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Abstract. In the present paper, we study the anabelian geometry of mixed-

characteristic local fields by an algorithmic approach. We begin by discussing some

generalities on log-shells of mixed-characteristic local fields. One main topic of this

discussion is the di¤erence between the log-shell and the ring of integers. This discussion

concerning log-shells allows one to establish mono-anabelian reconstruction algorithms

for constructing some objects related to the p-adic valuations. Next, we consider open

homomorphisms between profinite groups of MLF-type. This consideration leads us to

a bi-anabelian result for absolutely unramified mixed-characteristic local fields. Next,

we establish some mono-anabelian reconstruction algorithms related to each of abso-

lutely abelian mixed-characteristic local fields, mixed-characteristic local fields of degree

one, and Galois-specifiable mixed-characteristic local fields. For instance, we give a

mono-anabelian reconstruction algorithm for constructing the Norm map with respect to

the finite extension determined by the uniquely determined minimal mixed-characteristic

local subfield. Finally, we apply various results of the present paper to prove some

facts concerning outer automorphisms of the absolute Galois groups of mixed-

characteristic local fields that arise from field automorphisms of the mixed-characteristic

local fields.

Introduction

In the present paper, we study the anabelian geometry of mixed-

characteristic local fields. More specifically, we continue our study [cf. [8],

[2], [3]] of the mono-anabelian geometry [cf., e.g., [8], Introduction; [8], Remark

1.9.8; [3], Introduction] of mixed-characteristic local fields.

One central object of the study in the present paper is a mixed-

characteristic local field, i.e., an MLF. We shall refer to a [field isomorphic

to a] finite extension of Qp, for some prime number p, as an MLF [cf. [3],

Definition 1.1]. If k is an MLF, then we shall write
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� Ok � k for the ring of integers of k,
� mk � Ok for the maximal ideal of Ok,
� k ¼def Ok=mk for the residue field of Ok,
� pk ¼

def
charðkÞ for the residue characteristic of k,

� dk ¼def dimQpk
ðkþÞ, fk ¼def dimFpk

ðkþÞ [cf. the discussion entitled ‘‘Rings’’

in § 0],
� ek ¼def aðk�=ðO�k � pZ

k ÞÞ for the absolute ramification index of k,
� k ðd¼1Þ � k for the [uniquely determined] minimal MLF contained

in k,

� ek ¼def 1 (respectively, ¼def 2) if pk 0 2 (respectively, pk ¼ 2),
� ak for the largest nonnegative integer such that k contains a pak

k -th root

of unity, and
� ordk : knf0g ! Z for the [uniquely determined] pk-adic valuation nor-

malized so that ordk is surjective

[cf. the notational conventions introduced at the beginning of § 1]. Moreover,

for a positive integer n, we use the notation ‘‘zn’’ to denote a primitive n-th root

of unity.

Another central object of the study in the present paper is a [profinite—

cf. [3], Proposition 3.3, (i)] group of MLF-type. We shall say that a group

is of MLF-type if the group is isomorphic, as an abstract group, to the

absolute Galois group of an MLF [cf. [3], Definition 3.1]. If G is a group

of MLF-type, then, by applying various mono-anabelian reconstruction algo-

rithms [cf., e.g., [8], Introduction; [8], Remark 1.9.8] of [3], § 3, to G, we

obtain
� a prime number pðGÞ,
� positive integers dðGÞ, f ðGÞ, and eðGÞ,
� topological modules k�ðGÞ and kþðGÞ, and
� a monoid k�ðGÞ

which ‘‘correspond ’’ to
� the prime number pk,
� the positive integers dk, fk, and ek,
� the topological modules k� and kþ [cf. the discussion entitled ‘‘Rings’’

in § 0], and
� the monoid k� [cf. the discussion entitled ‘‘Fields’’ in § 0],

respectively [cf. [3], Summary 3.15]. Moreover, by applying the mono-

anabelian reconstruction algorithms of Definition 2:4, (i), (ii), of the present

paper to G, we obtain
� nonnegative integers eðGÞ and aðGÞ

which ‘‘correspond ’’ to
� the nonnegative integers ek and ak,

respectively [cf. Proposition 2:5, (i), of the present paper].
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In § 1, we discuss some generalities on log-shells of MLF’s. If k is an

MLF, then we shall refer to the compact open topological submodule

Ik ¼def
1

2pk
� logkðO�k Þ � kþ

—where we write logk : O
�
k ! kþ for the pk-adic logarithm—of the topological

module kþ as the log-shell of k [cf. [8], Definition 5.4, (iii)]. As is well-known

[cf., e.g., [3], Lemma 1.2, (vi)], the log-shell contains the compact open topo-

logical submodule ðOkÞþ � kþ of kþ:

ðOkÞþ � Ik:

One main topic of the study of § 1 is the di¤erence between ðOkÞþ and Ik.

In § 1, we prove, for instance, the following result [cf. Proposition 1:5; Lemma

1:8, (i); Proposition 1:10, (i)].

Theorem A. Let k be an MLF. Then the following hold:

(i) The quotient

Ik=ðOkÞþ

is isomorphic, as an abstract module, to the module defined by

Yy
n¼1
ðZþ=pn

kZþÞ
lbkðnÞ�dðn;akÞ

—where we write

bkðnÞ ¼
def ek � ek � 1

pn�1
k

$ %
� 2 � ek � ek � 1

pn
k

� �
þ ek � ek � 1

pnþ1
k

$ % !
� fk

and dði; jÞ ¼def 1 (respectively, ¼def 0) if i ¼ j (respectively, i0 j). In particular,

the isomorphism class of Ik=ðOkÞþ depends only on pk, fk, ek, and ak.

(ii) It holds that the submodule Ik � kþ coincides with the submodule

ðOkÞþ � kþ if and only if one of the following three conditions is satisfied:
� The prime number pk is odd, and, moreover, the finite extension

k=kðd¼1Þ is unramified.
� The field k is isomorphic to the field Q2.
� The field k is isomorphic to the field Q3ðz3Þ.

(iii) We shall define a nonnegative integer

nk

as follows:
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� If either pk b 5 or k is not isomorphic to Qpk
ðzpak

k
Þ, then

nk ¼
def

minfnb 0 j ek � ek a pn
kg:

� If pk a 3, and k is isomorphic to Qpk
ðzpak

k
Þ, then

nk ¼def minfnb 0 j ek � ek a pnþ1
k g ¼ minfnb 1 j ek � ek a pn

kg � 1:

Then the nonnegative integer nk is the smallest integer such that

pnk
k �Ik � ðOkÞþ � Ik:

The various results of § 1 may be regarded as ‘‘preparatory portions’’ for

the establishment of mono-anabelian reconstruction algorithms of § 2.

In § 2, we establish mono-anabelian reconstruction algorithms for construct-

ing, from a group G of MLF-type,
� a homomorphism of modules

ordnðGÞ : k�ðGÞ ! Zþ

[cf. Definition 2:2] which ‘‘corresponds’’ [cf. Proposition 2:3] to the pk-adic

valuation ordk : knf0g ! Z and
� a map of sets

ordoðGÞ : kþðGÞnf0g ! Z

[cf. Definition 2:6, (ii)] which ‘‘corresponds’’ [cf. Proposition 2:7, (ii)] to a

certain map ord
½I�
k : knf0g ! Z of sets [cf. Definition 1:9, (ii)] that satisfies the

following condition [cf. Proposition 1:10, (ii)]: For each a A knf0g, it holds

that

ordkðaÞa ord
½I�
k ðaÞ < ordkðaÞ þ ek � ðnk þ 1Þ

[cf. Theorem A, (iii)], i.e., a sort of ‘‘pk-adic valuation with an indeterminacy’’

[cf. Remark 1:10:1; also Remark 2:11:1].

Moreover, we also establish mono-anabelian reconstruction algorithms for

constructing, from a group G of MLF-type such that eðGÞ � eðGÞ ¼ f ðGÞ þ aðGÞ
[cf. also Remark 2:11:2], topological submodules

mnðGÞ � OþðGÞ � kþðGÞ

[cf. Definition 2:9, (i), (ii)]—where n is a nonnegative integer—of kþðGÞ
which ‘‘correspond’’ [cf. Proposition 2:10] to the topological submodules

mn
k � ðOkÞþ � kþ of kþ, respectively.

In § 3, we consider open homomorphisms between profinite groups of

MLF-type. One main application of the results of § 3 is as follows [cf.

Theorem 3:6, Corollary 3:7].
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Theorem B. For each k A f�; �g, let Gk be a profinite group of MLF-

type. Let

a : G� ! G�

be an open homomorphism. Then the following hold:

(i) Suppose that dðG�Þa dðG�Þ [which is the case if, for instance,

dðG�Þ ¼ 1]. Then a is an isomorphism.

(ii) Suppose that eðG�Þa eðG�Þ [which is the case if, for instance,

eðG�Þ ¼ 1]. Then a is injective.

