions u with norm

$$
\|u\|_{L^{s}(0, T ; X)}=\left(\int_{0}^{T}\|u(t)\|_{X}^{s} d t\right)^{\frac{1}{s}}, \quad 1 \leq s<\infty
$$

If X is reflexive and $1<s<\infty$, then

$$
L^{s}(0, T ; X)^{\prime}=L^{s^{\prime}}\left(0, T ; X^{\prime}\right), \quad s^{\prime}=\frac{s}{s-1}
$$

with the natural pairing $\langle u, f\rangle_{T}=\int_{0}^{T}\langle u(t), f(t)\rangle d t$, where $\langle\cdot, \cdot\rangle$ denotes the pairing between X and its dual X^{\prime}.

Let $X=L^{q}(\Omega), 1<q<\infty$. Then we use the notation

$$
L^{s, q}:=L^{s}\left(L^{q}(\Omega)\right)=L^{s}\left(0, T ; L^{q}(\Omega)\right), \quad\|u\|_{L^{s, q}}=\left(\int_{0}^{T}\|u\|_{q}^{s} d t\right)^{1 / s}
$$

The pairing of $L^{s}\left(0, T ; L^{q}(\Omega)\right)$ with its dual $L^{s^{\prime}}\left(0, T ; L^{q^{\prime}}(\Omega)\right)$ is given by $\langle u, f\rangle_{T}=\langle u, f\rangle_{\Omega, T}=\int_{0}^{T}\left(\int_{\Omega} u \cdot f d x\right) d t$. Moreover, we see that

$$
L^{s, q} \cap L^{s, 2}=L^{s}\left(0, T ; L^{q} \cap L^{2}\right) \quad \text { and } \quad L^{s, q}+L^{s, 2}=L^{s}\left(0, T ; L^{q}+L^{2}\right)
$$

since

$$
\left(L^{s, q}+L^{s, 2}\right)^{\prime}=\left(L^{s, q}\right)^{\prime} \cap\left(L^{s, 2}\right)^{\prime}=L^{s^{\prime}}\left(0, T ; L^{q^{\prime}} \cap L^{2}\right)=L^{s}\left(0, T ; L^{q}+L^{2}\right)^{\prime} ;
$$

the pairing between $L^{s, q}+L^{s, 2}$ and $\left(L^{s, q}\right)^{\prime} \cap\left(L^{s, 2}\right)^{\prime}$ is given by $\left\langle u_{1}+u_{2}, f\right\rangle_{T}=$ $\left\langle u_{1}, f\right\rangle_{T}+\left\langle u_{2}, f\right\rangle_{T}$ for $u_{1} \in L^{s, q}, u_{2} \in L^{s, 2}, f \in\left(L^{s, q}\right)^{\prime} \cap\left(L^{s, 2}\right)^{\prime}$. Furthermore, we can choose the decomposition $u=u_{1}+u_{2} \in L^{s}\left(0, T ; L^{q}+L^{2}\right)$ in such a way that

$$
\|u\|_{L^{s, q}+L^{s, 2}}=\left\|u_{1}\right\|_{L^{s, q}}+\left\|u_{2}\right\|_{L^{s, 2}} .
$$

We conclude that

$$
\left\|u_{1}+u_{2}\right\|_{L^{s, q}+L^{s, 2}}=\sup \left\{\frac{\mid\left\langle u_{1}+u_{2}, f\right\rangle_{T} \|}{\|f\|_{\left(L^{s, q}\right)^{\prime} \cap\left(L^{s, 2}\right)^{\prime}}} ; 0 \neq f \in L^{s^{\prime}}\left(0, T ; L^{q^{\prime}} \cap L^{2}\right)\right\} .
$$

Let us introduce the short notation

$$
\tilde{L}^{s, q}=\left\{\begin{array}{ll}
L^{s, q} \cap L^{s, 2}, & 2 \leq q<\infty \\
L^{s, q}+L^{s, 2}, & 1<q<2
\end{array},\right.
$$

and note the duality relation $\left(\tilde{L}^{s, q}\right)^{\prime}=\tilde{L}^{s^{\prime}, q^{\prime}}$.
Concerning domains of uniform $C^{1,1}$-type (α, β, K), see Definition 1.1, we have to introduce further notations. Obviously, the axes $e_{i}, i=1, \ldots, n$, of the new coordinate system $\left(y^{\prime}, y_{n}\right)$ may be chosen in such a way that e_{1}, \ldots, e_{n-1} are tangential to $\partial \Omega$ at x_{0}. Hence at $y^{\prime}=0$ the function $h \in C^{1,1}$ satisfies $h\left(y^{\prime}\right)=0$ and $\nabla^{\prime} h\left(y^{\prime}\right)=\left(\partial h / \partial y_{1}, \ldots, \partial h / \partial y_{n-1}\right)\left(y^{\prime}\right)=0$. By a continuity argument, for any given constant $M_{0}>0$, we may choose $\alpha>0$ sufficiently small such that $\|h\|_{C^{1}} \leq M_{0}$ is satisfied.

It is easily shown that there exists a covering of $\bar{\Omega}$ by open balls $B_{j}=$ $B_{r}\left(x_{j}\right)$ of fixed radius $r>0$ with centers $x_{j} \in \bar{\Omega}$, such that with suitable functions $h_{j} \in C^{1,1}$ of type (α, β, K)

$$
\begin{equation*}
\bar{B}_{j} \subset U_{\alpha, \beta, h_{j}}\left(x_{j}\right) \text { if } x_{j} \in \partial \Omega, \quad \bar{B}_{j} \subset \Omega \text { if } x_{j} \in \Omega \tag{2.4}
\end{equation*}
$$

Here j runs from 1 to a finite number $N=N(\Omega) \in \mathbb{N}$ if Ω is bounded, and $j \in \mathbb{N}$ if Ω is unbounded. Moreover, as an important consequence, the covering $\left\{B_{j}\right\}$ of Ω may be constructed in such a way that not more than a fixed number $N_{0}=N_{0}(\alpha, \beta, K) \in \mathbb{N}$ of these balls have a nonempty intersection:

$$
\begin{equation*}
\text { If } 1 \leq j_{1}<j_{2}<\cdots<j_{N} \text { and } N>N_{0}, \text { then } \bigcap_{k=1}^{N} B_{j_{k}}=\emptyset \tag{2.5}
\end{equation*}
$$

Related to the covering $\left\{B_{j}\right\}$, there exists a partition of unity $\left\{\varphi_{j}\right\}, \varphi_{j} \in$ $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, such that

$$
\begin{equation*}
0 \leq \varphi_{j} \leq 1, \quad \operatorname{supp} \varphi_{j} \subset B_{j}, \quad \text { and } \quad \sum_{j=1}^{N} \varphi_{j}=1 \text { or } \sum_{j=1}^{\infty} \varphi_{j}=1 \text { on } \Omega \tag{2.6}
\end{equation*}
$$

The functions φ_{j} may be chosen so that $\left|\nabla \varphi_{j}(x)\right|+\left|\nabla^{2} \varphi_{j}(x)\right| \leq C$ uniformly in j and $x \in \Omega$ with $C=C(\alpha, \beta, K)$.

If Ω is unbounded, then Ω can be represented as the union of an increasing sequence of bounded uniform $C^{1,1}$-domains $\Omega_{k} \subset \Omega, k \in \mathbb{N}$,

$$
\begin{equation*}
\Omega_{1} \subset \cdots \subset \Omega_{k} \subset \Omega_{k+1} \subset \cdots, \quad \Omega=\bigcup_{k=1}^{\infty} \Omega_{k} \tag{2.7}
\end{equation*}
$$

where each Ω_{k} is of the same type $\left(\alpha^{\prime}, \beta^{\prime}, K^{\prime}\right)$, see [13, p.652]. Without loss of generality we assume that $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}, K=K^{\prime}$.

Using the partition of unity $\left\{\varphi_{j}\right\}$ we will perform the analysis of the Stokes operator by starting from well-known results for certain bounded and unbounded domains. For this reason, given $h \in C^{1,1}\left(\mathbb{R}^{n-1}\right)$ satisfying $h(0)=0, \nabla^{\prime} h(0)=0$ and with compact support contained in the $(n-1)$ dimensional ball of radius $r, 0<r=r(\alpha, \beta, K)<\alpha$, and center 0 , we introduce the bounded domain

$$
\begin{aligned}
H & =H_{\alpha, \beta, h ; r} \\
& =\left\{y=\left(y^{\prime}, y_{n}\right) \in \mathbb{R}^{n}: h\left(y^{\prime}\right)-\beta<y_{n}<h\left(y^{\prime}\right),\left|y^{\prime}\right|<\alpha\right\} \cap B_{r}(0)
\end{aligned}
$$

here we assume that $\overline{B_{r}(0)} \subset\left\{y \in \mathbb{R}^{n}:\left|y_{n}-h\left(y^{\prime}\right)\right|<\beta,\left|y^{\prime}\right|<\alpha\right\}$.
On H we consider the classical Sobolev spaces $W^{k, q}(H)$ and $W_{0}^{k, q}(H)$, $k \in \mathbb{N}$, the dual space $W^{-1, q}(H)=\left(W_{0}^{1, q^{\prime}}(H)\right)^{\prime}$ and the space

$$
L_{0}^{q}(H)=\left\{u \in L^{q}(H): \int_{H} u d x=0\right\}
$$

of L^{q}-functions with vanishing mean on H.
Lemma 2.1 Let $1<q<\infty$ and $H=H_{\alpha, \beta, h ; r}$.
(i) There exists a bounded linear operator

$$
R: L_{0}^{q}(H) \rightarrow W_{0}^{1, q}(H)
$$

such that div $\circ R=I$ on $L_{0}^{q}(H)$ and $R\left(L_{0}^{q}(H) \cap W_{0}^{1, q}(H)\right) \subset W_{0}^{2, q}(H)$. Moreover, there exists a constant $C=C(\alpha, \beta, K, q)>0$ such that

$$
\begin{array}{rll}
\|R f\|_{W^{1, q}} \leq C\|f\|_{L^{q}} & \text { for all } & f \in L_{0}^{q}(H) \\
\|R f\|_{W^{2, q}} \leq C\|f\|_{W^{1, q}} & \text { for all } & f \in L_{0}^{q}(H) \cap W_{0}^{1, q}(H) . \tag{2.8}
\end{array}
$$

