Affine surfaces which admit several affine immersions in \mathbb{R}^{3}

Olivier Birembaux

(Received July 24, 2006; Revised December 22, 2008)

Abstract

Let $\mathcal{F}: \Sigma \longrightarrow \mathbb{R}^{3}$ be a Blaschke immersion of an affine surface (Σ, ∇) with a positive definite affine fundamental form such that $\operatorname{dim} \operatorname{Im} R=1$ where R is the curvature tensor. Suppose that there exists another immersion of the same surface with the same induced affine connection ∇ which is not affine equivalent to the first one. Then we give explicitely \mathcal{F}. Therefore all immersions which admit another immersion which is not affine equivalent to the original one are classified.

Key words: Blaschke immersion, affine surface.

1. Introduction

For a long time, mathematicians have been interested in the study of immersions of hypersurfaces and in particular in the problem of rigidity of such immersions. Around 1980, K. Nomizu posed the following global problem in affine differential geometry:
Problem a Assume that $f: M \longrightarrow \mathbb{R}^{n+1}$ and $g: M \longrightarrow \mathbb{R}^{n+1}$ are two ovaloids (i.e. connected, compact non degenerate hypersurfaces) with the same induced affine Blaschke connection. Are both immersions affine equivalent?

In the case that $n=2$, K. Nomizu and B. Opozda (see [4]) proved the following theorems; given a positive answer to Problem a, under some additional assumptions:

Theorem a Let M be a connected, compact orientable 2-manifold and let $f, \bar{f}: M \longrightarrow \mathbb{R}^{3}$ be two nondegenerate embeddings with equiaffine transversal vector fields $\xi, \bar{\xi}$. Assume that $\operatorname{det} S$ (where S is the shape operator) is nowhere 0 . If the induced connections coincide and if $\operatorname{det} S=\operatorname{det} \bar{S}$ at every point, then f and \bar{f} are affine equivalent.

Theorem b Let M be a connected, compact orientable 2-manifold and let

[^0]$f, \bar{f}: M \longrightarrow \mathbb{R}^{3}$ be a nondegenerate embedding and a nondegenerate immersion, respectively, with equiaffine transversal vector fields $\xi, \bar{\xi}$. Assume that they have the same induced connection ∇ with nondegenerate Ricci tensor. If $\operatorname{tr} S=\operatorname{tr} \bar{S}$ and if $\operatorname{det} S \leq \operatorname{det} \bar{S}$, then f and \bar{f} are affine equivalent.

And U. Simon (see [7]) showed a theorem which for Blaschke immersions reduces to:

Theorem c Let $x: M \longrightarrow \mathbb{R}^{3}$ and $x^{\prime}: M \longrightarrow \mathbb{R}^{3}$ be two ovaloids in \mathbb{R}^{3}. Assume that the Blaschke connections induced by x and x^{\prime} coincide. Then $x: M \longrightarrow \mathbb{R}^{3}$ and $x^{\prime}: M \longrightarrow \mathbb{R}^{3}$ are affine equivalent.

Note that as in Blaschke geometry the volume form is always parallel, the previous theorem solves the case $n=2$ for ovaloids and up to now, the case $n \geq 3$ remains open.

In this paper we are interested in a local analog of this previous problem.
Problem b Assume that $f: M \longrightarrow \mathbb{R}^{n+1}$ and $g: M \longrightarrow \mathbb{R}^{n+1}$ are two positive definite affine immersions with the same induced affine Blaschke connection. Is it possible to find an affine transformation A of \mathbb{R}^{n+1} such that $f=A \circ g$?
K. Nomizu and L. Vrancken (see [6]) answered positively in case $n \geq 3$ and the dimension of the image of the curvature tensor is at least equal to $2(\operatorname{dim} \operatorname{Im} R \geq 2)$. In 2003, L. Vrancken solved the case $n \geq 3$ and $\operatorname{dim} \operatorname{Im} R=1$ (see [8]). In this case, such immersions are generically locally rigid and he gave a complete description of non locally rigid immersions in terms of differential equations of Monge-Ampere type.

We study the case $n=2$ and $\operatorname{dim} \operatorname{Im} R=1$. We consider an affine surface (Σ, ∇) with a positive definite affine fundamental form and an immersion $\mathcal{F}: \Sigma \longrightarrow \mathbb{R}^{3}$. Since $\operatorname{dim} \operatorname{Im} R=1$, we can choose X_{1} and X_{2} orthonormally, with respect to the affine metric introduced by \mathcal{F}, such that we have $R\left(X_{1}, X_{2}\right) X_{1}=0$ and $R\left(X_{1}, X_{2}\right) X_{2}=\lambda_{1} X_{1}$, where λ_{1} is a non vanishing function defined on the surface. This is equivalent to have $S_{1} X_{2}=0$ and $S_{1} X_{1}=\lambda_{1} X_{1}$ by using the Gauss equation. The aim of this paper is to give a description of affine surfaces which admit several immersions in \mathbb{R}^{3} with the same induced connection, by giving the position vector for the immersion \mathcal{F}. More precisely we have the following theorems:

Theorem 1 Let $\mathcal{F}: \Sigma \longrightarrow \mathbb{R}^{3}$ be a Blaschke immersion with induced connection ∇, positive definite affine fundamental form h_{1} such that the image of the curvature tensor has dimension 1. Suppose that there exists another Blaschke immersion with the same induced connection ∇, positive definite affine fundamental form h_{2} such that $h_{2}\left(X_{1}, X_{2}\right) \neq 0$, then under a suitable choice of coordinates (u, v) on Σ, the immersion \mathcal{F} is given by the formulas:
if $\lambda_{1}>0$, we have $\Delta\left(\frac{1}{\lambda_{1}}\right)=-\frac{1}{\lambda_{1}}$ and

$$
\mathcal{F}=\left(\begin{array}{c}
\int_{0}^{u} \lambda_{1}(\widetilde{u}, v)^{-1} \cos (\widetilde{u}) d \widetilde{u}-f_{1}(v) \\
\int_{0}^{u} \lambda_{1}(\widetilde{u}, v)^{-1} \sin (\widetilde{u}) d \widetilde{u}+f_{2}(v) \\
v
\end{array}\right)
$$

if $\lambda_{1}<0$, we have $\Delta\left(\frac{1}{\lambda_{1}}\right)=\frac{1}{\lambda_{1}}$ and

$$
\mathcal{F}=\left(\begin{array}{c}
\int_{0}^{u}-\lambda_{1}(\widetilde{u}, v)^{-1} \cosh (\widetilde{u}) d \widetilde{u}+f_{1}(v) \\
\int_{0}^{u}-\lambda_{1}(\widetilde{u}, v)^{-1} \sinh (\widetilde{u}) d \widetilde{u}-f_{2}(v) \\
v
\end{array}\right)
$$

where f_{1}, f_{2} are functions satisfying $f_{1}^{\prime \prime}(v)=\frac{\partial \lambda_{1}^{-1}}{\partial u}(0, v), f_{2}^{\prime \prime}(v)=\lambda_{1}^{-1}(0, v)$.
Theorem 2 Let $\mathcal{F}: \Sigma \longrightarrow \mathbb{R}^{3}$ be a Blaschke immersion with induced connection ∇, positive definite affine fundamental form h_{1} such that the image of the curvature tensor has dimension 1. Suppose that there exists another Blaschke immersion with the same induced connection ∇, positive definite affine fundamental form h_{2} such that $h_{2}\left(X_{1}, X_{2}\right)=0$. Then under a suitable choice of coordinates (u, v) on Σ, either there exist a non degenerate equiaffine curve γ in \mathbb{R}^{2}, constant vectors k_{1}, k_{2}, e and constants d_{1}, d_{2} such that the immersion \mathcal{F} is given by one of the following expressions:

$$
\mathcal{F}(u, v)=\gamma(u)+\frac{e}{2} v^{2}+k_{1} v
$$

$$
\mathcal{F}(u, v)=\left(d_{1} v+d_{2}\right) \gamma(u)+\frac{e}{6 d_{1}^{2}}\left(d_{1} v+d_{2}\right)^{3}+k_{2} v
$$

or there exist a non degenerate centroaffine curve $\widetilde{\gamma}=\left(\gamma_{1}, \gamma_{2}, 0\right)$, constants d_{1}, d_{2}, d and e such that \mathcal{F} is given by one of the following expressions:

$$
\begin{aligned}
\mathcal{F}(u, v)= & \left(\left(d_{1} \exp (\sqrt{d} v)+d_{2} \exp (-\sqrt{d} v)\right) \gamma_{1}(u)\right. \\
& \left.\left(d_{1} \exp (\sqrt{d} v)+d_{2} \exp (-\sqrt{d} v)\right) \gamma_{2}(u), e v\right) \\
\mathcal{F}(u, v)= & \left(\left(d_{1} \cos (\sqrt{-d} v)+d_{2} \sin (\sqrt{-d} v)\right) \gamma_{1}(u),\right. \\
& \left.\left(d_{1} \cos (\sqrt{-d} v)+d_{2} \sin (\sqrt{-d} v)\right) \gamma_{2}(u), e v\right) .
\end{aligned}
$$

2. Preliminaries

In this section, we will introduce all the material we need. For more details see [5]. Let $f: M \longrightarrow\left(\mathbb{R}^{n+1}, D\right)$ be an immersion of an n dimensional manifold in the affine space \mathbb{R}^{n+1} equipped with its usual flat affine connection D.

