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ABSTRACT. In the present paper, we study the anabelian geometry of mixed-
characteristic local fields by an algorithmic approach. We begin by discussing some
generalities on log-shells of mixed-characteristic local fields. One main topic of this
discussion is the difference between the log-shell and the ring of integers. This discussion
concerning log-shells allows one to establish mono-anabelian reconstruction algorithms
for constructing some objects related to the p-adic valuations. Next, we consider open
homomorphisms between profinite groups of MLF-type. This consideration leads us to
a bi-anabelian result for absolutely unramified mixed-characteristic local fields. Next,
we establish some mono-anabelian reconstruction algorithms related to each of abso-
lutely abelian mixed-characteristic local fields, mixed-characteristic local fields of degree
one, and Galois-specifiable mixed-characteristic local fields. For instance, we give a
mono-anabelian reconstruction algorithm for constructing the Norm map with respect to
the finite extension determined by the uniquely determined minimal mixed-characteristic
local subfield. Finally, we apply various results of the present paper to prove some
facts concerning outer automorphisms of the absolute Galois groups of mixed-
characteristic local fields that arise from field automorphisms of the mixed-characteristic
local fields.

Introduction

In the present paper, we study the anabelian geometry of mixed-
characteristic local fields. More specifically, we continue our study [cf. [§],
[2], [3]] of the mono-anabelian geometry |[cf., e.g., [8], Introduction; [8], Remark
1.9.8; [3], Introduction] of mixed-characteristic local fields.

One central object of the study in the present paper is a mixed-
characteristic local field, i.e., an MLF. We shall refer to a [field isomorphic
to a] finite extension of @,, for some prime number p, as an MLF [cf. [3],
Definition 1.1]. If k is an MLF, then we shall write
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e (O, Ck for the ring of integers of k,

e my C O for the maximal ideal of €,

. l_cdéf O /my for the residue field of O,

Dk défchar(l_c) for the residue characteristic of k,

c ¥ dimg, (k+), fi &f dimp, (k) [cf. the discussion entitled “Rings”
in §0],

. g% #(k* /(07 - pE)) for the absolute ramification index of &,

e kW= Ck for the [uniquely determined] minimal MLF contained
in k,

* & &y (respectively, & 2) if pr # 2 (respectively, pp = 2),

* ay for the largest nonnegative integer such that k contains a p,*-th root
of unity, and

* ordy : kK\{0} — Z for the [uniquely determined] py-adic valuation nor-
malized so that ord; is surjective
[cf. the notational conventions introduced at the beginning of §1]. Moreover,
for a positive integer n, we use the notation “{,” to denote a primitive n-th root
of unity.

Another central object of the study in the present paper is a [profinite—
cf. [3], Proposition 3.3, (i)] group of MLF-type. We shall say that a group
is of MLF-type if the group is isomorphic, as an abstract group, to the
absolute Galois group of an MLF [cf. [3], Definition 3.1]. If G is a group
of MLF-type, then, by applying various mono-anabelian reconstruction algo-
rithms [cf., e.g., [8], Introduction; [8], Remark 1.9.8] of [3], §3, to G, we
obtain

* a prime number p(G),

* positive integers d(G), f(G), and e(G),

* topological modules k*(G) and k. (G), and

* a monoid k«(G)
which “correspond” to

e the prime number py,

e the positive integers dj, fr, and e,

* the topological modules k* and k; [cf. the discussion entitled “Rings”
in §0], and

* the monoid ky [cf. the discussion entitled “Fields” in §0],
respectively [cf. [3], Summary 3.15]. Moreover, by applying the mono-
anabelian reconstruction algorithms of Definition 2.4, (i), (i), of the present
paper to G, we obtain

* nonnegative integers &(G) and a(G)
which “correspond” to

e the nonnegative integers & and a,
respectively [cf. Proposition 2.5, (i), of the present paper].



Anabelian geometry of mixed-characteristic local fields 325

In §1, we discuss some generalities on log-shells of MLF’s. If k is an
MLF, then we shall refer to the compact open topological submodule

def 1
jk i 2p logk(@ ) g k+

—where we write log, : O — k. for the pi-adic logarithm—of the topological
module k, as the log-shell of k [cf. [8], Definition 5.4, (iii)]. As is well-known
[cf., e.g., [3], Lemma 1.2, (vi)], the log-shell contains the compact open topo-
logical submodule (Ck), C k; of ki:

(@k)+ - fk-

One main topic of the study of §1 is the difference between (Cr), and 7.
In §1, we prove, for instance, the following result [cf. Proposition 1.5; Lemma
1.8, (i); Proposition 1.10, (i)].

THEOREM A. Let k be an MLF. Then the following hold:
(i) The quotient

T/ (Uk) +

is isomorphic, as an abstract module, to the module defined by

©
H Z+/pkz @bk(> o(v, ar)

v=1

—where we write

sk-ek—l sk-ek—l 8k~€k—1
Ol 2[ ; J+ ) S
! P !

and (i, j) &y (respectively, d:efO) if i =j (respectively, i # j). In particular,
the isomorphism class of 9, /(Cy), depends only on py, fi, ey, and ay.
(i) It holds that the submodule 9 C k. coincides with the submodule
(Or), € ky if and only if one of the following three conditions is satisfied:
e The prime number pj is odd, and, moreover, the finite extension
k/k'“=Y is unramified.
» The field k is isomorphic to the field @Q,.
e The field k is isomorphic to the field Q;((3).
(i) We shall define a nonnegative integer

Vk

as follows:
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e If either p, =5 or k is not isomorphic to ka(ép:k ), then
Vi def min{v > 0| & - ex < p;}.
e If pir <3, and k is isomorphic to (ka(Cp:k), then
ve L min{v>0]e-ep < pyt'y =min{v > 1| e < pl}— 1.
Then the nonnegative integer vy is the smallest integer such that
P I € (Or), C S

The various results of §1 may be regarded as ‘“‘preparatory portions” for
the establishment of mono-anabelian reconstruction algorithms of §2.

In §2, we establish mono-anabelian reconstruction algorithms for construct-
ing, from a group G of MLF-type,

* a homomorphism of modules

ordg(G) : k*(G) — Z

[cf. Definition 2.2] which “corresponds” [cf. Proposition 2.3] to the pj-adic
valuation ordy : k\{0} — Z and
* a map of sets

ordg (G) : k(G)\{0} — Z

[cf. Definition 2.6, (ii)] which “corresponds” [cf. Proposition 2.7, (ii)] to a
certain map ord,[f] : k\{0} — Z of sets [cf. Definition 1.9, (ii)] that satisfies the
following condition [cf. Proposition 1.10, (ii)]: For each a € k\{0}, it holds
that

ordi(a) < ord,[f](a) < ordi(a) +er - (v + 1)

[cf. Theorem A, (iii)], i.e., a sort of “pj-adic valuation with an indeterminacy”
[cf. Remark 1.10.1; also Remark 2.11.1].

Moreover, we also establish mono-anabelian reconstruction algorithms for
constructing, from a group G of MLF-type such that &(G) - e(G) = f(G) + a(G)
[cf. also Remark 2.11.2], topological submodules

m"(G) € 04(G) C k4 (G)

[cf. Definition 2.9, (i), (ii)]—where n is a nonnegative integer—of k. (G)
which “‘correspond” [cf. Proposition 2.10] to the topological submodules
my; C (Or), € ky of ky, respectively.

In §3, we consider open homomorphisms between profinite groups of
MLF-type. One main application of the results of §3 is as follows |[cf.
Theorem 3.6, Corollary 3.7].
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THEOREM B. For each [] € {o, e}, let GO be a profinite group of MLF-
type. Let

o: G, — G,

be an open homomorphism. Then the following hold:

(i) Suppose that d(G.) < d(G,) [which is the case if, for instance,
d(Gs) =1]. Then o is an isomorphism.

(i) Suppose that e(G,) < e(G.) [which is the case if, for instance,
e(G,) =1]. Then « is injective.

Theorem B leads us to the following bi-anabelian [cf., e.g., [8], Introduc-
tion; [8], Remark 1.9.8; [3], Introduction] result [cf. Corollary 3.8].

TueorREM C.  For each [ € {o,e}, let k) be an MLF and kr, an algebraic
closure of kp, write G &f Gal(kp/kp). Suppose that e, = 1. Then it holds
that the field k. is isomorphic o the field k, if and only if there exists a surjection
G, — G..

In §4, we discuss some mono-anabelian reconstruction algorithms related
to absolutely abelian MLF’s. We shall say that an MLF k is absolutely abelian
if the finite extension k/k“=!) is Galois, and the Galois group is abelian [cf.
Definition 4.2, (ii)]. In §4, we establish, for instance, a mono-anabelian recon-
struction algorithm for constructing, from a group G of MLF-type, a homomor-
phism of topological modules

Nmabs ( G)

[cf. Definition 4.7, (iii)] which “corresponds” [cf. Proposition 4.9, (i)] to the
Norm map Nmy gy : k* — (k(4=D)* with respect to the finite extension
k/k“=1) . This homomorphism Nm,ps(G) allows one to define the notion of
MLF-Galois label of G, i.e., the triple consisting of the prime number p(G), the
positive integer d(G), and the image of the homomorphism Nmgps(G) [cf.
Definition 4.10]. By applying the main theorems of [4] and [13], we obtain the
following result [cf. Theorem 4.11].

THEOREM D. For each []€ {o,e}, let G be a group of MLF-type.
Suppose that {(p(G,),a(G,)), (p(G.),a(G.)} € {(2,1)}. Then it holds that
the group G, is isomorphic to the group G, if and only if the MLF-Galois
label of G, coincides with the MLF-Galois label of G,.

Moreover, in §4, we also obtain the following bi-anabelian result [cf.
Corollary 4.14].

TuEOREM E.  For each [ € {o, e}, let kyy be an MLF and kpy an algebraic
closure of kp; write G &f Gal(kg/kp). Suppose that there exists a surjection
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G, — G, [which thus implies that py, = pr,—cf. Proposition 3.4, (iii)] compatible
with the respective py -adic, i.e., py,-adic, cyclotomic characters [which is the case
if, for instance, the surjection G, — G, is an isomorphism—cf. [3], Proposition
4.2, (iv)]. Then the following hold:

(i) The [uniquely determined] maximal absolutely abelian MLF contained
in ko is isomorphic to the [uniquely determined] maximal absolutely abelian MLF
contained in k,.

(i) Suppose that k, is absolutely abelian. Then the field k. is isomorphic
to the field k,.

Here, observe that Theorem E, (i), may be regarded as a refinement of the
main theorem of [6] [cf. Remark 4.14.1].

In §5, we discuss some mono-anabelian reconstruction algorithms related to
MLF’s of degree one, ie., such that the integer “d(_)” is equal to one. For
instance, we establish a mono-anabelian reconstruction algorithm for construct-
ing, from a group G of MLF-type such that d(G) =1 [cf. Remark 5.10.1], a
structure of topological field on ky(G) [cf. Definition 5.2] which “corresponds”
[cf. Theorem 5.4, (i)] to the topological field structure of k, ie., on ky.

In §6, we discuss Galois-specifiable MLF’s. We shall say that an MLF
k is Galois-specifiable if k is Galois over k(?=1) and, moreover, the following
condition is satisfied: If L is an MLF such that the absolute Galois group of &
is isomorphic to the absolute Galois group of L, then the field k is isomorphic
to the field L [cf. Definition 6.1]. We prove the following result [cf. Theorem
5.9, (ii); Remark 5.9.1; Theorem 6.3; Remark 6.3.1].

THEOREM F. Let k be an MLF. Consider the following five conditions:
(1) The MLF k is absolutely abelian [¢f. Definition 4.2, (ii)].
(2) The MLF k is Galois-specifiable [c¢/. Definition 6.1].
(3) The MLF k is absolutely strictly radical [¢f. Definition 5.6, (iii)).
(4) The MLF k is absolutely characteristic [cf. Definition 5.7).
(5) The MLF k is absolutely Galois [¢f. Definition 4.2, (i)].
Then the following hold:
(i) The implications

3)
l
(1) = Q) = (4) = (5
hold.
(if) Suppose that (pi,ax) # (2,1). Then the equivalence
(1) = (2)

holds.
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(iii) There exists an MLF that violates the implication (4) = (2) (respec-
tively, (4) = (3); (5) = (4)).

Moreover, in the present paper, we observe that the condition for an MLF
to be absolutely abelian and the condition for an MLF to be Galois-specifiable
may be considered to be ‘“‘group-theoretic” [cf. Remark 4.15.1, (i); Remark
6.13.1], but each of the condition for an MLF to be absolutely strictly radical,
the condition for an MLF to be absolutely characteristic, and the condition
for an MLF to be absolutely Galois should be considered to be “not group-
theoretic” [cf. Remark 4.15.1, (ii); Remark 5.9.2].

Let k be an MLF and & an algebraic closure of k. Write Gy & Gal(k/k).
Then let us recall that we have a natural injection Aut(k) — Out(Gy) [cf., e.g.,
[3], Proposition 2.1]. By means of this injection, let us regard Aut(k) as a
subgroup of Out(Gy):

Aut(k) C Out(Gy).

In §6, we also establish a mono-anabelian reconstruction algorithm for con-
structing, from a group G of MLF-type that satisfies a certain condition [cf.
Definition 6.8, (i)] “corresponding” [cf. Theorem 6.10] to the condition for an
MLF to be Galois-specifiable, a collection

Orbyy, (G)

[cf. Definition 6.8, (ii)] of subgroups of Out(G) which “corresponds” |[cf.
Theorem 6.12, (ii)] to the Out(Gy)-orbit, i.e., by conjugation, of the subgroup
Aut(k) C Out(Gy).

In §7 and §8, we discuss outer automorphisms of the absolute Galois
groups of MLF’s that arise from field automorphisms of the MLF’s. For
instance, we prove the following result [cf. Theorem 7.2, (i); Theorem 7.5;
Corollary 8.7].

TueOREM G. Let k be an MLF and k an algebraic closure of k. Write
G & Gal(k/k). Then the following hold:

(i) Suppose that the MLF k is absolutely characteristic, and that py is
odd. Then the subgroup

Aut(k) C Out(Gy)

is not normally terminal [¢f. the discussion entitled “Groups” in §0].

(i) Write k@) Ck for the [uniquely determined] maximal absolutely
abelian MLF contained in k. Suppose that a maximal intermediate field of
k /K@) tamely ramified over k(®® does not coincide with k“=) [which is the case
if, for instance, k™ # kW=D, and that (py,ar) # (2,1). Let n be a non-
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negative integer such that [k : k@] e PLZ and A an abelian pi-group that
satisfies the following two conditions.
(1) It holds that #A = p}.
(2) The finite abelian group A is generated by at most (di/p}) — 1
elements.
Then there exists a subgroup of Out(Gy) isomorphic to A.
(iii) Suppose that py is odd, and that

1/pi
k= ka(cpk’ pk/” )
Then the subgroup

Aut(k) C Out(Gy)
is neither normally terminal nor normal

One motivation of studying Theorem G is as follows [cf. Remark 7.5.2]:
Let k be an MLF and k an algebraic closure of k. Write G défGatl(lg/k).
Then, as is well-known [cf., e.g., the discussion given at the final portion of
[12], Chapter VII, §5], in general, the natural injection

Aut(k) — Out(Gy)

is not surjective. Under this state of affairs, one may consider the following
problem:

Problem: Is there a certain “suitable” characterization of the sub-
group Aut(k) C Out(Gy) of Out(Gy)?

[Here, let us observe that

the mono-anabelian reconstruction algorithm of “Orbs,(G)” in the
discussion preceding Theorem G may be regarded as a certain
affirmative solution to this problem, i.e., in the case where the MLF
k is Galois-specifiable.

From the point of view of this problem, let us observe
the [easily verified] finiteness of the group Aut(k).

In particular, as one of possible solutions to the above problem, one may
discuss the following question:

() Is the subgroup Aut(k) of Out(Gy) the uniquely determined maximal
finite subgroup of Out(Gy)? Put another way, is every element of Out(Gy) of
finite order contained in the subgroup Aut(k) of Out(Gy)?

Now let us observe that it is immediate that an affirmative answer to this
question (xg,) implies an affirmative answer to the following question (char),
hence also an affirmative answer to the following question (e ):
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(*char) Is the subgroup Aut(k) of Out(Gy) characteristic?

(#nor) Is the subgroup Aut(k) of Out(Gy) normal?
Then one may easily find that

* Theorem G, (i), is related to the question (nor),

e Theorem G, (ii) [cf. also the example in Remark 7.5.1], yields a negative
answer to the question (kg,), and

* Theorem G, (iii), yields a negative answer to the question (#nor), hence
also negative answers to the questions (xg,) and (*char).
This is one motivation of studying Theorem G.

Finally, in Remark 8.7.1, we recall some of the discussions of §8 from the
point of view of the notion of “link” [cf. [9], §2.7, (i)].

0. Notations and conventions

NumBers. If a e @ is a rational number, then we shall write |a| € Z for
the largest integer such that |a] < a.

Sers. If S is a finite set, then we shall write #S for the cardinality of
S. If G is a group, and T is a set equipped with an action of G, then we shall
write T¢ C T for the subset of G-invariants of 7.

MonNoips. In the present paper, every “monoid” is assumed to be com-
mutative. Let M be a [multiplicative] monoid. We shall write M* C M for
the abelian group of invertible elements of M. We shall write M*P for the
groupification of M [i.e., the abelian group given by the set of equivalence
classes with respect to the relation ~ on M x M defined by, for (aj,b;),
(az,b2) € M x M, (a1,b1) ~ (az,b;) if there exists an element ¢ € M of M such
that ca by = caxb;]. We shall write MP for the perfection of M [ie., the
monoid obtained by forming the inductive limit of the inductive system of
monoids

M- M — ...

given by assigning to each positive integer n a copy of M, which we

denote by I,, and to each two positive integers n, m such that n divides

m the homomorphism I, = M — I,, = M given by multiplication by m/n].

We shall write M® % M U {x),}; we regard M® as a monoid [that contains
. . def def

M as a submonoid] by setting ) -%y = %) and a-*y = %) for every

aeM.

Mobputres. Let M be a module. If n is a positive integer, then we
shall write M[n] C M for the submodule obtained by forming the kernel of the
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endomorphism of M given by multiplication by n. We shall write My def
U,>1 M(n] € M for the submodule of torsion elements of M and

M lim M/ (n- M)

n

—where the projective limit is taken over the positive integers n. [So if M
is finitely generated, then M" coincides with the profinite completion of M.]

Groups. Let G be a group and H C G a subgroup of G. We shall write
Zs(H) C G for the centralizer of H in G [i.e., the subgroup consisting of
g € G such that gh = hg for every h € H| and Ng(H) C G for the normalizer of
H in G [i.e., the subgroup consisting of g € G such that gH = Hyg]. We shall
say that H is normally terminal in G if Ng(H)= H, or, alternatively,
Ng(H) C H.

TopoLoGicaL GrRouPs. If G is a topological group, then we shall write
G® for the abelianization of G [i.e., the quotient of G by the closure of
the commutator subgroup of GJ, Ga>or & (Gab) € G# and G/ for the
quotient of G*° by the closure of G2°" C G®. 1If H is a profinite group, and
p is a prime number, then we shall write H(?) for the maximal pro-p quotient
of H.

RiNGs. In the present paper, every “ring” is assumed to be unital, asso-
ciative, and commutative. Let R be a ring. We shall write R, for the
underlying additive module of R and R* C R for the multiplicative group
of units of R. If, moreover, R is an integral domain, then we shall write
R= C R for the multiplicative monoid of nonzero elements of R. [So if
R is an integral domain, then we have a natural inclusion R* C R® of
monoids.]