(ii) There exists $C=C(\alpha, \beta, K, q)>0$ such that for every $p \in L_{0}^{q}(H)$

$$
\begin{equation*}
\|p\|_{q} \leq C\|\nabla p\|_{W^{-1, q}}=C \sup \left\{\frac{|\langle p, \operatorname{div} v\rangle|}{\|\nabla v\|_{q^{\prime}}}: 0 \neq v \in W_{0}^{1, q^{\prime}}(H)\right\} . \tag{2.9}
\end{equation*}
$$

(iii) For given $f \in L^{q}(H)$ let $u \in L_{\sigma}^{q}(H) \cap W_{0}^{1, q}(H) \cap W^{2, q}(H), p \in$ $W^{1, q}(H)$ satisfy the Stokes resolvent equation $\lambda u-\Delta u+\nabla p=f$ with $\lambda \in \mathcal{S}_{\varepsilon}$, $0<\varepsilon<\frac{\pi}{2}$. Moreover, assume that $\operatorname{supp} u \cup \operatorname{supp} p \subset B_{r}(0)$. Then there are constants $\lambda_{0}=\lambda_{0}(q, \alpha, \beta, K)>0, C=C(q, \varepsilon, \alpha, \beta, K)>0$ such that

$$
\begin{equation*}
\|\lambda u\|_{L^{q}(H)}+\|u\|_{W^{2, q}(H)}+\|\nabla p\|_{L^{q}(H)} \leq C\|f\|_{L^{q}(H)} \tag{2.10}
\end{equation*}
$$

if $|\lambda| \geq \lambda_{0}$.
Proof. (i) It is well-known that there exists a bounded linear operator $R: L_{0}^{q}(H) \rightarrow W_{0}^{1, q}(H)$ such that $u=R f$ solves the divergence problem $\operatorname{div} u=f$. Moreover, the estimate $(2.8)_{1}$ holds with $C=C(\alpha, \beta, K, q)>0$, see [10, III, Theorem 3.1]. The second part follows from [10, III, Theorem 3.2].
(ii) A duality argument and (i) yield (ii), see [8], [16, II.2.1].
(iii) We extend u, p by zero so that $(u, \nabla p)$ may be considered as a solution of the Stokes resolvent system in a bent half space; then we refer to [6, Theorem 3.1, (i)].

The next lemma concerns the instationary Stokes systems

$$
\begin{equation*}
u_{t}-\Delta u+\nabla p=f, \quad u(0)=u_{0} \quad \text { or } \quad-u_{t}-\Delta u+\nabla p=f, \quad u(T)=u_{0} \tag{2.11}
\end{equation*}
$$

in the domain H. To describe this crucial result we define the Stokes operator as usual by $A_{q}=-P_{q} \Delta$ with domain $\mathcal{D}\left(A_{q}\right)=L_{\sigma}^{q}(H) \cap W_{0}^{1, q}(H) \cap$ $W^{2, q}(H)$.
Lemma 2.2 Let $0<T<\infty, u_{0} \in \mathcal{D}\left(A_{q}\right)$ and $f \in L^{q}\left(0, T ; L^{q}(H)\right)$ be given. Assume that $u \in L^{q}\left(0, T, \mathcal{D}\left(A_{q}\right)\right), p \in L^{q}\left(0, T ; W^{1, q}(H)\right)$ solve one of the systems in (2.11) and satisfy $\operatorname{supp} u_{0} \cup \operatorname{supp} u(t) \cup \operatorname{supp} p(t) \subseteq B_{r}(0)$ for a.a. $t \in[0, T]$.

Then there is a constant $C=C(q, \alpha, \beta, K, T)>0$ such that

$$
\begin{align*}
& \left\|u_{t}\right\|_{L^{q}\left(0, T ; L^{q}(H)\right)}+\|u\|_{L^{q}\left(0, T ; W^{2, q}(H)\right)}+\|\nabla p\|_{L^{q}\left(0, T ; L^{q}(H)\right)} \\
& \quad \leq C\left(\left\|u_{0}\right\|_{W^{2, q}(H)}+\|f\|_{L^{q}\left(0, T ; L^{q}(H)\right)}\right) . \tag{2.12}
\end{align*}
$$

Proof. In the case $u(0)=u_{0}$ this estimate follows from [17, Theorem 4.1, (4.2) and (4.21')], see also [15]. A careful inspection of the proofs shows that the constant C in (2.12) depends only on the type (α, β, K) and on q, T; actually, it suffices to assume the boundary regularity $C^{1,1}$ since only the boundedness of second order derivatives of functions locally describing the boundary is used.

The second case $-u_{t}-\Delta u+\nabla p=f, u(T)=u_{0}$, can be reduced to the first one by the transformation $\tilde{u}(t)=u(T-t), \tilde{f}(t)=f(T-t)$, $\tilde{p}(t)=p(T-t)$.

We note that the assumption $u_{0} \in \mathcal{D}\left(A_{q}\right)$ is used for simplicity and can be weakened as in Remark 1.5 (i). Since $u_{t} \in L^{q}\left(0, T ; L_{\sigma}^{q}\right)$, the conditions $u(0)=u_{0}$ or $u(T)=u_{0}$, resp., are well defined.

Next we collect several results on Sobolev embedding estimates and on the Stokes operator $A_{q}, 1<q<\infty$, on bounded $C^{1,1}$-domains.

Lemma 2.3 Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded $C^{1,1}$-domain of type (α, β, K).
(i) Let $1<q<\infty$. Then for every $M \in(0,1)$ there exists some constant $C=C(q, M, \alpha, \beta, K)>0$ such that

$$
\begin{equation*}
\|\nabla u\|_{L^{q}} \leq M\left\|\nabla^{2} u\right\|_{L^{q}}+C\|u\|_{L^{q}}, \quad u \in W^{2, q}(\Omega) \tag{2.13}
\end{equation*}
$$

(ii) Let $2 \leq q<\infty$. Then for every $M \in(0,1)$ there exists a constant $C=C(q, M, \alpha, \beta, K)>0$ such that

$$
\begin{equation*}
\|u\|_{L^{q}} \leq M\left\|\nabla^{2} u\right\|_{L^{q}}+C\left(\left\|\nabla^{2} u\right\|_{L^{2}}+\|u\|_{L^{2}}\right), \quad u \in W^{2, q}(\Omega) \tag{2.14}
\end{equation*}
$$

Proof. The proofs of (i), (ii) are easily reduced to the case $u \in W^{2, q}\left(\mathbb{R}^{n}\right)$, using an extension operator on Sobolev spaces the norm of which is shown to depend only on q and (α, β, K). In (ii) we choose an $r \in[2, q)$ such that $\|u\|_{L^{q}} \leq M\left\|\nabla^{2} u\right\|_{L^{r}}+C\|u\|_{L^{r}}$ and use the interpolation inequality

$$
\begin{equation*}
\|v\|_{L^{r}} \leq \gamma\left(\frac{1}{\varepsilon}\right)^{1 / \gamma}\|v\|_{L^{2}}+(1-\gamma) \varepsilon^{1 /(1-\gamma)}\|v\|_{L^{q}} \tag{2.15}
\end{equation*}
$$

with $\gamma \in(0,1), \frac{1}{r}=\frac{\gamma}{2}+\frac{1-\gamma}{q}$, for $v=u$ and $v=\nabla^{2} u$ for suitable $\varepsilon>0$ to get (2.14). For basic details see [1, IV, Theorem 4.28], [9] and [16, II.1.3].