For each point of M we can choose locally a transversal vector field ξ. Then we have a torsion free induced connection ∇ satisfying:

$$
\begin{equation*}
D_{X} f_{*}(Y)=f_{*}\left(\nabla_{X} Y\right)+h(X, Y) \xi \quad \text { (Gauss formula) }, \tag{1}
\end{equation*}
$$

where h is a symmetric bilinear function on the space $\mathcal{X}(M)$ of vector fields on M. To simplify, we will write $D_{X} Y=\nabla_{X} Y+h(X, Y) \xi$.

Definition 2.1 This symmetric bilinear form h is called the affine fundamental form of f with respect to ξ.

Remark 2.1 Each choice of a transversal ξ gives us such form h.
For all $X \in \mathcal{X}(M)$ we have:

$$
\begin{equation*}
D_{X} \xi=-f_{*}(S X)+\tau(X) \xi \quad(\text { Weingarten formula }) \tag{2}
\end{equation*}
$$

where S is a tensor of type $(1,1)$, called the affine shape operator and τ is a 1-form called the transversal connection form. To simplify, we will write $D_{X} \xi=-S X+\tau(X) \xi$.

On \mathbb{R}^{n+1} we have a parallel volume element Ω given by the determinant. Parallel means that $D_{X} \Omega=0$ for all vector fields on \mathbb{R}^{n+1}. Now we suppose
that h is nondegenerate. This condition is independent of the choice of ξ.
In this case, we say that the immersion is nondegenerate. In fact h is a pseudo-riemannian metric called the affine metric. We define a volume element ω on M by setting $\omega=i_{\xi} \Omega$, where i is the interior product.

Proposition 2.1 (see [5]) We have $\nabla_{X} \omega=\tau(X) \omega$ for all X in $\mathcal{X}(M)$. Consequently, the following conditions are equivalent:
(a) $\nabla \omega=0$,
(b) $\tau=0$, that is $D_{X} \xi$ is tangential for all X in $\mathcal{X}(M)$.

Definition 2.2 We say that f is an equiaffine immersion if condition (b) is verified. In this case ξ is said to be equiaffine.

Remark 2.2 Every hypersurface immersion admits locally an equiaffine transversal vector field ξ.

In this case, we have the following equations:
Gauss equation

$$
\begin{equation*}
R(X, Y) Z=h(Y, Z) S X-h(X, Z) S Y \tag{3}
\end{equation*}
$$

Codazzi equations for h and S

$$
\begin{align*}
\left(\nabla_{X} h\right)(Y, Z) & =\left(\nabla_{Y} h\right)(X, Z) \tag{4}\\
\left(\nabla_{X} S\right)(Y) & =\left(\nabla_{Y} S\right)(X) \tag{5}
\end{align*}
$$

Ricci equation

$$
\begin{equation*}
h(X, S Y)-h(S X, Y)=0 \tag{6}
\end{equation*}
$$

Relative to a coordinate system $\left(x^{1}, x^{2}, \ldots, x^{n}\right)$, we can express the components of h as follows: $h_{i j}=h\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)$. If the immersion is nondegenerate, we define the volume element by $\omega_{h}\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)=\sqrt{\left|\operatorname{det}\left(h_{i j}\right)\right|}$. Let (c): $\omega=\omega_{h}$.

There exists a unique choice of ξ, such that conditions (b) and (c) hold. In this case, ξ is called the affine normal and f is a Blaschke immersion.

Definition 2.3 Let $f: M \longrightarrow \mathbb{R}^{n+1}$ and $g: M \longrightarrow \mathbb{R}^{n+1}$ be two immersions. We say that f and g are affine equivalent or affine congruent if there
exists an affine transformation A of \mathbb{R}^{n+1} such that $f=A \circ g$.

3. Computations

Assume now that we have two Blaschke immersions of the same surface $\mathcal{F}: \Sigma \longrightarrow \mathbb{R}^{3}$ and $\mathcal{G}: \Sigma \longrightarrow \mathbb{R}^{3}$, which are not affine congruent, but which have the same induced connection ∇. We also assume that the dimension of the image of the curvature tensor R is 1 . We denote by ξ the affine normal, h_{1} the nondegenerate positive definite affine metric, S_{1} the affine shape operator and ω_{1} the volume form for the first immersion \mathcal{F}. We use the notations $\widetilde{\xi}, h_{2}, S_{2}$ and ω_{2} for the second one \mathcal{G}. We denote by X_{1} and X_{2} a basis of vector fields on Σ.

The volume forms ω_{1} and ω_{2} are parallel with respect to ∇; that is $\nabla_{X} \omega_{i}\left(X_{1}, X_{2}\right)=0(i=1,2)$. Hence ω_{2} is a constant multiple of ω_{1}. By using a homothety, we can suppose that $\omega_{1}=\omega_{2}$. So, we will write the volume form ω, without indices.

We pose:

$$
\begin{aligned}
& \nabla_{X_{1}} X_{1}=a_{1} X_{1}+a_{2} X_{2} \\
& \nabla_{X_{1}} X_{2}=a_{3} X_{1}+a_{4} X_{2} \\
& \nabla_{X_{2}} X_{1}=a_{5} X_{1}+a_{6} X_{2} \\
& \nabla_{X_{2}} X_{2}=a_{7} X_{1}+a_{8} X_{2}
\end{aligned}
$$

where the a_{i} are functions defined on the surface.
As $\operatorname{dim} \operatorname{Im} R=1$, choosing X_{1} and X_{2} as indicated before, we have $h_{1}\left(X_{1}, X_{1}\right)=h_{1}\left(X_{2}, X_{2}\right)=1, h_{1}\left(X_{1}, X_{2}\right)=0, S_{1} X_{2}=0$ and $S_{1} X_{1}=$ $\lambda_{1} X_{1}$.

By using the Codazzi equations for h_{1} and $S_{1}((4)$ and (5)) and $\nabla \omega=0$, a straightforward computation shows:

$$
\begin{aligned}
& \nabla_{X_{1}} X_{1}=a_{1} X_{1}+a_{2} X_{2} \\
& \nabla_{X_{1}} X_{2}=a_{3} X_{1}-a_{1} X_{2} \\
& \nabla_{X_{2}} X_{1}=\frac{1}{2}\left(a_{2}+a_{3}\right) X_{1} \\
& \nabla_{X_{2}} X_{2}=-2 a_{1} X_{1}-\frac{1}{2}\left(a_{2}+a_{3}\right) X_{2}
\end{aligned}
$$

with $X_{2}\left(\lambda_{1}\right)=-a_{3} \lambda_{1}$.
Now, we look at the second immersion in order to deduce more informations. We pose $b_{11}=h_{2}\left(X_{1}, X_{1}\right), b_{22}=h_{2}\left(X_{2}, X_{2}\right)$ and $b_{12}=h_{2}\left(X_{1}, X_{2}\right)$. In this case, in general, $b_{12} \neq 0$ and we have the equation $b_{11} b_{22}-b_{12}^{2}=1$. Since the two immersions have the same connection, they have the same curvature tensor R. Using (3) for the second immersion, we find $S_{2} X_{1}=$ $\lambda_{1} b_{11} X_{1}$ and $S_{2} X_{2}=\lambda_{1} b_{12} X_{1}$.

Writing (5) for the second immersion in the direction of X_{1}, we get:

$$
X_{1}\left(\lambda_{1} b_{12}\right)+\lambda_{1} a_{1} b_{12}-a_{3} \lambda_{1} b_{11}-a_{4} \lambda_{1} b_{12}=X_{2}\left(\lambda_{1} b_{11}\right)
$$

so $X_{1}\left(\lambda_{1}\right) b_{12}+\lambda_{1} a_{1} b_{12}-a_{3} \lambda_{1} b_{11}+a_{1} \lambda_{1} b_{12}+\lambda_{1} X_{1}\left(b_{12}\right)-\lambda_{1} X_{2}\left(b_{11}\right)=$ $-\lambda_{1} a_{3} b_{11}$.

Using (4), we have $X_{1}\left(b_{12}\right)+a_{2}\left(b_{11}-b_{22}\right)-X_{2}\left(b_{11}\right)=0$.
Then

$$
\begin{equation*}
X_{1}\left(\lambda_{1}\right) b_{12}+2 \lambda_{1} a_{1} b_{12}+\lambda_{1} a_{2}\left(b_{22}-b_{11}\right)=0 \tag{7}
\end{equation*}
$$

Using (5) in the direction of X_{2}, we obtain $\lambda_{1} b_{12} a_{2}=0$.
Thus we get $a_{2} b_{12}=0$.
Lemma 3.1 We always have $a_{2}=0$.
Proof. The case $b_{12} \neq 0$ is obvious. Now suppose that $b_{12}=0$. We have $X_{1}\left(\lambda_{1}\right) b_{12}+2 \lambda_{1} a_{1} b_{12}+\lambda_{1} a_{2}\left(b_{22}-b_{11}\right)=0$. So $a_{2}\left(b_{11}-b_{22}\right)=0$.

If $b_{11}=b_{22}$, since $b_{12}=0$, we have $b_{11}=b_{22}=1$ and the second immersion equals to the first one (see [3]). Hence $b_{11} \neq b_{22}$ and we find $a_{2}=0$.