FieLps. Let K be a field [i.e., an integral domain such that K* = K=].
We shall write u(K) &f (K*),,, for the group of roots of unity in K and
K, = K*U{0} for the underlying multiplicative monoid of K. [So we have
a natural isomorphism (K*)® = K, of monoids that maps #x~ to 0.] If,
moreover, K is algebraically closed and of characteristic zero, then we shall
write

A(K) = Tim p(K)[n] = lim K* [n]

—where the projective limits are taken over the positive integers n—and refer
to A(K) as the cyclotome associated to K. Thus, the cyclotome has a natural
structure of profinite, hence also topological, module and is isomorphic, as an
abstract topological module, to Z..
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1. Generalities on log-shells
In the present §1, let

k

be an MLF—i.., a [field isomorphic to a] finite extension of @,, for some
prime number p [cf. [3], Definition 1.1]—and

k

an algebraic closure of k. We shall write

e (O, Ck for the ring of integers of k,

e my C O for the maximal ideal of O,

. kdﬁf Or/my for the residue field of O,

.« O ey m; C O [where n is a positive integer| for the n-th higher
unit group of U,

.« OF & OF" for the group of principal units of 0,

* y for the [uniquely determined] Haar measure on [the locally compact
topological module] k, normalized so that s ((Ck),) =1,

LIy ) &f char(k) for the residue characteristic of £,

(

- #(k* / (0F - pt)) for the absolute ramification index of k,
. logk OF — ki for the pi-adic logarithm,
2 (2pi) 7" log (0F) C ks for the log-shell of k,

. (§ C k for the ring of integers of k,

. k for the residue field of Oy,

e G ¥ Gal(k/k),

J Ik C Gy, for the inertia subgroup of Gy,

e Py C I for the wild inertia subgroup of Gy, and

» Froby € Gal(k/k) & Gi/I; for the [#k-th power] Frobenius element
[cf. the notational conventions introduced in the discussions following [3],
Definition 1.1, and [3], Lemma 1.3]. We shall write, moreover,

e k=1 C k for the [uniquely determined] minimal MLF contained in k,

o« o = e/ (pe — 1)),

o 5% (respectively, d:ef2) if pr#2 (respectively, pi =2) [cf. [3],
Lemma 1.3, (iii)],

* ay for the largest nonnegative integer such that k contains a p,*-th root
of unity [i.e. the “a” in [3], Lemma 1.2, (i)],

ad? ¥ (respectively, &f 1) if ap =0 (respectively, a; #0),

. J( ) & 2pi) ! -log (OF") C J [where n is a positive integer], and
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e ordy : kK\{0} — Z for the [uniquely determined] p;-adic valuation nor-
malized so that ord; is surjective.
Finally, for each positive integer n, let

Liek

be a primitive n-th root of unity.
In the present §1, we discuss some generalities on log-shells of MLF’s.

ProrosiTION 1.1.  The following hold:
() It holds that 5" = 7. |
(i) It holds that w(%y) = pi® .
(iii) Let n be an integer such that n > e,[f]. Then it holds that f,i") =
.k
iv) a[ =1, then it holds that (fi,er) = (1, p* -1 - (px — 1)) if and only
k
if k is 1som0rphlc 10 Q, (¢, “k)
v) It holds that p*~ 1 v — 1) < ei. If, moreover, a = 1, then it holds
Py P k
that ey € p;*~ Y1)z

ProOF. Assertion (i) follows from [3], Lemma 1.2, (i), (ii), (v). Assertion
(ii) is the content of [3], Lemma 1.3, (iii). Assertion (iii) follows from [11],
- . . a—1

Chapter II, Proposition 5.5. Finally, since ( prk(Cp“k)’erk(C,,lak)) (1, p

(px — 1)) if @ =1 [cf. [11], Chapter I, Proposition 7.13, (i)], assertions (iv),
(v) follow 1mmed1ately from the [easily verified] fact that k always contains an
MLF isomorphic to ka(cp;‘k). This completes the proof of Proposition 1.1.

‘ O

LemMa 1.2. Let ae k\{0} be an element of k\{0}. Then the integer
ordi(a) € Z coincides with the uniquely determined integer n such that Frob; €
Gy /I coincides with the image of a € k\{0} by the composite of the injective
homomorphism recy : k> — G,‘jb of [3], Lemma 1.7, and the natural surjection
G — Gy /I [¢f. [3], Lemma 1.5, (i)].

Proor. This assertion follows immediately from [3], Lemma 1.7, (1).

O

LemMma 1.3. The following hold:
(i) Suppose that a,fs] = 1. Let v be an integer such that 1 <v < ak Then

it holds that () € @ s [¢f. Proposition 1.1, (V)] but (v ¢ (§<(€ pi

(i) Let n be a positive integer. Then the modules O;>"/ 0<”+l Jk )/ fk"H
are annihilated by py. In particular, these modules have respective natural
structures of T, -vector spaces. Moreover, the T, -vector space 07"/ 0<”+l is
of dimension fj.
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(iif) Let n be a positive integer. Then the py-adic logarithm log;, : O —
ki determines a surjection of IF, -vector spaces [cf. (ii)]

(Qk<n/(9k<n+l — fk(”)/fk(”'*‘l).

(iv) In the situation of (iii), if the integer n is of the form “e,[c"]/p,‘c”l” Sfor
some integer v such that 1 <v < ay, then the kernel of the surjection of (iii) is
il v—1
generated by the image of CP}' € 6’: “ /P [¢f (1)] [hence also of dimension one
over IF, ). If the integer n is not of the form ”e,[c"]/p,:”l”for any integer v such
that 1 <v < ay, then the surjection of (iii) is an isomorphism.

Proor. Assertion (i) follows immediately from Proposition 1.1, (iv),
together with [11], Chapter II, Proposition 7.13, (iv). Assertions (ii), (iii)
follow from [11], Chapter II, Proposition 3.10, together with the definition of
“ ,f")”. Assertion (iv) follows immediately from assertion (i), together with

[3], Lemma 1.2, (ii), (v). This completes the proof of Lemma 1.3. ]

DEFINITION 1.4.
(i) For each positive integer v, we shall write

e Sk-ek—l ek-ek—l sk-ek—l
O e — 2[ : J+ . S
pkl )2 pk+1

Moreover, we shall write

(i) We shall write

]

L & T[@. i )00

v=1
—where we write (i, ) &y (respectively, dgO) if i = j (respectively, i # j).

REMARK 1.4.1. One verifies easily that the isomorphism class of the
module I, of Definition 1.4, (ii), depends only on py, fi, er, and a.

PropOSITION 1.5. The module 9 /(Cy), [cf (3], Lemma 12, (vi)] is
isomorphic, as an abstract module, to the module Wy. In particular, the iso-
morphism class of i /(Cy), depends only on py, fi, ex, and ay [cf. Remark
1.4.1].

Proof. If (g,ex) = (1,1), then Proposition 1.5 follows from Proposition
1.1, (ii), (v). Thus, we may assume without loss of generality that (e, ex) #
(1,1). If a,[f] =0, then Proposition 1.5 follows immediately from [10], The-
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orem 2 [i.e., in the case where we take the “(N,¢)” of [10], Theorem 2, to be
(ex - ex — 1,0)], together with Proposition 1.1, (iii); Lemma 1.3, (iv). If a,[f] =1,
then Proposition 1.5 follows immediately from [10], Theorem 3 [i.e., in the
case where we take the “N” of [10], Theorem 3, to be & - e; — 1], together
with Proposition 1.1, (iii); Lemma 1.3, (i), (iv). This completes the proof of
Proposition 1.5. O

ReMARK 1.5.1. One may give an alternative proof of Proposition 1.1, (ii),
by applying Proposition 1.5. Indeed, it follows from conditions (1) and (2) of
(3], Lemma 1.3, (i), that g (#%) = #(J%/(Ck),). On the other hand, it follows
from Proposition 1.5 that

o0

log,, (#(7/(Ok),)) = log,, (#1x) = > (v~ (be(v) = (v, ax)))

v=1

8k~€k71

= {#J'ﬁc—ak:tﬁk'dk—fk—ak
Py

Thus, Proposition 1.1, (ii), holds.

LemMma 1.6. The following hold:
(i) The TF, -vector space (Ii/(Ok),) ®z]IF,, is of dimension

8/('6'](—1

Sk'dk—fk—a;[f]—{ o Jfk

(i) If px = 2, then the IF,, -vector space (Ii/(Uk),) ®zIF,, is of dimension
di — 1.
(i) The IF, -vector space (Ji/(Ck),) ®zTF,, is of dimension < d;.

Proor. First, we verify assertion (i). It follows from Proposition 1.5,
together with the definition of Iy, that the dimension under consideration is
given by

S (i) — (v, ) = Q‘gk'“’ = 1J - f‘”k - ID fi—af
v=1

Py i

. e — 1
_ak.dk_fk_agl_{%

.
This completes the proof of assertion (i). Assertion (ii) follows from assertion
(i), together with the [easily verified] fact that if p; =2, then (g,a) = (2,1).

Finally, we verify assertion (iii). If py is odd, then since g =1, fi > 1,
er > 1, and a,[f] > 0, assertion (iii) follows from assertion (i). If py =2, then
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assertion (iii) follows from assertion (ii). This completes the proof of assertion
(iii), hence also of Lemma 1.6. O

COROLLARY 1.7. It holds that

1
(64, € 5 og(€F).

PROOF. Since .7 is given by (2pr)~"' -log, (0F), it follows immediately
from [3], Lemma 1.2, (vi), that it holds that ((), is contained in 27" - log, (O;)
if and only if dimg, ((Jx/(Ok);) ®zFy,) is equal to dimg, (Jx @z F,,), ie.,
dr. Thus, Corollary 1.7 follows from Lemma 1.6, (iii). This completes the
proof of Corollary 1.7. O

LemMma 1.8. The following hold:
(i) The following four conditions are equivalent:
(1) The submodule .9 C k. coincides with the submodule (COy), C k.
(2) There exists a(n) [necessarily nonpositive—cf. (3], Lemma 1.2,
(vi)] integer v such that the submodule 9, C k. coincides with the submodule
pl)fl ’ ((ﬁk>+ - k+~
(3) It holds that ¢ - dy = fi + ax.
(4) One of the following three conditions is satisfied:
(@) It holds that (er,ex) = (1,1) [ie., that the prime number py is
odd, and, moreover, e, = 1].
(b) It holds that (pi, fi.ex) = (2,1,1) [i.e., that k is isomorphic
to Q,].
(c) It holds that (pk, fi,er,ar) = (3,1,2,1) [ie., that k is iso-
morphic to Q3({3)—cf. Proposition 1.1, (iv)].
(i) Suppose that either (a) or (b) in (i) is satisfied. Then, for each non-
negative integer v, it holds that p) - .9 =my.
(iii)  Suppose that (c) in (i) is satisfied. Then, for each nonnegative integer
v, it holds that p} - 9 =m, py~'-m}=m>
(iv) Suppose that (c) in (i) is satisfied. Write K défk(ég) Ck. Then the
image of the composite
0% < 03 I g 08,
—where we write Nmg . for the Norm map with respect to the finite extension
K /k—coincides with m} C k.

Proor. First, we verify assertion (i). The implication (1) = (2) is imme-
diate. Moreover, the equivalence (1)< (3) follows from Proposition 1.1,
(i), and [3], Lemma 1.2, (vi). One also verifies immediately the implication
(4) = (3) by straightforward calculations [cf. also Proposition 1.1, (v)].
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Next, we verify the implication (2) = (1). Suppose that condition (2) is
satisfied. Then since (), is a fiee Z, -module of rank dy, we conclude that
the module ., /(Cy), is a free Z/p,"Z-module of rank dy. In particular, if
v # 0, then the IF, -vector space (Ji/(Ok),) ®zF,, is of dimension di. Thus,
it follows from Lemma 1.6, (iii), that v =0, as desired. This completes the
proof of the implication (2) = (1).

Finally, we verify the implication (3) = (4). Suppose that condition (3) is
satisfied. Then since p,i'”1 - (prk — 1) < e [cf. Proposition 1.1, (v)], we obtain
that

8k'fk'PZk_]'(Pk—1) <& -dy = fr + ax.

Now suppose that pi is odd, i.e., > 3. Then we obtain that
G (pe=1) = 1) fi < ag.

Thus, one verifies easily that either (pg, fi,ax) = (3,1,1) or ax =0. Now
observe that it follows from condition (3) that (p«, fi,ax) = (3,1,1) (respec-
tively, a, = 0) implies that (pg, fi, ex,ar) = (3,1,2,1) (respectively, e, = 1), as
desired. This completes the proof of the implication (3) = (4) in the case
where p; is odd.

Next, suppose that py = 2. Then, by the above inequality & - f; - p,’("‘_1 .
(pr — 1) < fi + ai, we obtain that

Q% =1) fi < a,

which thus implies that a; = 1. In particular, it follows from condition (3)
that 2d, = fi +1, ie., fi-(2ex —1)=1. Thus, we conclude that (fi,ex) =
(1,1), as desired. This completes the proof of the implication (3) = (4), hence
also of assertion (i).

Assertions (ii), (iii) follow from the implication (4) = (1) of assertion (i).
Finally, we verify assertion (iv). Let us first observe that one verifies easily
that the integer “#” discussed in [14], Chapter V, §3, for the finite Galois
extension K/k [that is totally ramified and of degree 3] is equal to 2. More-
over, it follows from Proposition 1.1, (iv), that fx = 1.

Now since “#” is equal to 2, it follows from the second equality of [14],
Chapter V, §3, Corollary 3, that Nmg (€5 ) contains O, which thus implies
[cf. [11], Chapter II, Proposition 5.5] that

m; C log, (Nmg /. (OF)).

Next, observe that since fx = 1, one verifies immediately from Lemma 1.3, (i),
(i), that OF is generated by OF* C OF and {y € Of. Thus, it follows from [3],
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Lemma 1.2, (v), that

Ing(NmK/k(@I?)) = logk(NmK/k((O]?z»
Next, observe that since “¢” is equal to 2, and fx = 1, it follows immediately
from [14], Chapter V, §3, Proposition 5, (iii), together with Lemma 1.3, (ii),

that Nmg 4 (0F?) is contained in ¢°, which thus implies [cf. [11], Chapter II,
Proposition 5.5] that

loge(Nmy 4 (C52) € m.

Thus, we conclude that m} = log,(Nmg/(0F)), as desired. This completes
the proof of assertion (iv), hence also of Lemma 1.8. ]

DEFINITION 1.9.
(i) We shall write

Vk
for the nonnegative integer defined as follows [cf. also Remark 1.9.1 below]:
(1) Suppose that either (e, ex) = (1,1) or (pr, fe,ex,ar) € {(2,1,1,1),
(3,1,2,1)}. Then

def
Vi = 0.

(2) Suppose that the condition in (1) is not satisfied [which thus
implies that & -ex —1 # 0], and that either py > 5 or k £ Q,, (Cp:k). Then

8k'€k—1
220t o}
Pr

(3) Suppose that the condition in (1) is not satisfied [which thus
implies that & -ex — 1 # 0], that py <3, and that k = ka(cp:k) [which thus
implies that a,[f] =1]. Then

def
Vi = max{v >0

def
Vi = dj — 1,

or, alternatively [cf. the proof of Proposition 1.10, (i), below],
r"e"flJ # 0} 1
Py

ord’l: k\{0} — Z

def
Ve = max{v >0

(i) We shall write

for the map of sets defined by

ord”N(@) & —ep min{ve Z|p)-ae S} +e — 1.
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REMARK 1.9.1. One verifies easily that the nonnegative integer v; of
Definition 1.9, (i), may be defined as follows:
(a) If either py =5 or k is not isomorphic to ka((:p:k), then

Vi défmin{v >0|er-ex < pi}
(b) If py <3, and k is isomorphic to @, (¢,«), then
deéfmin{vz 0]er - ex SP}EH} =min{v > 1]e-ex < pj — 1.

ProposITiON 1.10.  The following hold:
(i) The nonnegative integer vy is the smallest integer such that

P/ik - I C ((f"k)Jr C 4.
(i) For each a e k\{0}, it holds that
ordy(a) < ord,[f] (a) < ordi(a) + ex - (v +1).

Proor. First, we verify assertion (i). Assertion (i) in the case where the
condition in (1) of Definition 1.9, (i), is satisfied follows from the implication
(4) = (1) of Lemma 1.8, (i). Thus, we may assume without loss of generality
that the condition in (1) of Definition 1.9, (i), is not satisfied. [In particular, it
holds that g -e; — 1 # 0.]

Write

Vs
for the smallest integer such that p” - . C (O), C J; and
vy & max{v = 0|bc(v) # 0}.
Then it is immediate from Proposition 1.5 that
vy = max{v > 0|bi(v) — (v, ax) # 0}.

In particular, we obtain the following two assertions:

(@) If br(vp) # 0(vp,ax), then it holds that v, = vp.

(b) If br(vy) = (v, ar) [or, alternative, vy = a; > 1 and bi(vy) = 1], and
br(vy — 1) # 0, then it holds that v, = v, — 1.
Moreover, let us observe that it follows immediately from the definition of

br(v) that
aea— bl Lol
Py

Now we verify assertion (i) in the case where the condition in (2) of
Definition 1.9, (i), is satisfied. Suppose that the condition in (2) of Definition
1.9, (i), is satisfied. Assume, moreover, that by(v,) = J(vp,ax) [which thus

Vp = max{v >0
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implies—cf. the above assertion (b)—that v, =a; > 1 and bi(vy) = 1]. Then
one verifies immediately that

w=a =1, fi=1, p,zhfls:sk-ek—1<2~p,:“1.

In particular, since p,frl - (pr — 1) < e [cf. Proposition 1.1, (v)], we obtain that

ap—1

g p T (e —1) = 1< 2 pi
which thus implies that
&k - (pk - 1) - p/iiuk <2

Thus, since a; > 1, we obtain that p; < 3.

Next, let us observe that since ap > 1, fr =1, and p; <3, it follows
immediately from the condition in (2) of Definition 1.9, (i), together with
Proposition 1.1, (iv), (v), that

a/(—l

2-pk (pr—1) < ex.

In particular, since ¢, e —1 <2 p,:h_l, we obtain that

ak—l 1

2egept (= 1) -1 <20 pt,
which thus implies that
2ee-(pr—1)—pp %<2

Thus, since a; > 1, we obtain a contradiction. In particular, we obtain that
bi(vp) # 0(vp,ar), which thus implies [cf. the above assertion (a)] assertion (i)
in the case where the condition in (2) of Definition 1.9, (i), is satisfied. This
completes the proof of assertion (i) in the case where the condition in (2) of
Definition 1.9, (i), is satisfied.

Finally, we verify assertion (i) in the case where the condition in (3) of
Definition 1.9, (i), is satisfied. Suppose that the condition in (3) of Defini-
tion 1.9, (i), is satisfied. Then since k is isomorphic to ka(ép:k), and a,[f] =1,
it follows from Proposition 1.1, (iv), that e, = p*~
since py < 3, we obtain that

e e — 1] £k~p,‘€‘"71~(pk—l)—1 B &k 1|
| = z =la-*_—_| =0,
Py Py Pk Dy

e — 1| e pi (e —1)—1 |
ag—1 = ap—1 =& Pk~ &k — 7|~ 1,
Di Pk Dy

a,—1
e — 1 e p o (pr—1)—1 2 1
{ pi? J{ P B G

b (px — 1). In particular,
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Thus, since f; =1 [cf. Proposition 1.1, (iv)], we conclude that
v=ar =1, br(vp) =0(vp,ar), br(vp—1)#0.

In particular, assertion (i) in the case where the condition in (3) of Definition
1.9, (i), is satisfied follows from the above assertion (b). This completes the
proof of assertion (i) in the case where the condition in (3) of Definition 1.9, (i),
is satisfied, hence also of assertion (i).

Next, we verify assertion (ii). Write N &f —min{veZ|p) -ae I}
Then it follows from the definition of N that p;V -ae % but p, ¥ a¢ 4.
Thus, it follows from assertion (i) that p}* ™ -a e p* - 7 C (), but pyN " -a ¢
(O),. 1In particular, we obtain that ordy( 2N -a) >0 and ordi(p V! - a) <
0, which thus implies that

er - (N —vi) <ordig(a) <er-(N+1).
Thus, it follows from the definition of ord,[{j] (a) that
ordy] (@) —ex + 1 — e - v < ordi(a) < ordy] (a).

This completes the proof of assertion (ii), hence also of Proposition 1.10.

O

Remark 1.10.1. By Proposition 1.10, (ii), one may regard the map
ordy] :k\{0} — Z of Definition 1.9, (ii), as a sort of “pj-adic valuation
with an indeterminacy”.