Lemma 2.4 Let $1<q<\infty$ and let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded $C^{1,1}$-domain.
(i) The Stokes operator $A_{q}=-P_{q} \Delta: \mathcal{D}\left(A_{q}\right) \rightarrow L_{\sigma}^{q}(\Omega)$, where $\mathcal{D}\left(A_{q}\right)=$ $L_{\sigma}^{q}(\Omega) \cap W_{0}^{1, q}(\Omega) \cap W^{2, q}(\Omega)$, satisfies the resolvent estimate

$$
\begin{equation*}
\|\lambda u\|_{L^{q}}+\left\|A_{q} u\right\|_{L^{q}} \leq C\|f\|_{L^{q}}, \quad C=C(\varepsilon, q, \Omega)>0 \tag{2.16}
\end{equation*}
$$

where $u \in \mathcal{D}\left(A_{q}\right), \lambda u+A_{q} u=f \in L_{\sigma}^{q}(\Omega), \lambda \in \mathcal{S}_{\varepsilon}, 0<\varepsilon<\frac{\pi}{2}$, and it holds the estimate

$$
\|u\|_{W^{2, q}} \leq C\left\|A_{q} u\right\|_{L^{q}}, \quad C=C(q, \Omega)
$$

Moreover, $\left\langle A_{q} u, v\right\rangle=\left\langle u, A_{q^{\prime}} v\right\rangle$ for all $u \in \mathcal{D}\left(A_{q}\right), v \in \mathcal{D}\left(A_{q^{\prime}}\right)$ and $A_{q}^{\prime}=A_{q^{\prime}}$.
(ii) If $q=2$, then the resolvent problem $\lambda u+A_{2} u=f \in L_{\sigma}^{2}(\Omega), \lambda \in \mathcal{S}_{\varepsilon}$, has a unique solution $u \in \mathcal{D}\left(A_{2}\right)$ satisfying the estimate

$$
\begin{equation*}
\|\lambda u\|_{L^{2}}+\left\|A_{2} u\right\|_{L^{2}} \leq C\|f\|_{L^{2}} \tag{2.17}
\end{equation*}
$$

with the constant $C=1+2 / \cos \varepsilon$ independent of Ω. Moreover, A_{2} is selfadjoint and $\left\langle A_{2} u, u\right\rangle=\left\|A_{2}^{\frac{1}{2}} u\right\|_{L^{2}}^{2}=\|\nabla u\|_{L^{2}}^{2}$ for all $u \in \mathcal{D}\left(A_{2}\right)$.
Proof. For (i) see [6], [11], [17]. For (ii) - including even general unbounded domains - we refer to [16].

Finally we return to the instationary Stokes system for a bounded $C^{1,1}$ domain $\Omega \subseteq \mathbb{R}^{n}$, written in the form of the abstract evolution problem

$$
\begin{equation*}
u_{t}+A_{q} u=f, \quad u(0)=u_{0} \tag{2.18}
\end{equation*}
$$

with initial value $u_{0} \in \mathcal{D}\left(A_{q}\right)$ and $f \in L^{s}\left(0, T ; L_{\sigma}^{q}(\Omega)\right), 1<q, s<\infty$. In view of the variation of constants formula we define the operators $\mathcal{J}_{s, q}, \mathcal{J}_{s, q}^{\prime}$ by

$$
\begin{equation*}
\mathcal{J}_{s, q} f(t)=\int_{0}^{t} e^{-(t-\tau) A_{q}} f(\tau) d \tau, \quad \mathcal{J}_{s, q}^{\prime} f(t)=\int_{t}^{T} e^{-(\tau-t) A_{q}} f(\tau) d \tau \tag{2.19}
\end{equation*}
$$

Lemma 2.5 Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded $C^{1,1}$-domain.
(i) Let $1<q, s<\infty$ and $0<T<\infty$. Then for every initial value $u_{0} \in \mathcal{D}\left(A_{q}\right)$ and external force $f \in L^{s}\left(0, T ; L_{\sigma}^{q}(\Omega)\right)$ the nonstationary Stokes system (2.18) has a unique solution $u \in L^{s}\left(0, T ; \mathcal{D}\left(A_{q}\right)\right)$ given by

$$
u(t)=e^{-t A_{q}} u_{0}+\mathcal{J}_{s, q} f(t)
$$

satisfying the estimate

$$
\begin{equation*}
\left\|u_{t}\right\|_{L^{s, q}}+\|u\|_{L^{s, q}}+\left\|A_{q} u\right\|_{L^{s, q}} \leq C\left(\left\|u_{0}\right\|_{\mathcal{D}\left(A_{q}\right)}+\|f\|_{L^{s, q}}\right) \tag{2.20}
\end{equation*}
$$

with a constant $C=C(q, s, T, \Omega)$. Analogously, the nonstationary Stokes system $-u_{t}+A_{q} u=f, u(T)=u_{0}$, has a unique solution $u \in$ $L^{s}\left(0, T ; \mathcal{D}\left(A_{q}\right)\right)$, namely, $u(t)=e^{-(T-t) A_{q}} u_{0}+\left(\mathcal{J}_{s, q}^{\prime} f\right)(t)$; this solution satisfies (2.20) with the same constant C. Moreover, there holds the duality relation $\left(\mathcal{J}_{s, q}\right)^{\prime}=\mathcal{J}_{s^{\prime}, q^{\prime}}^{\prime}$.
(ii) In the case $q=2$ the constant $C=C(2, s, T, \Omega)=C(s, T)$ in (2.20) does not depend on the domain Ω.

Proof. For (i) see [12], [17]. The assertions on $\mathcal{J}_{s, q}^{\prime}$ follow from the transformation $\tilde{u}(t)=u(T-t), \tilde{f}(t)=f(T-t)$ and by duality arguments. For (ii) - including even general unbounded domains - we refer to [16, IV.1.6].

Note that in (2.16) and (2.20) it is not clear up to now how the constant C will depend on the underlying bounded domain Ω except for $q=2$.

3. Proofs

After a preliminary result on the norm $\|u\|_{W^{2, q}}$ and the graph norm $\|u\|_{\mathcal{D}\left(A_{q}\right)}=\|u\|_{L^{q}}+\left\|A_{q} u\right\|_{L^{q}}, u \in \mathcal{D}\left(A_{q}\right)$, for bounded domains $\Omega \subseteq \mathbb{R}^{n}$ we turn to the proofs of Theorem 1.3, see Subsection 3.1, and of Theorem 1.4, see Subsection 3.2. In both cases we consider first of all bounded domains for $q>2$, then for $1<q<2$, and finally unbounded domains.

Lemma 3.1 Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded $C^{1,1}$-domain of type (α, β, K). Then there exists a constant $C=C(q, \alpha, \beta, K)>0$ such that

$$
\begin{equation*}
C\|u\|_{W^{2, q}} \leq\|u\|_{\mathcal{D}\left(A_{q}\right)}, \quad u \in \mathcal{D}\left(A_{q}\right) \tag{3.1}
\end{equation*}
$$

Proof. We use the system of functions $\left\{h_{j}\right\}, 1 \leq j \leq N$, parametrizing $\partial \Omega$, the covering of Ω by balls $\left\{B_{j}\right\}$, and the partition of unity $\left\{\varphi_{j}\right\}$ as described in Section 2. Let

$$
\begin{equation*}
U_{j}=U_{\alpha, \beta, h_{j}}^{-}\left(x_{j}\right) \cap B_{j} \text { if } x_{j} \in \partial \Omega \text { and } U_{j}=B_{j} \text { if } x_{j} \in \Omega, 1 \leq j \leq N \tag{3.2}
\end{equation*}
$$

Given $f \in L_{\sigma}^{q}(\Omega)$ and $u \in \mathcal{D}\left(A_{q}\right)$ satisfying $A_{q} u=f$, i.e. $-\Delta u+\nabla p=f$, $\operatorname{div} u=0$ in Ω, let $w_{j}=R\left(\left(\nabla \varphi_{j}\right) \cdot u\right) \in W_{0}^{2, q}\left(U_{j}\right)$ be the solution of the divergence equation $\operatorname{div} w_{j}=\operatorname{div}\left(\varphi_{j} u\right)=\left(\nabla \varphi_{j}\right) \cdot u$ in $U_{j}, 1 \leq j \leq N$. Moreover, let $M_{j}=M_{j}(p)$ be the constant such that $p-M_{j} \in L_{0}^{q}\left(U_{j}\right)$. By Lemma 2.1 (i), (ii) and the equation $\nabla p=f+\Delta u$ we conclude that $\left\|w_{j}\right\|_{W^{1, q}\left(U_{j}\right)} \leq C\|u\|_{L^{q}\left(U_{j}\right)},\left\|w_{j}\right\|_{W^{2, q}\left(U_{j}\right)} \leq C\|u\|_{W^{1, q}\left(U_{j}\right)}$ as well as

$$
\left\|p-M_{j}\right\|_{L^{q}\left(U_{j}\right)} \leq C\left(\|f\|_{L^{q}\left(U_{j}\right)}+\|\nabla u\|_{L^{q}\left(U_{j}\right)}\right)
$$

with $C=C(q, \alpha, \beta, K)>0$ independent of j. Finally, let $\lambda_{0}>0$ denote the constant in Lemma 2.1 (iii). Then $\varphi_{j} u-w_{j}$ satisfies the local resolvent equation

$$
\begin{aligned}
& \lambda_{0}\left(\varphi_{j} u-w_{j}\right)-\Delta\left(\varphi_{j} u-w_{j}\right)+\nabla\left(\varphi_{j}\left(p-M_{j}\right)\right) \\
& \quad=\varphi_{j} f+\Delta w_{j}-2 \nabla \varphi_{j} \cdot \nabla u-\left(\Delta \varphi_{j}\right) u+\left(\nabla \varphi_{j}\right)\left(p-M_{j}\right)+\lambda_{0}\left(\varphi_{j} u-w_{j}\right)
\end{aligned}
$$

in U_{j}. By (2.10) with $\lambda=\lambda_{0}$ and the previous a priori estimates we get the local inequalities

$$
\begin{equation*}
\left\|\varphi_{j} \nabla^{2} u\right\|_{L^{q}\left(U_{j}\right)}^{q}+\left\|\varphi_{j} \nabla p\right\|_{L^{q}\left(U_{j}\right)}^{q} \leq C\left(\|f\|_{L^{q}\left(U_{j}\right)}^{q}+\|u\|_{W^{1, q}\left(U_{j}\right)}^{q}\right) \tag{3.3}
\end{equation*}
$$