To further simplify the problem, we now introduce special isothermal coordinates. It is well known that general isothermal coordinates exist for 2 dimensional regular surfaces (see [2]). However we want to find isothermal coordinate vector fields $\frac{\partial}{\partial u}$ and $\frac{\partial}{\partial v}$ such that $\frac{\partial}{\partial u}$ is a multiple of X_{1} and $\frac{\partial}{\partial v}$ is a multiple of X_{2}. The existence of such coordinates is equivalent to the existence of a positive function ρ such that $\left[\rho X_{1}, \rho X_{2}\right]=0$. As

$$
\begin{aligned}
{\left[\rho X_{1}, \rho X_{2}\right] } & =\nabla_{\rho X_{1}} \rho X_{2}-\nabla_{\rho X_{2}} \rho X_{1} \\
& =\rho\left[\left(X_{1}(\rho)-\rho a_{1}\right) X_{2}+\left(\rho \frac{1}{2} a_{3}-X_{2}(\rho)\right) X_{1}\right]
\end{aligned}
$$

such isothermal coordinates exist if and only if we can find a function ρ satisfying the following differential equations:

$$
\left\{\begin{array}{l}
X_{1}(\ln (\rho))=a_{1} \tag{8}\\
X_{2}(\ln (\rho))=\frac{1}{2} a_{3}
\end{array}\right.
$$

Lemma 3.2 The above equations have solutions and hence isothermal coordinate vector fields $\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right)$ exist.

Proof. After straightforward computations, we find that these equations have solutions if and only if the following integrability equation holds: $0=$ $X_{1}\left(\frac{1}{2} a_{3}\right)-X_{2}\left(a_{1}\right)$.

By using the following Gauss equation with $X=Z=X_{1}$ and $Y=X_{2}$:

$$
\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z=h_{1}(Y, Z) S_{1} X-h_{1}(X, Z) S_{1} Y
$$

we find that $X_{1}\left(\frac{1}{2} a_{3}\right)-X_{2}\left(a_{1}\right)=0$.
Using these isothermal coordinates, we have:

$$
\begin{align*}
\mathcal{F}_{u u} & =2 \rho a_{1} \mathcal{F}_{u}+\rho^{2} \xi, \\
\mathcal{F}_{u v} & =\mathcal{F}_{v v}=\rho a_{3} \mathcal{F}_{u}, \tag{9}\\
\mathcal{F}_{v v} & =-2 \rho a_{1} \mathcal{F}_{u}+\rho^{2} \xi, \\
\xi_{u} & =-\lambda_{1} \mathcal{F}_{u}, \\
\xi_{v} & =0,
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{G}_{u u} & =2 \rho a_{1} \mathcal{G}_{u}+\rho^{2} b_{11} \widetilde{\xi} \\
\mathcal{G}_{u v} & =\mathcal{G}_{v v}=\rho a_{3} \mathcal{G}_{u}+\rho^{2} b_{12} \widetilde{\xi}, \tag{10}\\
\mathcal{G}_{v v} & =-2 \rho a_{1} \mathcal{G}_{u}+\rho^{2} b_{22} \widetilde{\xi} \\
\widetilde{\xi}_{u} & =-\lambda_{1} b_{11} \mathcal{G}_{u} \\
\widetilde{\xi}_{v} & =-\lambda_{1} b_{12} \mathcal{G}_{u}
\end{align*}
$$

where the $b_{i j}, i, j=1,2$ satisfy:

$$
\left\{\begin{array}{l}
b_{11} b_{22}-b_{12}^{2}=1 \\
\frac{\partial b_{12}}{\partial u}-\frac{\partial b_{11}}{\partial v}=0 \text { because } a_{2}=0(\text { Cf. (4) }) \\
-\frac{\partial b_{22}}{\partial u}+\frac{\partial b_{12}}{\partial v}+2 \rho a_{1} b_{11}+2 \rho a_{3} b_{12}-2 \rho a_{1} b_{22}=0
\end{array}\right.
$$

and

$$
\begin{equation*}
\lambda_{1}=-2 X_{1}\left(a_{1}\right)-X_{2}\left(a_{3}\right)-\frac{3}{2} a_{3}^{2}-6 a_{1}^{2}(\text { Cf. }(3)) \tag{11}
\end{equation*}
$$

From (9), after integration, we get $\mathcal{F}_{u}=C(u) \exp \left(\int \rho a_{3} d v\right)$. Moreover $X_{2}(\rho)=\rho \frac{1}{2} a_{3}$.

Then

$$
\begin{aligned}
\mathcal{F}_{u} & =C(u) \exp \left(\int 2 X_{2}(\rho) d v\right) \\
& =C(u) \exp \left(\int 2 \frac{1}{\rho} \frac{\partial \rho}{\partial v} d v\right) \\
& =C(u) \exp \left(\int 2 \frac{\partial(\ln (\rho))}{\partial v} d v\right) \\
& =C(u) \exp \left(\ln \left(\rho^{2}\right)\right) \\
& =C(u) \rho^{2} .
\end{aligned}
$$

Therefore we have $\mathcal{F}_{u u}=C^{\prime}(u) \rho^{2}+2 \rho C(u) \frac{\partial \rho}{\partial u}$.
Moreover $\mathcal{F}_{u u}=2 \rho a_{1} \mathcal{F}_{u}+\rho^{2} \xi=2 \rho^{3} a_{1} C(u)+\rho^{2} C^{\prime}(u)$ then $\xi=C^{\prime}(u)$ and $\xi_{u}=C^{\prime \prime}(u)=-\lambda_{1} \rho^{2} C(u)$. We deduce from this that $\lambda_{1} \rho^{2}$ doesn't depend on v.

So we have to solve the following differential equation:

$$
\begin{equation*}
C^{\prime \prime}(u)+\lambda_{1} \rho^{2} C(u)=0 \tag{12}
\end{equation*}
$$

Remark 3.1 As the surface is nondegenerate, $\left(C(u), C^{\prime}(u)\right)$ is linearly independent.

We have the following well known result (see [1, p. 243]):
Lemma 3.3 The solutions of the previous equation (12) are of the form $C(u)=C_{1} \alpha_{1}(u)+C_{2} \alpha_{2}(u)$ where $C_{1}, C_{2} \in \mathbb{R}^{3}$ and $\left(\alpha_{1}, \alpha_{2}\right)$ is a fundamental system of solutions.

By using an equiaffine transformation, we can suppose that $C_{1}=$ $(k, 0,0)$ and $C_{2}=\left(0, k^{\prime}, 0\right)$, where $k, k^{\prime} \in \mathbb{R}^{*}$. Applying the matrix $M=\left(\begin{array}{ccc}\frac{1}{k} & 0 & 0 \\ 0 & \frac{1}{k^{\prime}} & 0 \\ 0 & 0 & k k^{\prime}\end{array}\right)$ on the vector space, we find that $C_{1}=(1,0,0)$ and $C_{2}=(0,1,0)$. Therefore, we have $C(u)=\left(\alpha_{1}(u), \alpha_{2}(u), 0\right)$ and $\mathcal{F}_{u}=$ $\left(\rho^{2} \alpha_{1}(u), \rho^{2} \alpha_{2}(u), 0\right)$.

Finally we have:

$$
\mathcal{F}=\left(\begin{array}{c}
\int^{u} \rho^{2}(\widetilde{u}, v) \alpha_{1}(\widetilde{u}) d \widetilde{u}+f_{1}(v) \\
\int^{u} \rho^{2}(\widetilde{u}, v) \alpha_{2}(\widetilde{u}) d \widetilde{u}+f_{2}(v) \\
f_{3}(v)
\end{array}\right)
$$

where the $f_{i}, i=1,2,3$ are integration functions with conditions on their second derivative given by $\mathcal{F}_{u u}+\mathcal{F}_{v v}=2 \rho^{2}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, 0\right)$.
4. Case $h_{2}\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right) \neq 0$.

Since $b_{12} \neq 0$, by using Lemma 3.1 and (7), we get:

$$
\left\{\begin{array}{l}
X_{1}\left(\lambda_{1}\right)=-2 \lambda_{1} a_{1} \tag{13}\\
X_{2}\left(\lambda_{1}\right)=-a_{3} \lambda_{1}
\end{array}\right.
$$

By (8) and (13), we have $\rho^{2}\left|\lambda_{1}\right|=c$, where c is a constant. As ρ is determined up to a constant, we can take $c=1$.

By (11) and (13), we find that:

$$
\begin{equation*}
\lambda_{1}^{3}=\left(X_{1} X_{1}\left(\lambda_{1}\right)+X_{2} X_{2}\left(\lambda_{1}\right)\right) \lambda_{1}-\frac{5}{2}\left(X_{2}\left(\lambda_{1}\right)\right)^{2}-\frac{5}{2}\left(X_{1}\left(\lambda_{1}\right)\right)^{2} \tag{14}
\end{equation*}
$$

In isothermal coordinates, (14) reduces to

$$
\begin{equation*}
\rho^{2} \lambda_{1}^{3}=\lambda_{1} \frac{\partial^{2} \lambda_{1}}{\partial u^{2}}+\lambda_{1} \frac{\partial^{2} \lambda_{1}}{\partial v^{2}}-2\left(\frac{\partial \lambda_{1}}{\partial u}\right)^{2}-2\left(\frac{\partial \lambda_{1}}{\partial v}\right)^{2} \tag{15}
\end{equation*}
$$