2. Reconstruction algorithms related to valuations

In the present §2, we maintain the notational conventions introduced at
the beginning of the preceding §1. In particular, we have been given an MLF

k.
Moreover, let

G

be a [profinite—cf. [3], Proposition 3.3, (i)] group of MLF-type [cf. [3],
Definition 3.1]. Thus, by applying the various group-theoretic reconstruction
algorithms [cf. [8], Remark 1.9.8] of [3], §3, and [3], §4, to the group G of
MLF-type, we obtain

* a prime number p(G),

e positive integers d(G), f(G), and e(G),

e subgroups P(G) CI(G) C G of G,

* an element Frob(G) € G/I(G) of G/I(G),
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rec(G)

e topological monoids ¢<(G) C O*(G) C 07 (G) C k*(G) =—— G?°,

* monoids £*(G) C k«(G) and k«(G),

* topological modules .#(G) C k, (G),

* a measure u(G) on ki (G),

e G-monoids 0*(G) C 0% (G) C k*(G) C k«(G) and k*(G) C k«(G),

e a G-module k. (G),

* a G-module x(G), and

* a topological G-module A(G)
[cf. [3], Summary 3.15; [3], Summary 4.3].

In the present §2, we establish group-theoretic reconstruction algorithms for
constructing, from the group G of MLF-type, a homomorphism of modules

ordg (G) : k™ (G) — Z

which “corresponds” to the pi-adic valuation ordy : kK\{0} — Z [cf. Definition
2.2, Proposition 2.3 below] and a map of sets

ordg (G) : k1 (G)\{0} — Z

which “corresponds” to the map ord,[f] : k\{0} — Z of sets of Definition 1.9,
(ii) [cf. Definition 2.6, (ii); Proposition 2.7, (ii), below], i.e., a sort of “pi-adic
valuation with an indeterminacy” [cf. Remark 1.10.1]. Moreover, we also
establish group-theoretic reconstruction algorithms for constructing, from a group
of MLF-type that satisfies an additional condition, topological submodules

“M'(=) C O4(=) Cha(=)

—where n is a nonnegative integer—of “k,(—)” which “correspond” to the
topological submodules m;! C (€), C k. of k., respectively [cf. Definition 2.9,
(i), (ii); Proposition 2.10 below].

LEmMA 2.1. The module k*(G)/0*(G) is torsion-free and generated by
Frob(G) € k*(G)/0*(G) (C G/I(G)).

Proor. This assertion follows—in light of [3], Proposition 3.6; [3], Prop-
osition 3.9; [3], Proposition 3.11, (i)—from [3], Lemma 1.5, (i), and [3], Lemma
1.7, (1) O

DEerFINITION 2.2. We shall write
ordg(G) : k*(G) = Z

for the map defined as follows [cf. [2], Theorem 1.4, (7)]: For each a € k*(G),
write ordg(G)(a) € Z for the uniquely determined [cf. Lemma 2.1] integer n
such that the image of a € k*(G) in k*(G)/0*(G) coincides with Frob(G)" e
k*(G)]0*(G).
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One verifies immediately that this map is, in fact, a homomorphism
k*(G) — Z, of modules.

PROPOSITION 2.3.  The vertical isomorphism k™ = k*(Gy) in the diagram
of [3], Proposition 3.11, (i), fits into a commutative diagram of modules

ordy

K z.
| |
k(G 22 g,

Proor. This assertion follows—in light of [3], Proposition 3.6; [3],
Proposition 3.9; [3], Proposition 3.11, (i)—from Lemma 1.2. O

REMARK 2.3.1. Let us observe that one verifies immediately from Prop-
osition 2.3 that

* the open subsets of the topological module k*(G) (C k«(G)) and,

» for each positive integer n, the subsets of k. (G)

{a € k*(G) |ordi(G)(a) = n} U {61} € k(G

generate a topology on the underlying set of the monoid k. (G) by means of
which one may regard k.(G) as a topological monoid. Moreover, one also
verifies immediately from Proposition 2.3 that the isomorphism k, = ky(Gy) of
[3], Proposition 3.11, (ii), is an isomorphism of topological monoids.

DErFINITION 2.4.
(i) We shall write

[cf. [3], Definition 3.13].
(i) We shall write

a(G) € log, g (#((k*(G) o) "))

[ef. [3], Lemma 1.2, (i); [3], Proposition 3.11, (i)].
(iii) Let v be a positive integer. Then we shall write

w (|46 -el@) 1], 1d6) () 1
b(G7V)_Q p(G)! J 2{ p(G)" J
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(iv) We shall write

1(G) € [[(@. /p(G) "z ,)®" )=t

y=1

—where we write d(i, j) | (respectively, défO) if i =j (respectively, i # j).

PropPoSITION 2.5. The following hold:
(i) It holds that

&k = S(Gk), dj = a(Gk).

(ii) The module J;/(CO), is isomorphic, as an abstract module, to the
module 1(Gy).

ProoF. Assertion (i) follows from [3], Proposition 3.6, and [3], Propo-
sition 3.11, (i). Assertion (ii) follows—in light of assertion (i); [3], Proposi-
tion 3.6—from Proposition 1.5. This completes the proof of Proposition 2.5.

O

DEFINITION 2.6.
(i) We shall write

v(G)

for the nonnegative integer defined as follows:
(1) If either p(G) =5 or (£(G),e(G)) # (1, p(G)““ " (p(G) - 1)),
then

v(G) &

min{v > 0]&(G) - e(G) < p(G)"}.
(2) If p(G) <3 and (f(G),e(G)) = (1, p(G) V™" (p(G) — 1)), then
v(G) < min{y 2 0/£(G) - ¢(G) < p(G)"*'}.
(i) We shall write
ord(G) : k (G)\{0} — Z
for the map of sets defined by

ordg(G)(a) = —e(G) -min{ve Z| p(G)"-ae F(G)} +e(G) — 1.

ProposITION 2.7.  The following hold:
(i) It holds that

Vi = V(Gk).
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(ii) The vertical isomorphism k. = k,(Gy) in the diagram of 3], Proposi-
tion 3.11, (iv), fits into a commutative diagram of sets

ord ,[(j]

A0y — % 7

[l

ordg (Gx

ki (Go{oy T 7
(iii) For each a € k\{0}, it holds that
ordy(a) < ordg(Gy)(a) < ordg(a) + e(Gy) - (v(Gx) + 1).

Proor. Assertion (i) follows from Proposition 2.5, (i), and [3], Proposition
3.6, together with Proposition 1.1, (iv) [cf. also Remark 1.9.1]. Assertion (ii)
follows from [3], Proposition 3.6, and [3], Proposition 3.11, (iv). Assertion (iii)
follows—in light of assertions (i), (ii); [3], Proposition 3.6—from Proposition
1.10, (ii). This completes the proof of Proposition 2.7. O

LemMma 2.8. The following two conditions are equivalent:
(1) It holds that &(G)-d(G) = f(G)+ a(G).
(2) One of the following three conditions is satisfied:

(@) It holds that (¢(G),e(G)) = (1,1).

(b) It holds that (p(G), f(G),e(G)) =(2,1,1).

(c) It holds that (p(G), f(G),e(G),a(G)) = (3,1,2,1).

Proor. This assertion follows—in light of Proposition 2.5, (i); [3], Prop-
osition 3.6—from the equivalence (3) < (4) of Lemma 1.8, (i). ]

DEFINITION 2.9. Suppose that &(G) - d(G) = f(G) + a(G).
(i) We shall write

0.:(6) ¥ #(G) Cki(G).

(i) Let n be a nonnegative integer. Then we shall define a topological
submodule
m’(G) € 0.(G)
of 0.(G) as follows:

(1) Suppose that either (¢(G),e(G)) = (1,1) or (p(G), f(G),e(G)) =
(2,1,1) [cf. Lemma 2.8]. Then we shall write

m"(G) € p(G)" - 0+(G) C 0.(G).
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(2) Suppose that (p(G),f(G),e(G),a(G))=(3,1,2,1) [cf. Lemma
2.8]. If n is even, then we shall write

def

m'(G) & p(6)"2 - 0,(G).

If n is odd, then we shall write

def

m"(G) € p(G)" I Im(0< (H) — 0*(H) — 0*(G) — k.(G))

—where we write H C G for the kernel of the natural action of G on u(G)[9]
(C u(G)); the first arrow “—” is the natural inclusion; the second arrow
is the homomorphism induced by the homomorphism H* — G determined

13 2

by the inclusion H — G; the third arrow “—” is the natural homomorphism.

2
—

PROPOSITION 2.10.  Suppose that ¢ - ex = fi + ax, or, alternatively [cf. Prop-
osition 2.5, (i); [3], Proposition 3.6, that &(Gy) - e(Gy) = f(Gr) + a(Gy). Let
n be a nonnegative integer. Then the vertical isomorphism k, = k,(Gy) in
the diagram of (3], Proposition 3.11, (iv), fits into a commutative diagram of
topological modules

my! ; (@k)_,_ ; ki

| | |
M (Gr) —— O (G) —— k.(Gi)

—where the horizontal arrows are the natural inclusions, and the vertical arrows
are isomorphisms.

Proor. This assertion follows—in light of Proposition 2.5, (i); [3], Lemma
1.7, (2); [3], Proposition 3.6; [3], Proposition 3.11, (i), (iv)—from Lemma 1.8,
(i), (i), (i), (i) 0

Some of the group-theoretic reconstruction algorithms discussed in the
present §2 may be summarized as follows.

SumMary 2.11.
(i) There exist group-theoretic reconstruction algorithms [cf [8], Remark
1.9.8] for constructing, from a group G of MLF-type,
* nonnegative integers &(G), a(G), and v(G) [¢f. Definition 2.4, (i), (ii);
Definition 2.6, (i),
* a module 1(G) [¢f Definition 2.4, (iv)],
* a homomorphism ordg(G) : k*(G) — Z, of modules [cf. Definition
2.2], and
* a map ordg(G) : ki (G)\{0} — Z of sets [¢f. Definition 2.6, (ii)]
which “correspond” to
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* the nomnegative integers ¢, ay, and vy [cf. Proposition 2.5, (i),
Proposition 2.7, (1)],

* the quotient of Iy by (Uy), [cf. Proposition 2.5, (ii)],

* the py-adic valuation ordy :k\{0} —Z |[¢f Proposition 2.3],
and

* the “pr-adic valuation with an indeterminacy” [cf. Remark 1.10.1]
ordy] :k\{0} — Z [cf. Proposition 2.7, (ii)],
respectively.

(i) There exist group-theoretic reconstruction algorithms for constructing,

from a group G of MLF-type such that ¢(G)-d(G) = f(G) + a(G),

* a topological submodule 0, (G) C ky(G) of ki(G) [cf. Definition
2.9, (i)] and,

e for each nonnegative integer n, a topological submodule m"(G) C
0.(G) of 0.(G) [cf. Definition 2.9, (ii)]
which “correspond” to

* the topological submodule (Or), C ki of ki [cf. Proposition 2.10]
and,

e for each nonnegative integer n, the topological submodule
m; C (Or), of (Ok), [cf. Proposition 2.10],
respectively.

ReEMark 2.11.1. Let us recall that, as asserted in Summary 2.11, (i),
we have established [cf. Definition 2.6, (ii)] a group-theoretic reconstruction
algorithm for constructing, from a group G of MLF-type, a map ordm(G) :
ki (G)\{0} — Z of sets which “corresponds” to the ““pj-adic valuation with an
indeterminacy”’ ordy] :k\{0} — Z |[cf. Remark 1.10.1].

Here, let us also recall that, as discussed in [3], Remark 4.3.1, (i) [cf. also
[3], Remark 4.3.2], it is impossible to establish a group-theoretic reconstruction
algorithm for constructing, from a group G of MLF-type, a topology on the
module k,(G) which “corresponds” to the pj-adic topology on the module
k.. 1In particular, it is impossible to establish a group-theoretic reconstruction
algorithm for constructing, from an arbitrary group G of MLF-type, a map
ki (G)\{0} — Z of sets which “corresponds” to the pj-adic valuation k\{0} —
Z [i.e., without any indeterminacy).

ReEMARK 2.11.2. Let us recall that, as asserted in Summary 2.11, (ii), we
have established [cf. Definition 2.9, (i)] a group-theoretic reconstruction algo-
rithm for constructing, from a group G of MLF-type such that &(G)-d(G) =
f(G) 4+ a(G), a topological submodule O (G) C k. (G) of k. (G) which “cor-
responds” to the topological submodule (O), C ky of k.

Here, let us also recall that, as discussed in [3], Remark 4.3.1, (iii) [cf. also
[2], Remark 1.4.3], it is impossible to establish a group-theoretic reconstruction
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algorithm for constructing, from an arbitrary group G of MLF-type, such a
topological submodule of k. (G).

ReMaRk 2.11.3. Let us recall that, as asserted in Summary 2.11, (i), and
[3], Summary 3.15, we have established [cf. Definition 2.4, (iv); [3], Definition
3.10, (vi)] group-theoretic reconstruction algorithms for constructing, from a
group G of MLF-type, modules .#(G) and I(G) which “correspond” to the log-
shell .4, and the quotient . /(). , respectively.

Here, let us also recall that, as discussed in [3], Remark 4.3.1, (iii) [cf.
also [2], Remark 1.4.3], it is impossible to establish a group-theoretic recon-
struction algorithm for constructing, from an arbitrary group G of MLF-type,
a surjection .#(G) — I(G) which “corresponds” to the natural surjection . —»
fk/((yk)+-

3. Open homomorphisms between profinite groups of MLF-type

In the present §3, we maintain the notational conventions introduced at
the beginnings of §1 and §2. In particular, we have been given a group of
MLF-type

G.

In the present §3, we consider open homomorphisms between profinite groups
of MLF-type. As a consequence of the results in the present §3, we prove that
every open homomorphism between profinite groups of MLF-type such that the
positive integer “e(—)” [cf. the notational conventions introduced at the begin-
ning of the preceding §2] of the domain is equal to the positive integer “e(—)”
of the codomain is injective [cf. Corollary 3.7 below].

LemMma 3.1. The following hold:

(i) The topological module (GO s 4 free Z,)-module of rank
d(G)+1. Moreover, the kernel of the natural homomorphism (GP(G))*® —,
(GP(@)yab/tor e evelic.

(i) The closed subgroup I(G)/P(G) C G/P(G) of G/P(G) coincides with
the kernel of the natural surjection G/P(G) — (G/P(G))™"".

(iii) It holds that

f(G) = log,g)(1 + #((G/P(G))™")).

Proor. Assertion (i) follows immediately—in light of [3], Proposition 3.6;
the isomorphism in the final display of [3], Lemma 1.7, (1)—from [3], Lemma
1.2, (i). Assertions (i), (iii) follow immediately—in light of [3], Proposition
3.6; [3], Proposition 3.9—from [3]|, Lemma 1.5, (i), (ii), (iii). This completes
the proof of Lemma 3.1. O
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DeriNITION 3.2, Let J be a profinite group. Then we shall say that a
closed subgroup N C J of J is quasi-normal [i.e., in J] if N is normal in an
open subgroup of J that contains N.

REMARK 3.2.1. Let J be a profinite group and N CJ a quasi-normal
closed subgroup of J. Then one verifies easily that, for each closed subgroup
J1 CJ of J, the closed subgroup N NJ; C J; of Jy is quasi-normal.

LemMma 3.3. Let J C G be a nontrivial closed subgroup of G. Then the
following hold:

(i) Suppose that J is quasi-normal in G. Then one of the following three
conditions is satisfied [cf. also Remark 3.3.1 below]:

(1) The image of J in G'?9) is open.

(2) The maximal pro-p(G) quotient JP(%) is not topologically finitely
generated.

(3) There is no nontrivial pro-p(G) quotient of J.

(i) Suppose that J is quasi-normal in G. Then there exists an open sub-
group of J that has a nontrivial pro-p(G) quotient.

(iii) Suppose that the maximal pro-p(G) quotient JP°) is not pro-
cyclic. Then there exists an open subgroup H C G of G such that J C H,
and, moreover, the image of J in (HP©))® s nontrivial [hence also
infinite].

(iv) Suppose that J is quasi-normal in G. Then the following two condi-
tions are equivalent:

(a) There is a nontrivial pro-p(G) quotient of J.

(b) There exists an open subgroup H C G of G such that J C H,
and, moreover, the image of J in (HP©))™®" g nontrivial [hence also
infinite].

Proor. First, we verify assertion (i). Let us first observe that, to verify
assertion (i), it suffices to verify that if J satisfies neither condition (1) nor
condition (3), then J satisfies condition (2). Suppose that J satisfies neither
condition (1) nor condition (3).

To verify that J satisfies condition (2), let us observe that since J does
not satisfy condition (3), there exists a normal open subgroup N C G of G such
that J/(J N N) has a quotient that is a nontrivial p(G)-group. Thus, by con-
sidering the composite J — J - N — (J - N)/N [that determines an isomorphism
J/(JAN)> (J-N)/N], we conclude that the image of J in (J-N)"9 js
nontrivial. Next, since J does not satisfy condition (1), the image of J in
(J - N)P) is not open. Thus, it follows immediately—in light of [3], Prop-
osition 3.6—from [7], Theorem 1.7, (ii) [cf. also Remark 3.2.1], that the
image of J in (J -N)(" @) is not topologically finitely generated, which thus
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implies that J satisfies condition (2), as desired. This completes the proof of
assertion (i).

Assertion (ii) follows immediately—in light of [3], Proposition 3.6—from
[1], Lemma 2.3. Next, we verify assertion (iii). Let us first observe that, by
our assumption, there exists a normal open subgroup N C G of G such that
J/(JNN) has a quotient that is a noncyclic p(G)-group. Write H rN -
G. Now let us recall the easily verified fact that, for a given p(G)-group,
it holds that the p(G)-group is cyclic if and only if the abelianization of the
p(G)-group is cyclic. Thus, by considering the composite J — H — H/N
[that determines an isomorphism J/(J N N) = H/N], we conclude immediately
that the image Im(J) C (HP(@)™® of J in (H(P(@))® is not cyclic. In par-
ticular, it follows immediately from Lemma 3.1, (i), that the image of Im(J) C
(H @@ in (H (@)Y is yontrivial.  This completes the proof of asser-
tion (iii).

Finally, we verify assertion (iv). The implication (b) = (a) is immediate.
Next, we verify the implication (a) = (b). Suppose that the condition (a) is
satisfied. If condition (1) of assertion (i) is satisfied, then the condition (b) is
immediate. On the other hand, if condition (2) of assertion (i) is satisfied,
then the condition (b) follows from assertion (iii). This completes the proof of
assertion (iv), hence also of Lemma 3.3. O

REMARK 3.3.1. Let us give an example that satisfies each of the three
conditions in Lemma 3.3, (i):

(i) One verifies easily that G itself satisfies condition (1) of Lemma 3.3,
(i), i.e., that condition (1) of Lemma 3.3, (i), in the case where we take the “J”
to be G is always satisfied.

(ii) Next, let us verify that condition (2) of Lemma 3.3, (i), in the case
where we take the “J” to be the normal closed subgroup P(G) C G of G is
always satisfied. Indeed, this follows from [12], Proposition 7.5.1, together
with [3], Proposition 3.6.

(iii) Finally, one verifies easily that condition (3) of Lemma 3.3, (i), in
the case where we take the “J” to be the kernel of the natural surjection
G — G9) is always satisfied [cf. also [3], Lemma 1.5, (i)].

PrROPOSITION 3.4. For each []€ {o,e}, let Go be a profinite group of
MLF-type. Let

o: G, — G,

be an open homomorphism. Then the following hold:
(i) The open homomorphism o fits into a commutative diagram of profinite
groups
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P(G,) —— I(G,) —— G,

I
P(G,) — I(G,) —— G,

—where the horizontal arrows are the natural inclusions, and the vertical arrows
are open. If, moreover, o is surjective, then the vertical arrows are surjective.
(i) In the resulting [cf. (1)] commutative diagram of profinite groups

G, —— G,/P(G,) —— G./I(G,)

I |

G, —— G./P(G,) —— G./I(G.,)

—where the horizontal arrows are the natural surjections—the middle and right-

hand vertical arrows are open injections. In particular, if, moreover, o is

surjective, then the middle and right-hand vertical arrows are isomorphisms.
(iii) It holds that

P(Go) = p(G.), d(G,)>d(G.), [f(G.)e f(G)Z, e(G,)=e(G,).
If, moreover, o is surjective, then

J(Go) = f(G.).

(iv)  The right-hand vertical arrow of the diagram of (ii) maps Frob(G,) €
G,/1(G,) to Frob(G.)f(G°>/f<G°> € G, /I(G.) [¢f (iil)]. In particular, if, more-
over, o is surjective, then the right-hand vertical arrow of the diagram of (ii) maps
Frob(G,) € G./I(G,) to Frob(G.) € G./1(G,) [cf- (iii)].