Theorem B leads us to the following bi-anabelian [cf., e.g., [8], Introduc-

tion; [8], Remark 1.9.8; [3], Introduction] result [cf. Corollary 3:8].

Theorem C. For each k A f�; �g, let kk be an MLF and kk an algebraic

closure of kk; write Gk ¼def Galðkk=kkÞ. Suppose that ek� ¼ 1. Then it holds

that the field k� is isomorphic to the field k� if and only if there exists a surjection

G� !! G�.

In § 4, we discuss some mono-anabelian reconstruction algorithms related

to absolutely abelian MLF’s. We shall say that an MLF k is absolutely abelian

if the finite extension k=k ðd¼1Þ is Galois, and the Galois group is abelian [cf.

Definition 4:2, (ii)]. In § 4, we establish, for instance, a mono-anabelian recon-

struction algorithm for constructing, from a group G of MLF-type, a homomor-

phism of topological modules

NmabsðGÞ

[cf. Definition 4:7, (iii)] which ‘‘corresponds’’ [cf. Proposition 4:9, (i)] to the

Norm map Nmk=k ðd¼1Þ : k
� ! ðk ðd¼1ÞÞ� with respect to the finite extension

k=kðd¼1Þ. This homomorphism NmabsðGÞ allows one to define the notion of

MLF-Galois label of G, i.e., the triple consisting of the prime number pðGÞ, the
positive integer dðGÞ, and the image of the homomorphism NmabsðGÞ [cf.

Definition 4:10]. By applying the main theorems of [4] and [13], we obtain the

following result [cf. Theorem 4:11].

Theorem D. For each k A f�; �g, let Gk be a group of MLF-type.

Suppose that fðpðG�Þ; aðG�ÞÞ; ðpðG�Þ; aðG�ÞÞg 6� fð2; 1Þg. Then it holds that

the group G� is isomorphic to the group G� if and only if the MLF-Galois

label of G� coincides with the MLF-Galois label of G�.

Moreover, in § 4, we also obtain the following bi-anabelian result [cf.

Corollary 4:14].

Theorem E. For each k A f�; �g, let kk be an MLF and kk an algebraic

closure of kk; write Gk ¼
def

Galðkk=kkÞ. Suppose that there exists a surjection
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G� !! G� [which thus implies that pk� ¼ pk�—cf. Proposition 3:4, (iii)] compatible

with the respective pk� -adic, i.e., pk� -adic, cyclotomic characters [which is the case

if, for instance, the surjection G� !! G� is an isomorphism—cf. [3], Proposition

4:2, (iv)]. Then the following hold:

(i) The [uniquely determined ] maximal absolutely abelian MLF contained

in k� is isomorphic to the [uniquely determined ] maximal absolutely abelian MLF

contained in k�.

(ii) Suppose that k� is absolutely abelian. Then the field k� is isomorphic

to the field k�.

Here, observe that Theorem E, (i), may be regarded as a refinement of the

main theorem of [6] [cf. Remark 4:14:1].

In § 5, we discuss some mono-anabelian reconstruction algorithms related to

MLF’s of degree one, i.e., such that the integer ‘‘dð�Þ’’ is equal to one. For

instance, we establish a mono-anabelian reconstruction algorithm for construct-

ing, from a group G of MLF-type such that dðGÞ ¼ 1 [cf. Remark 5:10:1], a

structure of topological field on k�ðGÞ [cf. Definition 5:2] which ‘‘corresponds’’

[cf. Theorem 5:4, (i)] to the topological field structure of k, i.e., on k�.

In § 6, we discuss Galois-specifiable MLF’s. We shall say that an MLF

k is Galois-specifiable if k is Galois over kðd¼1Þ, and, moreover, the following

condition is satisfied: If L is an MLF such that the absolute Galois group of k

is isomorphic to the absolute Galois group of L, then the field k is isomorphic

to the field L [cf. Definition 6:1]. We prove the following result [cf. Theorem

5:9, (ii); Remark 5:9:1; Theorem 6:3; Remark 6:3:1].

Theorem F. Let k be an MLF. Consider the following five conditions:

(1) The MLF k is absolutely abelian [cf. Definition 4:2, (ii)].

(2) The MLF k is Galois-specifiable [cf. Definition 6:1].

(3) The MLF k is absolutely strictly radical [cf. Definition 5:6, (iii)].

(4) The MLF k is absolutely characteristic [cf. Definition 5:7].

(5) The MLF k is absolutely Galois [cf. Definition 4:2, (i)].

Then the following hold:

(i) The implications

ð3Þw€
ð1Þ ¼) ð2Þ ¼) ð4Þ ¼) ð5Þ

hold.

(ii) Suppose that ðpk; akÞ0 ð2; 1Þ. Then the equivalence

ð1Þ , ð2Þ

holds.
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(iii) There exists an MLF that violates the implication ð4Þ ) ð2Þ (respec-
tively, ð4Þ ) ð3Þ; ð5Þ ) ð4Þ).

Moreover, in the present paper, we observe that the condition for an MLF

to be absolutely abelian and the condition for an MLF to be Galois-specifiable

may be considered to be ‘‘group-theoretic’’ [cf. Remark 4:15:1, (i); Remark

6:13:1], but each of the condition for an MLF to be absolutely strictly radical,

the condition for an MLF to be absolutely characteristic, and the condition

for an MLF to be absolutely Galois should be considered to be ‘‘not group-

theoretic’’ [cf. Remark 4:15:1, (ii); Remark 5:9:2].

Let k be an MLF and k an algebraic closure of k. Write Gk ¼
def

Galðk=kÞ.
Then let us recall that we have a natural injection AutðkÞ ,! OutðGkÞ [cf., e.g.,
[3], Proposition 2.1]. By means of this injection, let us regard AutðkÞ as a

subgroup of OutðGkÞ:

AutðkÞ � OutðGkÞ:

In § 6, we also establish a mono-anabelian reconstruction algorithm for con-

structing, from a group G of MLF-type that satisfies a certain condition [cf.

Definition 6:8, (i)] ‘‘corresponding’’ [cf. Theorem 6:10] to the condition for an

MLF to be Galois-specifiable, a collection

OrbsqgðGÞ

[cf. Definition 6:8, (ii)] of subgroups of OutðGÞ which ‘‘corresponds’’ [cf.

Theorem 6:12, (ii)] to the OutðGkÞ-orbit, i.e., by conjugation, of the subgroup

AutðkÞ � OutðGkÞ.
In § 7 and § 8, we discuss outer automorphisms of the absolute Galois

groups of MLF’s that arise from field automorphisms of the MLF’s. For

instance, we prove the following result [cf. Theorem 7:2, (i); Theorem 7:5;

Corollary 8:7].

Theorem G. Let k be an MLF and k an algebraic closure of k. Write

Gk ¼def Galðk=kÞ. Then the following hold:

(i) Suppose that the MLF k is absolutely characteristic, and that pk is

odd. Then the subgroup

AutðkÞ � OutðGkÞ

is not normally terminal [cf. the discussion entitled ‘‘Groups’’ in § 0].

(ii) Write k ðabÞ � k for the [uniquely determined ] maximal absolutely

abelian MLF contained in k. Suppose that a maximal intermediate field of

k=kðabÞ tamely ramified over k ðabÞ does not coincide with k ðd¼1Þ [which is the case

if, for instance, kðabÞ0 k ðd¼1Þ], and that ðpk; akÞ0 ð2; 1Þ. Let n be a non-
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negative integer such that ½k : k ðabÞ� A pn
kZ and A an abelian pk-group that

satisfies the following two conditions:

(1) It holds that aA ¼ pn
k .

(2) The finite abelian group A is generated by at most ðdk=pn
kÞ � 1

elements.

Then there exists a subgroup of OutðGkÞ isomorphic to A.

(iii) Suppose that pk is odd, and that

k ¼ Qpk
ðzpk ; p

1=pk
k Þ:

Then the subgroup

AutðkÞ � OutðGkÞ

is neither normally terminal nor normal.

One motivation of studying Theorem G is as follows [cf. Remark 7:5:2]:

Let k be an MLF and k an algebraic closure of k. Write Gk ¼def Galðk=kÞ.
Then, as is well-known [cf., e.g., the discussion given at the final portion of

[12], Chapter VII, § 5], in general, the natural injection

AutðkÞ ,! OutðGkÞ

is not surjective. Under this state of a¤airs, one may consider the following

problem:

Problem: Is there a certain ‘‘suitable’’ characterization of the sub-

group AutðkÞ � OutðGkÞ of OutðGkÞ?

[Here, let us observe that

the mono-anabelian reconstruction algorithm of ‘‘OrbsqgðGÞ’’ in the

discussion preceding Theorem G may be regarded as a certain

a‰rmative solution to this problem, i.e., in the case where the MLF

k is Galois-specifiable.]

From the point of view of this problem, let us observe

the [easily verified] finiteness of the group AutðkÞ.