If $\rho^{2} \lambda_{1}=1$, the equation (12) becomes $C^{\prime \prime}(u)+C(u)=0$ and we can choose initial condition such that:

$$
\begin{gathered}
\mathcal{F}=\left(\begin{array}{c}
\int_{0}^{u} \frac{1}{\lambda_{1}(\widetilde{u}, v)} \cos (\widetilde{u}) d \widetilde{u}+f_{1}(v) \\
\int_{0}^{u} \frac{1}{\lambda_{1}(\widetilde{u}, v)} \sin (\widetilde{u}) d \widetilde{u}+f_{2}(v) \\
f_{3}(v)
\end{array}\right), \\
\left\lvert\, \begin{aligned}
&\left|C(u), C^{\prime}(u)\right|=\left|\begin{array}{cc}
\cos (u) & -\sin (u) \\
\sin (u) & \cos (u)
\end{array}\right| \\
&=\cos ^{2}(u)+\sin ^{2}(u) \\
&=1
\end{aligned}\right.
\end{gathered}
$$

and $\frac{\partial}{\partial u}\left|C(u), C^{\prime}(u)\right|=\left|C(u), C^{\prime \prime}(u)\right|=0$.
The equation (15) gives:

$$
\lambda_{1}^{2}=\lambda_{1} \frac{\partial^{2} \lambda_{1}}{\partial u^{2}}+\lambda_{1} \frac{\partial^{2} \lambda_{1}}{\partial v^{2}}-2\left(\frac{\partial \lambda_{1}}{\partial u}\right)^{2}-2\left(\frac{\partial \lambda_{1}}{\partial v}\right)^{2}
$$

So

$$
\frac{1}{\lambda_{1}}=\frac{1}{\lambda_{1}^{2}} \frac{\partial^{2} \lambda_{1}}{\partial u^{2}}+\frac{1}{\lambda_{1}^{2}} \frac{\partial^{2} \lambda_{1}}{\partial v^{2}}-\frac{2}{\lambda_{1}^{3}}\left(\frac{\partial \lambda_{1}}{\partial u}\right)^{2}-\frac{2}{\lambda_{1}^{3}}\left(\frac{\partial \lambda_{1}}{\partial v}\right)^{2}
$$

Then λ_{1} verifies the following differential equation:

$$
\Delta\left(\frac{1}{\lambda_{1}}\right)=-\frac{1}{\lambda_{1}}
$$

We have:

$$
\begin{aligned}
\mathcal{F}_{v v} & =\left(\begin{array}{c}
\int_{0}^{u} \frac{\partial^{2}}{\partial v^{2}}\left(\frac{1}{\lambda_{1}}\right) \cos (\widetilde{u}) d \widetilde{u}+f_{1}^{\prime \prime}(v) \\
\int_{0}^{u} \frac{\partial^{2}}{\partial v^{2}}\left(\frac{1}{\lambda_{1}}\right) \sin (\widetilde{u}) d \widetilde{u}+f_{2}^{\prime \prime}(v) \\
f_{3}^{\prime \prime}(v)
\end{array}\right) \\
& =\left(\begin{array}{c}
\int_{0}^{u}\left(-\frac{1}{\lambda_{1}}-\frac{\partial^{2}}{\partial \widetilde{u}^{2}}\left(\frac{1}{\lambda_{1}}\right)\right) \cos (\widetilde{u}) d \widetilde{u}+f_{1}^{\prime \prime}(v) \\
\int_{0}^{u}\left(-\frac{1}{\lambda_{1}}-\frac{\partial^{2}}{\partial \widetilde{u}^{2}}\left(\frac{1}{\lambda_{1}}\right)\right) \sin (\widetilde{u}) d \widetilde{u}+f_{2}^{\prime \prime}(v) \\
f_{3}^{\prime \prime}(v)
\end{array}\right) .
\end{aligned}
$$

By making two integrations by parts we get:

$$
\begin{aligned}
& -\int_{0}^{u} \frac{\partial^{2}}{\partial \widetilde{u}^{2}}\left(\frac{1}{\lambda_{1}}\right) \cos (\widetilde{u}) d \widetilde{u} \\
& \quad=-\frac{\partial}{\partial u}\left(\frac{1}{\lambda_{1}}\right) \cos (u)+\left(\frac{\partial}{\partial u}\left(\frac{1}{\lambda_{1}}\right)\right)_{\left.\right|_{u=0}}-\frac{1}{\lambda_{1}} \sin (u)+\int_{0}^{u} \frac{1}{\lambda_{1}} \cos (\widetilde{u}) d \widetilde{u}
\end{aligned}
$$

and

$$
\begin{aligned}
& -\int_{0}^{u} \frac{\partial^{2}}{\partial \widetilde{u}^{2}}\left(\frac{1}{\lambda_{1}}\right) \sin (\widetilde{u}) d \widetilde{u} \\
& \quad=-\frac{\partial}{\partial u}\left(\frac{1}{\lambda_{1}}\right) \sin (u)+\frac{1}{\lambda_{1}} \cos (u)-\left(\frac{1}{\lambda_{1}}\right)_{\left.\right|_{u=0}}+\int_{0}^{u} \frac{1}{\lambda_{1}} \sin (\widetilde{u}) d \widetilde{u} .
\end{aligned}
$$

So

$$
\mathcal{F}_{v v}=\left(\begin{array}{c}
-\frac{\partial}{\partial u}\left(\frac{1}{\lambda_{1}}\right) \cos (u)-\frac{1}{\lambda_{1}} \sin (u)+\left(\frac{\partial}{\partial u}\left(\frac{1}{\lambda_{1}}\right)\right)_{\left.\right|_{u=0}}+f_{1}^{\prime \prime}(v) \\
-\frac{\partial}{\partial u}\left(\frac{1}{\lambda_{1}}\right) \sin (u)+\frac{1}{\lambda_{1}} \cos (u)-\left(\frac{1}{\lambda_{1}}\right)_{\left.\right|_{u=0}}+f_{2}^{\prime \prime}(v) \\
f_{3}^{\prime \prime}(v)
\end{array}\right)
$$

Using $\mathcal{F}_{u u}-2 \rho a_{1} \mathcal{F}_{u}=\rho^{2} \xi$, we obtain $\rho^{2} \xi$. Then

$$
-2 \rho a_{1} \mathcal{F}_{u}+\rho^{2} \xi=\left(\begin{array}{c}
-4 \rho a_{1} \frac{1}{\lambda_{1}} \cos (u)-\frac{1}{\lambda_{1}} \sin (u)-\frac{\partial}{\partial u}\left(\lambda_{1}\right) \times \frac{1}{\lambda_{1}^{2}} \cos (u) \\
-4 \rho a_{1} \frac{1}{\lambda_{1}} \sin (u)+\frac{1}{\lambda_{1}} \cos (u)-\frac{\partial}{\partial u}\left(\lambda_{1}\right) \times \frac{1}{\lambda_{1}^{2}} \sin (u) \\
0
\end{array}\right)
$$

Since $\mathcal{F}_{v v}=-2 \rho a_{1} \mathcal{F}_{u}+\rho^{2} \xi$, finally we find that $\left(\frac{\partial}{\partial u}\left(\frac{1}{\lambda_{1}}\right)\right)_{\left.\right|_{u=0}}+f_{1}^{\prime \prime}(v)=$ $0,-\left(\frac{1}{\lambda_{1}}\right)_{\left.\right|_{u=0}}+f_{2}^{\prime \prime}(v)=0$ and $f_{3}^{\prime \prime}(v)=0$.

Therefore we can assume that $f_{1}^{\prime \prime}(v)=-\left(\frac{\partial}{\partial u}\left(\frac{1}{\lambda_{1}}\right)\right)_{\left.\right|_{u=0}}, f_{2}^{\prime \prime}(v)=\left(\frac{1}{\lambda_{1}}\right)_{\left.\right|_{u=0}}$ and $f_{3}(v)=v$.

This completes the proof of the first case of Theorem 1.
If $\rho^{2} \lambda_{1}=-1$, similar computations give the second case.
Remark 4.1 Conversely, given a strictly positive function f on an open domain of \mathbb{R}^{2} satisfying $\Delta(f)=\mp f$ and putting $\lambda_{1}= \pm \frac{1}{f}$ in formulas of Theorem 1, we can construct an immersion \mathcal{F}. It is straightforward to check that this immersion admits several immersions with the same induced connection. An example of this is given in the final section.

5. Case $h_{2}\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right)=0$

In this case $b_{12}=0$. We have $b_{11} b_{22}=1$. We also recall that the function $\lambda_{1} \rho^{2}$ depends only on u. In this case, we follow the approach of section 3 of Vrancken ([8]). More precisely we have:

Lemma 5.1 For any Y in the second direction, we have:

$$
X_{1}\left(Y\left(\ln \left(\left|\lambda_{1}\right|\right)\right)\right)-\left(\nabla_{X_{1}} Y\right)^{*}\left(\ln \left(\left|\lambda_{1}\right|\right)\right)=0
$$

where Z^{*} is the component in the second direction; i.e. $Z=Z^{*}+$ $h_{1}\left(Z, X_{1}\right) X_{1}$.