ProoF. Let us first observe that it follows immediately from [3], Prop-
osition 3.6, and [3], Proposition 3.9, that, to verify Proposition 3.4, we may
assume without loss of generality, by replacing G, by the image of « [which
is of MLF-type—cf. the discussion following [3], Proposition 3.3], that « is
surjective.

First, we verify assertions (i), (ii). The assertion that o restricts to a
surjection P(G,) — P(G.,), as well as the assertion that the resulting homo-
morphism G,/P(G,) — G./P(G,) is an isomorphism, follows immediately—
in light of [3], Proposition 3.6—from [7], Proposition 3.4. In particular, the
assertion that o restricts to a surjection I1(G,) — I(G.,), as well as the assertion
that the resulting homomorphism G,/I(G,) — G,/I(G,) is an isomorphism,
follows immediately from Lemma 3.1, (ii). This completes the proofs of
assertions (i), (ii).

Next, we verify assertion (iii). Let us first observe that the surjection o
induces a surjection G¥/°/(p(G,) - G2/) — G2/ /(p(G,) - G2¥/PY). Thus,
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it holds that p(G,) = p(G.) and d(G,) = d(G.). In particular, it follows—
in light of assertion (ii)—from Lemma 3.1, (iii), that f(G,) = f(G.), which
thus implies that ¢(G,) > e¢(G,). This completes the proof of assertion (iii).
Assertion (iv) follows from assertions (ii), (iii). This completes the proof of
Proposition 3.4. ]

PROPOSITION 3.5. In the situation of Proposition 3.4, write H, C G, for the
image of o [which is of MLF-type—cf. the discussion following [3], Proposition
3.3):

o: Go — Hy — G,.

Then the following hold:
(i) The open homomorphism o determines a commutative diagram of
topological monoids

0 (G)) —Ss 0%(G)) —S— 07(G)) —— k*(G,) =% Gav
O<(H.) —S— 0%(H.) —S— 07 (H.) —— k> (H,) =L pav
0<(G) —— 0%(G.) —S= 07 (G.) —=— k*(G.) 2% Gav

—where the horizontal arrows are the natural inclusions, the upper vertical
arrows are the surjections induced by o, and the lower vertical arrows are the
injections determined by the transfer map [i.e., with respect to H, C G.] [¢f [3],
Lemma 1.7, (3)].

(i) The left-hand upper and left-hand lower squares of the diagram of (i)
determine homomorphisms of modules

k*(Go) = Kk (H.) — k*(G.)

—where the first arrow is an isomorphism, and the second arrow is injective.
(iii) The vertical open homomorphisms 0> (G,) — O (H,) « 0*(G,) in
the diagram of (i) fit into a commutative diagram of fopological modules
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—where the horizontal arrows are the natural homomorphisms, the upper vertical
arrows are surjective, and the lower vertical arrows are injective.

ProoF. These assertions follow immediately from Proposition 3.4, (i), (iii),

(iv). O

REMARK 3.5.1. It follows immediately from Proposition 3.4, (iv), that the
vertical surjection k*(G,) — k*(H,) in the diagram of Proposition 3.5, (i), fits
into a commutative diagram of modules

ordg (G

k(G M 7,

kX(H. L Z+

[cf. Definition 2.2].

THEOREM 3.6. For each [] € {o,e}, let Go be a profinite group of MLF-
type. Let

o: G, — G,

be an open homomorphism. Suppose that d(G,) < d(G,) [which is the case if,
for instance, d(G,) =1]. Then o is an isomorphism.

Proor. Since d(G,) < d(G.), by applying Proposition 3.4, (iii), to the
natural surjection G, — «(G,) and the natural inclusion «(G,) — G, [note that
a(G,) is of MLF-type—cf. the discussion following [3], Proposition 3.3], we
obtain that d(«(G,)) = d(G,). On the other hand, it follows from [3], Prop-
osition 3.6, that this equality implies the equality o(G,) = G., i.e., that o is
surjective.

Now assume that « is not injective, i.e., that J difKer( ) is nontrivial.
Let us first observe that since J is contained in P(G,) [cf. Proposition 3.4, (ii)],
the profinite group J is pro-p(G,), which thus implies that J does not satisfy
condition (3) of Lemma 3.3, (i). Thus, it follows from Lemma 3.3, (iv),
that there exists an open subgroup H, C G, of G, such that J C H, [i.e.,
H, =« Y(a(H.,))], and, moreover, the image of J in (H{P“)&/ s yon-
trivial. In particular, since d(H,)=d(G,)[G,: Ho| <d(G.) - [G,: Ho| =
d(G.) - [Ge : 0(Hs)] = d(a(H,)) [cf. [3], Proposition 3.6], we may assume with-
out loss of generality, by replacing (G,, G,) by (H,,o(H,)), that the image of
J in (GPOYET g pontrivial.  On the other hand, this implies that the
surjection (GLPLNyab/ter _ (Glr(G))yabfior (G (p(G)yab/ior [op proposition 3.4,
(iii)] induced by o is not injective. Thus, it follows immediately from Lemma
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3.1, (i), that d(G,) > d(G.)—in contradiction to our assumption that d(G,) <
d(G,). This completes the proof of Theorem 3.6. O

COROLLARY 3.7.  For each [] € {o, e}, let G be a profinite group of MLF-
type. Let

o: G, — G,

be an open homomorphism. Suppose that e(G,) < e(G,) [which is the case if,
Jor instance, ¢(G,) =1]. Then o is injective.

ProoF. Since e(G,) < e(G.), by applying Proposition 3.4, (iii), to the
natural surjection G, — «(G,) and the natural inclusion «(G,) — G, [note that
a(G,) is of MLF-type—cf. the discussion following [3], Proposition 3.3], we
obtain that ¢(G,) = e(x(G,)). Thus, to verify Corollary 3.7, we may assume
without loss of generality, by replacing G, by o(G,), that « is surjective, and
that e(G,) = e(G.). Then since « is surjective, and e(G,) = e(G,), it follows
immediately from Proposition 3.4, (iii), that d(G,) = d(G.). Thus, it follows
from Theorem 3.6 that o is an isomorphism, as desired. This completes the
proof of Corollary 3.7. ]

COROLLARY 3.8. For each []e{o,e}, let kry be an MLF and kg an
algebraic closure of kg, write G &f Gal(kp/kp). Suppose that ey, = 1. Then
the following three conditions are equivalent:

(1) The field k. is isomorphic fo the field k,.

(2) There exists a surjection G, — G.,.

(3) The group G, is isomorphic to the group G..

Proor. The implication (1)=-(2) 1is immediate. The implication
(2) = (3) follows—in light of [3], Proposition 3.6—from Corollary 3.7.
Finally, since [we have assumed that] ¢;, = 1, the implication (3) = (1) follows
immediately from [3], Proposition 3.6 [cf. also [3], Lemma 1.5, (i)]. This
completes the proof of Corollary 3.8. O

REMARK 3.8.1. Suppose that we are in the situation of Corollary 3.8, that
Pk, # 2, and that the conditions (1), (2), and (3) of Corollary 3.8 hold. Then
since e, =1, one verifies easily that the MLF k. is absolutely abelian [cf.
Definition 4.2, (ii), below], hence also [cf. Theorem 6.3, (i), below] absolutely
characteristic [cf. Definition 5.7 below]. Thus, it follows from Theorem 7.2, (i),
below that there exists an outer automorphism of G, that does not arise from
any field automorphism of k,. In particular, there exists an outer isomorphism
G, = G, [cf. condition (3) of Corollary 3.8] that does not arise from any field
isomorphism ko, = k. [cf. condition (1) of Corollary 3.8].
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4. Reconstruction algorithms related to absolutely abelian MLF’s

In the present §4, we maintain the notational conventions introduced at the
beginnings of §1 and §2. In the present §4, we discuss some group-theoretic
reconstruction algorithms [cf. [8], Remark 1.9.8] related to absolutely abelian
[cf. Definition 4.2, (ii), below] MLF’s. We establish, for instance, a group-
theoretic reconstruction algorithm for constructing, from a group of MLF-type,
a homomorphism which “corresponds” to the Norm map Nmy - : k™ —
(k(@=D)* with respect to the finite extension k/k“=1) [cf. Definition 4.7, (iii);
Proposition 4.9, (i), below], which leads us to the notion of MLF-Galois label
[cf. Definition 4.10, Theorem 4.11 below]. Finally, as a consequence of the
group-theoretic reconstruction algorithms, we also obtain a refinement of the
main theorem of [6] [cf. Corollary 4.14, (i); Remark 4.14.1 below].

LemMma 4.1. The following hold:
(i) The natural homomorphisms

ZPk — Endzﬂk (A(E) (p/c>)7 ka — EndQl’k (A(];)([’k) ®Z

P ka)
are isomorphisms of topological algebras. Moreover, these isomorphisms restrict
to isomorphisms of topological groups

Z; = Autg, (A(R)'™), Q) = Autg, (A(K)'™ @

Dk Q[)k)’

respectively.
We shall write

. X
Ypicye * Gk = Ly,

for the composite of the natural action Gy — Autzg, (A(E)(p")) and the above
isomorphism Autz, (A(k)(p")) = Z,, ie., the py-adic cyclotomic character.

(i) Let Q, be an algebraic closure of Q,. Then the homomorphism
G,fb — prk determined by the py-adic cyclotomic character ,, .. : Gk — Z, [cf.

Pk
(i)] coincides with the composite

recy
Qp,

@) = Zyxpt — z, -z,
—where the first arrow “—"" is the homomorphism induced by the natural
inclusion Gy — Gal(k/k'Y="); the second arrow “="" is the isomorphism induced
by an isomorphism ka = k of fields [that necessarily restricts to an isomorphism
Q,, = kY=Y of fields: the third arrow recg, is the isomorphism in the final
k

display of [3], Lemma 1.7, (1) [in the case where we take the “k” of 3], Lemma
1.7, to be Q,,]; the fourth arrow “—"" is the first projection; the fifth arrow “ 5
is the isomorphism given by “‘aws a='".
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(ili) The composite of the Norm map Nmy - : k* — (K“=D)* with
respect to the finite extension k/k'“=") and the isomorphism (k\?=D)* = Q,,
induced by the [uniquely determined| isomorphism k=1 = Q,, of fields coin-
cides with the homomorphism k* — Q,  given by

K 5 a— ka_cyc(reck(a))fl . p]j:/(»ordk(u) c Q;,‘

[¢f [3], Lemma 1.7].

ProOF. Assertion (i) follows from the [easily verified] fact that the
Z,,-module A(E)W) is free of rank one. Assertion (ii) follows immediately
from the well-known [cf., e.g., [15], Chapter III, § A.4, Corollary] fact that the
pr-adic cyclotomic character in the case where we take the “k” to be the
MLF Q,, coincides with the “Lubin-Tate character y:7” [cf. the notational
convention introduced in [1], Definition 1.2, (ii)] in the case where we take the
“E” (respectively, “o”’; “n”) of [1], Definition 1.2, (ii), to be @Q,, (respectively,
the identity automorphism of Q,; pi € (g, =Z,,). Assertion (iii) follows
immediately from assertion (ii) and [3], Lemma 1.7, (1), (2). This completes

the proof of Lemma 4.1. O

DEFINITION 4.2.

(i) We shall say that the MLF k is absolutely Galois if k is Galois over
k4=,

(i) We shall say that the MLF k is absolutely abelian if k is absolutely
Galois, and, moreover, the Galois group Gal(k/k“=1) is abelian.

(iii) We shall write k@ C k for the [uniquely determined] maximal
absolutely abelian MLF contained in k.

(iv) We shall write

d]Eab) déf ab) def

dk(ab), 61(( = € (ab)
for the “d;”, “e;” in the case where we take the “k” to be k@ of (iii),
respectively.

Lemma 4.3. Let K be an intermediate field of the finite extension
k/k@)_  Then the following hold:

(i) It holds that K@) = k(b

(i) There is no nontrivial intermediate field of the finite extension k/k@®),
hence also of K/k@®), that is unramified over k@)

PrOOF. Assertion (i) follows from the definition of “(—)®)”.  Assertion
(ii) follows immediately from the [easily verified] fact that every intermediate
field of k/k®® unramified over k@ is absolutely abelian [cf. [3], Lemma 1.5,
(i)]. This completes the proof of Lemma 4.3. O
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LemMa 4.4. The following hold:
(i) It holds that

d = e - fio d = (KDY Nmy g (67))-

(i) The following three conditions are equivalent:
(1) The MLF k is absolutely abelian.
(2) It holds that dy = d\*™.
(3) It holds that e, = e,iab).

ProoF. First, we verify assertion (i). The equality d,fab) = e,iab) - f fol-
lows from Lemma 4.3, (ii), together with [3], Lemma 1.2, (iii). The equality
d™ = [(k(@=D)> : Nmy 0 (k)] follows immediately from [3], Lemma 1.7,
(1), (2). This completes the proof of assertion (i). Assertion (ii) follows im-
mediately from assertion (i), together with [3], Lemma 1.2, (iii). This com-
pletes the proof of Lemma 4.4. O

Recall the group of MLF-type

G
introduced at the beginning of §2.
DEFINITION 4.5.
(i) We shall write
A(G)(P(G))

for the maximal pro-p(G) quotient of the cyclotome A(G) associated to G.
Note that since A(G)<p (@) has a natural structure of free Z,(G-module of rank
one [cf. [3], Proposition 4.2, (iv)], the perfection

(A(G)(P(G)))pf

of A(G)(p (©) has a natural structure of @, (g)-vector space of dimension one.
(i) We shall write
def

Z,(G) = End(4(G)"'?)

for the topological algebra of endomorphisms of the topological module
A(G)(p(G)).
(iii) We shall write

Q,(G) & End((4(G) ")

(F(G>))Pf.

for the algebra of endomorphisms of the perfection (A(G) Thus, we

have a natural inclusion

Z,(G) = Q,(G).
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By considering the topology induced by the topology of Z,(G) [cf. (ii)], we
regard Q,(G) as a topological algebra.

LemMmA 4.6. The following hold:
(i) The natural homomorphism

Zy6) — Z,(G)

lie., obtained by the natural Z,g-module structure of A(G)" (G)] is an iso-
morphism of topological algebra. Moreover, this isomorphism determines an
isomorphism of topological algebra

Q) — Q,(G).
(i) We have natural identifications

Z2,(G)* = Aut(4(G)"Y) C Q,(G)* = Aut((4(6)")™)

lef (D))
Proor. These assertions follow immediately—in light of [3], Proposition
3.6; [3], Proposition 4.2, (iv)—from Lemma 4.1, (i). O

DEFINITION 4.7.
(i) We shall write

Xp-CyC(G) :G— ZI’(G)X

for the natural action of G on A(G)” ©) [cf. Lemma 4.6, (ii)].
(i) We shall write

Pe(G)eQ,(G)”

for the automorphism of the module (4(G)” <G))pf given by multiplication by
p(G) [cf. Lemma 4.6, (ii)].
(i) We shall write

Nmgys(G) : £*(G) — Q,(G)”
for the homomorphism of topological modules defined by
k*(G) 24 ey G)(rec(G) (@) ™' - pe (G) T ¢ @, (G)"

[cf. Definition 2.2].
(iv) We shall write

d™)(G) € [Q,(G) : In(Nmus(G))], e™(G) ¥ d(G)/f(G).
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DeriNiTION 4.8, We shall say that G is of AAMLF-type if d(G) =
d@®)(G). [Here, “AAMLF” is to be understood as an abbreviation for
“absolutely abelian mixed-characteristic local field”—cf. Proposition 4.9, (iii),
below.]

ProposiTioN 4.9.  The following hold:

(i) Write Nmy - @ k* — (kW=DY*" for the Norm map with respect to
the finite extension k/k“=Y). Then the vertical isomorphism k* = k*(Gy) in
the diagram of [3], Proposition 3.11, (i), fits into a commutative diagram of
topological modules

Nm

e k/k(d=1) (k(dzl)) %
% Nmps (Gx) X
k (Gk) e Qp(Gk)

—where the right-hand vertical arrow is the composite of the isomorphism
(kd=y* = Q, G, induced by the [uniquely determined] isomorphism k@= =
Qyc,) of fields and the isomorphism Q, = Q) — Q,(Gi)™ [cf [3], Propo-
sition 3.6] determined by the isomorphism of Lemma 4.6, (i).

(i) It holds that
A = d®(Gy), o™ = )(Gy).

(iii) It holds that the MLF k is absolutely abelian if and only if the group
Gy, is of AAMLF-type.

ProOOF. Assertion (i) follows—in light of Proposition 2.3; [3], Proposition
3.6; [3], Proposition 3.11, (i); [3], Proposition 4.2, (iv)—from Lemma 4.1, (iii).
Assertion (ii) follows immediately from Lemma 4.4, (i), together with asser-
tion (i) and [3], Proposition 3.6. Assertion (iii) follows from Lemma 4.4, (ii),
together with assertion (ii) and [3], Proposition 3.6. This completes the proof
of Proposition 4.9. ]

REMARK 4.9.1. Let H C G be an open subgroup of G. Then one verifies
immediately from Proposition 4.9, (i), together with [3], Lemma 1.7, (2), that
the diagram of topological modules

Nmps (H)
s
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—where the left-hand vertical arrow is the homomorphism induced by the
homomorphism H* — G determined by the inclusion H — G, and the right-
hand vertical arrow is the composite of the isomorphisms Q;(G) = QP(G)X,
Q) — Q,(H )* determined by the isomorphism of Lemma 4.6, (i) [cf. also
[3], Proposition 3.6]—commutes.

REmMARK 4.9.2. Suppose that G is of AAMLF-type. Then a profinite
group isomorphic to G may be constructed as follows: Let G be a group of
MLF-type such that (p(G),d(G)) = (p(G),1). [Note that one verifies easily
from [3], Proposition 3.6, that this condition (p(G),d(G)) = (p(G),1) com-
pletely determines the isomorphism class of the group G.] Write J C G for
the closure, i.e., in G, of the inverse image (C k*(G) C G*°) of Im(Nmyy(G))
C Q,(G)* by Nmuy(G) : k*(G) — QP(G)X—{elative to the composite of the
isomorphisms @ ;) — Q,(G)", Q;(G) = Q,(G)” determined by the isomor-
phism of Lemma 4.6, (i). Then it follows immediately from Remark 4.9.1 that
G is isomorphic, as an abstract profinite group, to the inverse image of J C G
in G.

DEerFINITION 4.10. We shall refer to the collection of data

(p(G),d(G), Im(Nmyps(G)) € Q,(G)" < Q)

[cf. Lemma 4.6, (i)] consisting of the prime number p(G), the positive integer
d(G), and the open subgroup Im(Nmahs(G)) C Q) of Q) as the MLF-
Galois label of G.

THEOREM 4.11. For each []€ {o,e}, let G be a group of MLF-type.
Suppose that one of the following two conditions is satisfied:

(1) It holds that {(p(G,),a(G,)), (p(G.),a(G.))} € {(2,1)} [¢f- Definition
2.4, (ii))].

(2) Either G, or G, is of AAMLF-type.
Then it holds that the group G, is isomorphic to the group G, if and only if the
MLF-Galois label of G, coincides with the MLF-Galois label of G,.

ProOOF. The necessity is immediate. Next, we verify the sufficiency in
the case where condition (1) is satisfied. Suppose that condition (1) is sat-
isfied, and that the MLF-Galois label of G, coincides with the MLF-Galois
label of G,. Then since Im(Nmgps(Go)) = Im(Nmgps(G,)), one verifies imme-
diately from Proposition 2.5, (i); Proposition 4.9, (i); [3], Lemma 1.7, (1),
(2); [3], Proposition 3.6, that (2,1) ¢ {(p(G.),a(G,)), (p(G.),a(G.))}. Thus,
since the MLF-Galois label of G, coincides with the MLF-Galois label of
G,, it follows immediately—in light of Proposition 2.5, (i); Proposition 4.9,
(i); [3], Proposition 3.6—from the main theorems of [4] and [13], together
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with [3], Lemma 1.7, (1), (2), that G, is isomorphic to G,, as desired. This
completes the proof of the sufficiency in the case where condition (1) is
satisfied.