In particular, as one of possible solutions to the above problem, one may

discuss the following question:

ð�finÞ Is the subgroup AutðkÞ of OutðGkÞ the uniquely determined maximal

finite subgroup of OutðGkÞ? Put another way, is every element of OutðGkÞ of
finite order contained in the subgroup AutðkÞ of OutðGkÞ?
Now let us observe that it is immediate that an a‰rmative answer to this

question ð�finÞ implies an a‰rmative answer to the following question ð�charÞ,
hence also an a‰rmative answer to the following question ð�norÞ:
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ð�charÞ Is the subgroup AutðkÞ of OutðGkÞ characteristic?

ð�norÞ Is the subgroup AutðkÞ of OutðGkÞ normal?

Then one may easily find that
� Theorem G, (i), is related to the question ð�norÞ,
� Theorem G, (ii) [cf. also the example in Remark 7:5:1], yields a negative

answer to the question ð�finÞ, and
� Theorem G, (iii), yields a negative answer to the question ð�norÞ, hence

also negative answers to the questions ð�finÞ and ð�charÞ.
This is one motivation of studying Theorem G.

Finally, in Remark 8:7:1, we recall some of the discussions of § 8 from the

point of view of the notion of ‘‘link’’ [cf. [9], § 2.7, (i)].

0. Notations and conventions

Numbers. If a A Q is a rational number, then we shall write bac A Z for

the largest integer such that baca a.

Sets. If S is a finite set, then we shall write aS for the cardinality of

S. If G is a group, and T is a set equipped with an action of G, then we shall

write TG � T for the subset of G-invariants of T .

Monoids. In the present paper, every ‘‘monoid’’ is assumed to be com-

mutative. Let M be a [multiplicative] monoid. We shall write M� �M for

the abelian group of invertible elements of M. We shall write M gp for the

groupification of M [i.e., the abelian group given by the set of equivalence

classes with respect to the relation @ on M �M defined by, for ða1; b1Þ,
ða2; b2Þ A M �M, ða1; b1Þ@ ða2; b2Þ if there exists an element c A M of M such

that ca1b2 ¼ ca2b1]. We shall write M pf for the perfection of M [i.e., the

monoid obtained by forming the inductive limit of the inductive system of

monoids

� � � !M !M ! � � �

given by assigning to each positive integer n a copy of M, which we

denote by In, and to each two positive integers n, m such that n divides

m the homomorphism In ¼M ! Im ¼M given by multiplication by m=n].

We shall write Ml ¼def M [ f�Mg; we regard Ml as a monoid [that contains

M as a submonoid] by setting �M � �M ¼
def �M and a � �M ¼

def �M for every

a A M.

Modules. Let M be a module. If n is a positive integer, then we

shall write M½n� �M for the submodule obtained by forming the kernel of the
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endomorphism of M given by multiplication by n. We shall write Mtor ¼
defS

nb1 M½n� �M for the submodule of torsion elements of M and

M5 ¼def lim �
n

M=ðn �MÞ

—where the projective limit is taken over the positive integers n. [So if M

is finitely generated, then M5 coincides with the profinite completion of M.]

Groups. Let G be a group and H � G a subgroup of G. We shall write

ZGðHÞ � G for the centralizer of H in G [i.e., the subgroup consisting of

g A G such that gh ¼ hg for every h A H] and NGðHÞ � G for the normalizer of

H in G [i.e., the subgroup consisting of g A G such that gH ¼ Hg]. We shall

say that H is normally terminal in G if NGðHÞ ¼ H, or, alternatively,

NGðHÞ � H.

Topological groups. If G is a topological group, then we shall write

G ab for the abelianization of G [i.e., the quotient of G by the closure of

the commutator subgroup of G], G ab-tor ¼def ðG abÞtor � G ab, and G ab=tor for the

quotient of G ab by the closure of G ab-tor � G ab. If H is a profinite group, and

p is a prime number, then we shall write H ðpÞ for the maximal pro-p quotient

of H.

Rings. In the present paper, every ‘‘ring’’ is assumed to be unital, asso-

ciative, and commutative. Let R be a ring. We shall write Rþ for the

underlying additive module of R and R� � R for the multiplicative group

of units of R. If, moreover, R is an integral domain, then we shall write

Rq � R for the multiplicative monoid of nonzero elements of R. [So if

R is an integral domain, then we have a natural inclusion R� � Rq of

monoids.]

Fields. Let K be a field [i.e., an integral domain such that K� ¼ Kq].

We shall write mðKÞ ¼def ðK�Þtor for the group of roots of unity in K and

K� ¼ K� [ f0g for the underlying multiplicative monoid of K . [So we have

a natural isomorphism ðK�Þl!@ K� of monoids that maps �K� to 0.] If,

moreover, K is algebraically closed and of characteristic zero, then we shall

write

LðKÞ ¼def lim �
n

mðKÞ½n� ¼ lim �
n

K�½n�

—where the projective limits are taken over the positive integers n—and refer

to LðKÞ as the cyclotome associated to K . Thus, the cyclotome has a natural

structure of profinite, hence also topological, module and is isomorphic, as an

abstract topological module, to ẐZþ.

332 Yuichiro Hoshi



1. Generalities on log-shells

In the present § 1, let

k

be an MLF—i.e., a [field isomorphic to a] finite extension of Qp, for some

prime number p [cf. [3], Definition 1.1]—and

k

an algebraic closure of k. We shall write
� Ok � k for the ring of integers of k,
� mk � Ok for the maximal ideal of Ok,
� k ¼def Ok=mk for the residue field of Ok,
� O0n

k ¼def 1þmn
k � O�k [where n is a positive integer] for the n-th higher

unit group of Ok,
� O0

k ¼
def

O01
k for the group of principal units of Ok,

� mk for the [uniquely determined] Haar measure on [the locally compact

topological module] kþ normalized so that mkððOkÞþÞ ¼ 1,
� pk ¼

def
charðkÞ for the residue characteristic of k,

� dk ¼
def

dimQpk
ðkþÞ,

� fk ¼
def

dimFpk
ðkþÞ,

� ek ¼
def

aðk�=ðO�k � pZ
k ÞÞ for the absolute ramification index of k,

� logk : O�k ! kþ for the pk-adic logarithm,

� Ik ¼def ð2pkÞ�1 � logkðO�k Þ � kþ for the log-shell of k,
� O

k
� k for the ring of integers of k,

� k for the residue field of O
k
,

� Gk ¼
def

Galðk=kÞ,
� Ik � Gk for the inertia subgroup of Gk,
� Pk � Ik for the wild inertia subgroup of Gk, and
� Frobk A Galðk=kÞ  @ Gk=Ik for the [ak-th power] Frobenius element

[cf. the notational conventions introduced in the discussions following [3],

Definition 1.1, and [3], Lemma 1.3]. We shall write, moreover,
� k ðd¼1Þ � k for the [uniquely determined] minimal MLF contained in k,
� e

½m�
k ¼ bek=ðpk � 1Þc,

� ek ¼def 1 (respectively, ¼def 2) if pk 0 2 (respectively, pk ¼ 2) [cf. [3],

Lemma 1.3, (iii)],
� ak for the largest nonnegative integer such that k contains a pak

k -th root

of unity [i.e. the ‘‘a’’ in [3], Lemma 1.2, (i)],

� a
½d�
k ¼

def
0 (respectively, ¼def 1) if ak ¼ 0 (respectively, ak 0 0),

� I
ðnÞ
k ¼def ð2pkÞ�1 � logkðO0n

k Þ � Ik [where n is a positive integer], and

333Anabelian geometry of mixed-characteristic local fields



� ordk : knf0g ! Z for the [uniquely determined] pk-adic valuation nor-

malized so that ordk is surjective.

Finally, for each positive integer n, let

zn A k

be a primitive n-th root of unity.

In the present § 1, we discuss some generalities on log-shells of MLF’s.

Proposition 1.1. The following hold:

(i) It holds that I
ð1Þ
k ¼ Ik.

(ii) It holds that mkðIkÞ ¼ p
ek �dk�fk�ak
k .

(iii) Let n be an integer such that n > e
½m�
k . Then it holds that I

ðnÞ
k ¼

mn�ek �ek
k .

(iv) If a
½d�
k ¼ 1, then it holds that ð fk; ekÞ ¼ ð1; pak�1

k � ðpk � 1ÞÞ if and only

if k is isomorphic to Qpk
ðzpak

k
Þ.

(v) It holds that pak�1
k � ðpk � 1Þa ek. If, moreover, a

½d�
k ¼ 1, then it holds

that ek A pak�1
k � ðpk � 1Þ � Z.