Proof. By using the Codazzi equation for $h_{2}((4))$, we obtain:

$$
\left\{\begin{array}{l}
X_{1}\left(b_{22}\right)=2 a_{1}\left(b_{11}-b_{22}\right)=2 a_{1}\left(\frac{1}{b_{22}}-b_{22}\right) \\
X_{2}\left(b_{11}\right)=X_{2}\left(b_{22}\right)=0
\end{array}\right.
$$

These equations have solutions if and only if

$$
\begin{aligned}
\mathcal{B}\left(b_{22}\right) & =\left[X_{1}, X_{2}\right]\left(b_{22}\right)-\left(\nabla_{X_{1}} X_{2}-\nabla_{X_{2}} X_{1}\right)\left(b_{22}\right)=0 . \\
\mathcal{B}\left(b_{22}\right) & =X_{1}\left(X_{2}\left(b_{22}\right)\right)-X_{2}\left(X_{1}\left(b_{22}\right)\right)-\nabla_{X_{1}} X_{2}\left(b_{22}\right)+\nabla_{X_{2}} X_{1}\left(b_{22}\right) \\
& =0-X_{2}\left(2 a_{1}\left(\frac{1}{b_{22}}-b_{22}\right)\right)-a_{3} X_{1}\left(b_{22}\right)+\frac{1}{2} a_{3} X_{1}\left(b_{22}\right) \\
& =-2 X_{2}\left(a_{1}\right)\left(\frac{1}{b_{22}}-b_{22}\right)-\frac{1}{2} a_{3}\left(2 a_{1}\left(\frac{1}{b_{22}}-b_{22}\right)\right) \\
& =-\left(\frac{1}{b_{22}}-b_{22}\right)\left(2 X_{2}\left(a_{1}\right)+a_{1} a_{3}\right) .
\end{aligned}
$$

Since $\left(\frac{1}{b_{22}}-b_{22}\right) \neq 0$, we find that:

$$
\begin{equation*}
2 X_{2}\left(a_{1}\right)+a_{1} a_{3}=0 \tag{16}
\end{equation*}
$$

Since Y belongs to the second direction, there exists some function f such that $Y=f X_{2}$. We have:

$$
\begin{aligned}
X_{1}\left(Y\left(\ln \left(\left|\lambda_{1}\right|\right)\right)\right) & =X_{1}\left(f \times\left(-a_{3}\right)\right) \\
& =-X_{1}(f) a_{3}-f X_{1}\left(a_{3}\right)
\end{aligned}
$$

and $\left(\nabla_{X_{1}} f X_{2}\right)=X_{1}(f) X_{2}+f\left(a_{3} X_{1}-a_{1} X_{2}\right)$. So

$$
\begin{aligned}
\left(\nabla_{X_{1}} Y\right)^{*}\left(\ln \left(\left|\lambda_{1}\right|\right)\right) & =X_{1}(f) X_{2}\left(\ln \left(\left|\lambda_{1}\right|\right)\right)-f a_{1} \times\left(-a_{3}\right) \\
& =-X_{1}(f) a_{3}+f a_{1} a_{3} .
\end{aligned}
$$

Then using (16), we find:

$$
\begin{aligned}
& X_{1}\left(Y\left(\ln \left(\left|\lambda_{1}\right|\right)\right)\right)-\left(\nabla_{X_{1}} Y\right)^{*}\left(\ln \left(\left|\lambda_{1}\right|\right)\right) \\
&=-f X_{1}\left(a_{3}\right)-f a_{1} a_{3} \\
& \quad=f\left[-2 X_{2}\left(a_{1}\right)-a_{1} a_{3}\right] \\
& \quad=f\left[X_{1}\left(X_{2}\left(\ln \left(\left|\lambda_{1}\right|\right)\right)\right)-\left(\nabla_{X_{1}} X_{2}\right)^{*}\left(\ln \left(\left|\lambda_{1}\right|\right)\right)\right] \\
& \quad=0 .
\end{aligned}
$$

Lemma 5.2 We have $\frac{\partial}{\partial u} \frac{\partial}{\partial v} \ln \left(\left|\lambda_{1}\right|\right)=0$.
Proof. By using the previous lemma we get:

$$
X_{1}\left(\frac{\partial}{\partial v}\left(\ln \left(\left|\lambda_{1}\right|\right)\right)\right)-\left(\nabla_{X_{1}} \frac{\partial}{\partial v}\right)^{*}\left(\ln \left(\left|\lambda_{1}\right|\right)\right)=0 .
$$

So $\rho X_{1}\left(\frac{\partial}{\partial v}\left(\ln \left(\left|\lambda_{1}\right|\right)\right)\right)-\left(\rho \nabla_{X_{1}} \frac{\partial}{\partial v}\right)^{*}\left(\ln \left(\left|\lambda_{1}\right|\right)\right) \quad=\quad 0 \quad$ and then $\frac{\partial}{\partial u}\left(\frac{\partial}{\partial v}\left(\ln \left(\left|\lambda_{1}\right|\right)\right)\right)-\left(\nabla_{\frac{\partial}{\partial u}} \frac{\partial}{\partial v}\right)^{*}\left(\ln \left(\left|\lambda_{1}\right|\right)\right)=0$.

$$
\nabla_{\frac{\partial}{\partial u}} \frac{\partial}{\partial v}=\nabla_{\rho X_{1}} \rho X_{2}
$$

$$
=\rho X_{1}(\rho) X_{2}+\rho^{2} \nabla_{X_{1}} X_{2}
$$

$$
=\rho^{2} a_{1} X_{2}+\rho^{2}\left(a_{3} X_{1}-a_{1} X_{2}\right)
$$

$$
=\rho a_{3} \frac{\partial}{\partial u} .
$$

Therefore $\left(\nabla_{\frac{\partial}{\partial u}}^{\partial v} \frac{\partial}{\partial v}\right)^{*}=0$ and $\frac{\partial}{\partial u}\left(\frac{\partial}{\partial v}\left(\ln \left(\left|\lambda_{1}\right|\right)\right)\right)=0$.
This previous lemma implies that there exist a function λ (depending only on the variable u) and a function μ (depending only on the variable v) such that:

$$
\left|\lambda_{1}\right|=\frac{\lambda(u)}{\mu(v)}
$$

As $\left|\lambda_{1}\right|$ is positive, we may assume that λ and μ are positive functions.
Lemma 5.3 There exists a curve γ depending only on the variable u such that $\mathcal{F}_{u}=\mu(v) \gamma^{\prime}(u)$.

Proof. As $\frac{\partial\left(\left|\lambda_{1}\right|\right)}{\partial v}=-\rho a_{3}\left|\lambda_{1}\right|$, we find that:

$$
\rho a_{3}=-\frac{\frac{\partial\left(\left|\lambda_{1}\right|\right)}{\partial v}}{\left|\lambda_{1}\right|}=-\mu \frac{\partial\left(\frac{1}{\mu}\right)}{\partial v}=\frac{\mu^{\prime}}{\mu} .
$$

Since $\frac{\partial \mathcal{F}_{u}}{\partial v}=\rho a_{3} \mathcal{F}_{u}=\frac{\mu^{\prime}}{\mu} \mathcal{F}_{u}$, we have:

$$
\mu \frac{\partial}{\partial v}\left(\mathcal{F}_{u}\right)-\mu^{\prime} \mathcal{F}_{u}=0
$$

so

$$
\frac{\partial}{\partial v}\left(\frac{\mathcal{F}_{u}}{\mu}\right)=0
$$

Lemma 5.4 If $\mu^{\prime \prime} \neq 0$, there exists a curve $\widetilde{\gamma}$ depending only on the variable u such that $\mathcal{F}_{v v}=\mu^{\prime \prime}(v) \widetilde{\gamma}(u)$.

Proof. From the previous lemma, we deduce that $\mathcal{F}_{v v}=\mu^{\prime \prime} \gamma(u)+c(v)$ and $\rho a_{3}=\frac{\mu^{\prime}}{\mu}$.

We know that $\frac{\partial}{\partial v}(\rho)=\frac{1}{2} \rho^{2} a_{3}$, so $\frac{\mu^{\prime}}{\mu}=\frac{2 \frac{\partial}{\partial v}(\rho)}{\rho}$.
Therefore there exists a function g depending only on the variable u such that $\rho=\sqrt{\mu} g$.

Then

$$
\begin{aligned}
\mathcal{F}_{v v} & =-2 \rho a_{1} \mathcal{F}_{u}+\rho^{2} \xi \\
& =-2 \rho a_{1} \mu \gamma^{\prime}+\mu g^{2} \xi \\
& =-2 \sqrt{\mu} g a_{1} \mu \gamma^{\prime}+\mu g^{2} \xi \\
& =\mu\left(-2 g\left(\sqrt{\mu} a_{1}\right) \gamma^{\prime}+g^{2} \xi\right)
\end{aligned}
$$

Using (16) we find that:

$$
\begin{aligned}
\frac{\partial}{\partial v}\left(\rho a_{1}\right) & =\frac{1}{2} \rho^{2} a_{1} a_{3}+\rho^{2} X_{2}\left(a_{1}\right) \\
& =0
\end{aligned}
$$

So $\frac{\partial}{\partial v}\left(\sqrt{\mu} a_{1}\right)=0$.
We deduce that the function $\left(-2 g\left(\sqrt{\mu} a_{1}\right) \gamma^{\prime}+g^{2} \xi\right)$ depends only on the variable u, so

$$
\frac{\partial}{\partial v}\left(\frac{1}{\mu} \mathcal{F}_{v v}\right)=0
$$

i.e.

$$
\frac{\partial}{\partial v}\left(\frac{\mu^{\prime \prime}}{\mu}\right) \gamma(u)+\frac{\partial}{\partial v}\left(\frac{c(v)}{\mu}\right)=0
$$

Since $\mathcal{F}_{u}=\mu \gamma^{\prime} \neq 0$, we have $\gamma^{\prime}(u) \neq 0$. Then $\frac{\partial}{\partial v}\left(\frac{\mu^{\prime \prime}}{\mu}\right)=0$ and $\frac{\partial}{\partial v}\left(\frac{c(v)}{\mu}\right)=0$.

Therefore there are non zero constant d and constant vector e such that $\mu^{\prime \prime}=d \mu$ and $c=e \mu$.