Finally, we verify the sufficiency in the case where condition (2) is satisfied.
Suppose that G, is of AAMLF-type, and that the MLF-Galois label of G,
coincides with the MLF-Galois label of G,. Then since Im(Nmyps(Go)) =
Im(Nm,ps(G,)), we obtain that d®(G,) = d@)(G,). In particular, since G,
is of AAMLF-type, the equality d(G,) = d(G,) implies that G, is of AAMLF-
type. Thus, since the MLF-Galois label of G, coincides with the MLF-Galois
label of G,, it follows immediately from Remark 4.9.2 that G, is isomorphic to
G,, as desired. This completes the proof of the sufficiency in the case where
condition (2) is satisfied, hence also of Theorem 4.11. O

ReEmARK 4.11.1.

(i) Let us recall that the main theorem of [1] asserts that, roughly speak-
ing, the Hodge-Tate-ness of pi-adic representations of the group Gy of MLF-
type is closely related to the ring structures of the fields k C k.

(i) Let us also recall that, as discussed in [3], Proposition 4.2, (iv), the
pi-adic cyclotomic character may be “‘reconstructed” from just the group struc-
ture of the group G; of MLF-type.

Next, let us recall that Theorem 4.11 asserts that—under a mild assump-
tion on “(py,ax)”’—the isomorphism class of the group Gy is completely deter-
mined by the MLF-Galois label of Gi,. Now observe that the main component
of the notion of MLF-Galois label is the third component, i.e., the image of the
Norm map to (k@=1)*. Moreover, recall that, as discussed in Lemma 4.1,
(iii), roughly speaking, the Norm map to (k(“=1)* may be essentially described
by the pi-adic cyclotomic character.

Thus, one may conclude that, roughly speaking, the pi-adic cyclotomic
character is closely related to the group structure of the group Gj; of MLF-
type.

(iii) It follows from the observations of (i), (ii), together with [3], Remark
4.3.3, that, in summary,

Hodge-Tate representations is closely related to arithmetic holomorphic
structures [i.e., roughly speaking, ring structures—cf. [9], §2.7, (vii)] of
MLF’s,

and, moreover,

the cyclotomic character [that is one of Hodge-Tate representations]
is closely related to mono-analytic structures [i.e., roughly speaking,
structures that arise from dismantling the complicated intertwining
inherent in ring structures—cf. [9], §2.7, (vii)] of MLF’s.
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Hodge-Tate representations < arithmetic holomorphic structures of MLF’s
the main theorem of [1]
immediate

mono-analytic structures of MLF’s
Lemma 4.1, (iii), and Theorem 4.11
[3], Proposition 4.2, (iv)

cyclotomic characters

tee Y

DEeriNITION 4.12. For each [J € {o,e}, let G be a group of MLF-type.
Let «: G, — G, be a homomorphism. Then we shall say that o is cyclo-
tomically compatible if p(G,) = p(G,), and, moreover, the diagram

Ip-cye(Go) %
Gy ——— Z,(G,)

Lp-cyc G. X
G. Ip-eye(Ge) Z,(G.)

—where the right-hand vertical arrow is the composite of the isomorphisms
Z,,)~ Ly(Gs)", Ly, — Zy(G.)”" determined by the isomorphism of Lemma
4.6, (i)—commutes.

REMARK 4.12.1. Let us recall that it follows immediately from the various
definitions involved that every open injection between profinite groups of MLF-
type induces a natural isomorphism between the cyclotomes “A(—)" [cf. [3],
Definition 4.1, (i), (ii), (iii)]. In particular, every open injection between pro-
finite groups of MLF-type is cyclotomically compatible.

REMARK 4.12.2. Let / be a prime number such that / # p(G). Then, in
the situation of Definition 4.7, (i), by considering the natural action on the
maximal pro-I quotient of the cyclotome A(G) [i.e., as opposed to the natural
action on A(G)"% discussed in Definition 4.7, (i)], one may define the notion
of “l-adic cyclotomic character” of G [i.e., as opposed to the “p(G)-adic cyclo-
tomic character” y,...(G) defined in Definition 4.7, (i)].

Now let us observe that it follows immediately—in light of [3], Proposition
3.6; (3], Proposition 4.2, (iv)—from Proposition 3.4, (iii), (iv), and [3], Lemma
1.5, (i), (ii), (iii), that every open homomorphism between profinite groups of
MLF-type is compatible with the respective “I-adic cyclotomic characters”, i.e.,
that a similar diagram to the diagram of Definition 4.12 commutes.

THEOREM 4.13.  For each [ € {o, e}, let G be a profinite group of MLF-
type. Let

o: G, — G,

be an open homomorphism. Then the following hold:
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(i) If o is cyclotomically compatible and surjective, then the surjection
k*(Go) — k*(G.) induced by o [cf. Proposition 3.5, ()] fits into a commutative
diagram of topological modules

x Nm,ps (Ge) X
k(G Y% g (G)

—where the right-hand vertical arrow is the composite of the isomorphisms

Q6. = Q,(G,)", Q6. — Q,(G,)™ determined by the isomorphism of Lemma
4.6, (1) [¢f also Proposition 3.4, (iii)]. Moreover, it holds that

d(G,) =d ™ (G,), e™(G,)=e"(G,).

(i) If G, is of AAMLF-type, then the following two conditions are
equivalent:
(1) The homomorphism o is injective.
(2) The homomorphism o is cyclotomically compatible.
(i) In the situation of (ii), if, moreover, (1) and (2) of (ii) are satisfied,
then the group G, is of AAMLF-type.

Proor. First, we verify assertion (i). The first assertion, hence also the
equality d@)(G,) = d@)(G,), follows immediately from Proposition 3.4, (iii),
and Remark 3.5.1. Thus, the equality ¢ (G,) = ¢(@)(G,) follows from Prop-
osition 3.4, (iii). This completes the proof of assertion (i).

Next, we verify assertion (ii). The implication (1) = (2) was already dis-
cussed in Remark 4.12.1. We verify the implication (2) = (1). Suppose that
condition (2) is satisfied. Let us first observe that it follows from Remark
4.12.1 that, to verify the implication (2) = (1), we may assume without loss
of generality, by replacing G, by the image of o [which is of MLF-type—cf.
the discussion following [3], Proposition 3.3], that o is surjective. Thus, since
[we have assumed that] d(G,) = d@)(G,), it follows from assertion (i), together
with the [easily verified] inequality d®(G,) < d(G.), that d(G.) < d(G,). In
particular, it follows from Theorem 3.6 that o is an isomorphism, as desired.
This completes the proof of the implication (2) = (1), hence also of assertion
(ii).

Assertion (iii) follows—in light of Proposition 4.9, (iii)—from the [easily
verified] fact that an MLF contained in an absolutely abelian MLF is absolutely
abelian. This completes the proof of Theorem 4.13. O

COROLLARY 4.14. For each [Je{o,e}, let kyy be an MLF and k- an
algebraic closure of kp; write G &f Gal(kp/kp). Then the following hold:
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(i) Suppose that there exists a cyclotomically compatible surjection
G, — G.. Then the field ki™ is isomorphic to the field k(™.
(i) Suppose that k. is absolutely abelian. Then the following three con-
ditions are equivalent:
(1) The field k. is isomorphic to the field k..
(2) There exists a cyclotomically compatible surjection G, — G,.
(3) The group G, is isomorphic to the group G..

ProoF. Assertion (i) follows immediately—in light of Proposition 4.9,
(i)—from Theorem 4.13, (i), and [3], Lemma 1.7, (1), (2). Next, we verify
assertion (ii). The implication (1)=-(2) is immediate. The implication
(2) = (3) follows—in light of Proposition 4.9, (iii)—from Theorem 4.13, (ii).
Finally, we verify the implication (3) = (1). Suppose that condition (3) is
satisfied. Then it follows from Proposition 4.9, (iii), that k, is absolutely
abelian. Thus, the implication (3) = (1) follows from assertion (i). This
completes the proof of the implication (3) = (1), hence also of assertion (ii).

O

REMARK 4.14.1. The main theorem of [6] is equivalent to Corollary 4.14,
(i), in the case where the surjection “G, — G,” is an isomorphism. Now let us
recall that it is immediate that every isomorphism between groups of MLF-type
is cyclotomically compatible. Thus, Corollary 4.14, (i), may be regarded as a
refinement of the main theorem of [6].

Some of the group-theoretic reconstruction algorithms discussed in the
present §4 may be summarized as follows.

SumMARY 4.15.
(i) There exist group-theoretic reconstruction algorithms [cf. [8], Remark
1.9.8] for constructing, from a group G of MLF-type,
* topological rings Z,(G) C Q,(G) [cf- Definition 4.5, (i), (iii)],
* a homomorphism Nmup(G) : k*(G) — Q,(G)™ of topological mod-
ules [c¢f. Definition 4.7, (iii)], and
o integers d@)(G) and ¢ (G) [cf. Definition 4.7, (iv)]
which “correspond” to
e the topological rings Z, C Q,, [cf. Lemma 4.6, (i)],
* the Norm map Nmy - 1 k™ — (kU“=D)* with respect to the finite
extension k/k\"=V [cf. Proposition 4.9, (i)], and
o the integers d,gab) and e,iab) [¢f. Proposition 4.9, (ii)],
respectively.
(i) There exists a group-theoretic condition for a group of MLF-type
[¢f. Definition 4.8] which “corresponds” to the condition for an MLF to be
absolutely abelian [cf. Proposition 4.9, (iii)].
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REMARK 4.15.1.
(i) By Summary 4.15, (ii), one may conclude that

the condition for an MLF to be absolutely abelian may be considered
to be “group-theoretic”.

(i) On the other hand, it follows from example (1) given in [4], §2 [i.e.,
“Ly” and “L3” in (1) of [4], §2], that there exist an absolutely Galois MLF k,
and an MLF £, that is not absolutely Galois such that the absolute Galois
group of k, is isomorphic, as an abstract profinite group, to the absolute Galois
group of k,. By this fact, one may conclude that

the condition for an MLF to be absolutely Galois should be consid-
ered to be “not group-theoretic”.

5. Reconstruction algorithms related to MLF’s of degree one

In the present §5, we maintain the notational conventions introduced at
the beginnings of §1 and §2. In particular, we have been given a group of
MLF-type

G.
In the present §5, suppose that

d(G) = 1.

In the present §5, we establish some group-theoretic reconstruction algorithms
[cf. [8], Remark 1.9.8] related to MLF’s of degree one, i.e., such that the integer
“d_y” [cf. the notational conventions introduced at the beginning of §1] is
equal to one. As a consequence of the group-theoretic reconstruction algo-
rithms, we also prove [cf. Theorem 5.9, (ii), below| that every absolutely strictly
radical [cf. Definition 5.6, (iii), below] MLF is absolutely characteristic |cf.
Definition 5.7 below].

LemMmA 5.1. The homomorphism
Nm,ps(G) : £*(G) — Q,(G)™
[¢f. Definition 4.7, (iii)] is an isomorphism of fopological modules.

ProoF. Since [we have assumed that] d(G) =1, this assertion follows
from Proposition 4.9, (i). O

DErFINITION 5.2, Consider the isomorphism k. (G) = Q,(G), of topolog-

ical monoids [cf. Remark 2.3.1] determined by the isomorphism k*(G) =
Q,(G)™ of Lemma 5.1 [cf. the discussion entitled “Fields” in §0]. Then, by
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means of the topological field structure of Q,(G), ie., on QP(G)X, together
with this isomorphism, one may define a structure of topological field on k. (G).
We shall write

k(G)

for the resulting topological field. Thus, we have a tautological isomorphism
of topological fields

k(G) = Q,(G)
and natural identifications
k(G), = k«(G), k(G)" =k*(G).

REMARK 5.2.1. One verifies immediately that the topological field k(G)
is isomorphic, as an abstract topological field, to the topological field @,
[cf. also Lemma 4.6, (i)].

DeriNiTioN 5.3 Let H M be an MLF”-pair [cf. [3], Definition
5.3] such that d(H) =1 [cf. [3], Remark 5.4.1]. Thus, the Kummer poly-
isomorphism x(H ~ M) : (H~ M) = (H~ M= (H) = 0% (H)) [cf. [3], Def-
inition 5.8; [3], Definition 7.4] associated to H ~ M consists of a single
isomorphism [cf. [3], Definition 5.5] [i.e., as opposite to just a poly-
isomorphism]. Then, by means of the topological field structure of k(H),
ie., on k,(H), of Definition 5.2, together with the isomorphism ((M)")® =
(k* (H)™)® = k. (H) [cf. [3], Proposition 5.7, (i)] induced by the Kummer poly-
isomorphism x(H ~ M) [consisting of a single isomorphism], one may define
a structure of topological field on (M2)™)®.  We shall write

k(H~ M)

for the resulting topological field. Thus, we have tautological isomorphisms of
topological fields

kK(H ~ M) = k(H) > @

y(H)

and natural identifications
K(H ~ M), = (MO, k(H ~ M)* = (M=)".

REmMARK 5.3.1. One verifies immediately that, in the situation of Defini-
tion 5.3, the topological field k(H ~ M) is isomorphic, as an abstract topo-
logical field, to the topological field Q) [cf. also Lemma 4.6, (i)].

REMARK 5.3.2. Let us recall the “étale-like” MLF™ -pair G ~ 0= (G) [cf.
[3], Definition 5.8]. Then one verifies immediately from the various definitions
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involved that we have a natural identification
k(G) = k(G ~ 07 (G)).
Recall the MLF

introduced at the beginning of §1.

THEOREM 5.4. Suppose that dy =1, which thus implies that d(Gy) =1
[¢f [3], Proposition 3.6]. Then the following hold:
(i) The homomorphism

recy s kX < G°

of (3], Lemma 1.7, determines an isomorphism of topological fields
k = k(Gy).

(i) By applying the reconstruction algorithm of Definition 5.3 to the model
MLF® -pair ka(ﬁ‘; [ef. [3], Definition 5.2, we obtain a topological field
k(Gr ~ OF ) whose underlying set may be identified with the underlying set of k.
Then the topological field structure of k on the underlying set of k coincides,
relative to this identification, with the topological field structure of k(Gy @E )
on the underlying set of k.

ProOF. These assertions follow immediately from Proposition 4.9, (i).

O

COROLLARY 5.5. The image of the natural homomorphism Aut(G) —
Aut(G?) is trivial.

Proor. Let « be an automorphism of G. Now let us observe that since
the subset k*(G) C G of G? is dense [cf. [3], Lemma 1.7, (1); [3], Proposition
3.11, (i)], to verify Corollary 5.5, it suffices to verify that the automorphism
k*(a) of k*(G) induced by o is the identity automorphism. On the other
hand, since k* () extends to an automorphism of the topological field k(G), and
the topological field k(G) is isomorphic, as an abstract topological field, to the
topological field Q,, [cf. Remark 5.2.1; 3], Proposition 3.6], we conclude that
k*(a) is the identity automorphism, as desired. This completes the proof of
Corollary 5.5. W

DEFINITION 5.6.
(i) We shall refer to a collection of data

(m;m;ry, ... Py Ay .o )

consisting of
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* positive integers n, m, ry,...,r, such that ne N, rZ and
e clements a,...,a, €k* of k*
as a strictly radical data for k.
(i) Let K C k be a finite extension of k. Then we shall say that the
finite extension K/k is strictly radical if there exists a strictly radical data
(mym;ry,...,rmsap, ... ay) for k such that

K =k(l,al",... all™m) Ck.

(iii) We shall say that the MLF k is absolutely strictly radical if the finite
extension k/k@=1) is strictly radical.

REMARK 5.6.1. One verifies easily that a strictly radical extension is
Galois. In particular, an absolutely strictly radical MLF is absolutely Galois
[cf. Definition 4.2, (i)].

DEerINITION 5.7. We shall say that the MLF k is absolutely characteristic
if the open subgroup G C Gal(k/k“=1) of Gal(k/k“=V) is characteristic [cf.
Remark 5.7.1 below].

REMARK 5.7.1. One verifies immediately that the issue of whether or not
the MLF k satisfies the condition that the open subgroup Gy C Gal(k/k@=V)
of Gal(k/k'“=1)) is characteristic [cf. Definition 5.7] does not depend on the
choice of k, i.e., depends only on k.

REMARK 5.7.2.

(i) Let us recall that since G is topologically finitely generated [cf., e.g.,
[3], Lemma 1.4, (i)], one verifies easily that the topology of the profinite group
G admits a basis of characteristic open subgroups.

(i) It follows from (i) that there exists a finite extension K C k of k such
that the MLF K is absolutely characteristic.

DEFINITION 5.8.

(i) Let H~M be an MLF”-pair such that d(H)=1 and (n;m;
Fly..oyFm;dl, ..., ay) a strictly radical data for the MLF k(H ~ M) of Def-
inition 5.3 [cf. also Remark 5.3.1]. Then we shall write

(H~M)(nym;ry,... kpyar,y ... am) CH

for the uniquely determined maximal subgroup of H which acts trivially on
the subset of M¢eP

{ae M®|a" =1 or a" = a; for some ie{l,...,m}}.

(i) Let (mym;ry, ..., m;an,...,ay,) be a strictly radical data for the MLF
k(G) of Definition 5.2 [cf. also Remark 5.2.1]. Then we shall write
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G(n;m;rl,...,rm;al,...7am)
def —
= (G~ O™ (G))(mymsry,. .. rmyar, ... am) € G
[cf. Remark 5.3.2].

THEOREM 5.9. The following hold:

(i) Suppose that di =1, which thus implies that d(Gy) =1 [¢f. [3], Prop-
osition 3.6]. Let (mym;ry,...,rm;ai,...,ay) be a strictly radical data for
k = k(Gy) [¢f Theorem 5.4, (). Then it holds that

Ge(mymiry, .o P any ey ay) = Gal(l;/k(én,all/"',... al/"”))

»m

—i.e., as subgroups of Gy.
(i) Every absolutely strictly radical MLF is absolutely characteristic [cf.
also Remark 5.9.1 below].

ProoF. Assertion (i) follows immediately from the various definitions
involved. Assertion (ii) follows immediately from assertion (i) and Corollary
5.5. This completes the proof of Theorem 5.9. O

REmMARK 5.9.1. Note that there exists an absolutely characteristic MLF
that is not absolutely strictly radical. Indeed, let us observe that one verifies
immediately from Kummer theory that if k is absolutely strictly radical, then the
Galois group Gal(k/k“=1) [cf. Remark 5.6.1] has a structure of extension of
an abelian group by an abelian group. Thus, it follows from Remark 5.7.2, (i),
that if every absolutely characteristic MLF is absolutely strictly radical, then
we conclude that the absolute Galois group Gal(k/k“=")) has a structure of
extension of an abelian group by an abelian group—in contradiction to some
well-known group-theoretic properties [cf., e.g., [12], Theorem 7.5.12] of the
group Gal(k/k“=1).

REMARK 5.9.2.

(i) It follows from example (1) given in [4], §2 [i.e.,, “L;” and “L3” in
(1) of [4], §2], that there exist an absolutely strictly radical MLF k, and an
MLF k., that is not absolutely strictly radical [cf. Remark 5.6.1] such that the
absolute Galois group of &, is isomorphic, as an abstract profinite group, to the
absolute Galois group of k,. By this fact, one may conclude that

the condition for an MLF to be absolutely strictly radical should be
considered to be “not group-theoretic”.

(ii) It follows from example (1) given in [4], §2 [i.e., “L;” and “L3;” in (1)
of [4], §2], that there exist an absolutely characteristic MLF k, [cf. Theorem
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5.9, (i1)] and an MLF £k, that is not absolutely characteristic such that the
absolute Galois group of k. is isomorphic, as an abstract profinite group, to the
absolute Galois group of k,. By this fact, one may conclude that

the condition for an MLF to be absolutely characteristic should be
considered to be “not group-theoretic”.

REMARK 5.9.3.
(i) Let us first observe the following “‘tautological” assertion in the
anabelian geometry of absolutely characteristic MLF’s:

For each [ € {o, e}, let kg be an absolutely characteristic MLF and
k- an algebraic closure of krj; write Gp &f Gal(k/kg). Then the
following two conditions are equivalent:

(1) The field k, is isomorphic to the field k,.

(2) There exists an isomorphism G, — G. compatible with the
respective natural outer actions of Gal(k, /kc(,dzl)), Gal(k. /k.<d:1)) [i.e.,
by conjugation] relative to some isomorphism Gal(k, /kédil)) =
Gal(k kD).