Proof. Assertion (i) follows from [3], Lemma 1.2, (i), (ii), (v). Assertion

(ii) is the content of [3], Lemma 1.3, (iii). Assertion (iii) follows from [11],

Chapter II, Proposition 5.5. Finally, since ð fQpk
ðz

p
ak
k

Þ; eQpk
ðz

p
ak
k

ÞÞ ¼ ð1; pak�1
k �

ðpk � 1ÞÞ if a
½d�
k ¼ 1 [cf. [11], Chapter II, Proposition 7.13, (i)], assertions (iv),

(v) follow immediately from the [easily verified] fact that k always contains an

MLF isomorphic to Qpk
ðzpak

k
Þ. This completes the proof of Proposition 1:1.

r

Lemma 1.2. Let a A knf0g be an element of knf0g. Then the integer

ordkðaÞ A Z coincides with the uniquely determined integer n such that Frobn
k A

Gk=Ik coincides with the image of a A knf0g by the composite of the injective

homomorphism reck : k
� ,! G ab

k of [3], Lemma 1:7, and the natural surjection

G ab
k !! Gk=Ik [cf. [3], Lemma 1:5, (i)].

Proof. This assertion follows immediately from [3], Lemma 1.7, (1).

r

Lemma 1.3. The following hold:

(i) Suppose that a
½d�
k ¼ 1. Let n be an integer such that 1a na ak. Then

it holds that zp n
k
A O

0e
½m�
k
=p n�1

k

k [cf. Proposition 1:1, (v)] but zp n
k
B O

0ðe ½m�
k
=p n�1

k
Þþ1

k .

(ii) Let n be a positive integer. Then the modules O0n
k =O0nþ1

k , I
ðnÞ
k =I

ðnþ1Þ
k

are annihilated by pk. In particular, these modules have respective natural

structures of Fpk -vector spaces. Moreover, the Fpk -vector space O0n
k =O0nþ1

k is

of dimension fk.
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(iii) Let n be a positive integer. Then the pk-adic logarithm logk : O
�
k !

kþ determines a surjection of Fpk -vector spaces [cf. (ii)]

O0n
k =O0nþ1

k !! I
ðnÞ
k =I

ðnþ1Þ
k :

(iv) In the situation of (iii), if the integer n is of the form ‘‘e
½m�
k =pn�1

k ’’ for

some integer n such that 1a na ak, then the kernel of the surjection of (iii) is

generated by the image of zp n
k
A O

0e
½m�
k
=p n�1

k

k [cf. (i)] [hence also of dimension one

over Fpk ]. If the integer n is not of the form ‘‘e
½m�
k =pn�1

k ’’ for any integer n such

that 1a na ak, then the surjection of (iii) is an isomorphism.

Proof. Assertion (i) follows immediately from Proposition 1:1, (iv),

together with [11], Chapter II, Proposition 7.13, (iv). Assertions (ii), (iii)

follow from [11], Chapter II, Proposition 3.10, together with the definition of

‘‘I
ðnÞ
k ’’. Assertion (iv) follows immediately from assertion (i), together with

[3], Lemma 1.2, (ii), (v). This completes the proof of Lemma 1:3. r

Definition 1.4.

(i) For each positive integer n, we shall write

bkðnÞ ¼def
ek � ek � 1

pn�1
k

$ %
� 2 � ek � ek � 1

pn
k

� �
þ ek � ek � 1

pnþ1
k

$ % !
� fk:

Moreover, we shall write

bkð0Þ ¼def y:

(ii) We shall write

Ik ¼def
Yy
n¼1
ðZþ=pn

kZþÞ
lbkðnÞ�dðn;akÞ

—where we write dði; jÞ ¼def 1 (respectively, ¼def 0) if i ¼ j (respectively, i0 j).

Remark 1.4.1. One verifies easily that the isomorphism class of the

module Ik of Definition 1:4, (ii), depends only on pk, fk, ek, and ak.

Proposition 1.5. The module Ik=ðOkÞþ [cf. [3], Lemma 1:2, (vi)] is

isomorphic, as an abstract module, to the module Ik. In particular, the iso-

morphism class of Ik=ðOkÞþ depends only on pk, fk, ek, and ak [cf. Remark

1:4:1].

Proof. If ðek; ekÞ ¼ ð1; 1Þ, then Proposition 1:5 follows from Proposition

1:1, (ii), (v). Thus, we may assume without loss of generality that ðek; ekÞ0
ð1; 1Þ. If a

½d�
k ¼ 0, then Proposition 1:5 follows immediately from [10], The-
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orem 2 [i.e., in the case where we take the ‘‘ðN; tÞ’’ of [10], Theorem 2, to be

ðek � ek � 1; 0Þ], together with Proposition 1:1, (iii); Lemma 1:3, (iv). If a
½d�
k ¼ 1,

then Proposition 1:5 follows immediately from [10], Theorem 3 [i.e., in the

case where we take the ‘‘N’’ of [10], Theorem 3, to be ek � ek � 1], together

with Proposition 1:1, (iii); Lemma 1:3, (i), (iv). This completes the proof of

Proposition 1:5. r

Remark 1.5.1. One may give an alternative proof of Proposition 1:1, (ii),

by applying Proposition 1:5. Indeed, it follows from conditions (1) and (2) of

[3], Lemma 1.3, (i), that mkðIkÞ ¼aðIk=ðOkÞþÞ. On the other hand, it follows

from Proposition 1:5 that

logpk ðaðIk=ðOkÞþÞÞ ¼ logpk ðaIkÞ ¼
Xy
n¼1
ðn � ðbkðnÞ � dðn; akÞÞÞ

¼ ek � ek � 1

p0k

$ %
� fk � ak ¼ ek � dk � fk � ak:

Thus, Proposition 1:1, (ii), holds.

Lemma 1.6. The following hold:

(i) The Fpk -vector space ðIk=ðOkÞþÞnZ Fpk is of dimension

ek � dk � fk � a
½d�
k �

ek � ek � 1

pk

� �
� fk:

(ii) If pk ¼ 2, then the Fpk -vector space ðIk=ðOkÞþÞnZ Fpk is of dimension

dk � 1.

(iii) The Fpk -vector space ðIk=ðOkÞþÞnZ Fpk is of dimension < dk.

Proof. First, we verify assertion (i). It follows from Proposition 1:5,

together with the definition of Ik, that the dimension under consideration is

given by

Xy
n¼1
ðbkðnÞ � dðn; akÞÞ ¼

ek � ek � 1

p0k

$ %
� ek � ek � 1

p1k

� � !
� fk � a

½d�
k

¼ ek � dk � fk � a
½d�
k �

ek � ek � 1

pk

� �
� fk:

This completes the proof of assertion (i). Assertion (ii) follows from assertion

(i), together with the [easily verified] fact that if pk ¼ 2, then ðek; a½d�k Þ ¼ ð2; 1Þ.
Finally, we verify assertion (iii). If pk is odd, then since ek ¼ 1, fk b 1,

ek b 1, and a
½d�
k b 0, assertion (iii) follows from assertion (i). If pk ¼ 2, then
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assertion (iii) follows from assertion (ii). This completes the proof of assertion

(iii), hence also of Lemma 1:6. r

Corollary 1.7. It holds that

ðOkÞþ 6�
1

2
� logkðO�k Þ:

Proof. Since Ik is given by ð2pkÞ�1 � logkðO�k Þ, it follows immediately

from [3], Lemma 1.2, (vi), that it holds that ðOkÞþ is contained in 2�1 � logkðO�k Þ
if and only if dimFpk

ððIk=ðOkÞþÞnZ Fpk Þ is equal to dimFpk
ðIk nZ Fpk Þ, i.e.,

dk. Thus, Corollary 1:7 follows from Lemma 1:6, (iii). This completes the

proof of Corollary 1:7. r

Lemma 1.8. The following hold:

(i) The following four conditions are equivalent:

(1) The submodule Ik � kþ coincides with the submodule ðOkÞþ � kþ.

(2) There exists aðnÞ [necessarily nonpositive—cf. [3], Lemma 1:2,

(vi)] integer n such that the submodule Ik � kþ coincides with the submodule

pn
k � ðOkÞþ � kþ.

(3) It holds that ek � dk ¼ fk þ ak.

(4) One of the following three conditions is satisfied:

(a) It holds that ðek; ekÞ ¼ ð1; 1Þ [i.e., that the prime number pk is

odd, and, moreover, ek ¼ 1].

(b) It holds that ðpk; fk; ekÞ ¼ ð2; 1; 1Þ [i.e., that k is isomorphic

to Q2].

(c) It holds that ðpk; fk; ek; akÞ ¼ ð3; 1; 2; 1Þ [i.e., that k is iso-

morphic to Q3ðz3Þ—cf. Proposition 1:1, (iv)].

(ii) Suppose that either (a) or (b) in (i) is satisfied. Then, for each non-

negative integer n, it holds that pn
k �Ik ¼ mn

k.

(iii) Suppose that (c) in (i) is satisfied. Then, for each nonnegative integer

n, it holds that pn
k �Ik ¼ m2n

k , pn�1
k �m3

k ¼ m2nþ1
k .

(iv) Suppose that (c) in (i) is satisfied. Write K ¼def kðz9Þ � k. Then the

image of the composite

O0
K ,! O�K ���!NmK=k

O�k ���!logk
kþ

—where we write NmK=k for the Norm map with respect to the finite extension

K=k—coincides with m3
k � kþ.