$1 \leq j \leq N$. Taking the sum over $j=1, \ldots, N$ and exploiting the crucial property of the number N_{0}, see (2.5), we are led to the estimate

$$
\begin{align*}
\left\|\nabla^{2} u\right\|_{L^{q}(\Omega)}^{q}+\|\nabla p\|_{L^{q}(\Omega)}^{q} & =\int_{\Omega}\left(\left(\sum_{j} \varphi_{j}\left|\nabla^{2} u\right|\right)^{q}+\left(\sum_{j} \varphi_{j}|\nabla p|\right)^{q}\right) d x \\
& \leq \int_{\Omega} N_{0}^{\frac{q}{q^{t}}}\left(\sum_{j}\left|\varphi_{j} \nabla^{2} u\right|^{q}+\sum_{j}\left|\varphi_{j} \nabla p\right|^{q}\right) d x \\
& \leq C N_{0}^{\frac{q}{q^{t}}}\left(\sum_{j}\|f\|_{L^{q}\left(U_{j}\right)}^{q}+\sum_{j}\|u\|_{W^{1, q}\left(U_{j}\right)}^{q}\right) \tag{3.4}
\end{align*}
$$

Next we use (2.13) for the term $\|u\|_{W^{1, q}\left(U_{j}\right)}$. Choosing $M>0$ sufficiently small in (2.13), exploiting the absorption principle and again the property of the number $N_{0},(3.4)$ may be simplified to the estimate

$$
\begin{equation*}
\left\|\nabla^{2} u\right\|_{L^{q}(\Omega)} \leq C\left(\|f\|_{L^{q}(\Omega)}+\|u\|_{L^{q}(\Omega)}\right) \tag{3.5}
\end{equation*}
$$

where $C=C(q, \alpha, \beta, K)>0$. Since $f=A_{q} u$, the proof is complete.

3.1. Proof of Theorem 1.3

3.1.1 The Stokes resolvent in a bounded domain Ω when $q \geq 2$

We consider for $\lambda \in \mathcal{S}_{\varepsilon}, 0<\varepsilon<\frac{\pi}{2}$, the resolvent equation

$$
\lambda u+A_{q} u=\lambda u-\Delta u+\nabla p=f \quad \text { in } \quad \Omega
$$

with $f \in L_{\sigma}^{q}(\Omega)$, where $2 \leq q<\infty$. Our aim is to prove for its solution $u \in D\left(A_{q}\right)$ and $\nabla p=\left(I-P_{q}\right) \Delta u$ the estimate

$$
\begin{equation*}
\|\lambda u\|_{L^{q} \cap L^{2}}+\left\|\nabla^{2} u\right\|_{L^{q} \cap L^{2}}+\|\nabla p\|_{L^{q} \cap L^{2}} \leq C\|f\|_{L^{q} \cap L^{2}}, \quad|\lambda| \geq \delta>0 \tag{3.6}
\end{equation*}
$$

with a constant $C=C(q, \varepsilon, \delta, \alpha, \beta, K)>0$. Note that this estimate is wellknown for bounded domains with a constant $C=C(q, \varepsilon, \delta, \Omega)>0$. As in Subsection 3.1 let $w_{j}=R\left(\left(\nabla \varphi_{j}\right) \cdot u\right) \in W_{0}^{2, q}\left(U_{j}\right)$ and choose a constant $M_{j}=M_{j}(p)$ such that $p-M_{j} \in L_{0}^{q}\left(U_{j}\right)$. Then we obtain the local equation

$$
\begin{align*}
& \lambda\left(\varphi_{j} u-w_{j}\right)-\Delta\left(\varphi_{j} u-w_{j}\right)+\nabla\left(\varphi_{j}\left(p-M_{j}\right)\right) \\
& \quad=\varphi_{j} f+\Delta w_{j}-2 \nabla \varphi_{j} \cdot \nabla u-\left(\Delta \varphi_{j}\right) u-\lambda w_{j}+\left(\nabla \varphi_{j}\right)\left(p-M_{j}\right) \tag{3.7}
\end{align*}
$$

Concerning the term λw_{j}, we apply the embedding $W^{1, r}\left(U_{j}\right) \subset L^{q}\left(U_{j}\right)$ for some $r \in[2, q)$, then Lemma 2.1(i) and use the interpolation estimate (2.15) for $v=u$ to get for $M \in(0,1)$ that

$$
\left\|w_{j}\right\|_{L^{q}\left(U_{j}\right)} \leq C_{1}\left\|w_{j}\right\|_{W^{1, r}\left(U_{j}\right)} \leq M\|u\|_{L^{q}\left(U_{j}\right)}+C_{2}\|u\|_{L^{2}\left(U_{j}\right)}
$$

here $C_{i}=C_{i}(M, q, r, \alpha, \beta, K)>0(i=1,2)$. Moreover, $\left\|\nabla^{2} w_{j}\right\|_{L^{q}\left(U_{j}\right)} \leq$ $C\|\nabla u\|_{L^{q}\left(U_{j}\right)}$. For $p-M_{j}$ we use (2.9) and the equation $\nabla p=-\lambda u+\Delta u+f$ to see that

$$
\begin{aligned}
& \left\|p-M_{j}\right\|_{L^{q}\left(U_{j}\right)} \\
& \quad \leq C\left(\|f\|_{L^{q}\left(U_{j}\right)}+\|\nabla u\|_{L^{q}\left(U_{j}\right)}+\sup \left\{\frac{|\langle\lambda u, v\rangle|}{\|\nabla v\|_{q^{\prime}}}: 0 \neq v \in W_{0}^{1, q^{\prime}}\left(U_{j}\right)\right\}\right),
\end{aligned}
$$

where $C=C(q, \alpha, \beta, K)>0$. Again we choose $r \in[2, q)$, use the embedding $W^{1, q^{\prime}}\left(U_{j}\right) \subset L^{r^{\prime}}\left(U_{j}\right)$, then (2.15) for $v=\lambda u$ to get that

$$
\left\|p-M_{j}\right\|_{L^{q}\left(U_{j}\right)} \leq C\left(\|f\|_{L^{q}\left(U_{j}\right)}+\|\nabla u\|_{L^{q}\left(U_{j}\right)}+\|\lambda u\|_{L^{2}\left(U_{j}\right)}\right)+M\|\lambda u\|_{L^{q}\left(U_{j}\right)} .
$$

Finally, we apply to the local resolvent equation (3.7) the estimate (2.10) with λ replaced by $\lambda+\lambda_{0}^{\prime}$ where $\lambda_{0}^{\prime} \geq 0$ is sufficiently large such that $\left|\lambda+\lambda_{0}^{\prime}\right| \geq \lambda_{0}$ for $|\lambda| \geq \delta, \lambda_{0}$ as in (2.10).

Now we combine these estimates and are led to the local inequality

$$
\begin{align*}
& \left\|\lambda \varphi_{j} u\right\|_{L^{q}\left(U_{j}\right)}+\left\|\varphi_{j} \nabla^{2} u\right\|_{L^{q}\left(U_{j}\right)}+\left\|\varphi_{j} \nabla p\right\|_{L^{q}\left(U_{j}\right)} \\
& \quad \leq C\left(\|f\|_{L^{q}\left(U_{j}\right)}+\|u\|_{L^{q}\left(U_{j}\right)}+\|\nabla u\|_{L^{q}\left(U_{j}\right)}+\|\lambda u\|_{L^{2}\left(U_{j}\right)}\right)+M\|\lambda u\|_{L^{q}\left(U_{j}\right)} \tag{3.8}
\end{align*}
$$

with $C=C(M, q, \delta, \varepsilon, \alpha, \beta, K)>0$. Raising each term in (3.8) to the q th power, taking the sum over $j=1, \ldots, N$ in the same way as in (3.3)-(3.5) and using the crucial property (2.5) of the integer N_{0} we get the inequality

$$
\begin{align*}
& \|\lambda u\|_{L^{q}(\Omega)}+\left\|\nabla^{2} u\right\|_{L^{q}(\Omega)}+\|\nabla p\|_{L^{q}(\Omega)} \\
& \quad \leq C\left(\|f\|_{L^{q}(\Omega)}+\|u\|_{L^{q}(\Omega)}+\|\nabla u\|_{L^{q}(\Omega)}+\|\lambda u\|_{L^{2}(\Omega)}\right)+M\|\lambda u\|_{L^{q}(\Omega)} \tag{3.9}
\end{align*}
$$

with $C=C(M, q, \delta, \varepsilon, \alpha, \beta, K)>0,|\lambda| \geq \delta$. For the proof of (3.9) we also used the reverse Hölder inequality $\left(\sum_{j} a_{j}^{q}\right)^{1 / q} \leq\left(\sum_{j} a_{j}^{2}\right)^{1 / 2}$ for the real numbers $a_{j}=\|\lambda u\|_{L^{2}\left(U_{j}\right)}$ valid for $q \geq 2$. Applying (2.13) and choosing M sufficiently small we remove the terms $\|\nabla u\|_{L^{q}(\Omega)}$ and $\|\lambda u\|_{L^{q}(\Omega)}$ from the right-hand side in (3.9) by the absorption principle. The term $\|u\|_{L^{q}(\Omega)}$ is removed with the help of (2.14). Hence we get that

$$
\|\lambda u\|_{q}+\left\|\nabla^{2} u\right\|_{q}+\|\nabla p\|_{q} \leq C\left(\|f\|_{q}+\|\lambda u\|_{2}+\|u\|_{2}+\left\|\nabla^{2} u\right\|_{2}\right) .
$$

Now we combine this inequality with the estimate (2.17) for $|\lambda| \geq \delta$ and we apply (3.1) with $q=2$. This proves the desired estimate (3.6) for $2 \leq q<\infty$.