[This assertion follows immediately from the definition of the notion of
absolutely characteristic MLF—cf. also [3], Proposition 3.6.]

(i) It follows from Theorem 5.9, (ii), that one may apply the ‘“‘fauto-
logical” assertion of (i) to absolutely strictly radical MLF’s.

(ii) Finally, let us observe that it follows from example (1) given in [4],
§2 [ie., “L;” and “Ly” in (1) of [4], §2], that there exist absolutely strictly
radical MLF’s k., k, such that the field k. is not isomorphic to the field k,, but
the absolute Galois group of k. is isomorphic, as an abstract profinite group, to
the absolute Galois group of k,. Thus, we conclude from Theorem 5.9, (ii),
that, in the “tautological” assertion of (i), one cannot replace condition (2) by
the following condition:

(2"} There exists an isomorphism G, = G,.

REMARK 5.9.4. Let us recall the following three well-known facts in
anabelian geometry:

(1) One verifies easily that an immediate consequence of the Neukirch-
Uchida theorem [cf. the main theorem of [16]] is that every normal open
subgroup of the absolute Galois group of the field of rational numbers is
characteristic.

(2) It follows immediately from [7], Corollary 3.7, that it holds that the
natural injection Aut(k) — Out(Gy) [cf., e.g., [3], Proposition 2.1] is bijective
if and only if each member of the filtration on Gj; given by the higher
ramification groups in the upper numbering is characteristic.



372 Yuichiro HosHi

(3) Suppose that d = 1. Then it follows immediately from the equiv-

alence of (2) [cf. also the argument in Remark 6.3.1, (ii), below] that the
natural injection Aut(k) — Out(Gy) [cf., e.g., [3], Proposition 2.1] is bijective if
and only if every normal open subgroup of Gy is characteristic. [Note that this
equivalence also follows from [5], Theorem A.]
By these facts, one may find the importance of discussing the issue of whether
or not a given closed subgroup of the absolute Galois group of a field is
characteristic in the study of anabelian geometry. This observation is one of
motivations of studying Theorem 5.9, (ii).

Some of the group-theoretic reconstruction algorithms discussed in the
present §5 may be summarized as follows.

SuMMARY 5.10. There exist group-theoretic reconstruction algorithms [cf.
[8], Remark 1.9.8] for constructing, from a group G of MLF-type such that
d(G) =1,

* a structure of topological field on ky«(G) [cf. Definition 5.2] and

* a collection of subgroups of G [cf. Definition 5.8, (ii)]
which “correspond” to

* the topological field structure of k on k. [cf. Theorem 5.4, (i)] and

* the collection of open subgroups of Gy corresponding to the absolutely
strictly radical MLF’s contained in k [cf. Theorem 5.9, (i)],
respectively.

REMARK 5.10.1. Let us recall that, as asserted in Summary 5.10, we have
established [cf. Definition 5.2] a group-theoretic reconstruction algorithm for
constructing, from a group G of MLF-type such that d(G) = 1, a structure of
topological field on k. (G) which “corresponds” to the topological field structure
of k, ie., on k.

Here, let us also recall that, as discussed in [2], Remark 1.4.1, (ii), it is
impossible to establish a group-theoretic reconstruction algorithm for construct-
ing, from an arbitrary group G of MLF-type, such a structure of topological
field on k. (G).

6. Reconstruction algorithms related to Galois-specifiable MLF’s

In the present §6, we maintain the notational conventions introduced at
the beginnings of §1 and §2. In the present §6, we consider Galois-specifiable
[cf. Definition 6.1 below] MLF’s. Moreover, we also establish some group-
theoretic reconstruction algorithms [cf. [8], Remark 1.9.8] related to Galois-
specifiable MLF’s. For instance, we establish a group-theoretic reconstruction
algorithm for constructing, from a group of MLF-type that satisfies a certain
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condition, a collection of subgroups of the outer automorphism group of the
group of MLF-type which “corresponds” to the Out(Gy)-orbit, i.e., by conjuga-
tion, of the subgroup of Out(Gy) determined by the field automorphisms of k
[cf. Definition 6.8, (ii); Theorem 6.12, (ii), below].

DerINITION 6.1. We shall say that the MLF k is Galois-specifiable if the
MLF £ is absolutely Galois [cf. Definition 4.2, (i)], and, moreover, the follow-
ing condition is satisfied: If L is an MLF such that there exist an algebraic
closure L of L and an isomorphism G — Gal(L/L) of groups, then the field &
is isomorphic, as an abstract field, to the field L [cf. Remark 6.1.1 below].

REMARK 6.1.1. One verifies immediately that the issue of whether or not
the MLF k satisfies the condition in Definition 6.1 does not depend on the
choice of k, i.e., depends only on k.

REMARK ~ 6.1.2. Suppose that (pi,ax) # (2,1). Then it follows
immediately—in light of Proposition 2.5, (i); Proposition 4.9, (i); [3], Propo-
sition 3.6—from Theorem 4.11, together with [3], Lemma 1.7, (1), (2), that it
holds that the MLF k is Galois-specifiable if and only if the following condi-
tion is satisfied: If K C k is a finite extension of k=" such that d; = dk,
and, moreover, k@) = K@) [cf. Definition 4.2, (iii)], i.e., as subfields of k, then
k =K, ie., as subfields of k.

LEMMA 6.2. Suppose that k is Galois over k@ Let K C k be a finite
unramified [necessarily Galois| extension of k@),  Note that it follows immedi-
ately from Lemma 4.3, (ii), that we have a natural isomorphism Gal(k - K /k(@))
= Gal(k/k@)) x Gal(K/k@).  Let ¢ : Gal(K/k®) — Gal(k/k@)) be a
homomorphism of groups. Write L for the intermediate field of the finite
Galois extension k- K/k@) which corresponds, relative to the above natural
isomorphism  Gal(k - K /k@)) = Gal(k/k@)) x Gal(K/k@), to the graph
(C Gal(k/k@)) x Gal(K/k@)) of the homomorphism ¢. Then the equalities
d;p = dy, L™ = k@) hold.

Proor. The equality dp =d; follows from the fact that the graph
(C Gal(k/k®)) x Gal(K/k®)) of the homomorphism ¢ is isomorphic, as
an abstract group, to the group Gal(K/k@).

To verify the equality L(®) = k(@) assume that L@ 2 k@) je.  that the
extension L® /k@) is not of degree one. Then since the intermediate field
L corresponds to the graph of ¢, one verifies immediately from the natural
isomorphism Gal(k - K/k@)) = Gal(k/k@)) x Gal(K/k®) that the exten-
sion L@) . K/K is not of degree one, which thus implies that the extension
kN (L@ . K)/k@) is not of degree one. On the other hand, one verifies easily
[cf. the proof of Lemma 4.3, (ii)] that the MLF L@ . K hence also the MLF
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kN (L®) . K), is absolutely abelian [cf. Definition 4.2, (ii)]. Thus, we obtain a
contradiction [cf. Lemma 4.3, (i)]. This completes the proof of the equality
L@) = k(@) hence also of Lemma 6.2. O

THEOREM 6.3. Consider the following four conditions:

(1) The MLF k is absolutely abelian [cf. Definition 4.2, (ii)].

(2) The MLF k is Galois-specifiable.

(3) The MLF k is absolutely characteristic [cf. Definition 5.7).

(4) The MLF k is absolutely Galois [¢f. Definition 4.2, (i)].
Then the following hold:

(i) The implications

M=02)=0)=

hold [cf. also Remark 6.3.1 below].
(i) Suppose that (pi,ar) # (2,1). Then the equivalence

(1)< (2)
holds.

Proor. First, we verify assertion (i). The first implication in assertion (i)
follows immediately from Corollary 4.14, (ii). The second and third implica-
tions in assertion (i) follow immediately from the various definitions involved.
This completes the proof of assertion (i).

Next, we verify assertion (ii). By assertion (i), to verify assertion (ii), it
suffices to verify the implication (2) = (1). Suppose that k is Galois-specifiable.
To verify that k is absolutely abelian, let A C Gal(k/k®)) be a cyclic subgroup
of Gal(k/k@). Then it follows from [3], Lemma 1.5, (i), that there exist a
finite unramified [necessarily Galois] extension K C k of k@ and an isomor-
phism ¢ : Gal(K/k@)) = 4 (C Gal(k/k@))) of groups. Thus, it follows from
Lemma 6.2 that the graph of ¢ determines an MLF L C k- K such that
d; = di, and, moreover, L) = k(@) —On the other hand, since [we have
assumed that] k is Galois-specifiable, it follows from Remark 6.1.2 that k = L,
i.e., that the homomorphism ¢, hence also the subgroup A, is trivial. In
particular, we conclude that every cyclic subgroup of Gal(k/k@), hence also
the group Gal(k/k@) itself, is trivial, as desired. This completes the proof
of assertion (ii), hence also of Theorem 6.3. O

ReEMARK 6.3.1. Suppose that we are in the situation of Theorem 6.3.
(i) In general, the implication (3) = (2) does not hold. Indeed, for an
odd prime number pi, the MLF @, (¢, pkl,/p *) is absolutely characteristic

[cf. Theorem 5.9, (ii)] but not Galois-specifiable [cf. example (1) given in [4],
§2].
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(i) In general, the implication (4) = (3) does not hold. Indeed, let us
first observe that it is immediate that the implication (4) = (3) is equivalent to
the following assertion:

Every normal open subgroup of Gyu-n < Gal(k/k=V) is charac-

teristic.
Thus, since every normal closed subgroup of Gjw-) may be obtained as the
intersection of the normal open subgroups of G- that contain the normal
closed subgroup, if the implication (4) = (3) holds, then we conclude that every
normal closed subgroup of G- is characteristic. In particular, if the im-
plication (4) = (3) holds, then it follows from [7], Corollary 3.7, that every
outer automorphism of G u-n arises from an automorphism of the field k9=,
i.e., that Out(Gyru=)) = {1}. But this contradicts the conclusion of the discus-
sion given at the final portion of [12], Chapter VII, §5, if py is odd.

DeriNITION 6.4, Recall that the natural homomorphism Aut(k) —
Out(Gy) is injective [cf., e.g., [3], Proposition 2.1]. By means of this injection,
let us regard Aut(k) as a [necessarily finite] subgroup of Out(Gy):

Aut(k) C Out(Gy).
Then we shall write
OrbAut(k)

for the set of Out(Gy)-conjugates of the subgroup Aut(k) C Out(Gy), i.e., the
Out(Gy)-orbit of the subgroup Aut(k) C Out(Gy).

Recall the group of MLF-type

introduced at the beginning of §2.

DeriNITION 6.5. Let I C Out(G) be a finite subgroup of the outer auto-
morphism group Out(G) of G.
(i) We shall write

out
G > I C Aut(G)

for the inverse image of I' C Out(G) by the natural surjection Aut(G) —
Out(G). Thus, since G may be identified with Inn(G) C Aut(G) by the natural

isomorphism G = Inn(G) [cf. [3], Lemma 1.8], the group G 4 I has a natural
structure of extension of I" by G:

out
1-G—-GXxXTI—->TI-—1l.
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By means of the second arrow of this exact sequence, let us always regard G
as a subgroup of G % I

out
GCGXT.

(11) We shall say that the finite subgroup I" is quasi-geometric if the group
G >4 I' is of MLF-type.

(iii) We shall say that the finite subgroup I is slrlctly quasi-geometric if I’
is quasi-geometric, and, moreover, the equality d(G ¥ I') =1 holds.

LEMMA 6.6. Let I' C Out(G) be a quasi-geometric subgroup of Out(G).
Then the following hold:

(i) Every subgroup of I' is a quafi-geometric subgroup of Out(G).

(i) The natural inclusion kX(G:%I I') — k*(G)—i.e., determined by the
transfer map with respect to G C G X I' [¢f [3], Lemma 1.7, (3)]—and the
natural action of I' on k*(G) determine an isomorphism k* (G ) I) = k(G)".

(iii) It holds that d(G) e #I'Z.

(iv) It holds that I is strictly quasi-geometric if and only if #I" = d(G).

ProoOF. Assertion (i) follows from the discussion following [3], Proposition
3.3. Assertion (ii) follows immediately from [3], Proposition 3.11, (i). Asser-
tions (iii), (iv) follow immediately from [3], Proposition 3.6. This completes
the proof of Lemma 6.6. ]

PROPOSITION 6.7.  The subgroup Aut(k) C Out(Gy) is quasi-geometric. [f,
moreover, the MLF k is absolutely Galois, then the subgroup Aut(k) C Out(Gy)
is strictly quasi-geometric.

Proor. This assertion follows immediately from the various definitions
involved. O

DEFINITION 6.8.
(i) We shall say that G is of GSMLF-type if the following two conditions
are satisfied:

(1) There exists a strictly quasi-geometric subgroup of Out(G).

(2) For each strictly qua(s)il—lgeometricogtubgroup I' C Out(G) of Out(G)
and each open subgroup HC G X I' of G X I', if H is iggmorphic, as an
abstract group, to G, then H = G, i.e., as subgroups of G X< I
[Here, “GSMLF” is to be understood as an abbreviation for “Galois-specifiable
mixed-characteristic local field”—cf. Theorem 6.10 below.]

(i) Suppose that G is of GSMLF-type. Then we shall write

Orbyge (G)

for the set of strictly quasi-geometric subgroups of Out(G).
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LemMMA 6.9. Let ka be an algebralc closure of k'@ Let us fix an
isomorphism 1 : k = ka of fields. Write k, def i1(k) C ka for the finite extension
of k=Y obtained by forming the image of k C k by 1. Let I' C Out(Gy) be a
strictly quasi-geometric subgroup of the outer automorphism group Out(Gy) of
the group Gy of MLF-type. Then the /ollowmg hold:

(i) There exists an isomorphism o : Gy, Sr= Gal(Qp /K=Y of groups.

(i) Suppose either that the MLF k is Galois-specifiable, or that the group
Gy is of GSMLF-type. Then the lsomorphzsm o of (i) restricts to an isomor-
phism between the subgroup Gj C Gy ><1 I with the subgroup Gal((l)m /k,) C

Gal((ka/k (@=1)),

Proor. Assertion (i) follows immediately from the definition of the notion
of strictly quasi-geometric subgroup [cf. also [3], Proposition 3.6].

Next, we verify assertion (i) in the case where the MLF k is Galois-
specifiable. Suppose that k is Galois-specifiable. Write K Q(ljpk for the
finite extension of k@=! that corresponds to the open subgroup o(Gy) C
Gal(Q,, /k“=D) of Gal(Q,,/k“=V). [So we have a natural identification
Gal(Q,,/K) = «(Gy).] Thus, since k is Galois-specifiable, we conclude that k
is isomorphic, as an abstract field, to K. In particular, since k is absolutely
Galois, we conclude that k, = K, i.e., as subfields of (T)m , as desired. This
completes the proof of assertion (ii) in the case where the MLF k is Galois-
specifiable.

Finally, we verify assertion (ii) in the case where the group Gy is of
GSMLF-type. Suppose that Gy is of GSMLF-type. Let us first observe that it
is immediate that the group Gy is isomorphic, as an abstract group, to the
group (?al((f)m /k;) € Gal(Q,, /k'?=1), hence also to the group o~ (Gal(Q,, /k,))
C Gy % I'. Thus, since Gy is of GSMLF-type, one may conclude that Gy =
o~ (Gal(Q,, /k;)), ie., as subgroups of G Sr , as desired. This completes
the proof of assertion (ii) in the case where the group Gy is of GSMLF-type,
hence also of Lemma 6.9. O

THEOREM 6.10. It holds that the MLF k is Galois-specifiable if and only if
the group Gy is of GSMLF-type.

Proor. First, we verify the necessity. Suppose that the MLF k is Galois-
specifiable. To verify that the group Gy is of GSMLF-type, let I' C Out(Gy)
be a strictly quasi- qeometrzctsubgroup of Out(Gy) |[cf. Theorem 6.3, (i); Prop-
osition 6.7] and H C Gy X I' an open subgroup of Gy Nr such that H
is isomorphic, as an abstract group, to Gj;. Now suppose that we are in
the situation of Lemma 6.9. Thus, we have an isomorphism o : Gy Sr>
Gal( _/k@=1) of groups [cf. Lemma 6.9, (i)] that restricts to an isomorphism
Gy = Gal(ka /k,) [cf. Lemma 6.9, (ii). Write K C @,, for the finite extension
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of k=1 which corresponds to the open subgroup «(H) C Gal(Q,, /k“=V) of
Gal(Q,, /k*=D). [So we have a natural identification Gal(ka/K) =a(H).]
Thus, smce H is isomorphic to both G; and Gal(Q, /K), and k is Galois-
specifiable, we conclude that k is isomorphic, as an abstract field, to K. In
particular, since k is absolutely Galois, it holds that k, = K, i.e., as sub-
fields of @, , which thus implies that o(Gy) = a(H), ie., as subgroups of
Gal(Q,, /k™=Y), as desired. This completes the proof of the necessity.
Next, we verify the sufficiency. Suppose that the group Gy is of GSMLF-
type. To verify that the MLF k is Galois-specifiable, let L be an MLF and
L an algebraic closure of L such that Gi is isomorphic, as an abstract group,
to Gal(L/L). Now take a strictly quasi-geometric subgroup I' C Out(Gy) of
Out(Gy) [cf. condition (1) of Definition 6.8, (i)], and suppose that we are in
the situation of Lemma 6.9. Thus, we have an isomorphism o : Gy Sr>
Gal( /K@D of groups [cf. Lemma 6.9, (i)] that restricts to an isomorphism
Gp = Gal(ka /k;) |cf. Lemma 6.9, (ii)]—which thus implies that the MLF k,,
hence also the MLF k, is absolutely Galois. Then let us observe that it follows
from [3], Proposition 3.6, that L is isomorphic, as an abstract field, to ka.
Let us identify L with @, by means of some fixed isomorphism of L with
Q,,. Then since Gy is isomorphic to Gal(L/L) = Gal((l)p, /L), and Gy is of
GSMLF type, we conclude that Gy = oc’l(Gal(Qp, /L)), i.e., as subgroups of
Gy ¥ I', which thus implies that k, = L, i.e., as subfields of ka Thus, the
field k is isomorphic to the field L, as desired. This completes the proof of the
sufficiency, hence also of Theorem 6.10. O

COROLLARY 6.11. The following hold:

(i) If the group G is of AAMLF-type [c¢f. Definition 4.8], then G is of
GSMLF-type.

(i) Suppose that (p(G),a(Q)) # (2,1) [¢f. Definition 2.4, (ii)]. Then if the
group G is of GSMLF-type, then G is of AAMLF-type.

Proor. These assertions follow—in light of Proposition 2.5, (i), and [3],
Proposition 3.6—from Theorem 6.3, (i), (ii), together with Proposition 4.9, (iii),
and Theorem 6.10. O

THEOREM 6.12.  Suppose that the MLF k is Galois-specifiable, which thus
implies that the group Gy is of GSMLF-type [cf. Theorem 6.10]. Then the
following hold:

(i) Let In, I, C Out(Gy) be strictly quasi-geometric subgroups of Out(Gy).
Then I is an Out(Gy)-conjugate of I.

(i) It holds that

OrbAut(k) = Orbgge (Gy).
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Proor. First, we verify assertion (i). Let a: Gi 0>lét I = Gy 0>lét I> be an
isomorphism of groups [cf. Lemma 6.9, (i)]. Then since the group Gi is of
GSMLF-type, it is immediate that the isomorphism o restricts to an auto-
morphism of Gy. Moreover, one verifies immediately from the various defini-
tions involved that I7 is the conjugate, by the outer automorphism of Gy
determined by the resulting automorphism of Gy, of I>. This completes the
proof of assertion (i).

Assertion (ii) follows from assertion (i) and Proposition 6.7. This com-
pletes the proof of Theorem 6.12. O

REMARK 6.12.1. Note that, in general, a similar assertion to Theorem
6.12, (i), for [the absolute Galois group of]| an absolutely characteristic MLF
does not hold [cf. Remark 8.6.1, (ii), below].

Some of the group-theoretic reconstruction algorithms discussed in the
present §6 may be summarized as follows.

SUMMARY 6.13.

(i) There exists a group-theoretic condition for a group of MLF-type [cf.
Definition 6.8, (i)] which “corresponds” to the condition for an MLF to be
Galois-specifiable [c¢f. Theorem 6.10).