Proof. First, we verify assertion (i). The implication (1)) (2) is imme-

diate. Moreover, the equivalence (1), (3) follows from Proposition 1:1,

(ii), and [3], Lemma 1.2, (vi). One also verifies immediately the implication

(4)) (3) by straightforward calculations [cf. also Proposition 1:1, (v)].
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Next, we verify the implication (2)) (1). Suppose that condition (2) is

satisfied. Then since ðOkÞþ is a free Zpk -module of rank dk, we conclude that

the module Ik=ðOkÞþ is a free Z=p�nk Z-module of rank dk. In particular, if

n0 0, then the Fpk -vector space ðIk=ðOkÞþÞnZ Fpk is of dimension dk. Thus,

it follows from Lemma 1:6, (iii), that n ¼ 0, as desired. This completes the

proof of the implication (2)) (1).

Finally, we verify the implication (3)) (4). Suppose that condition (3) is

satisfied. Then since pak�1
k � ðpk � 1Þa ek [cf. Proposition 1:1, (v)], we obtain

that

ek � fk � pak�1
k � ðpk � 1Þa ek � dk ¼ fk þ ak:

Now suppose that pk is odd, i.e., b 3. Then we obtain that

ð3ak�1 � ðpk � 1Þ � 1Þ � fk a ak:

Thus, one verifies easily that either ðpk; fk; akÞ ¼ ð3; 1; 1Þ or ak ¼ 0. Now

observe that it follows from condition (3) that ðpk; fk; akÞ ¼ ð3; 1; 1Þ (respec-

tively, ak ¼ 0) implies that ðpk; fk; ek; akÞ ¼ ð3; 1; 2; 1Þ (respectively, ek ¼ 1), as

desired. This completes the proof of the implication (3)) (4) in the case

where pk is odd.

Next, suppose that pk ¼ 2. Then, by the above inequality ek � fk � pak�1
k �

ðpk � 1Þa fk þ ak, we obtain that

ð2ak � 1Þ � fk a ak;

which thus implies that ak ¼ 1. In particular, it follows from condition (3)

that 2dk ¼ fk þ 1, i.e., fk � ð2ek � 1Þ ¼ 1. Thus, we conclude that ð fk; ekÞ ¼
ð1; 1Þ, as desired. This completes the proof of the implication (3)) (4), hence

also of assertion (i).

Assertions (ii), (iii) follow from the implication (4)) (1) of assertion (i).

Finally, we verify assertion (iv). Let us first observe that one verifies easily

that the integer ‘‘t’’ discussed in [14], Chapter V, § 3, for the finite Galois

extension K=k [that is totally ramified and of degree 3] is equal to 2. More-

over, it follows from Proposition 1:1, (iv), that fK ¼ 1.

Now since ‘‘t’’ is equal to 2, it follows from the second equality of [14],

Chapter V, § 3, Corollary 3, that NmK=kðO0
K Þ contains O03

k , which thus implies

[cf. [11], Chapter II, Proposition 5.5] that

m3
k � logkðNmK=kðO0

K ÞÞ:

Next, observe that since fK ¼ 1, one verifies immediately from Lemma 1:3, (i),

(ii), that O0
K is generated by O02

K � O0
K and z9 A O0

K . Thus, it follows from [3],
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Lemma 1.2, (v), that

logkðNmK=kðO0
K ÞÞ ¼ logkðNmK=kðO02

K ÞÞ:

Next, observe that since ‘‘t’’ is equal to 2, and fK ¼ 1, it follows immediately

from [14], Chapter V, § 3, Proposition 5, (iii), together with Lemma 1:3, (ii),

that NmK=kðO02
K Þ is contained in O03

k , which thus implies [cf. [11], Chapter II,

Proposition 5.5] that

logkðNmK=kðO02
K ÞÞ � m3

k :

Thus, we conclude that m3
k ¼ logkðNmK=kðO0

K ÞÞ, as desired. This completes

the proof of assertion (iv), hence also of Lemma 1:8. r

Definition 1.9.

(i) We shall write

nk

for the nonnegative integer defined as follows [cf. also Remark 1:9:1 below]:

(1) Suppose that either ðek; ekÞ ¼ ð1; 1Þ or ðpk; fk; ek; akÞ A fð2; 1; 1; 1Þ;
ð3; 1; 2; 1Þg. Then

nk ¼
def

0:

(2) Suppose that the condition in (1) is not satisfied [which thus

implies that ek � ek � 10 0], and that either pk b 5 or kZQpk
ðzpak

k
Þ. Then

nk ¼
def

max nb 0
ek � ek � 1

pn�1
k

$ %
0 0

�����
( )

:

(3) Suppose that the condition in (1) is not satisfied [which thus

implies that ek � ek � 10 0], that pk a 3, and that kGQpk
ðzpak

k
Þ [which thus

implies that a
½d�
k ¼ 1]. Then

nk ¼
def

ak � 1;

or, alternatively [cf. the proof of Proposition 1:10, (i), below],

nk ¼
def

max nb 0
ek � ek � 1

pn�1
k

$ %
0 0

�����
( )

� 1:

(ii) We shall write

ord
½I�
k : knf0g ! Z

for the map of sets defined by

ord
½I�
k ðaÞ ¼

def �ek �minfn A Z j pn
k � a A Ikg þ ek � 1:
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Remark 1.9.1. One verifies easily that the nonnegative integer nk of

Definition 1:9, (i), may be defined as follows:

(a) If either pk b 5 or k is not isomorphic to Qpk
ðzpak

k
Þ, then

nk ¼
def

minfnb 0 j ek � ek a pn
kg:

(b) If pk a 3, and k is isomorphic to Qpk
ðzpak

k
Þ, then

nk ¼
def

minfnb 0 j ek � ek a pnþ1
k g ¼ minfnb 1 j ek � ek a pn

kg � 1:

Proposition 1.10. The following hold:

(i) The nonnegative integer nk is the smallest integer such that

pnk
k �Ik � ðOkÞþ � Ik:

(ii) For each a A knf0g, it holds that

ordkðaÞa ord
½I�
k ðaÞ < ordkðaÞ þ ek � ðnk þ 1Þ:

Proof. First, we verify assertion (i). Assertion (i) in the case where the

condition in (1) of Definition 1:9, (i), is satisfied follows from the implication

(4)) (1) of Lemma 1:8, (i). Thus, we may assume without loss of generality

that the condition in (1) of Definition 1:9, (i), is not satisfied. [In particular, it

holds that ek � ek � 10 0.]

Write

nI

for the smallest integer such that pnI
k �Ik � ðOkÞþ � Ik and

nb ¼
def

maxfnb 0 j bkðnÞ0 0g:

Then it is immediate from Proposition 1:5 that

nI ¼ maxfnb 0 j bkðnÞ � dðn; akÞ0 0g:

In particular, we obtain the following two assertions:

(a) If bkðnbÞ0 dðnb; akÞ, then it holds that nI ¼ nb.

(b) If bkðnbÞ ¼ dðnb; akÞ [or, alternative, nb ¼ ak b 1 and bkðnbÞ ¼ 1], and

bkðnb � 1Þ0 0, then it holds that nI ¼ nb � 1.

Moreover, let us observe that it follows immediately from the definition of

bkðnÞ that

nb ¼ max nb 0
ek � ek � 1

pn�1
k

$ %
0 0

�����
( )

:

Now we verify assertion (i) in the case where the condition in (2) of

Definition 1:9, (i), is satisfied. Suppose that the condition in (2) of Definition

1:9, (i), is satisfied. Assume, moreover, that bkðnbÞ ¼ dðnb; akÞ [which thus
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implies—cf. the above assertion (b)—that nb ¼ ak b 1 and bkðnbÞ ¼ 1]. Then

one verifies immediately that

nb ¼ ak b 1; fk ¼ 1; pnb�1
k a ek � ek � 1 < 2 � pnb�1

k :

In particular, since pak�1
k � ðpk � 1Þa ek [cf. Proposition 1:1, (v)], we obtain that

ek � pak�1
k � ðpk � 1Þ � 1 < 2 � pak�1

k ;

which thus implies that

ek � ðpk � 1Þ � p1�akk < 2:

Thus, since ak b 1, we obtain that pk a 3.

Next, let us observe that since ak b 1, fk ¼ 1, and pk a 3, it follows

immediately from the condition in (2) of Definition 1:9, (i), together with

Proposition 1:1, (iv), (v), that

2 � pak�1
k � ðpk � 1Þa ek:

In particular, since ek � ek � 1 < 2 � pnb�1
k , we obtain that

2 � ek � pak�1
k � ðpk � 1Þ � 1 < 2 � pak�1

k ;

which thus implies that

2 � ek � ðpk � 1Þ � p1�akk < 2:

Thus, since ak b 1, we obtain a contradiction. In particular, we obtain that

bkðnbÞ0 dðnb; akÞ, which thus implies [cf. the above assertion (a)] assertion (i)

in the case where the condition in (2) of Definition 1:9, (i), is satisfied. This

completes the proof of assertion (i) in the case where the condition in (2) of

Definition 1:9, (i), is satisfied.