3.1.2 The case Ω bounded, $1<q<2$

We consider for $f \in L_{\sigma}^{2}+L_{\sigma}^{q}=L_{\sigma}^{q}$ and $\lambda \in \mathcal{S}_{\varepsilon},|\lambda| \geq \delta$, the equation $\lambda u-\Delta u+\nabla p=f$ and its unique solution $u \in \mathcal{D}\left(A_{q}\right)+\mathcal{D}\left(A_{2}\right)=\mathcal{D}\left(A_{q}\right)$, $\nabla p=\left(I-\tilde{P}_{q}\right) \Delta u$. Note that $A_{q}=\tilde{A}_{q}, P_{q}=\tilde{P}_{q}$ and that $C_{0, \sigma}^{\infty}(\Omega)$ is dense in $L_{\sigma}^{q^{\prime}}(\Omega) \cap L_{\sigma}^{2}(\Omega)=L_{\sigma}^{q^{\prime}}(\Omega)$. Using $f=\lambda u-\tilde{P}_{q} \Delta u$, the density of $\mathcal{D}\left(A_{q^{\prime}}\right) \cap \mathcal{D}\left(A_{2}\right)=\mathcal{D}\left(A_{q^{\prime}}\right)$ in $L_{\sigma}^{q^{\prime}} \cap L_{\sigma}^{2}$, (3.6) with q replaced by $q^{\prime}>2$, and setting $g=\lambda v+\tilde{A}_{q^{\prime}} v$ for $v \in \mathcal{D}\left(A_{q^{\prime}}\right) \cap \mathcal{D}\left(A_{2}\right)$ we obtain that

$$
\begin{align*}
\|f\|_{L_{\sigma}^{2}+L_{\sigma}^{q}} & =\sup \left\{\frac{\left|\left\langle\lambda u+\tilde{A}_{q} u, v\right\rangle\right|}{\|v\|_{L_{\sigma}^{q^{\prime}} \cap L_{\sigma}^{2}}} ; 0 \neq v \in \mathcal{D}\left(A_{q^{\prime}}\right) \cap \mathcal{D}\left(A_{2}\right)\right\} \\
& =\sup \left\{\frac{\left|\left\langle u, \lambda v+\tilde{A}_{q^{\prime}} v\right\rangle\right|}{\|v\|_{L_{\sigma}^{q^{\prime}} \cap L_{\sigma}^{2}}} ; 0 \neq v \in \mathcal{D}\left(A_{q^{\prime}}\right) \cap \mathcal{D}\left(A_{2}\right)\right\} \\
& =\sup \left\{\frac{|\langle u, g\rangle|}{\left\|\left(\lambda I-\tilde{P}_{q^{\prime}} \Delta\right)^{-1} g\right\|_{L_{\sigma}^{q^{\prime}} \cap L_{\sigma}^{2}}} ; 0 \neq g \in L_{\sigma}^{q^{\prime}} \cap L_{\sigma}^{2}\right\} \\
& \geq|\lambda| C^{-1} \sup \left\{\frac{|\langle u, g\rangle|}{\|g\|_{L_{\sigma}^{q^{\prime}} \cap L_{\sigma}^{2}}} ; 0 \neq g \in L_{\sigma}^{q^{\prime}} \cap L_{\sigma}^{2}\right\} . \tag{3.10}
\end{align*}
$$

By Section 2 the last term $\sup \{\ldots\}$ in (3.10) defines a norm on $L_{\sigma}^{q}+L_{\sigma}^{2}$ which
is equivalent to the norm $\|\cdot\|_{L_{\sigma}^{q}+L_{\alpha}^{2}}$; the constants in this norm equivalence are related to the norm of $\tilde{P}_{q^{\prime}}$ and depend only on q and (α, β, K), cf. Theorem 1.2. Hence we proved the estimate $\|\lambda u\|_{L_{\sigma}^{q}+L_{\sigma}^{2}} \leq C\|f\|_{L_{\sigma}^{q}+L_{\sigma}^{2}}$ and even

$$
\begin{equation*}
\|\lambda u\|_{L_{\sigma}^{q}+L_{\sigma}^{2}}+\|u\|_{L_{\sigma}^{q}+L_{\sigma}^{2}}+\left\|A_{q} u\right\|_{L_{\sigma}^{q}+L_{\sigma}^{2}} \leq C\|f\|_{L_{\sigma}^{q}+L_{\sigma}^{2}}, \quad \lambda \in \mathcal{S}_{\varepsilon},|\lambda| \geq \delta . \tag{3.11}
\end{equation*}
$$

By virtue of Lemma 3.1 and (2.3) with $B_{1}=A_{q}, B_{2}=A_{2}$, we conclude that $\|u\|_{W^{2, q}+W^{2,2}} \leq c\left(\|u\|_{L_{\sigma}^{q}+L_{\sigma}^{2}}+\left\|A_{q} u\right\|_{L_{\sigma}^{q}+L_{\sigma}^{2}}\right)$ with a constant $c>0$ depending only on q and (α, β, K). Then (3.11) and the identity $\nabla p=$ $f-\lambda u+\Delta u$ lead to the estimate

$$
\|\lambda u\|_{L_{\sigma}^{q}+L_{\sigma}^{2}}+\|u\|_{W^{2, q}+W^{2,2}}+\|\nabla p\|_{L^{q}+L^{2}} \leq C\|f\|_{L_{\sigma}^{q}+L_{\sigma}^{2}}
$$

with $C=C(q, \delta, \varepsilon, \alpha, \beta, K)>0$. Hence we proved for every $q \in(1, \infty)$ the inequality

$$
\begin{equation*}
\|\lambda u\|_{\tilde{L}_{\sigma}^{q}}+\|u\|_{\tilde{W}^{2, q}}+\|\nabla p\|_{\tilde{L}^{q}} \leq C\|f\|_{\tilde{L}_{\sigma}^{q}}, \quad u \in \mathcal{D}\left(\tilde{A}_{q}\right), \tag{3.12}
\end{equation*}
$$

with $C=C(q, \delta, \varepsilon, \alpha, \beta, K)>0$ when $|\lambda| \geq \delta>0$. Now the proof of Theorem 1.3 (i) - (iii) is complete for bounded domains.

3.1.3 The case Ω unbounded

Consider the sequence of bounded subdomains $\Omega_{j} \subseteq \Omega, j \in \mathbb{N}$, of uniform $C^{1,1}$-type as in (2.7), let $f \in \tilde{L}_{\sigma}^{q}(\Omega)$ and $f_{j}:=\left.\tilde{P}_{q} f\right|_{\Omega_{j}}$. Then consider the solution ($u_{j}, \nabla p_{j}$) of the Stokes resolvent equation

$$
\lambda u_{j}-\tilde{P}_{q} \Delta u_{j}=\lambda u_{j}-\Delta u_{j}+\nabla p_{j}=f_{j}, \quad \nabla p_{j}=\left(I-\tilde{P}_{q}\right) \Delta u_{j} \quad \text { in } \Omega_{j} .
$$

From (3.12) we obtain the uniform estimate

$$
\begin{equation*}
\left\|\lambda u_{j}\right\|_{\tilde{L}_{\sigma}^{q}\left(\Omega_{j}\right)}+\left\|u_{j}\right\|_{\tilde{W}^{2, q}\left(\Omega_{j}\right)}+\left\|\nabla p_{j}\right\|_{\tilde{L}^{q}\left(\Omega_{j}\right)} \leq C\|f\|_{\tilde{L}_{\sigma}^{q}(\Omega)} \tag{3.13}
\end{equation*}
$$

with $|\lambda| \geq \delta>0, C=C(q, \delta, \varepsilon, \alpha, \beta, K)>0$. Extending u_{j} and ∇p_{j} by 0 to vector fields on Ω we find, suppressing subsequences, weak limits

$$
u=\mathrm{w}-\lim _{j \rightarrow \infty} u_{j} \quad \text { in } \tilde{L}_{\sigma}^{q}(\Omega), \quad \nabla p=\mathrm{w}-\lim _{j \rightarrow \infty} \nabla p_{j} \quad \text { in } \tilde{L}^{q}(\Omega)^{n}
$$

satisfying $u \in \mathcal{D}\left(\tilde{A}_{q}\right), \lambda u-\Delta u+\nabla p=\lambda u-\tilde{P}_{q} \Delta u=f$ in Ω and the a priori estimates (1.2), (1.3). Note that each ∇p_{j} when extended by 0 need not be a gradient field on Ω; however, by de Rham's argument, the weak limit of the sequence $\left\{\nabla p_{j}\right\}$ is a gradient field on Ω. Hence we solved the Stokes resolvent problem $\lambda u+\tilde{A}_{q} u=\lambda u-\Delta u+\nabla p=f \quad$ in Ω.