(i) There exists a group-theoretic reconstruction algorithm [cf. (8], Remark
1.9.8] for constructing, from a group G of MLF-type that satisfies the condition
of (i), a collection Orbs,(G) of subgroups of Out(G) [cf. Definition 6.8, (ii)]
which “corresponds” to the Out(Gy)-orbit OrbAut(k), i.e., by conjugation, of the
subgroup Aut(k) C Out(Gy) [c¢f. Theorem 6.12, (ii)).

REMARK 6.13.1. By Summary 6.13, (i), one may conclude that

the condition for an MLF to be Galois-specifiable may be considered
to be “‘group-theoretic”.

7. On outer automorphisms arising from field automorphisms I

In the present §7, we maintain the notational conventions introduced
at the beginnings of §1 and §2. In particular, we have a natural open
injection

Gr — Gru-n & Gal(k/k\=D).

In the present §7, we discuss outer automorphisms of the absolute Galois
groups of MLF’s that arise from field automorphisms of the MLF’s. We prove
that if the MLF k is absolutely characteristic, and that p; is odd, then the
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subgroup of the outer automorphism group of Gj determined by the field
automorphisms of k is not normally terminal [cf. Theorem 7.2, (i), below].
Moreover, we also prove that, under some conditions, the outer automorphism
group of Gy has “many” finite abelian subgroups [cf. Theorem 7.5, Remark
7.5.1, below].

LemMma 7.1. Let H C G be a characteristic open subgroup of the group G
of MLF-type. Thus, we have, by considering restrictions, a natural homomor-
phism

Aut(G) — Aut(H).

Then the following hold:

(i) The homomorphism Aut(G) — Aut(H) is injective. In particular, we
also have an injection Aut(G)/Inn(H) — Out(H). Let us regard Aut(G),
Aut(G)/Inn(H) as subgroups of Aut(H), Out(H) by means of these injections,
respectively:

Aut(G) C Aut(H), Aut(G)/Inn(H) C Out(H).

(i) The natural homomorphisms G — Inn(G) — Aut(G) determine an
isomorphism

G/H = Inn(G)/Inn(H).
Let us identify G/H with Inn(G)/Inn(H) by means of this isomorphism:
G/H =Inn(G)/Inn(H) (C Aut(G)/Inn(H) C Out(H)).
Thus, we have a natural exact sequence
1 — G/H — Aut(G)/Inn(H) — Out(G) — 1.
(i) 1t holds that
Now)(G/H) = Aut(G)/Inn(H).
(iv) Recall the exact sequence
1 - G/H — Aut(G)/Inn(H) — Out(G) — 1
of (ii). Then the composite
Aut(G)/Inn(H) — Aut(G/H) — Out(G/H)

—where the first arrow is the action by conjugation via the second arrow of the
above exact sequence, and the second arrow is the natural surjection—coincides
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with the composite
Aut(G)/Inn(H) — Out(G) — Out(G/H)

—where the first arrow is the third arrow of the above exact sequence, and the
second arrow is the natural homomorphism.

Proor. First, we verify assertion (i). Let us first observe that it follows
from [3], Lemma 1.8, that the action of G on H by conjugation is faithful.
Since [it is immediate that] the resulting injection G — Aut(H) is Aut(G)-
equivariant, assertion (i) holds. This completes the proof of assertion (i).
Assertion (ii) follows from [3], Lemma 1.8. Assertions (iii), (iv) follow im-
mediately from the various definitions involved. This completes the proof of
Lemma 7.1. O]

THEOREM 7.2. Suppose that the MLF k is absolutely characteristic [cf.
Definition 5.7]. Then the following hold:

(i) Suppose, moreover, that py is odd. Then the subgroup Aut(k) C
Out(Gy) of Out(Gy) is not normally terminal

(i) It holds that the MLF k is absolutely abelian [¢f. Definition 4.2, (ii)] if
and only if

Now(c,) (Aut(k)) = Zow(q,) (Aut(k)).

ProoF. Since the open subgroup Gy C Gpu-1y of Gyu-y 1s characteristic,
by applying Lemma 7.1, (ii), (iii) [in the case where we take the “H C G” of
Lemma 7.1 to be Gy C G,w-1], we obtain an exact sequence

1 — Aut(k) — NOut(Gk)(Aut(k)) — Out(Gk(d:I)) — 1.

Now we verify assertion (i). Since px is odd, it follows from the dis-
cussion given at the final portion of [12], Chapter VII, §5, that Out(Gju=1) is
nontrivial. Thus, by the above exact sequence, we conclude that the subgroup
Aut(k) C Out(Gy) is not normally terminal, as desired. This completes the
proof of assertion (i).

Next, we verify assertion (ii). The sufficiency is immediate. Let us verify
the necessity. Suppose that the MLF k is absolutely abelian. Let us first
observe that it is immediate that, to verify the necessity, it suffices to verify
that the action of Noyg,)(Aut(k)) on Aut(k) by conjugation is trivial. On
the other hand, since k is absolutely abelian, it follows immediately from
Lemma 7.1, (iv), that this action factors through the natural homomorphism
Out(Gyu-n) — Out(Gib_,)) (= Aut(G¥F_,)). Thus, the desired triviality fol-
lows from Corollary 5.5. This completes the proof of assertion (ii), hence
also of Theorem 7.2. O
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REMARK 7.2.1.
(i) Let us observe that it follows immediately from Corollary 5.5 that if
dr = 1, then the image of the natural homomorphism

Aut(k) — Aut(k;)
coincides with the image of the composite
Out(Gy) — Aut(k, (Gy)) < Aut(k,)

—where the second arrow is the isomorphism obtained by conjugation by the
vertical isomorphism k, = k, (Gy) in the diagram of [3], Proposition 3.11, (iv).

(i) On the other hand, in general, the image of the natural homo-
morphism

Aut(k) — Aut(k,)
does not coincide with the image of the composite
Out(Gy) — Aut(ky(Gy)) < Aut(k.).

Indeed, suppose that k is absolutely characteristic, and that the image of the
natural homomorphism Out(Gw-1)) — Out(Gyw-1,/Gy) is nontrivial, which thus
implies [cf. Lemma 7.1, (iv); also the exact sequence in the proof of Theorem
7.2] that the normal subgroup Aut(k) C Noyg,)(Aut(k)) is not a direct
summand. [Note that it follows immediately from the discussion given at
the final portion of [12], Chapter VII, §5, together with Remark 5.7.2, (i),
that such a “k” exists.] Next, observe that since Aut(k) is contained in
Nou(q,)(Aut(k)), it is immediate that, to verify the desired assertion, it suffices
to verify that the image of the natural homomorphism

Aut(k) — Aut(k,)
does not coincide with the image of the composite
Nou(Gy) (Aut(k)) — Out(Gr) — Aut(k.(Gr)) < Aut(k).

On the other hand, since the natural homomorphism Aut(k) — Aut(k;) is
injective, if these images coincide, then one verifies immediately that the normal
subgroup Aut(k) C Nouyg,)(Aut(k)) is a direct summand—in contradiction to
our assumption on k.

REMARK 7.2.2. The consideration in Remark 7.2.1, (ii), leads us to, for
instance, the following assertion:

If d;, = 2 [which thus implies that k is absolutely abelian], and py — 1 ¢
4Z, then the subgroup Aut(k) € Noug,) (Aut(k)) (= Zouyq,) (Aut(k))
—cf. Theorem 7.2, (ii)) is a direct summand.
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Indeed, let us first observe that it follows from elementary field theory that the
action of the [unique] nontrivial element of Aut(k) on the @, -vector space
k. (Gy) (& ky—cf. [3], Proposition 3.11, (iv)) of dimension d; =2 has two
eigenvalues 1, —1. Write Vi, V_; C k. (Gy) for the eigenspaces that corre-
sponds to the eigenvalues 1, —1, respectively. [So we have k. (Gy) =V @
V_1.] Then one verifies easily that the action of Noyg,)(Aut(k)) on k, (Gx)
preserves each of the subspaces Vi, V_; C k(Gy). Thus, we have a homo-
morphism

Now(q,) (Aut(k)) — Autg, (V-1) = Q,.

Now let us observe that it follows from our assumption that p; — 1 ¢4Z,
together with [3], Lemma 1.2, (i) [cf. also Proposition 1.1, (v), if px = 2], that
there exists a surjection Q, —» (Z/2Z), of modules such that the composite
{x1} = Q,, — (Z/2Z), is an isomorphism. Thus, by considering the com-
posite

Aut(k) — Nou(q,)(Aut(k)) — Autg, (V1) = Q, — (Z/2Z),,

we conclude that the subgroup Aut(k) C Noyq,)(Aut(k)) is a direct summand,
as desired.

Lemma 7.3. Suppose that (pi,ax) # (2,1). Write Nmp, o : (k)" —
(“9=DY)" for the [necessarily open] homomorphism of abelian profinite groups
induced by the Norm map Nmy -y k™ — (k=Y. Then the following
hold:

(i) The image of the [uniquely determined] pro-pi-Sylow subgroup of the
abelian profinite group (k*)" by Nm,ﬁ/k(,i:” is a free Z, -module of rank two.

(i) There exists a pro-py closed subgroup M C Ker(Nm,?/k(,,:U) of the
kernel of Nm,?/k(,,:]) such that M is a free Z, -module of rank d; —1, and,
moreover, the natural inclusion M — (k*)" is a split injection.

Proor. First, we verify assertion (i). Write (K*)"(px), ((K“=D))"(px)
for the [uniquely determined] pro-pi-Sylow subgroups of the abelian profinite
groups (k*)", ((kK\@=1)")") respectively. Let us observe that it follows im-
mediately from [3], Lemma 1.2, (i), that, to verify assertion (i), it suffices to
verify that the image Nm,ﬁ/wzl)((kx)’\(pk)) C ((KY9=DYY(py) is torsion-free.
Thus, if py is odd, then since [one verifies easily from Proposition 1.1, (v), that]
((k“9=DY)"(py) is torsion-free, assertion (i) holds.

Suppose that py = 2. Then let us observe that since ((k(“=1V)*) = {+1}
[cf. Proposition 1.1, (v); [3], Lemma 1.2, (i)], it follows immediately from
Lemma 4.1, (iii), that, to verify assertion (i) in the case where p; = 2, it suffices
to verify that the image of the inertia subgroup Ix C Gk by ¥, .cyc * Gk — prk
[cf. Lemma 4.1, (i)] does not contain —1 € Z, . On the other hand, since [we
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have assumed that] (pg,ax) # (2,1), this follows immediately from the [easily
verified] injectivity of the composite {+1} — Z —» (Z/4Z)". This completes
the proof of assertion (i) in the case where p; =2, hence also of assertion (i).

Assertion (ii) follows immediately from assertion (i), together with [3],
Lemma 1.2, (). This completes the proof of Lemma 7.3. O

LemmA 7.4. Suppose that (pi,ar) # (2,1). Then there exists a Galois
extension k., C k of k such that Gal(k., /k) is a free Z,,-module of rank d; — 1,
and, moreover, the [uniquely determined)| maximal intermediate field of k., /k@=")
abelian over k“=!) coincides with k@) [cf. Definition 4.2, (iii)].

ProOF. Let us first observe that one verifies immediately from [3], Lemma
1.7, (1), (2), that, to verify Lemma 7.4, it suffices to verify that there exists
a surjection ¢ : (k*)" — ((Z,,) +)@‘1"_1 of profinite groups such that if we
write Nmy, o) : (k)" — ((k“=D)")" for the homomorphism induced by the
Norm map Nmy i : k* — (k“=D)", then the equality Nmy, . ((k*)") =
Nm, o (Ker(¢)) holds. On the other hand, this follows immediately from
Lemma 7.3, (ii). This completes the proof of Lemma 7.4. O

THEOREM 7.5. Suppose that a maximal intermediate field of k/k®®) tamely
ramified over k) does not coincide with k=Y C k [which is the case if, for
instance, d,iab) # 1], and that (py,ax) # (2,1). Let n be a nonnegative integer
such that [k : k@] e PRZ and A an abelian pi-group that satisfies the following
two conditions:

(1) It holds that #A = pj}.

(2) The finite abelian group A is generated by at most (di/p})—1
elements.

Then there exists a subgroup of Out(Gy) isomorphic to A.

ProoOF. Let K| be a maximal intermediate field of k/k@®) tamely ramified
over k@) Thus, it follows from Lemma 4.3, (ii), that the positive integer
dy/dx, is a power of pi and > p;!. Then since [we have assumed that] dg, > 2,
it follows immediately from Lemma 7.4 that there exists a finite Galois
extension K> C k of K| such that d;, = py - dg, [i.e., that di/dg, = p} - dk,/dk, ],
and, moreover, Kéab) = Kl(ab) (= k@) —cf. Lemma 4.3, (i)). Thus, it follows
immediately—in light of condition (2)—from Lemma 7.4 that there exists a
finite Galois extension K3 C k of K, such that Gal(K3/K>) is isomorphic to
A—which thus implies [cf. condition (1)] that dk, = dx, - #A4 = dk, - p} = dr—
and, moreover, K;ab) = Kéab) (= k@), In particular, since [we have assumed
that] (px,ax) # (2,1), it follows immediately—in light of Proposition 2.5,
(i); Proposition 4.9, (i); [3], Proposition 3.6—from Theorem 4.11, together
with [3], Lemma 1.7, (1), (2), that Gy is isomorphic, as an abstract group, to
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Gk, def Gal(k/K3). Thus, by considering the image of the composite of the
natural injection Gal(K3/K;) — (Aut(K3;) —) Out(Gg,) and the isomorphism
Out(Gg,) = Out(Gy) obtained by conjugation by some isomorphism Gk, = G,
we obtain a subgroup of Out(Gy) isomorphic to A, as desired. This completes
the proof of Theorem 7.5. ]

REMARK 7.5.1. One concrete application of Theorem 7.5 is as follows:
Suppose that p; is odd. Let n be a positive integer. Suppose, moreover, that

k=Q pk(Cp:, p,i/ g ’1‘7). Then one verifies immediately that

K = Q, () de=p (e = 1), Y = pit (e — 1),

Thus, it follows from Theorem 7.5 that, for positive integers d,rq,...,r; such
that r; + -+ 4 rg = n, there exists a subgroup of the group Out(Gy) isomorphic
to the abelian pj-group

Z/p)Zx---xXL/p'Z

[cf. the easily verified inequalities d < n < di/p}].
Note that this observation in the case where n = 2 was already given in
example (2) given in [4], §2.

REMARK 7.5.2. One of motivations of studying Theorem 6.12, Theorem
7.2, and Theorem 7.5 is as follows:
(i) The Neukirch-Uchida theorem [cf. the main theorem of [16]] asserts

that

(tnp) every outer isomorphism of profinite groups between the abso-
lute Galois groups of number fields [i.e., finite extensions of @] arises from a
uniquely determined isomorphism between the number fields,
which thus implies that

(inr) the isomorphism class, i.e., as an abstract profinite group, of
the absolute Galois group of a number field completely determines the isomor-
phism class, i.e., as an abstract field, of the number field.
On the other hand, it is well-known [cf., e.g., [3], Theorem 2.2] that neither
the assertion ({ng) for MLF’s nor the assertion (ing) for MLF's holds. More
precisely, for instance, if p is odd, then

(tmLr) there exists an outer automorphism of the absolute Galois
group of Q, that is nontrivial, hence also does not arise from any automor-
phism of the field Q, [cf., e.g., the discussion given at the final portion of [12],
Chapter VII, §5],
and, moreover,

(imLp) there exist two MLF’s k., k, such that the field k, is not
isomorphic to k,, but the absolute Galois group of k. is isomorphic to the
absolute Galois group of k, [cf., e.g., [17], §2, Theorem, (i)].
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(i) The assertion (fmpr) in (i) thus asserts that, in general [e.g., in the
case where we take the “k” to be Q,, for some odd prime number p], the
natural injection

Aut(k) — Out(Gy)

[cf., e.g., [3], Proposition 2.1] is not bijective. Under this state of affairs, one
may consider the following problem:

Problem: Is there a certain ‘‘suitable’” characterization of the sub-
group Aut(k) C Out(Gyg) of Out(Gy)?

Here, let us observe that

Theorem 6.12, (ii), may be regarded as a certain affirmative solution to
this problem, i.e., in the case where the MLF k is Galois-specifiable
[cf. Definition 6.1].

(iii) From the point of view of the problem in (ii), let us observe
the [easily verified] finiteness of the group Aut(k).

In particular, as one of possible solutions to the problem in (ii), one may
discuss the following question:

(#in) Is the subgroup Aut(k) of Out(Gy) the uniquely determined
maximal finite subgroup of Out(Gy)? Put another way, is every element of
Out(Gy) of finite order contained in the subgroup Aut(k) of Out(Gy)?

Now let us observe that it is immediate that an affirmative answer to this
question (*g,) implies an affirmative answer to the following question (*cpar),
hence also an affirmative answer to the following question (sye):

(*char) Is the subgroup Aut(k) of Out(Gy) characteristic?

(#nor) Is the subgroup Aut(k) of Out(Gy) normal?

an affir. sol. to (m,) = an affir. sol. to (#char) = an affir. sol. to (*por)
(iv) Now let us observe that
Theorem 7.2 is related to the question (#nor) in (iil),
and that

Theorem 7.5 [cf. also the example in Remark 7.5.1] yields a negative
answer to the question (xg,) in (iii).

(v) In §8, we will give a negative answer to the question (o) in (iii),
hence also [cf. the discussion of (iii)] negative answers to the questions (xg,) and
(*char) 1n (iii) [cf. Corollary 8.7 below].
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8. On outer automorphisms arising from field automorphisms II

In the present §8, we maintain the notational conventions introduced at
the beginnings of §1 and §2. In particular, we have been given a group of
MLF-type

G.

Let / be a prime number. Suppose, moreover, that

() kX(G)II # {1},

(b) d(G)/d®)(G) =1 [cf. Definition 4.7, (iv)], and, moreover,

) d®(G) ¢lZ.
In the present §8, we give a negative answer to the question (#p0;) in Remark
7.5.2, (iii) [cf. Corollary 8.7 below].

Lemma 8.1. Let I' C Out(G) be a quasi-geometric [cf. Definition 6.5, (ii)]
subgroup of order [ Then the following hold:

(i) The group G %r [¢f. Definition 6.5, (i)] is of AAMLF-type [cf.
Definition 4.8] whose MLF-Galois label [¢f. Definition 4.10] coincides with

(p(G),d"“Y(G), Im(Nmps(G)))

[¢f. Definition 4.7, (iii)].

(i) The isomorphism class of the group G ) I" does not depend on the
choice of T, ie., depends only on (G,I).

(iil) 1t holds that e(G % I') = e(G)/I, and that k*(G % I')[I] # {1}.

(iv) There exists a uniquely determined IF-torsor

T Ck*(GX I') @z F,

t
in the vector space kX(GO>lé I ®zF; over TF; that satisfies the following
condition:  Write S C k*(G) for the subset of k*(G) consisting of elements

yek*(G) 2 k*(G )GOQF (G X T —cf. [3], Proposition 4.2, (1)) of k*(G)
such that the I-th power y' is contained in k*(G ) I') and, moreover, 5 lifting
of an element of T, ie., relative to the natural surjection k>(G X I') —
k(G Nr Y®z ;.  Then the subset S is ,Donempty, a and, oreover, for every
element ye S of S, the subgroup G C G S of G ) I" coincides with the
stabilizer, with respect to the natural action of G % I on k*(G), of y€S.

Proor. First, we verify assertlon ('). Let us first obser(}{ft: that it follows
from [3], Proposition 3.6, that p(G ) I =p(G) and d(G X I') =d(G)/l =
d@)(G) [cf. the condition (b) at the beginning of the present §8]. Thus, to
verify assertion (i), it suffices to verify that Im(Nmyups(G)) = Im(Nm,ps(G %
I')). To this end, let us observe that it follows from Remark 4.9.1 that
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Im(Nmyps(G)) C Im(Nmpps(G ) I')), and, moreover, [Im(Nmyy(G 1) I)):
Im(Nmyps(G))] € {1,/}. Thus, it follows from the condition (c) at the begin-
ning of the present §8 that Im(Nm,ps(G)) = Im(Nm,ps(G X I')), as desired.
This completes the proof of assertion (i).