Finally, we verify assertion (i) in the case where the condition in (3) of

Definition 1:9, (i), is satisfied. Suppose that the condition in (3) of Defini-

tion 1:9, (i), is satisfied. Then since k is isomorphic to Qpk
ðzpak

k
Þ, and a

½d�
k ¼ 1,

it follows from Proposition 1:1, (iv), that ek ¼ pak�1
k � ðpk � 1Þ. In particular,

since pk a 3, we obtain that

ek � ek � 1

pak
k

� �
¼ ek � pak�1

k � ðpk � 1Þ � 1

pak
k

$ %
¼ ek �

ek

pk
� 1

pak
k

� �
¼ 0;

ek � ek � 1

pak�1
k

$ %
¼ ek � pak�1

k � ðpk � 1Þ � 1

pak�1
k

$ %
¼ ek � pk � ek �

1

pak�1
k

$ %
¼ 1;

ek � ek � 1

pak�2
k

$ %
¼ ek � pak�1

k � ðpk � 1Þ � 1

pak�2
k

$ %
¼ ek � p2k � ek � pk �

1

pak�2
k

$ %
b 3:
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Thus, since fk ¼ 1 [cf. Proposition 1:1, (iv)], we conclude that

nb ¼ ak b 1; bkðnbÞ ¼ dðnb; akÞ; bkðnb � 1Þ0 0:

In particular, assertion (i) in the case where the condition in (3) of Definition

1:9, (i), is satisfied follows from the above assertion (b). This completes the

proof of assertion (i) in the case where the condition in (3) of Definition 1:9, (i),

is satisfied, hence also of assertion (i).

Next, we verify assertion (ii). Write N ¼def �minfn A Z j pn
k � a A Ikg.

Then it follows from the definition of N that p�Nk � a A Ik but p�N�1k � a B Ik.

Thus, it follows from assertion (i) that pnk�N
k � a A pnk

k �Ik � ðOkÞþ but p�N�1k � a B
ðOkÞþ. In particular, we obtain that ordkðpnk�N

k � aÞb 0 and ordkðp�N�1k � aÞ <
0, which thus implies that

ek � ðN � nkÞa ordkðaÞ < ek � ðN þ 1Þ:

Thus, it follows from the definition of ord
½I�
k ðaÞ that

ord
½I�
k ðaÞ � ek þ 1� ek � nk a ordkðaÞa ord

½I�
k ðaÞ:

This completes the proof of assertion (ii), hence also of Proposition 1:10.

r

Remark 1.10.1. By Proposition 1:10, (ii), one may regard the map

ord
½I�
k : knf0g ! Z of Definition 1:9, (ii), as a sort of ‘‘pk-adic valuation

with an indeterminacy’’.

2. Reconstruction algorithms related to valuations

In the present § 2, we maintain the notational conventions introduced at

the beginning of the preceding § 1. In particular, we have been given an MLF

k:

Moreover, let

G

be a [profinite—cf. [3], Proposition 3.3, (i)] group of MLF-type [cf. [3],

Definition 3.1]. Thus, by applying the various group-theoretic reconstruction

algorithms [cf. [8], Remark 1.9.8] of [3], § 3, and [3], § 4, to the group G of

MLF-type, we obtain
� a prime number pðGÞ,
� positive integers dðGÞ, f ðGÞ, and eðGÞ,
� subgroups PðGÞ � IðGÞ � G of G,
� an element FrobðGÞ A G=IðGÞ of G=IðGÞ,
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� topological monoids O0ðGÞ � O�ðGÞ � OqðGÞ � k�ðGÞH��!recðGÞ
G ab,

� monoids k�ðGÞ � k�ðGÞ and k�ðGÞ,
� topological modules IðGÞ � kþðGÞ,
� a measure mðGÞ on kþðGÞ,
� G-monoids O�ðGÞ � OqðGÞ � k�ðGÞ � k�ðGÞ and k�ðGÞ � k�ðGÞ,
� a G-module kþðGÞ,
� a G-module mðGÞ, and
� a topological G-module LðGÞ

[cf. [3], Summary 3.15; [3], Summary 4.3].

In the present § 2, we establish group-theoretic reconstruction algorithms for

constructing, from the group G of MLF-type, a homomorphism of modules

ordnðGÞ : k�ðGÞ ! Zþ

which ‘‘corresponds’’ to the pk-adic valuation ordk : knf0g ! Z [cf. Definition

2:2, Proposition 2:3 below] and a map of sets

ordoðGÞ : kþðGÞnf0g ! Z

which ‘‘corresponds’’ to the map ord
½I�
k : knf0g ! Z of sets of Definition 1:9,

(ii) [cf. Definition 2:6, (ii); Proposition 2:7, (ii), below], i.e., a sort of ‘‘pk-adic

valuation with an indeterminacy’’ [cf. Remark 1:10:1]. Moreover, we also

establish group-theoretic reconstruction algorithms for constructing, from a group

of MLF-type that satisfies an additional condition, topological submodules

“mnð�Þ � Oþð�Þ � kþð�Þ”

—where n is a nonnegative integer—of ‘‘kþð�Þ’’ which ‘‘correspond’’ to the

topological submodules mn
k � ðOkÞþ � kþ of kþ, respectively [cf. Definition 2:9,

(i), (ii); Proposition 2:10 below].

Lemma 2.1. The module k�ðGÞ=O�ðGÞ is torsion-free and generated by

FrobðGÞ A k�ðGÞ=O�ðGÞ ð� G=IðGÞÞ.

Proof. This assertion follows—in light of [3], Proposition 3.6; [3], Prop-

osition 3.9; [3], Proposition 3.11, (i)—from [3], Lemma 1.5, (i), and [3], Lemma

1.7, (1). r

Definition 2.2. We shall write

ordnðGÞ : k�ðGÞ ! Z

for the map defined as follows [cf. [2], Theorem 1.4, (7)]: For each a A k�ðGÞ,
write ordnðGÞðaÞ A Z for the uniquely determined [cf. Lemma 2:1] integer n

such that the image of a A k�ðGÞ in k�ðGÞ=O�ðGÞ coincides with FrobðGÞn A
k�ðGÞ=O�ðGÞ.
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One verifies immediately that this map is, in fact, a homomorphism

k�ðGÞ ! Zþ of modules.

Proposition 2.3. The vertical isomorphism k� !@ k�ðGkÞ in the diagram

of [3], Proposition 3:11, (i), fits into a commutative diagram of modules

k� Zþ

o

???y
����

k�ðGkÞ �����!ordnðGkÞ Zþ:

������!ordk

Proof. This assertion follows—in light of [3], Proposition 3.6; [3],

Proposition 3.9; [3], Proposition 3.11, (i)—from Lemma 1:2. r

Remark 2.3.1. Let us observe that one verifies immediately from Prop-

osition 2:3 that
� the open subsets of the topological module k�ðGÞ ð� k�ðGÞÞ and,
� for each positive integer n, the subsets of k�ðGÞ

fa A k�ðGÞ j ordnðGÞðaÞb ng [ f�k�ðGÞg � k�ðGÞ

generate a topology on the underlying set of the monoid k�ðGÞ by means of

which one may regard k�ðGÞ as a topological monoid. Moreover, one also

verifies immediately from Proposition 2:3 that the isomorphism k� !@ k�ðGkÞ of
[3], Proposition 3.11, (ii), is an isomorphism of topological monoids.

Definition 2.4.

(i) We shall write

eðGÞ ¼def 1 if pðGÞ0 2

2 if pðGÞ ¼ 2

�

[cf. [3], Definition 3.13].

(ii) We shall write

aðGÞ ¼def logpðGÞðaððk�ðGÞtorÞ
ðpðGÞÞÞÞ

[cf. [3], Lemma 1.2, (i); [3], Proposition 3.11, (i)].

(iii) Let n be a positive integer. Then we shall write

bðG; nÞ ¼def
 

eðGÞ � eðGÞ � 1

pðGÞn�1

$ %
� 2 � eðGÞ � eðGÞ � 1

pðGÞn
� �

þ eðGÞ � eðGÞ � 1

pðGÞnþ1

$ %!
� f ðGÞ:

344 Yuichiro Hoshi



(iv) We shall write

IðGÞ ¼def
Yy
n¼1
ðZþ=pðGÞnZþÞlbðG; nÞ�dðn;aðGÞÞ

—where we write dði; jÞ ¼def 1 (respectively, ¼def 0) if i ¼ j (respectively, i0 j).

Proposition 2.5. The following hold:

(i) It holds that

ek ¼ eðGkÞ; ak ¼ aðGkÞ:

(ii) The module Ik=ðOkÞþ is isomorphic, as an abstract module, to the

module IðGkÞ.