Finally, to prove uniqueness of u we assume that there is some $v \in \mathcal{D}\left(\tilde{A}_{q}\right)$ and $\lambda \in \mathcal{S}_{\varepsilon}$ satisfying $\lambda v-\tilde{P}_{q} \Delta v=0$. Given $f^{\prime} \in \tilde{L}^{q^{\prime}}(\Omega)^{n}$ let $u \in \mathcal{D}\left(\tilde{A}_{q^{\prime}}\right)$ be a solution of $\lambda u-\tilde{P}_{q^{\prime}} \Delta u=\tilde{P}_{q^{\prime}} f^{\prime}$. Then

$$
0=\left\langle\lambda v-\tilde{P}_{q} \Delta v, u\right\rangle=\left\langle v,\left(\lambda-\tilde{P}_{q^{\prime}} \Delta\right) u\right\rangle=\left\langle v, \tilde{P}_{q^{\prime}} f^{\prime}\right\rangle=\left\langle v, f^{\prime}\right\rangle
$$

for all $f^{\prime} \in \tilde{L}^{q^{\prime}}(\Omega)^{n}$; hence, $v=0$.
Now Theorem 1.3 (i) - (iii) is proved. The assertions (iv) of this Theorem are proved by standard duality arguments and semigroup theory.

3.2. Proof of Theorem 1.4

Let $0<T<\infty, 1<s, q<\infty$, and consider a domain $\Omega \subseteq$ $\mathbb{R}^{n}, n \geq 2$, of uniform $C^{1,1}$-type (α, β, K). Then we define the subspace $\tilde{L}_{\sigma}^{s, q}:=L^{s}\left(0, T ; \tilde{L}_{\sigma}^{q}(\Omega)\right)$ of $\tilde{L}^{s, q}:=L^{s}\left(0, T ; \tilde{L}^{q}(\Omega)\right)$ with norm $\|\cdot\|_{\tilde{L}_{\sigma}^{s, q}}=$ $\|\cdot\|_{L^{s}\left(0, T ; \tilde{L}^{q}(\Omega)_{\sigma}\right)}$. In addition to the operators $\mathcal{J}_{s, q}, \mathcal{J}_{s, q}^{\prime}$ for bounded domains, see Lemma 2.4, we define $\tilde{\mathcal{J}}_{s, q}, \tilde{\mathcal{J}}_{s, q}^{\prime}$ by

$$
\tilde{\mathcal{J}}_{s, q} f(t)=\int_{0}^{t} e^{-(t-\tau) \tilde{A}_{q}} f(\tau) d \tau, \quad \tilde{\mathcal{J}}_{s, q}^{\prime} f(t)=\int_{t}^{T} e^{-(\tau-t) \tilde{A}_{q}} f(\tau) d \tau
$$

for $f \in \tilde{L}_{\sigma}^{s, q}$ and $0 \leq t \leq T$. Since $\left(\tilde{A}_{q}\right)^{\prime}=\tilde{A}_{q^{\prime}}$, we obtain for all $f \in \tilde{L}_{\sigma}^{s, q}$, $g \in \tilde{L}_{\sigma}^{s^{\prime}, q^{\prime}}$ that

$$
\left\langle\tilde{\mathcal{J}}_{s, q} f, g\right\rangle_{T}=\left\langle f, \tilde{\mathcal{J}}_{s^{\prime}, q^{\prime}}^{\prime} g\right\rangle_{T} .
$$

3.2.1 Maximal regularity in a bounded domain Ω when $s=q \geq 2$

First we consider the case $u_{0}=0$ and $s=q$. Then $u=\tilde{\mathcal{J}}_{q, q} f$ solves the equation $u_{t}+\tilde{A}_{q} u=f, u(0)=0$, and $u=\tilde{\mathcal{J}}_{q, q}^{\prime} f$ is the solution of the system $-u_{t}+\tilde{A}_{q} u=f, u(T)=0$. Our aim is to prove in both cases the estimate (1.7) with a constant $C=C(T, q, \alpha, \beta, K)>0$. Obviously it suffices to consider the case $u=\tilde{\mathcal{J}}_{q, q} f$ since the other case follows using the transformation $\tilde{u}(t)=u(T-t), \tilde{f}(t)=f(T-t)$. By Lemma 2.5 we know
that $u=\tilde{\mathcal{J}}_{q, q}$ solves the equation

$$
u_{t}+\tilde{A}_{q} u=u_{t}-\Delta u+\nabla p=f \in L^{q}\left(0, T ; \tilde{L}_{\sigma}^{q}\right), \quad u(0)=0
$$

with $\nabla p=\left(I-\tilde{P}_{q}\right) \Delta u$, and that u satisfies (2.20) with a constant $C=$ $C(\Omega, q)>0$; note that the norms $\|u\|_{W^{2, q}}$ and $\|u\|_{\mathcal{D}\left(A_{q}\right)}$ are equivalent. Thus it remains to prove that C in (2.20) can be chosen depending only on T, q and (α, β, K).

For this reason, we use the system of functions $\left\{h_{j}\right\}, 1 \leq j \leq N$, the covering of Ω by balls $\left\{B_{j}\right\}$, and the partition of unity $\left\{\varphi_{j}\right\}$ as described in Section 2 as well as the bounded sets $U_{j} \subset B_{j}$, cf. (3.2). On U_{j} define $w=R\left(\left(\nabla \varphi_{j}\right) \cdot u\right) \in L^{q}\left(0, T ; W_{0}^{2, q}\left(U_{j}\right)\right)$, and let $M_{j}=M_{j}(p)$ be the constant depending on $t \in(0, T)$ such that $p-M_{j} \in L^{q}\left(0, T ; L_{0}^{q}\left(U_{j}\right)\right)$, see Lemma 2.1. Since $\operatorname{div} w=\left(\nabla \varphi_{j}\right) \cdot u$ and $\operatorname{div} w_{t}=\left(\nabla \varphi_{j}\right) \cdot u_{t}$ for a.a. $t \in(0, T)$, the term $\left(\varphi_{j} u-w\right)$ solves in U_{j} the local equation

$$
\begin{align*}
& \left(\varphi_{j} u-w\right)_{t}-\Delta\left(\varphi_{j} u-w\right)+\nabla\left(\varphi_{j}\left(p-M_{j}\right)\right) \\
& \quad=\varphi_{j} f-w_{t}+\Delta w-2 \nabla \varphi_{j} \cdot \nabla u-\left(\Delta \varphi_{j}\right) u+\left(\nabla \varphi_{j}\right)\left(p-M_{j}\right) \tag{3.14}
\end{align*}
$$

From (2.8), (2.9) using $w_{t}=R\left(\left(\nabla \varphi_{j}\right) \cdot u_{t}\right)$ and $\nabla p=f-u_{t}+\Delta u$ we will prove for all $\varepsilon \in(0,1)$ the estimates

$$
\begin{align*}
\left\|w_{t}\right\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)} \leq & C\left\|u_{t}\right\|_{L^{q}\left(L^{2}\left(U_{j}\right)\right)}+\varepsilon\left\|u_{t}\right\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)}, \\
\left\|\nabla^{2} w\right\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)} \leq & C\left(\|u\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)}+\|\nabla u\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)}\right) \tag{3.15}\\
\left\|p-M_{j}\right\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)} \leq & C\left(\|f\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)}+\left\|u_{t}\right\|_{L^{q}\left(L^{2}\left(U_{j}\right)\right)}+\|\nabla u\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)}\right) \\
& +\varepsilon\left\|u_{t}\right\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)}
\end{align*}
$$

with $C=C(q, T, \varepsilon, \alpha, \beta, K)>0$. In fact, for the proof of $(3.15)_{1}$, choose $r \in$ $[2, q)$ such that the embedding $W^{1, r}\left(U_{j}\right) \subset L^{q}\left(U_{j}\right)$ holds with an embedding constant $c=c(q, r, \alpha, \beta, K)>0$ independent of j. Moreover,

$$
\left\|w_{t}\right\|_{L^{q}\left(U_{j}\right)} \leq c\left\|w_{t}\right\|_{W^{1, r}\left(U_{j}\right)} \leq c\left\|u_{t}\right\|_{L^{r}\left(U_{j}\right)}
$$

for a.a. $t \in(0, t)$. Then the interpolation inequality (2.15) proves $(3.15)_{1}$, and $(2.8)_{2}$ implies $(3.15)_{2}$. For the proof of $(3.15)_{3}$ we use (2.9), the embed-
$\operatorname{ding} W^{1, q^{\prime}}\left(U_{j}\right) \subset L^{r^{\prime}}\left(U_{j}\right)$ with an embedding constant $c=c(q, r, \alpha, \beta, K)>$ 0 independent of j and apply the previous interpolation argument to u_{t}.