Assertion (ii) follows from assertion (i) and Theorem 4.11. Next, we
verify assertion (iii). The first assertion of assertion (iii) follows immediately—
in light of Proposition 4.9, (iii); [3], Proposition 3.6—from assertion (i) and
Lemma 4.3, (ii). Next, let us observe that it follows immediately from [3],
Proposition 4.2, (i), that, to verify the second tassertlon of assertion (iii), it
suffices to verify thatt the homomorphism G X I' — IF/ determined by the
natural action of G X I" on k*(G)[l] is trivial. On the other hand, it follows
from the condition (a) at the beginning of the pgc—fl%ent §8, together with [3],
Proposition 4.2, (i), that the restriction to G C G X I' of the homomorphism

out
G X I' - F/ is trivial. Thus, the desired triviality follows from our assump-

tion that I" is of order I. This completes the proof of assertion (iii). Finally,
since I" is of order [, assertion (iv) follows immediately—in light of [3],
Proposition 4.2, (i)—from Kummer theory, together with assertion (iii). This
completes the proof of Lemma 8.1. O

REmMARK 8.1.1. Suppose that p; is odd. Let
ae ka\( )p".

Suppose, moreover, that

k=@, (G a'™).

Then, by the easily verified equality (@, )™ =@, N (@, (L) )™, one verifies
immediately that

a ab
=@, () de=pi-(pr—1), d =p—1

[cf. Definition 4.2, (iii), (iv)]. Thus, it follows from Proposition 4.9, (ii); [3],
Proposition 3.6; [3], Proposition 3.11, (i), that the group Gj; of MLF-type
satisfies the three conditions (a), (b), and (c) at the beginning of the present §8
in the case where we take the prime number “/” to be p,. Moreover, in this
case, by Lemma 6.6, (i), and Proposition 6.7, the subgroup

Gal(k/Q,,(¢,,)) € (Aut(k) = Gal(k/@,) C) Out(Gy)

yields an example of a quasi-geometric subgroup of Out(Gy) of order py, i.e., as
discussed in Lemma 8§.1.

DeriNiTION 8.2, Let I' C Out(G) be a quasi-geometric subgroup of
order /.
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(i) We shall write
T(I) Ck*(G X I ® F,

for the uniquely determined IF,‘-torsor “7” of Lemma 8.1, (iv).

(i) We shall refer to an element of the subset “S” of Lemma 8.1, (iv)
as a Kummer generator for I'. Note that it follows from Lemma 8.1, (iv),
that every Kummer generator for I' is contained in k*(G) (= IEX(G)
(G)).

(i) We shall say that I is of unit-Kummer type if the image of the
IF-torsor T(I') C k*(G ¥ I') ®zF; of (i) by the homomorphism

k(G ) @ F — (),

induced by ordg(G Sr ) [cf. Definition 2.2] is {0} [or, alternatively,
# (), \ {0}

(iv) Let Iy C Out(G) be a strictly quasi-geometric [cf. Definition 6.5, (iii)]
subgroup that contains I". Then we shall say that I" is of [y-Kummer type
1f there exists a Kummer generdtort y € k*(G) for S such that the /-th power
7' € k*(G) is contained in k*(G X Iy) (Ck*(G % ).

ReEMARK 8.2.1. One verifies immediately from [3], Proposition 4.2, (i),
together with the various definitions involved, that, in the situation of Defini-
tion 8.2, (iv), the following two conditions are equivalent:

(1) The quasi-geometric subgroup F 1s of I'y-Kummer type.

(2) There exists an element a € k(G % Iy) of the MLF k(G % FSI) [ f.
Definition 5.2, Remark 5.2.1] such that the subgroup G C G >4 Iy of G ><1 Ty
coincides with the intersection

(G )N (GN L) 11 a)

of the subgroup G N rca % I'y and the subgroup (G ) Iy)(;1;05a) C
G Iy of Deﬁmtlon 5.8, (i), by the strictly radical data [cf. Definition 5.6, (i)]
(I;1;1;a) for k(G ) Iy).

REMARK 8.2.2. Suppose that we are in the situation of Remark 8.1.1.
Then one verifies immediately from the various definitions involved that the
following hold:

(i) The IF; -torsor

T(Gal(k/®,, (¢,,))) € k™ (Ge 4 Gal(k/@, (8,))) @ = Q) (8,)" ®2TF),

[cf. [3], Proposition 3.11, (i)] is given by the IF, -torsor obtained by forming
the IF, -orbit of the image of ae @, C Q, ({,)" in Q,((,)" ®zF,,.



390 Yuichiro HosHi

(i) The element a'/? e k* = k*(Gy) [cf. [3], Proposition 3.11, (i)] is a
Kummer generator for the quasi-geometric subgroup Gal(k/Q,, ({,,)) of order
Pk-

(iii) It holds that the quasi-geometric subgroup Gal(k/Q,, ({,,)) of order
pr 18 of unit-Kummer type if and only if a e Z[fk . ((Q;k)pk.

(iv) Let us observe that, by Proposition 6.7, the subgroup

(Gal(k/Q,,((p,)) €) Aut(k) = Gal(k/Q,,) € Out(Gx)

yields an example of a strictly quasi-geometric subgroup of Out(Gy) that con-
tains the quasi-geometric subgroup Gal(k/Q, ({,,)) of order py, ie., as dis-
cussed in Definition 8.2, (iv). Moreover, in this case, since [we have assumed
that] ae Q, (= (kX)A”[ 9), the quasi-geometric subgroup Gal(k/Q,,(¢y,)) o
order py is of Aut(k)-Kummer type.

LemMmA 8.3. Let I'; X C Out(G) be quasi-geometric subgroups of order I.
Suppose that I' is not of unit-Kummer type. Let yek*(G) be a Kummer
generator for I'. Then the followmg hold:

(i) It holds that y¢k (G ><1 2)

(i) Suppose that y' € k*(G >4 Z ). Then y is a Kummer generator for .

(iii) Suppose that y' € k*(G ) ). Then the quasi-geometric subgroup X
is not of unit-Kummer type.

Proor. First, we verify assertion (i). Let us first observe that since I”
is of order | and not of unit-Kummer type, it follows immediately from
Proposition 2.3 that ordg(G)(y) ¢ /Z. On the other hand, since X is of order
[, it follows 1mmed1ately from Proposition 2.3 and Lemma 8.1, (iii), that
ordg (G)(k* (G %X 2))=1Z. Thus, assertion (i) holds. This completes the
proof of assertion ()

Next, since k* (G X 2)[]] # {1} [cf. Lemma 8.1, (iii)], and X is of order I,
assertion (ii) follows immediately—in light of [3], Proposition 4.2, (i)—from
assertion (i) and Kummer theory. Finally, since ordg(G)(y) ¢ [Z [cf. the proof
of assertion (i)], and X' is of order I, assertion (iii) follows immediately—in light
of Proposition 2.3—from assertion (ii) and Lemma 8.1, (iii). This completes
the proof of Lemma 8.3. ]

LemMA 8.4. Let Iy C Out(G) be a strictly quasi-geometric subgroup of
Out(G). Then the following hold:

(i) The group Iy has a uniquely determined /-Sylow subgroup. Moreover,
the [-Sylow subgroup is of order I

(i) Let X C Out(G) be a subgroup of Out(G) such that X C Noyc)(Is)-
Then it holds that

out

k(G X Ty) Ck*(G)*.



Anabelian geometry of mixed-characteristic local fields 391

(i) 1In the situation of (ii), suppose, moreover, that X is quasi-geometric.
Then it holds that

out out
(G X I'y) CkX(G > 2).

Proor. First, we verify assertion (i). Let us first observe that it follows
from the conditions (b), (c) at the beginning of the present §8, together with
Lemma 6.6, (iv), that each /-Sylow subgroup of Iy is of order I. Let I3,
I, C Iy be [-Sylow subgroups of Iy [which thus implies that #I7 = #1, = [].
Then since both I and I are quasi-geometric [cf. gﬁ?mma 6.6, (1)], it follows
immediately from Lemma 8.1, (i), that G < It = G X I, i.e., as subgroups of
G I'y. In particular, we obtain that I7 = I, i.e., as subgroups of Out(G),
as desired. This completes the proof of assertion (i).

ﬁtext, since [y 1is strictly quasi-geometric [which thus implies that
d(G X I'y) =1], assertion (ii) follows immediately from Corollary 5.5.
Finally, assertion (iii) follows from assertion (ii), together with Lemma 6.6,
(ii). This completes the proof of Lemma 8.4. O

THEOREM 8.5. Let I'y C Out(G) be a strictly quasi-geometric subgroup of
Out(G) and ¥ C Out(G) a quasi-geometric subgroup of order I.  Write I' C Iy
for the uniquely determined I-Sylow subgroup of Iy [¢f. Lemma 8.4, (1)]. Sup-
pose that the following three conditions are satisfied:

(1) The subgroup X C Out(G) normalizes the subgroup I'y C Out(G).

(2) The quasi-geometric subgroup I' is of I'y-Kummer type.

(3) The quasi-geometric subgroup I' is not of unit-Kummer type.

Then the quasi-geometric subgroup X is not of unit-Kummer type.

PROOF. Ogtt follows from Lemma 8.4, (iii), and condition (1) that &*(G )
I'y) Ck*(G > X). Now observe that since I' is of Iy-Kummer type |cf. con-
dition (2)], there exists a Kummer generator y € k*(G) for I" such that y’e
k(G :%z I'y), which thus gﬂplies [cf. the above inclusion k*(G ) I'y) C
k*(G > X)] that y' e k*(G < X). Thus, since I is not of unit-Kummer type
[cf. condition (3)], it follows from Lemma 8.3, (iii), that X is not of unit-
Kummer type, as desired. This completes the proof of Theorem 8.5. O

COROLLARY 8.6. Suppose that py is odd. For each []€ {o,e}, let
an € Q,\(Q,,)";

write

def . def -
ko € Q,, (G ait™),  Go € Gal(kp/kp)

—where kg is an algebraic closure of kr. [So it follows from Theorem 4.11,
together with Remark 8.1.1—cf. also Proposition 4.9, (i); (3], Proposition 3.6—
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that the group G, is isomorphic, as an abstract group, to G,.| Write
@ : Out(G,) = Out(G.)

for the isomorphism obtained by conjugation by some fixed isomorphism G, = G,
of groups. Suppose that a, € prk le.g., ao = pr + 1] but a, ¢ Z;k le.g., ae = Pi].
Then it holds that

dj(Gal(kO/ka (Cp/\ ))) g NOut(G.)(Aut(kO))'

Proor. This assertion follows immediately from Theorem 8.5, together
with Remark 8.1.1 and Remark 8.2.2, (iii), (iv). O

REMARK 8.6.1.

(i) Let us recall from Theorem 6.12, (i), that if k is Galois-specifiable |cf.
Definition 6.1], then there is a precisely one Out(Gy)-conjugacy class of strictly
quasi-geometric subgroups of Out(Gy).

(i) Next, suppose that we are in the situation of Corollary 8.6. Then
it follows immediately from Corollary 8.6 that @(Aut(k,)) # Aut(k.). On the
other hand, it follows from Proposition 6.7 that both @(Aut(k,)) and Aut(k,)
are strictly quasi-geometric. Thus, [since one may take the isomorphism
“G, = G,” of Corollary 8.6 to be an arbitrary isomorphism| there are ar
least two Out(G,)-conjugacy classes of strictly quasi-geometric subgroups of
Out(G,). In particular—in light of Theorem 5.9, (ii)—we conclude that, in
general, a similar assertion to Theorem 6.12, (i), for [the absolute Galois group
of | an absolutely characteristic [cf. Definition 5.7] MLF does not hold.

COROLLARY 8.7. Suppose that pi is odd, and that

1/px
k=@, (G ™).
Then the subgroup
Aut(k) C Out(Gy)
is neither normally terminal nor normal

ProOOF. Since k is absolutely strictly radical [cf. Definition 5.6, (iii)], hence
also absolutely characteristic [cf. Theorem 5.9, (ii)], it follows from Theorem
7.2, (i), that the subgroup Aut(k) C Out(Gy) of Out(Gy) is not normally
terminal. Moreover, it follows immediately from Corollary 8.6 that the sub-
group Aut(k) C Out(Gy) of Out(Gy) is not normal. This completes the proof
of Corollary 8.7. ]

Remark 8.7.1. In the present Remark 8.7.1, let us recall some of the
discussions of the present §8 from the point of view of the notion of “link”
[cf. [9], §2.7, ()] as follows:
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(i) Let us apply the notational conventions introduced in the statement of
Corollary 8.6. In particular, the prime number py is odd. Moreover, for each
(1€ {o,e}, we are given an element

am € Q,\(Q,)"™,

an MLF
def 1/p,
ko) E @, (G atf™),

and an algebraic closure

ko
of k. Here, let us recall that the MLF kg—that is one of the main
arithmetic holomorphic objects [cf. [9], §2.7, (vii)] in this discussion—determines
some mono-analytic objects [cf. [9], §2.7, (vii)]. For instance, we have
* the group of MLF-type

Go & Gal(kp/kp)

obtained by forming the absolute Galois group of ko and
o the MLF“-pair [cf. [3], Definition 5.3]

GDWEE

obtained by considering the natural action of G on EE.
In the remainder of Remark 8.7.1, suppose that we are in a situation in
which

we are interested in a certain “‘characterization” of the element
ap € (prk from the point of view of such mono-analytic objects asso-
ciated to the arithmetic holomorphic object kp.

More specifically, suppose that we are in a situation in which

we are interested in a certain “‘comparison” between a, and a, via a
suitable “/ink” that relates such mono-analytic objects associated to k,
and k,.

a “link”, i.e., a suitable isomorphism
mono-an. obj. of k, = mono-an. obj. of k,
? .
= a “comparison” betw. a, and d,

(i) Let us start by observing that, for each [Je {o,e}, the group G
of MLF-type does not give any “‘characterization” of the element ap e(l)pxk.
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Indeed, one verifies casily that

kY =@, (5, dig=pc (pe—1), 4 =pi—1.

Thus, it follows immediately from Theorem 4.11 [cf. also Proposition 4.9, (i);
[3], Proposition 3.6] that the isomorphism class of the group “Gg” does not
depend on the choice of “an”. In particular, we have an isomorphism of
groups

G, = G,.
As a consequence, one may conclude that

one cannot obtain “‘any information about an” if one considers only
C‘GD”'

(iif) In order to obtain a certain “‘comparison” between a, and a., let us
relate mono-analytic portions of the arithmetic holomorphic structures of k, and
ke as follows: In the remainder of Remark 8.7.1, let us fix an isomorphism of
[abstract] groups [i.e., between Frobenius-like portions—cf. [3], Definition 5.4]

OC]:erg< ;k.x

such that the isomorphism Aut(kX) = Aut(k}) obtained by conjugation by o,
restricts to an isomorphism of G, C Aut(k*) with G, C Aut(k)). Write

o
Olgt - Go ; G.

for the resulting isomorphism [i.e., between étale-like portions—cf. [3], Defini-
tion 5.4]. [So the pair (g, o) determines an isomorphism

(e, der) = (Go v AY) = (Go )

of MLF“-pairs—cf. [3], Definition 5.1, (ii).] In particular, roughly speaking,
we are in a situation in which the collection of data “Gp mEE” may be
regarded as a coric object [i.e., roughly speaking, an object that admits the
property of being invariant with respect to the “link” under consideration—cf.
[9], §2.7, (iv)] of our “link” [i.e., the pair (o, ag)].

Note that we have natural inclusions of groups

Go € GL ¥ Gal(kp/kEY) € Aut(kp) € Aut(k).
Write

kl(_jl:l) def (ED)Aut(k)'

[So k(Dd:l) =Q, in k. Thus, we have a natural identification

Aut(kp) = Gal(kp/kY47).
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In particular, the group Aut(kp) is a group of MLF-type such that d(Aut(kp))

=1 [cf. [3], Proposition 3.6].

(iv) Before proceeding, we pause to recall some of the discussions of §5
from the point of view of this situation. Let us recall that the reconstruction
algorithms of Definition 5.2 and Definition 5.8, (i), assert that, in this situation,

(x): the MLF kgzl), as well as the collection of strictly radical data

for the MLF kl(jd:l) [cf. Definition 5.6, (i)] each member of which
yields the absolutely strictly radical MLF kg [e.g., the strictly radical
data (pg;1; pk;ag) for k(Dd:I)], is “intrinsic” from the point of view of
the collection of data

G — Aut(kp) ~ kj

—i.e., the _MLFQ-pair Aut(kp) ~ k) equipped with the subgroup
G C Aut(k) of the étale-like portion Aut(kp).

Here, suppose that the “link” of (iii) [i.e., the pair (op,os)] satisfies
condition that

(t1): the isomorphism Aut(kX) = Aut(k)) obtained by conjugation

by apr also restricts to an isomorphism of Aut(k,) C Aut(k)) with

Aut(k,) C Aut(k)).

the

[Put another way, roughly speaking, we are in a situation in which the collec-
tion of data “Aut(kp) ~ k7 may be regarded as a coric object of our “link™ ]

Then we conclude immediately from the above () that

the ((k{=V)*)P-orbit of a, e (k\*=")* coincides—relative to some

isomorphism k™" = k{=V of fields [i.e., determined by either the

restriction O(Fr|(k(d:]))>< or the composite of OCFr|(k(d:1))>< and the auto-

morphism of (k{'"")* given by “x+— x~!"—cf. [3], Theorem 7.6,
(if)]—with the ((k&~")*)-orbit of a. e (ki)

i.e., obtain a certain ‘“comparison” between a, and a.. As a result,

the field k, is isomorphic, as an abstract field, to the field k,.

This is precisely what is achieved by the application of the “rautological”
assertion in Remark 5.9.3, (i), to absolutely strictly radical MLF’s [cf. Remark

5.9.3, (ii)].
Put another way, roughly speaking,

in the situation of (iv), one may characterize the element aq up to the

indeterminacies arise from the action of the group ((kgzl))x)” k.
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Aut(k,) = Aut(k,)
v

kX S kS = aoae up to ((KTV))P S (D)

(v) Let us return to the situation of the present §8. Next, suppose that
the “link” of (iii) [i.e., the pair (ap;,o¢)] satisfies the condition that
(f2): the action of the subgroup G! C Aut(kX) o (

n Aut
conjugation—relative to the isomorphism Aut(kX) = Aut(

apr—preserves the subgroup Aut(k.) C Aut(k)).

k) by
k) by
[Note that one verifies easily that the condition (f;) in (iv) implies this
condition (}3).]

In this situation, we are not given any isomorphism of Aut(k,) with
Aut(k,). [Put another way, roughly speaking, we cannot regard the collection
of data “Aut(kp) ~ kX as a coric object of our “link”.] In particular, we
cannot apply the reconstruction algorithm of Definition 5.8, (i). Nevertheless,
Theorem 8.5 allows one to conclude that

if the ((k"")*)P-orbit of a, e (k{*=")* contains a unit of 0, ),
then the ((k{‘=")*)?-orbit of a, € (k{*~")* contains a unit of 0, u),

which thus implies that
if ord, « n(a,) =0, then ord, n(a.) € prZ.

In particular, we obtain a certain ‘““comparison” between a, and a,.

GI' 2 G, > G. C Aut(k,)
~ ~
kX = X, GI'~ Kk} preserves Aut(k.)

kel

Then: ordkéd:l)(ao) =0 = Ordk.(d:l)(a.) € pr

(vi) Finally, in order to obtain an application of the conclusion of the
discussion of (v), let us take the “(¢o,a.)” to be (pr + 1, pr). Then it follows
from the discussion of (ii) that the group G, is isomorphic to the group G..
Thus, by applying a technique of mono-anabelian transport [cf. [3], Theorem
7.6, (i); also [3], Remark 7.6.1, (i)], we obtain a “/ink”

(opr, o) : (Go N kS) = (Ge K]

as in (iii). In particular, since (a.,a,) = (px + 1, px), it follows from the con-
clusion of the discussion of (v) that the “/ink” does not satisfy the condition
(f2) in (v), ie., that
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the action of G/" on Aut(k)) by conjugation—relative to the isomor-
phism Aut(kX) = Aut(k}) by ap—does not preserve the subgroup
Aut(k,) C Aut(k)).

Therefore, we conclude that
the subgroup Aut(k,) C Aut(G,) is not normal,
which thus implies—by considering the respective quotients by G,—that

the subgroup Aut(k,) C Out(G.,) is not normal.
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This situation is precisely the situation formulated in the “nonnormal portion”

of Corollary 8.7.
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