So

$$
\begin{aligned}
\mathcal{F}_{v v} & =d \mu \gamma(u)+e \mu \\
& =d \mu\left(\gamma(u)+\frac{e}{d}\right) .
\end{aligned}
$$

Taking $\widetilde{\gamma}(u)=\gamma(u)+\frac{e}{d}$ completes the proof.

5.1. Case $\boldsymbol{\mu}^{\prime \prime}=\mathbf{0}$

We have $\mathcal{F}_{v v}=e \mu$ and $\mu(v)=d_{1} v+d_{2}$ where d_{1}, d_{2} are constants. So $\mathcal{F}_{u}=\left(d_{1} v+d_{2}\right) \gamma^{\prime}(u)$ where γ is a non degenerate equiaffine curve.

If $d_{1}=0$, then $\mathcal{F}(u, v)=\gamma(u)+k(v)$ such that $k^{\prime \prime}(v)=e$.
Therefore there exists constant vector k_{1} such that $k(v)=\frac{e}{2} v^{2}+k_{1} v$.
We find that $\mathcal{F}(u, v)=\gamma(u)+\frac{e}{2} v^{2}+k_{1} v$.
If $d_{1} \neq 0$, then $\mathcal{F}(u, v)=\left(d_{1} v+d_{2}\right) \gamma(u)+k(v)$ such that

$$
k^{\prime \prime}(v)=e\left(d_{1} v+d_{2}\right)
$$

Therefore there exists constant vector k_{2} such that

$$
k(v)=e \frac{1}{6 d_{1}^{2}}\left(d_{1} v+d_{2}\right)^{3}+k_{2} v .
$$

We get $\mathcal{F}(u, v)=\left(d_{1} v+d_{2}\right) \gamma(u)+\frac{e}{6 d_{1}^{2}}\left(d_{1} v+d_{2}\right)^{3}+k_{2} v$.
In isothermal coordinates, we obtain that $\gamma^{\prime \prime}(u)=e+4 \rho a_{1} \gamma^{\prime}(u)$, by using the equality $2 \rho a_{1} \mathcal{F}_{u}=\mathcal{F}_{u u}-\frac{1}{2}\left(\mathcal{F}_{u u}+\mathcal{F}_{v v}\right)$.

5.2. Case $\mu^{\prime \prime} \neq 0$

We have $\mathcal{F}(u, v)=\mu(v) \widetilde{\gamma}(u)+k(v)$ such that the function k verifies $k^{\prime \prime}(v)=0$. The curve $\widetilde{\gamma}$ verifies $\widetilde{\gamma}^{\prime}(u)=\gamma^{\prime}(u)$.

Since $\mu^{\prime \prime}=d \mu$, there are two cases.
If $d>0$, we have $\mu(v)=d_{1} \exp (\sqrt{d} v)+d_{2} \exp (-\sqrt{d} v)$.

And if $d<0$, we have $\mu(v)=d_{1} \sin (\sqrt{-d} v)+d_{2} \cos (\sqrt{-d} v)$ where d_{1} and d_{2} are constants.

Since $\widetilde{\gamma}$ is a non degenerate equiaffine curve in \mathbb{R}^{2}, there exist functions γ_{1} and γ_{2} which verify $\gamma_{1}^{\prime} \gamma_{2}^{\prime \prime}-\gamma_{2}^{\prime} \gamma_{1}^{\prime \prime} \neq 0$, constants d_{1}, d_{2}, d and e such that \mathcal{F} is given by one of the following expressions:

$$
\begin{aligned}
\mathcal{F}(u, v)= & \left(\left(d_{1} \exp (\sqrt{d} v)+d_{2} \exp (-\sqrt{d} v)\right) \gamma_{1}(u)\right. \\
& \left.\left(d_{1} \exp (\sqrt{d} v)+d_{2} \exp (-\sqrt{d} v)\right) \gamma_{2}(u), e v\right) \\
\mathcal{F}(u, v)= & \left(\left(d_{1} \cos (\sqrt{-d} v)+d_{2} \sin (\sqrt{-d} v)\right) \gamma_{1}(u)\right. \\
& \left.\left(d_{1} \cos (\sqrt{-d} v)+d_{2} \sin (\sqrt{-d} v)\right) \gamma_{2}(u), e v\right)
\end{aligned}
$$

In each case, we calculate $\mathcal{F}_{u u}+\mathcal{F}_{v v}$.
We know that $2 \rho a_{1} \mathcal{F}_{u}=\mathcal{F}_{u u}-\frac{1}{2}\left(\mathcal{F}_{u u}+\mathcal{F}_{v v}\right)$. Then we obtain that $\gamma_{1}^{\prime \prime}(u)=4 \rho a_{1} \gamma_{1}^{\prime}(u)+d \gamma_{1}(u)$ and $\gamma_{2}^{\prime \prime}(u)=4 \rho a_{1} \gamma_{2}^{\prime}(u)+d \gamma_{2}(u)$.

So $\gamma_{1}^{\prime}(u) \gamma_{2}^{\prime \prime}(u)-\gamma_{2}^{\prime}(u) \gamma_{1}^{\prime \prime}(u)=d\left(\gamma_{1}^{\prime}(u) \gamma_{2}(u)-\gamma_{2}^{\prime}(u) \gamma_{1}(u)\right)$.
Therefore $\gamma_{1}^{\prime}(u) \gamma_{2}(u)-\gamma_{2}^{\prime}(u) \gamma_{1}(u) \neq 0$, i.e. $\widetilde{\gamma}=\left(\gamma_{1}, \gamma_{2}, 0\right)$ is a non degenerate centroaffine curve.

In isothermal coordinates, we notice that we have:

$$
\left(\gamma_{1}^{\prime \prime}, \gamma_{2}^{\prime \prime}, 0\right)=d\left(\gamma_{1}, \gamma_{2}, 0\right)+4 \rho a_{1}\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}, 0\right)
$$

This completes the proof of Theorem 2.

6. Examples

In this section, we will construct some explicit examples using Theorem 1.

6.1. Case $h_{2}\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right) \neq 0$ and $\rho^{2} \lambda_{1}=1$

We define \mathcal{F} and \mathcal{G} on $\left\{(u, v) \in \mathbb{R}^{2} /-\frac{\pi}{2}<u<\frac{\pi}{2}\right\}$ by

$$
\mathcal{F}=\left(\begin{array}{c}
\frac{1}{4} \sin (2 u)+\frac{1}{2} u \\
-\frac{1}{4} \cos (2 u)+\frac{1}{2} u+\frac{1}{2} v^{2} \\
v
\end{array}\right)
$$

$$
\mathcal{G}=\left(\exp (f(u)) \cos \left(g(u)-b_{12} v\right),-\exp (f(u)) \sin \left(g(u)-b_{12} v\right), v\right)
$$

where b_{12} is a non-zero constant, and f, g are functions satisfying:

$$
g^{\prime}(u)=\frac{-\sqrt{2+\tan ^{2}(u)+b_{12}^{2}} \times b_{12}^{2}}{2+2 \tan ^{2}(u)+b_{12}^{2}}
$$

and

$$
\exp (f(u))=\sqrt{4+b_{12}^{2}+b_{12}^{2} \cos (2 u)}-\sqrt{4+b_{12}^{2}+b_{12}^{2}}+1
$$

Here is a picture of \mathcal{F} :

Here is a picture of \mathcal{G}, with $b_{12}=1$:

These immersions have the same induced connection ∇ with $\operatorname{dim} \operatorname{Im} R=$ 1 and they are not affine equivalent. In fact, the induced connection ∇ is given by:

$$
\begin{aligned}
\nabla_{X_{u}} X_{u} & =-\tan (u) X_{u} \\
\nabla_{X_{u}} X_{v} & =0 \\
\nabla_{X_{v}} X_{u} & =0 \\
\nabla_{X_{v}} X_{v} & =\tan (u) X_{u}
\end{aligned}
$$

The affine metric h_{1} of \mathcal{F} is given by $h_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. The affine h_{2} of \mathcal{G} is given by $h_{2}=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{12} & b_{22}\end{array}\right)$, with $b_{11}=\frac{1+b_{12}^{2}}{\sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}}$ and $b_{22}=$ $\sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}$.

To construct \mathcal{F}, we set $\lambda_{1}=\frac{1}{\cos (u)}$ in Theorem 1. And we construct \mathcal{G} as follows.

We take $b_{i j}$ depending only on the variable u. So we find that b_{12} is a constant, $b_{11} b_{22}=1+b_{12}^{2}$ and $-\frac{\partial b_{22}}{\partial u}-\tan (u)\left(b_{11}-b_{22}\right)=0$. Then after integration, we get $\left|1+b_{12}^{2}-b_{22}^{2}\right|=\frac{1}{\cos ^{2}(u)}$.

We take b_{22} such that $b_{22}^{2}=1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}$. We find $b_{22}=$ $\sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}$ and $b_{11}=\frac{1+b_{12}^{2}}{\sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}}$.

We have:

$$
\begin{aligned}
\mathcal{G}_{u v v} & =\rho^{2} b_{12} \widetilde{\xi}_{v} \\
& =\rho^{2} b_{12}\left(-\lambda_{1} b_{12} \mathcal{G}_{u}\right) \\
& =-b_{12}^{2} \mathcal{G}_{u} .
\end{aligned}
$$

So there exist differentiable vectors D_{1}, D_{2} and D_{3} such that $\mathcal{G}=$ $D_{1}(u) \cos \left(b_{12} v\right)+D_{2}(\underset{\sim}{u}) \sin \left(b_{12} v\right)+D_{3}(v)$.