Applying the local estimate (2.12) to (3.14) and using (3.15) we get that

$$
\begin{gathered}
\left\|\varphi_{j} u_{t}\right\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)}+\left\|\varphi_{j} u\right\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)}+\left\|\varphi_{j} \nabla^{2} u\right\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)}+\left\|\varphi_{j} \nabla p\right\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)} \\
\leq C\left(\|f\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)}+\|u\|_{L^{q}\left(W^{1, q}\left(U_{j}\right)\right)}+\left\|u_{t}\right\|_{L^{q}\left(L^{2}\left(U_{j}\right)\right)}\right)+\varepsilon\left\|u_{t}\right\|_{L^{q}\left(L^{q}\left(U_{j}\right)\right)}
\end{gathered}
$$

with $C=C(T, q, \varepsilon, \alpha, \beta, K)>0$. Raising this inequality to its q th power, taking the sum over $j=1, \ldots, N$ and exploiting the crucial property of the number N_{0}, see (2.5), we are led to the estimate

$$
\begin{align*}
& \left\|u_{t}\right\|_{L^{q, q}}^{q}+\|u\|_{L^{q, q}}^{q}+\left\|\nabla^{2} u\right\|_{L^{q, q}}^{q}+\|\nabla p\|_{L^{q, q}}^{q} \\
& =\int_{0}^{T} \int_{\Omega}\left(\left|\sum_{j} \varphi_{j} u_{t}\right|^{q}+\left|\sum_{j} \varphi_{j} u\right|^{q}+\left|\sum_{j} \varphi_{j} \nabla^{2} u\right|^{q}+\left|\sum_{j} \varphi_{j} \nabla p\right|^{q}\right) d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} N_{0}^{\frac{q}{q^{\prime}}}\left(\sum_{j}\left|\varphi_{j} u_{t}\right|^{q}+\sum_{j}\left|\varphi_{j} u\right|^{q}+\sum_{j}\left|\varphi_{j} \nabla^{2} u\right|^{q}+\sum_{j}\left|\varphi_{j} \nabla p\right|^{q}\right) d x d t \\
& \leq C N_{0}^{\frac{q}{q^{\prime}}}\left(\sum_{j}\|f\|_{L^{q}\left(0, T ; L^{q}\left(U_{j}\right)\right)}^{q}+\sum_{j}\|u\|_{L^{q}\left(0, T ; W^{1, q}\left(U_{j}\right)\right)}^{q}\right. \\
& \left.\quad \quad+\sum_{j}\left\|u_{t}\right\|_{L^{q}\left(0, T ; L^{2}\left(U_{j}\right)\right)}^{q}\right)+\varepsilon N_{0}^{\frac{q}{q^{\tau}}} \sum_{j}\left\|u_{t}\right\|_{L^{q}\left(0, T ; L^{q}\left(U_{j}\right)\right)}^{q} . \tag{3.16}
\end{align*}
$$

Choosing $\varepsilon>0$ sufficiently small, exploiting the absorption principle and again the property of the number N_{0}, we may simplify (3.16) to the estimate

$$
\begin{gather*}
\left\|u_{t}\right\|_{L^{q, q}}+\|u\|_{L^{q, q}}+\left\|\nabla^{2} u\right\|_{L^{q, q}}+\|\nabla p\|_{L^{q, q}} \\
\leq C\left(\|f\|_{L^{q, q}}+\|u\|_{L^{q, q}}+\left\|u_{t}\right\|_{L^{q, 2}}\right) \tag{3.17}
\end{gather*}
$$

where $C=C(q, \alpha, \beta, K)>0$; note that in order to deal with the sum of the terms $\left\|u_{t}\right\|_{L^{q}\left(0, T ; L^{2}\left(U_{j}\right)\right)}$ we also used the reverse Hölder inequality. Now, concerning the term $\|u\|_{L^{q, q}}$, we use (2.14) with $\varepsilon>0$ sufficiently small and exploit the absorption principle. Finally we apply Lemma 2.5 (ii), i.e., we add the estimate (2.20) with $q=2$ to (3.17), to prove the estimate (1.7) for
bounded domains when $s=q>2, u(0)=0$. Since the operator norm of \tilde{P}_{q} is bounded by a constant $c=c(q, \alpha, \beta, K)>0$ we get (1.6) for $s=q$, $u(0)=0$.

To prove (1.6) with $u_{0} \in \mathcal{D}\left(\tilde{A}_{q}\right)$ we solve the system $\tilde{u}_{t}+\tilde{A}_{q} \tilde{u}=\tilde{f}$, $\tilde{u}(0)=0$, with $\tilde{f}=f-\tilde{A}_{q} u_{0}$. Then $u(t)=\tilde{u}(t)+u_{0}$ yields the desired solution with $u_{0} \in D\left(\tilde{A}_{q}\right)$. This proves Theorem 1.4 for bounded Ω and $s=q \geq 2$.

3.2.2 The case Ω bounded, $1<s=q<2$

In this case we consider for $f \in L_{\sigma}^{q, q}+L_{\sigma}^{q, 2}=L_{\sigma}^{q, q}$ and the initial value $u_{0}=0$ the Stokes system $u_{t}+\tilde{A}_{q} u=f, u(0)=0$. By Lemma 2.5 there exists a unique solution $u(t)=\mathcal{J}_{q, q} f(t)=\tilde{\mathcal{J}}_{q, q} f(t)$; here we used that $\tilde{P}_{q}=P_{q}$ and $\tilde{A}_{q}=A_{q}$. For the following duality argument we need that the space

$$
C_{0}^{\infty}\left(C_{0, \sigma}^{\infty}\right)=\left\{v \in C_{0}^{\infty}(\Omega \times(0, T)) ; \operatorname{div} v(x, t)=0 \quad \forall t \in(0, T)\right\}
$$

is dense in $L_{\sigma}^{q^{\prime}, q^{\prime}} \cap L_{\sigma}^{q^{\prime}, 2}=\left(L_{\sigma}^{q, q}+L_{\sigma}^{q, 2}\right)^{\prime}$. Then the identity

$$
\left\langle u_{t}+\tilde{A}_{q} u, \tilde{A}_{q^{\prime}} v\right\rangle=\left\langle u,\left(-\partial_{t}+\tilde{A}_{q^{\prime}}\right) \tilde{A}_{q^{\prime}} v\right\rangle=\left\langle\tilde{A}_{q} u,\left(-\partial_{t}+\tilde{A}_{q^{\prime}}\right) v\right\rangle
$$

holds for $u=\mathcal{J}_{q, q} f$ and every $v \in \tilde{A}_{q^{\prime}}^{-1}\left(C_{0}^{\infty}\left(C_{0, \sigma}^{\infty}\right)\right)$, since $\left(\tilde{\mathcal{J}}_{q^{\prime}, q^{\prime}}^{\prime}\right)^{\prime}=\tilde{\mathcal{J}}_{q, q}$. Let $g=-v_{t}+\tilde{A}_{q^{\prime}} v$. Then we obtain by (1.6) with $s=q$ replaced by $s^{\prime}=q^{\prime} \geq 2$ and u replaced by v that

$$
\begin{align*}
\|f\|_{L_{\sigma}^{q, q}+L_{\sigma}^{q, 2}} & =\sup \left\{\frac{\left|\left\langle u_{t}+\tilde{A}_{q} u, \tilde{A}_{q^{\prime}} v\right\rangle_{T}\right|}{\left\|\tilde{A}_{q^{\prime}} v\right\|_{L_{\sigma}^{q^{\prime}, q^{\prime}} \cap L_{\sigma}^{q^{\prime}, 2}}} ; 0 \neq v \in \tilde{A}_{q^{\prime}}^{-1}\left(C_{0}^{\infty}\left(C_{0, \sigma}^{\infty}\right)\right)\right\} \\
& =\sup \left\{\frac{\left|\left\langle\tilde{A}_{q} u, g\right\rangle_{T}\right|}{\left\|\tilde{A}_{q^{\prime}} v\right\|_{L_{\sigma}^{q^{\prime}, q^{\prime}} \cap L_{\sigma}^{q^{\prime}, 2}}} ; 0 \neq v \in \tilde{A}_{q^{\prime}}^{-1}\left(C_{0}^{\infty}\left(C_{0, \sigma}^{\infty}\right)\right)\right\} \\
& \geq \frac{1}{C}\left\|\tilde{A}_{q} u\right\|_{L_{\sigma}^{q, q}+L_{\sigma}^{q, 2}}, \tag{3.18}
\end{align*}
$$

where $C=C\left(T, q^{\prime}, \alpha, \beta, K\right)>0$. Here we used that the estimate (1.6) with q, s replaced by q^{\prime}, s^{\prime} also holds with u, u_{0}, f replaced by $v, v(T)=0, g$ due to the transformation in time in the proof of Lemma 2.5, and exploited the norm equivalence

$$
\|\cdot\|_{L_{\sigma}^{q}+L_{\sigma}^{2}} \sim \sup \left\{\frac{|\langle\cdot, h\rangle|}{\|h\|_{L_{\sigma}^{q^{\prime}} \cap L_{\sigma}^{2}}} ; 0 \neq h \in L_{\sigma}^{q^{\prime}} \cap L_{\sigma}^{2}\right\}
$$

with constants depending only on q and (α, β, K), cf. Theorem 1.2. Hence we obtain the estimate $\left\|\tilde{A}_{q} u\right\|_{L_{\sigma}^{q, q}+L_{\sigma}^{q, 2}} \leq C\|f\|_{L_{\sigma}^{q, q}+L_{\sigma}^{q, 2}}$, and it follows

$$
\begin{equation*}
\left\|u_{t}\right\|_{L_{\sigma}^{q, q}+L_{\sigma}^{q, 2}}+\left\|\tilde{A}_{q} u\right\|_{L_{\sigma}^{q, q}+L_{\sigma}^{q, 2}} \leq C\|f\|_{L_{\sigma}^{q, q}+L_{\sigma}^{q, 2}} \tag{3.19}
\end{equation*}
$$