Proof. Assertion (i) follows from [3], Proposition 3.6, and [3], Propo-

sition 3.11, (i). Assertion (ii) follows—in light of assertion (i); [3], Proposi-

tion 3.6—from Proposition 1:5. This completes the proof of Proposition 2:5.

r

Definition 2.6.

(i) We shall write

nðGÞ

for the nonnegative integer defined as follows:

(1) If either pðGÞb 5 or ð f ðGÞ; eðGÞÞ0 ð1; pðGÞaðGÞ�1 � ðpðGÞ � 1ÞÞ,
then

nðGÞ ¼def minfnb 0 j eðGÞ � eðGÞa pðGÞng:

(2) If pðGÞa 3 and ð f ðGÞ; eðGÞÞ ¼ ð1; pðGÞaðGÞ�1 � ðpðGÞ � 1ÞÞ, then

nðGÞ ¼def minfnb 0 j eðGÞ � eðGÞa pðGÞnþ1g:

(ii) We shall write

ordoðGÞ : kþðGÞnf0g ! Z

for the map of sets defined by

ordoðGÞðaÞ ¼def �eðGÞ �minfn A Z j pðGÞn � a A IðGÞg þ eðGÞ � 1:

Proposition 2.7. The following hold:

(i) It holds that

nk ¼ nðGkÞ:
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(ii) The vertical isomorphism kþ !@ kþðGkÞ in the diagram of [3], Proposi-

tion 3:11, (iv), fits into a commutative diagram of sets

kþnf0g Z

o

???y
����

kþðGkÞnf0g �����!ordoðGkÞ Z:

������!ord
½I�
k

(iii) For each a A knf0g, it holds that

ordkðaÞa ordoðGkÞðaÞ < ordkðaÞ þ eðGkÞ � ðnðGkÞ þ 1Þ:

Proof. Assertion (i) follows from Proposition 2:5, (i), and [3], Proposition

3.6, together with Proposition 1:1, (iv) [cf. also Remark 1:9:1]. Assertion (ii)

follows from [3], Proposition 3.6, and [3], Proposition 3.11, (iv). Assertion (iii)

follows—in light of assertions (i), (ii); [3], Proposition 3.6—from Proposition

1:10, (ii). This completes the proof of Proposition 2:7. r

Lemma 2.8. The following two conditions are equivalent:

(1) It holds that eðGÞ � dðGÞ ¼ f ðGÞ þ aðGÞ.
(2) One of the following three conditions is satisfied:

(a) It holds that ðeðGÞ; eðGÞÞ ¼ ð1; 1Þ.
(b) It holds that ðpðGÞ; f ðGÞ; eðGÞÞ ¼ ð2; 1; 1Þ.
(c) It holds that ðpðGÞ; f ðGÞ; eðGÞ; aðGÞÞ ¼ ð3; 1; 2; 1Þ.

Proof. This assertion follows—in light of Proposition 2:5, (i); [3], Prop-

osition 3.6—from the equivalence ð3Þ , ð4Þ of Lemma 1:8, (i). r

Definition 2.9. Suppose that eðGÞ � dðGÞ ¼ f ðGÞ þ aðGÞ.
(i) We shall write

OþðGÞ ¼
def

IðGÞ � kþðGÞ:

(ii) Let n be a nonnegative integer. Then we shall define a topological

submodule

mnðGÞ � OþðGÞ

of OþðGÞ as follows:

(1) Suppose that either ðeðGÞ; eðGÞÞ ¼ ð1; 1Þ or ðpðGÞ; f ðGÞ; eðGÞÞ ¼
ð2; 1; 1Þ [cf. Lemma 2:8]. Then we shall write

mnðGÞ ¼def pðGÞn � OþðGÞ � OþðGÞ:
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(2) Suppose that ðpðGÞ; f ðGÞ; eðGÞ; aðGÞÞ ¼ ð3; 1; 2; 1Þ [cf. Lemma

2:8]. If n is even, then we shall write

mnðGÞ ¼def pðGÞn=2 � OþðGÞ:

If n is odd, then we shall write

mnðGÞ ¼def pðGÞðn�3Þ=2 � ImðO0ðHÞ ,! O�ðHÞ ! O�ðGÞ ! kþðGÞÞ

—where we write H � G for the kernel of the natural action of G on mðGÞ½9�
ð� mðGÞÞ; the first arrow ‘‘,!’’ is the natural inclusion; the second arrow ‘‘!’’

is the homomorphism induced by the homomorphism H ab ! G ab determined

by the inclusion H ,! G; the third arrow ‘‘!’’ is the natural homomorphism.

Proposition 2.10. Suppose that ek � ek ¼ fk þ ak, or, alternatively [cf. Prop-

osition 2:5, (i); [3], Proposition 3:6], that eðGkÞ � eðGkÞ ¼ f ðGkÞ þ aðGkÞ. Let

n be a nonnegative integer. Then the vertical isomorphism kþ !@ kþðGkÞ in

the diagram of [3], Proposition 3:11, (iv), fits into a commutative diagram of

topological modules

mn
k ðOkÞþ kþ

o

???y o

???y o

???y
mnðGkÞ ���!� OþðGkÞ ���!� kþðGkÞ

������!� �����!�

—where the horizontal arrows are the natural inclusions, and the vertical arrows

are isomorphisms.

Proof. This assertion follows—in light of Proposition 2:5, (i); [3], Lemma

1.7, (2); [3], Proposition 3.6; [3], Proposition 3.11, (i), (iv)—from Lemma 1:8,

(i), (ii), (iii), (iv). r

Some of the group-theoretic reconstruction algorithms discussed in the

present § 2 may be summarized as follows.

Summary 2.11.

(i) There exist group-theoretic reconstruction algorithms [cf. [8], Remark

1:9:8] for constructing, from a group G of MLF-type,
� nonnegative integers eðGÞ, aðGÞ, and nðGÞ [cf. Definition 2:4, (i), (ii);

Definition 2:6, (i)],
� a module IðGÞ [cf. Definition 2:4, (iv)],
� a homomorphism ordnðGÞ : k�ðGÞ ! Zþ of modules [cf. Definition

2:2], and
� a map ordoðGÞ : kþðGÞnf0g ! Z of sets [cf. Definition 2:6, (ii)]

which ‘‘correspond’’ to
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� the nonnegative integers ek, ak, and nk [cf. Proposition 2:5, (i);

Proposition 2:7, (i)],
� the quotient of Ik by ðOkÞþ [cf. Proposition 2:5, (ii)],
� the pk-adic valuation ordk : knf0g ! Z [cf. Proposition 2:3],

and
� the ‘‘pk-adic valuation with an indeterminacy’’ [cf. Remark 1:10:1]

ord
½I�
k : knf0g ! Z [cf. Proposition 2:7, (ii)],

respectively.

(ii) There exist group-theoretic reconstruction algorithms for constructing,

from a group G of MLF-type such that eðGÞ � dðGÞ ¼ f ðGÞ þ aðGÞ,
� a topological submodule OþðGÞ � kþðGÞ of kþðGÞ [cf. Definition

2:9, (i)] and,
� for each nonnegative integer n, a topological submodule mnðGÞ �

OþðGÞ of OþðGÞ [cf. Definition 2:9, (ii)]

which ‘‘correspond’’ to
� the topological submodule ðOkÞþ � kþ of kþ [cf. Proposition 2:10]

and,
� for each nonnegative integer n, the topological submodule

mn
k � ðOkÞþ of ðOkÞþ [cf. Proposition 2:10],

respectively.

Remark 2.11.1. Let us recall that, as asserted in Summary 2:11, (i),

we have established [cf. Definition 2:6, (ii)] a group-theoretic reconstruction

algorithm for constructing, from a group G of MLF-type, a map ordoðGÞ :
kþðGÞnf0g ! Z of sets which ‘‘corresponds’’ to the ‘‘pk-adic valuation with an

indeterminacy’’ ord
½I�
k : knf0g ! Z [cf. Remark 1:10:1].

Here, let us also recall that, as discussed in [3], Remark 4.3.1, (i) [cf. also

[3], Remark 4.3.2], it is impossible to establish a group-theoretic reconstruction

algorithm for constructing, from a group G of MLF-type, a topology on the

module kþðGÞ which ‘‘corresponds’’ to the pk-adic topology on the module

kþ. In particular, it is impossible to establish a group-theoretic reconstruction

algorithm for constructing, from an arbitrary group G of MLF-type, a map

kþðGÞnf0g ! Z of sets which ‘‘corresponds’’ to the pk-adic valuation knf0g !
Z [i.e., without any indeterminacy].

Remark 2.11.2. Let us recall that, as asserted in Summary 2:11, (ii), we

have established [cf. Definition 2:9, (i)] a group-theoretic reconstruction algo-

rithm for constructing, from a group G of MLF-type such that eðGÞ � dðGÞ ¼
f ðGÞ þ aðGÞ, a topological submodule OþðGÞ � kþðGÞ of kþðGÞ which ‘‘cor-

responds’’ to the topological submodule ðOkÞþ � kþ of kþ.