From $\mathcal{G}_{u v}=\rho^{2} b_{12} \widetilde{\xi}$, we deduce that:

$$
\widetilde{\xi}=\frac{1}{\cos (u)}\left(-D_{1}^{\prime}(u) \sin \left(b_{12} v\right)+D_{2}^{\prime}(u) \cos \left(b_{12} v\right)\right)
$$

From $\mathcal{G}_{u u}=-\tan (u) \mathcal{G}_{u}+\rho^{2} b_{11} \tilde{\xi}$, we obtain that:

$$
D_{1}^{\prime \prime}(u)=-\tan (u) D_{1}^{\prime}(u)+D_{2}^{\prime}(u) \frac{1+b_{12}^{2}}{\sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}}
$$

$$
D_{2}^{\prime \prime}(u)=-\tan (u) D_{2}^{\prime}(u)-D_{1}^{\prime}(u) \frac{1+b_{12}^{2}}{\sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}}
$$

From $\mathcal{G}_{v v}=\tan (u) \mathcal{G}_{u}+\rho^{2} b_{22} \widetilde{\xi}$, we find that:

$$
\begin{aligned}
D_{3}^{\prime \prime}(v)= & b_{12}^{2}\left(D_{1}(u) \cos \left(b_{12} v\right)+D_{2}(u) \sin \left(b_{12} v\right)\right) \\
& +\tan (u)\left(D_{1}^{\prime}(u) \cos \left(b_{12} v\right)+D_{2}^{\prime}(u) \sin \left(b_{12} v\right)\right) \\
& +\sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}\left(-D_{1}^{\prime}(u) \sin \left(b_{12} v\right)+D_{2}^{\prime}(u) \cos \left(b_{12} v\right)\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
D_{3}(v)= & -\left(D_{1}(u) \cos \left(b_{12} v\right)+D_{2}(u) \sin \left(b_{12} v\right)\right) \\
& -\frac{\tan (u)}{b_{12}^{2}}\left(D_{1}^{\prime}(u) \cos \left(b_{12} v\right)+D_{2}^{\prime}(u) \sin \left(b_{12} v\right)\right) \\
& -\frac{1}{b_{12}^{2}} \sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}\left(-D_{1}^{\prime}(u) \sin \left(b_{12} v\right)+D_{2}^{\prime}(u) \cos \left(b_{12} v\right)\right) \\
& +E \times v,
\end{aligned}
$$

where E is a constant vector.
Separating the variables u and v, we get that there exist constant vectors E_{1} and E_{2} such that:

$$
\begin{aligned}
& D_{1}(u)+\frac{\tan (u)}{b_{12}^{2}} D_{1}^{\prime}(u)+\frac{1}{b_{12}^{2}} \sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}} D_{2}^{\prime}(u)=E_{1} \\
& \text { and } \quad \\
& D_{2}(u)+\frac{\tan (u)}{b_{12}^{2}} D_{2}^{\prime}(u)-\frac{1}{b_{12}^{2}} \sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}} D_{1}^{\prime}(u)=E_{2}
\end{aligned}
$$

So we have:

$$
\begin{aligned}
& \left(D_{1}+i D_{2}-\left(E_{1}+i E_{2}\right)\right) \\
& \quad=\left(-\frac{\tan (u)}{b_{12}^{2}}+\frac{i}{b_{12}^{2}} \sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}\right)\left(D_{1}+i D_{2}-\left(E_{1}+i E_{2}\right)\right)^{\prime} .
\end{aligned}
$$

Then there exist constants vectors A and B such that:

$$
\begin{aligned}
& \left(D_{1}+i D_{2}\right) \\
& \quad=(A+i B) \exp \left(\int_{0}^{u} \frac{b_{12}^{2}}{-\tan (u)+i \sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}} d u\right)+\left(E_{1}+i E_{2}\right) .
\end{aligned}
$$

We write $\int_{0}^{u} \frac{b_{12}^{2}}{-\tan (u)+i \sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}} d u=f(u)+i g(u)$, where f and g are functions depending on the variable u.

We have:

$$
\begin{aligned}
f^{\prime}(u)+i g^{\prime}(u) & =\frac{b_{12}^{2}}{-\tan (u)+i \sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}} \\
& =\frac{b_{12}^{2}\left(-\tan (u)-i \sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}\right)}{\tan ^{2}(u)+1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}} \\
& =\frac{b_{12}^{2}\left(-\tan (u)-i \sqrt{1+b_{12}^{2}+\frac{1}{\cos ^{2}(u)}}\right)}{2+2 \tan ^{2}(u)+b_{12}^{2}} .
\end{aligned}
$$

So $f^{\prime}(u)=\frac{-\tan (u) \times b_{12}^{2}}{2+2 \tan ^{2}(u)+b_{12}^{2}}$ and $g^{\prime}(u)=\frac{-\sqrt{2+\tan ^{2}(u)+b_{12}^{2}} \times b_{12}^{2}}{2+2 \tan ^{2}(u)+b_{12}^{2}}$.
We obtain that:

$$
\left\{\begin{array}{l}
D_{1}(u)=A \exp (f(u)) \times \cos (g(u))-B \exp (f(u)) \times \sin (g(u))+E_{1}, \\
D_{2}(u)=A \exp (f(u)) \times \sin (g(u))+B \exp (f(u)) \times \cos (g(u))+E_{2}, \\
D_{3}(v)=-E_{1} \cos \left(b_{12}\right)-E_{2} \sin \left(b_{12}\right)+E \times v
\end{array}\right.
$$

Finally we get:

$$
\begin{aligned}
\mathcal{G}= & \exp (f(u))\left(\cos (g(u)) \cos \left(b_{12} v\right)+\sin (g(u)) \sin \left(b_{12} v\right)\right) A \\
& +\exp (f(u))\left(\cos (g(u)) \sin \left(b_{12} v\right)-\sin (g(u)) \cos \left(b_{12} v\right)\right) B+E \times v .
\end{aligned}
$$

Since \mathcal{G} is non degenerate, (A, B, E) are linearly independent. So by an affine transformation, we can assume that:

$$
\begin{aligned}
\mathcal{G}= & \left(\exp (f(u))\left(\cos (g(u)) \cos \left(b_{12} v\right)+\sin (g(u)) \sin \left(b_{12} v\right)\right)\right. \\
& \left.\exp (f(u))\left(\cos (g(u)) \sin \left(b_{12} v\right)-\sin (g(u)) \cos \left(b_{12} v\right)\right), v\right) .
\end{aligned}
$$

So $\mathcal{G}=\left(\exp (f(u)) \cos \left(g(u)-b_{12} v\right),-\exp (f(u)) \sin \left(g(u)-b_{12} v\right), v\right)$ and

$$
\begin{aligned}
\widetilde{\xi}= & \frac{\exp (f(u))}{\cos (u)}\left(\cos \left(g(u)-b_{12} v\right)+f^{\prime}(u) \sin \left(g(u)-b_{12} v\right)\right. \\
& \left.-\sin \left(g(u)-b_{12} v\right)+f^{\prime}(u) \cos \left(g(u)-b_{12} v\right), 0\right)
\end{aligned}
$$

with $f^{\prime}(u)=\frac{-\tan (u) \times b_{12}^{2}}{2+2 \tan ^{2}(u)+b_{12}^{2}}, g^{\prime}(u)=\frac{-\sqrt{2+\tan ^{2}(u)+b_{12}^{2}} \times b_{12}^{2}}{2+2 \tan ^{2}(u)+b_{12}^{2}}$ and $\exp (f(u))=$ $\sqrt{4+b_{12}^{2}+b_{12}^{2} \cos (2 u)}-c$, where c is a constant.

Since $f(0)=0$, we find that $c=\sqrt{4+2 b_{12}^{2}}-1$.
Therefore $\exp (f(u))=\sqrt{4+b_{12}^{2}+b_{12}^{2} \cos (2 u)}-\sqrt{4+2 b_{12}^{2}}+1$.

6.2. Case $h_{2}\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right) \neq 0$ and $\rho^{2} \lambda_{1}=-1$

Like before, we define \mathcal{F} and \mathcal{G} on R^{2} by

$$
\begin{aligned}
& \mathcal{F}=\left(\begin{array}{c}
\frac{1}{2} u-\frac{1}{4} \exp (-2 u)+\frac{v^{2}}{2} \\
\frac{1}{2} u+\frac{1}{4} \exp (-2 u)+\frac{v^{2}}{2} \\
v
\end{array}\right) \\
& \mathcal{G}=\left(\frac{1}{2} \exp \left(f(u)+b_{12} v\right), \frac{1}{2} \exp \left(g(u)-b_{12} v\right), v\right),
\end{aligned}
$$

where b_{12} is a non-zero constant, and f, g are functions satisfying:

$$
\begin{aligned}
f^{\prime}(u) & =\frac{b_{12}^{2}}{1+\sqrt{1+b_{12}^{2}+\exp (2 u)}} \\
\text { and } \quad g^{\prime}(u) & =\frac{b_{12}^{2}}{1-\sqrt{1+b_{12}^{2}+\exp (2 u)}} .
\end{aligned}
$$

Here is a picture of \mathcal{F} :

Here is a picture of \mathcal{G}, with $b_{12}=1$:

These immersions have the same induced connection ∇ with $\operatorname{dim} \operatorname{Im} R=$ 1 and are not affine equivalent. The induced connection ∇ is given by:

$$
\begin{aligned}
\nabla_{X_{u}} X_{u} & =-X_{u} \\
\nabla_{X_{u}} X_{v} & =0 \\
\nabla_{X_{v}} X_{u} & =0 \\
\nabla_{X_{v}} X_{v} & =X_{u}
\end{aligned}
$$

The affine metric h_{1} of \mathcal{F} is given by $h_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$. The affine h_{2} of \mathcal{G} is given by $h_{2}=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{12} & b_{22}\end{array}\right)$, with $b_{11}=\frac{1+b_{12}^{2}}{\sqrt{1+b_{12}^{2}+\exp (2 u)}}$ and $b_{22}=$ $\sqrt{1+b_{12}^{2}+\exp (2 u)}$.