Since $\|u\|_{W^{2, q}+W^{2,2}} \leq c\left(\|u\|_{L_{\sigma}^{q}+L_{\sigma}^{2}}+\left\|\tilde{A}_{q} u\right\|_{L_{\sigma}^{q}+L_{\sigma}^{2}}\right)$ with a constant $c>0$ depending only on q and $(\alpha, \beta, K),(3.19)$ and the identity $\nabla p=f-u_{t}+\Delta u$ lead to the estimate

$$
\begin{equation*}
\left\|u_{t}\right\|_{L_{\sigma}^{q, q}+L_{\sigma}^{q, 2}}+\|u\|_{L^{q}\left(0, T ; W^{2, q}+W^{2,2}\right)}+\|\nabla p\|_{L^{q, q}+L^{q, 2}} \leq C\|f\|_{L_{\sigma}^{q, q}+L_{\sigma}^{q, 2}} \tag{3.20}
\end{equation*}
$$

with $C=C(q, \varepsilon, \alpha, \beta, K)>0$.
Now the proof of Theorem 1.4 is complete for bounded domains in the case $s=q, u(0)=0$. The case $u_{0} \in \mathcal{D}\left(\tilde{A}_{q}\right)$ is treated as in 3.3.1.

3.2.3 The case Ω unbounded

Consider the sequence of bounded subdomains $\Omega_{j} \subseteq \Omega, j \in \mathbb{N}$, of uniform $C^{1,1}$-type as in (2.7), let $f \in \tilde{L}_{\sigma}^{q, q}$ and $f_{j}:=\left.\tilde{P}_{q}^{(j)} f\right|_{\Omega_{j}}$ where $\tilde{P}_{q}^{(j)}$ denotes the Helmholtz projection in $\tilde{L}^{q}\left(\Omega_{j}\right)$. Then consider the solution $\left(u_{j}, \nabla p_{j}\right)$ of the instationary Stokes equation
$\partial_{t} u_{j}-\tilde{P}_{q} \Delta u_{j}=\partial_{t} u_{j}-\Delta u_{j}+\nabla p_{j}=f_{j}, \quad \nabla p_{j}=\left(I-\tilde{P}_{q}\right) \Delta u_{j} \quad$ in $\quad \Omega_{j} \times(0, T)$
with initial condition $u_{j}(0)=0$. From (1.6) with $s=q$ we obtain the estimate

$$
\begin{equation*}
\left\|\partial_{t} u_{j}\right\|_{\tilde{L}^{q, q}}+\left\|u_{j}\right\|_{L^{q}\left(0, T ; \tilde{W}^{2, q}\left(\Omega_{j}\right)\right)}+\left\|\nabla p_{j}\right\|_{\tilde{L}^{q, q}} \leq C\|f\|_{\tilde{L}_{\sigma}^{q, q}} \tag{3.21}
\end{equation*}
$$

on Ω_{j} with $C=C(T, q, \alpha, \beta, K)>0$ independent of $j \in \mathbb{N}$. Extending u_{j} and ∇p_{j} for a.a. $t \in(0, T)$ from Ω_{j} by 0 to vector fields on Ω we find, suppressing subsequences, weak limits

$$
u=\mathrm{w}-\lim _{j \rightarrow \infty} u_{j} \quad \text { in } \tilde{L}_{\sigma}^{q, q}(\Omega), \quad \nabla p=\mathrm{w}-\lim _{j \rightarrow \infty} \nabla p_{j} \quad \text { in } \tilde{L}^{q, q}(\Omega)
$$

satisfying $u \in L^{q}\left(0, T ; \tilde{L}_{\sigma}^{q}(\Omega), \partial_{t} u-\Delta u+\nabla p=\partial_{t} u+\tilde{A}_{q} u=f\right.$ in $\Omega \times(0, T)$ and the a priori estimate (1.6) with $u_{0}=0$; it follows (1.7) for this case. Hence we solved the instationary Stokes equation $\partial_{t} u+\tilde{A}_{q} u=\partial_{t} u-\Delta u+$ $\nabla p=f, u(0)=0$, in $\Omega \times(0, T)$ and proved (1.6), (1.7).

Up to now we considered only the case when $s=q, u(0)=0$. However, an abstract extrapolation argument shows that the validity of (1.6) with $s=q$ immediately extends to all $s \in(1, \infty)$, see $[2$, p. 191] and [5, (1.12)], where A has to be replaced by $-\tilde{A}_{q}-\delta I$ with $\delta>0$ as in (1.4). The case $u(0)=u_{0} \neq 0$ can be reduced to the case $u_{0}=0$ in the same way as before.

Finally, to prove uniqueness let $v \in L^{s}\left(0, T ; \tilde{W}^{2, q}\right)$ satisfy $\partial_{t} v+\tilde{A}_{q} v=0$ and $v(0)=0$. Given $f^{\prime} \in \tilde{L}^{s^{\prime}, q^{\prime}}$ let $u \in L^{s^{\prime}}\left(0, T ; \tilde{W}^{2, q^{\prime}}\right)$ be a solution of $-u_{t}+\tilde{A}_{q^{\prime}} u=\tilde{P}_{q^{\prime}} f^{\prime}, u(T)=0$. Then

$$
0=\left\langle v_{t}+\tilde{A}_{q} v, u\right\rangle_{T}=\left\langle v,\left(-\partial_{t}+\tilde{A}_{q^{\prime}}\right) u\right\rangle_{T}=\left\langle v, \tilde{P}_{q^{\prime}} f^{\prime}\right\rangle_{T}=\left\langle v, f^{\prime}\right\rangle_{T}
$$

for all $f^{\prime} \in \tilde{L}^{s^{\prime}, q^{\prime}}$; hence, $v=0$.
Now Theorem 1.4 is proved.
Acknowledgement The authors are grateful to the referee for several improvements of the paper, in particular in Lemma 3.1.

References

[1] Adams R.A., Sobolev Spaces. Academic Press, New York, 1975.
[2] Amann H., Linear and Quasilinear Parabolic Problems, Vol. I: Abstract Linear Theory. Birkhäuser Verlag Basel, 1995.
[3] Bergh J. and Löfström J., Interpolation Spaces. Springer-Verlag, New York, 1976.
[4] Bogovski M.E., Decomposition of $L_{p}\left(\Omega, \mathbb{R}^{n}\right)$ into the direct sum of subspaces of solenoidal and potential vector fields. Soviet Math. Dokl. 33 (1986), 161165.
[5] Cannarsa P. and Vespri V., On maximal L^{p} regularity for the abstract Cauchy problem. Boll. Un. Mat. Ital. (6) 5 (1986), 165-175.
[6] Farwig R. and Sohr H., Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Japan 46 (1994), 607-643.
[7] Farwig R., Kozono H. and Sohr H., An L^{q}-approach to Stokes and NavierStokes equations in general domains. Acta Math. 195 (2005), 21-53.
[8] Farwig R., Kozono H. and Sohr H., On the Helmholtz decomposition in general unbounded domains. Arch. Math. 88 (2007), 239-248.
[9] Friedman A., Partial Differential Equations. Holt, Rinehart and Winston, New York, 1969.
[10] Galdi G.P., An Introduction to the Mathematical Theory of the NavierStokes Equations, Vol. I, Linearized Steady Problems. Springer-Verlag, New York, 1994.
[11] Giga Y., Analyticity of the semigroup generated by the Stokes operator in L_{r}-spaces. Math. Z. 178 (1981), 297-265
[12] Giga Y. and Sohr H., Abstract L^{p}-estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102 (1992), 72-94.
[13] Heywood J., The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980), 639-681.
[14] Maslennikova V.N. and Bogovski M.E., Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries. Rend. Sem. Mat. Fis. Milano. LVI (1986), 125-138.
[15] Maremonti P., Solonnikov V.A., On nonstationary Stokes problem in exterior domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 395-449.
[16] Sohr H., The Navier-Stokes Equations. Birkhäuser Verlag, Basel, 2001.
[17] Solonnikov V.A., Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math. 8 (1977), 467-529.
[18] Triebel H., Interpolation Theory, Function Spaces, Differential Operators. North-Holland, 1978.

Reinhard Farwig
Technische Universität Darmstadt
Fachbereich Mathematik
64289 Darmstadt, Germany
E-mail: farwig@mathematik.tu-darmstadt.de
Hideo Kozono
Tôhoku University
Mathematical Institute
Sendai, 980-8578 Japan
E-mail: kozono@math.tohoku.ac.jp
Hermann Sohr
Universität Paderborn
Fakultät für Elektrotechnik
Informatik und Mathematik
33098 Paderborn, Germany
E-mail: hsohr@math.uni-paderborn.de