To construct \mathcal{F}, we set $\lambda_{1}=-\exp (u)$ in Theorem 1 and we construct \mathcal{G} as follows.

We take $b_{i j}$ depending only on the variable u. We find that b_{12} is a constant and we choose b_{22} such that:

$$
b_{22}=\sqrt{1+b_{12}^{2}+\exp (2 u)} \text { and } b_{11}=\frac{1+b_{12}^{2}}{\sqrt{1+b_{12}^{2}+\exp (2 u)}}
$$

We make similar computations than before and we obtain that there exist differentiable vectors D_{1}, D_{2} and D_{3} such that:

$$
\mathcal{G}=D_{1}(u) \cosh \left(b_{12} v\right)+D_{2}(u) \sinh \left(b_{12} v\right)+D_{3}(v),
$$

with

$$
\begin{aligned}
& D_{1}^{\prime \prime}(u)=-D_{1}^{\prime}(u)+D_{2}^{\prime}(u) \frac{1+b_{12}^{2}}{\sqrt{1+b_{12}^{2}+\exp (2 u)}} \\
& D_{2}^{\prime \prime}(u)=-D_{2}^{\prime}(u)+D_{1}^{\prime}(u) \frac{1+b_{12}^{2}}{\sqrt{1+b_{12}^{2}+\exp (2 u)}}
\end{aligned}
$$

and $D_{3}(v)=-\left(D_{1}(u) \cosh \left(b_{12} v\right)+D_{2}(u) \sinh \left(b_{12} v\right)\right)$

$$
\begin{aligned}
& +\frac{1}{b_{12}^{2}}\left(D_{1}^{\prime}(u) \cosh \left(b_{12} v\right)+D_{2}^{\prime}(u) \sinh \left(b_{12} v\right)\right) \\
& +\frac{1}{b_{12}^{2}} \sqrt{1+b_{12}^{2}+\exp (2 u)}\left(D_{1}^{\prime}(u) \sinh \left(b_{12} v\right)+D_{2}^{\prime}(u) \cosh \left(b_{12} v\right)\right) \\
& +E \times v
\end{aligned}
$$

where E is a constant vector.
Separating the variables u and v, we get that there exist constant vectors E_{1} and E_{2} such that:

$$
\begin{aligned}
& -D_{1}(u)+\frac{1}{b_{12}^{2}} D_{1}^{\prime}(u)+\frac{1}{b_{12}^{2}} \sqrt{1+b_{12}^{2}+\exp (2 u)} D_{2}^{\prime}(u)=E_{1} \\
\text { and } & -D_{2}(u)+\frac{1}{b_{12}^{2}} D_{2}^{\prime}(u)+\frac{1}{b_{12}^{2}} \sqrt{1+b_{12}^{2}+\exp (2 u)} D_{1}^{\prime}(u)=E_{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left(D_{1}(u)+D_{2}(u)+E_{1}+E_{2}\right) \\
& \quad=\left(\frac{1}{b_{12}^{2}}+\frac{1}{b_{12}^{2}} \sqrt{1+b_{12}^{2}+\exp (2 u)}\right)\left(D_{1}(u)+D_{2}(u)+E_{1}+E_{2}\right)^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(D_{1}(u)+E_{1}-D_{2}(u)-E_{2}\right) \\
& \quad=\left(\frac{1}{b_{12}^{2}}-\frac{1}{b_{12}^{2}} \sqrt{1+b_{12}^{2}+\exp (2 u)}\right)\left(D_{1}(u)+E_{1}-D_{2}(u)-E_{2}\right)^{\prime} .
\end{aligned}
$$

We obtain that there exist constant vectors V_{1} and V_{2} such that:

$$
\left\{\begin{array}{l}
\left(D_{1}(u)+D_{2}(u)+E_{1}+E_{2}\right)=V_{1} \exp \left(\int_{0}^{u} \frac{b_{12}^{2}}{1+\sqrt{1+b_{12}^{2}+\exp (2 u)}} d u\right) \\
\left(D_{1}(u)-D_{2}(u)+E_{1}-E_{2}\right)=V_{2} \exp \left(\int_{0}^{u} \frac{b_{12}^{2}}{1-\sqrt{1+b_{12}^{2}+\exp (2 u)}} d u\right)
\end{array}\right.
$$

If we write:

$$
\begin{aligned}
& \int_{0}^{u} \frac{b_{12}^{2}}{1+\sqrt{1+b_{12}^{2}+\exp (2 u)}} d u=f(u) \\
& \text { and } \quad \int_{0}^{u} \frac{b_{12}^{2}}{1-\sqrt{1+b_{12}^{2}+\exp (2 u)}} d u=g(u),
\end{aligned}
$$

we get:

$$
\left\{\begin{array}{l}
2 D_{1}(u)+2 E_{1}=\left(V_{1} \exp (f(u))+V_{2} \exp (g(u))\right) \\
2 D_{2}(u)+2 E_{2}=\left(V_{1} \exp (f(u))-V_{2} \exp (g(u))\right)
\end{array}\right.
$$

Then

$$
\left\{\begin{array}{l}
D_{1}(u)=\frac{1}{2}\left(V_{1} \exp (f(u))+V_{2} \exp (g(u))\right)-E_{1} \\
D_{2}(u)=\frac{1}{2}\left(V_{1} \exp (f(u))-V_{2} \exp (g(u))\right)-E_{2} \\
D_{3}(v)=E_{1} \cosh \left(b_{12}\right)+E_{2} \sinh \left(b_{12}\right)+E \times v .
\end{array}\right.
$$

Moreover $\widetilde{\xi}=\exp (u)\left(D_{1}^{\prime}(u) \sinh \left(b_{12} v\right)+D_{2}^{\prime}(u) \cosh \left(b_{12} v\right)\right)$.
Finally we get:

$$
\begin{aligned}
\mathcal{G}= & \frac{1}{2}\left(V_{1} \exp (f(u))+V_{2} \exp (g(u))\right) \cosh \left(b_{12} v\right) \\
& +\frac{1}{2}\left(V_{1} \exp (f(u))-V_{2} \exp (g(u))\right) \sinh \left(b_{12} v\right)+E \times v .
\end{aligned}
$$

Since \mathcal{G} is non degenerate, $\left(V_{1}, V_{2}, E\right)$ are linearly independent. So by an affine transformation, we can assume that:

$$
\begin{aligned}
\mathcal{G}=(& \frac{1}{2} \exp (f(u))\left(\cosh \left(b_{12} v\right)+\sinh \left(b_{12} v\right)\right), \\
& \left.\frac{1}{2} \exp (g(u))\left(\cosh \left(b_{12} v\right)-\sinh \left(b_{12} v\right)\right), v\right) .
\end{aligned}
$$

So $\mathcal{G}=\left(\frac{1}{2} \exp \left(f(u)+b_{12} v\right), \frac{1}{2} \exp \left(g(u)-b_{12} v\right), v\right)$ and $\widetilde{\xi}=$ $\exp (u)\left(\frac{1}{2} f^{\prime}(u) \exp \left(f(u)+b_{12} v\right),-\frac{1}{2} g^{\prime}(u) \exp \left(g(u)-b_{12} v\right), 0\right)$, with $f^{\prime}(u)=$ $\frac{b_{12}^{2}}{1+\sqrt{1+b_{12}^{2}+\exp (2 u)}}$ and $g^{\prime}(u)=\frac{b_{12}^{2}}{1-\sqrt{1+b_{12}^{2}+\exp (2 u)}}$.

Acknowledgment I thank Luc Vrancken for the useful talks we had and the referees for their valuable suggestions which helped improve the paper.

References

[1] Arnold V., Equations diffrentielles ordinaires, Edition Mir,1988.
[2] Bers L., Riemann surfaces, New York University, Institute of Mathematical sciences, New York (1957-1958), 15-35.
[3] Dillen F., Equivalence theorems in affine differential geometry, Geometriae Dedicata 32 (1989), 81-92.
[4] Nomizu K. and Opozda B., Integral formulas for affine surfaces and rigidity theorems of Cohn-Vossen type, Geometry and Topology of Submanifolds IV, World Scientific, (1992), 133-142.
[5] Nomizu K. and Sasaki T., Affine differential geometry, Cambridge University Press, Cambridge, 1995.
[6] Nomizu K. and Vrancken L., Another rigidity theorem for affine immersions, Results Math 27 (1995), 93-96.
[7] Simon U., Global uniqueness for ovaloids in euclidian and affine differential geometry, Tohoku Math J. 44 (1992), 327-334.
[8] Vrancken L., Rigidity of Affine Hypersurfaces with Rank 1 Shape Operator, International Journal of Mathematics 14(3) (2003), 211-234.

LAMAV ISTV2

Université de Valenciennes
59313 VALENCIENNES Cedex 9
FRANCE
E-mail: olivier.birembaux@univ-valenciennes.fr

[^0]: 2000 Mathematics Subject Classification : 53A15.