Here, let us also recall that, as discussed in [3], Remark 4.3.1, (iii) [cf. also

[2], Remark 1.4.3], it is impossible to establish a group-theoretic reconstruction
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algorithm for constructing, from an arbitrary group G of MLF-type, such a

topological submodule of kþðGÞ.

Remark 2.11.3. Let us recall that, as asserted in Summary 2:11, (i), and

[3], Summary 3.15, we have established [cf. Definition 2:4, (iv); [3], Definition

3.10, (vi)] group-theoretic reconstruction algorithms for constructing, from a

group G of MLF-type, modules IðGÞ and IðGÞ which ‘‘correspond’’ to the log-

shell Ik and the quotient Ik=ðOkÞþ, respectively.

Here, let us also recall that, as discussed in [3], Remark 4.3.1, (iii) [cf.

also [2], Remark 1.4.3], it is impossible to establish a group-theoretic recon-

struction algorithm for constructing, from an arbitrary group G of MLF-type,

a surjection IðGÞ !! IðGÞ which ‘‘corresponds’’ to the natural surjection Ik !!
Ik=ðOkÞþ.

3. Open homomorphisms between profinite groups of MLF-type

In the present § 3, we maintain the notational conventions introduced at

the beginnings of § 1 and § 2. In particular, we have been given a group of

MLF-type

G:

In the present § 3, we consider open homomorphisms between profinite groups

of MLF-type. As a consequence of the results in the present § 3, we prove that

every open homomorphism between profinite groups of MLF-type such that the

positive integer ‘‘eð�Þ’’ [cf. the notational conventions introduced at the begin-

ning of the preceding § 2] of the domain is equal to the positive integer ‘‘eð�Þ’’
of the codomain is injective [cf. Corollary 3:7 below].

Lemma 3.1. The following hold:

(i) The topological module ðG ðpðGÞÞÞab=tor is a free ZpðGÞ-module of rank

dðGÞ þ 1. Moreover, the kernel of the natural homomorphism ðGðpðGÞÞÞab !!
ðGðpðGÞÞÞab=tor is cyclic.

(ii) The closed subgroup IðGÞ=PðGÞ � G=PðGÞ of G=PðGÞ coincides with

the kernel of the natural surjection G=PðGÞ !! ðG=PðGÞÞab=tor.
(iii) It holds that

f ðGÞ ¼ logpðGÞð1þaððG=PðGÞÞab-torÞÞ:

Proof. Assertion (i) follows immediately—in light of [3], Proposition 3.6;

the isomorphism in the final display of [3], Lemma 1.7, (1)—from [3], Lemma

1.2, (i). Assertions (ii), (iii) follow immediately—in light of [3], Proposition

3.6; [3], Proposition 3.9—from [3], Lemma 1.5, (i), (ii), (iii). This completes

the proof of Lemma 3:1. r
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Definition 3.2. Let J be a profinite group. Then we shall say that a

closed subgroup N � J of J is quasi-normal [i.e., in J] if N is normal in an

open subgroup of J that contains N.

Remark 3.2.1. Let J be a profinite group and N � J a quasi-normal

closed subgroup of J. Then one verifies easily that, for each closed subgroup

J1 � J of J, the closed subgroup N \ J1 � J1 of J1 is quasi-normal.

Lemma 3.3. Let J � G be a nontrivial closed subgroup of G. Then the

following hold:

(i) Suppose that J is quasi-normal in G. Then one of the following three

conditions is satisfied [cf. also Remark 3:3:1 below]:

(1) The image of J in GðpðGÞÞ is open.

(2) The maximal pro-pðGÞ quotient J ðpðGÞÞ is not topologically finitely

generated.

(3) There is no nontrivial pro-pðGÞ quotient of J.

(ii) Suppose that J is quasi-normal in G. Then there exists an open sub-

group of J that has a nontrivial pro-pðGÞ quotient.

(iii) Suppose that the maximal pro-pðGÞ quotient J ðpðGÞÞ is not pro-

cyclic. Then there exists an open subgroup H � G of G such that J � H,

and, moreover, the image of J in ðH ðpðGÞÞÞab=tor is nontrivial [hence also

infinite].

(iv) Suppose that J is quasi-normal in G. Then the following two condi-

tions are equivalent:

(a) There is a nontrivial pro-pðGÞ quotient of J.

(b) There exists an open subgroup H � G of G such that J � H,

and, moreover, the image of J in ðH ðpðGÞÞÞab=tor is nontrivial [hence also

infinite].

Proof. First, we verify assertion (i). Let us first observe that, to verify

assertion (i), it su‰ces to verify that if J satisfies neither condition (1) nor

condition (3), then J satisfies condition (2). Suppose that J satisfies neither

condition (1) nor condition (3).

To verify that J satisfies condition (2), let us observe that since J does

not satisfy condition (3), there exists a normal open subgroup N � G of G such

that J=ðJ \NÞ has a quotient that is a nontrivial pðGÞ-group. Thus, by con-

sidering the composite J ,! J �N !! ðJ �NÞ=N [that determines an isomorphism

J=ðJ \NÞ !@ ðJ �NÞ=N], we conclude that the image of J in ðJ �NÞðpðGÞÞ is

nontrivial. Next, since J does not satisfy condition (1), the image of J in

ðJ �NÞðpðGÞÞ is not open. Thus, it follows immediately—in light of [3], Prop-

osition 3.6—from [7], Theorem 1.7, (ii) [cf. also Remark 3:2:1], that the

image of J in ðJ �NÞð pðGÞÞ is not topologically finitely generated, which thus
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implies that J satisfies condition (2), as desired. This completes the proof of

assertion (i).

Assertion (ii) follows immediately—in light of [3], Proposition 3.6—from

[1], Lemma 2.3. Next, we verify assertion (iii). Let us first observe that, by

our assumption, there exists a normal open subgroup N � G of G such that

J=ðJ \NÞ has a quotient that is a noncyclic pðGÞ-group. Write H ¼def J �N �
G. Now let us recall the easily verified fact that, for a given pðGÞ-group,
it holds that the pðGÞ-group is cyclic if and only if the abelianization of the

pðGÞ-group is cyclic. Thus, by considering the composite J ,! H !! H=N

[that determines an isomorphism J=ðJ \NÞ !@ H=N], we conclude immediately

that the image ImðJÞ � ðH ðpðGÞÞÞab of J in ðH ðpðGÞÞÞab is not cyclic. In par-

ticular, it follows immediately from Lemma 3:1, (i), that the image of ImðJÞ �
ðH ðpðGÞÞÞab in ðH ðpðGÞÞÞab=tor is nontrivial. This completes the proof of asser-

tion (iii).

Finally, we verify assertion (iv). The implication (b)) (a) is immediate.

Next, we verify the implication (a)) (b). Suppose that the condition (a) is

satisfied. If condition (1) of assertion (i) is satisfied, then the condition (b) is

immediate. On the other hand, if condition (2) of assertion (i) is satisfied,

then the condition (b) follows from assertion (iii). This completes the proof of

assertion (iv), hence also of Lemma 3:3. r

Remark 3.3.1. Let us give an example that satisfies each of the three

conditions in Lemma 3:3, (i):

(i) One verifies easily that G itself satisfies condition (1) of Lemma 3:3,

(i), i.e., that condition (1) of Lemma 3:3, (i), in the case where we take the ‘‘J’’

to be G is always satisfied.

(ii) Next, let us verify that condition (2) of Lemma 3:3, (i), in the case

where we take the ‘‘J’’ to be the normal closed subgroup PðGÞ � G of G is

always satisfied. Indeed, this follows from [12], Proposition 7.5.1, together

with [3], Proposition 3.6.

(iii) Finally, one verifies easily that condition (3) of Lemma 3:3, (i), in

the case where we take the ‘‘J’’ to be the kernel of the natural surjection

G !! GðpðGÞÞ is always satisfied [cf. also [3], Lemma 1.5, (i)].

Proposition 3.4. For each k A f�; �g, let Gk be a profinite group of

MLF-type. Let

a : G� ! G�

be an open homomorphism. Then the following hold:

(i) The open homomorphism a fits into a commutative diagram of profinite

groups
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PðG�Þ ���!� IðG�Þ ���!� G�???y
???y a

???y
PðG�Þ ���!� IðG�Þ ���!� G�

—where the horizontal arrows are the natural inclusions, and the vertical arrows

are open. If, moreover, a is surjective, then the vertical arrows are surjective.

(ii) In the resulting [cf. (i)] commutative diagram of profinite groups

G� ���! G�=PðG�Þ ���! G�=IðG�Þ???y
???y

???y
G� ���! G�=PðG�Þ ���! G�=IðG�Þ

—where the horizontal arrows are the natural surjections—the middle and right-

hand vertical arrows are open injections. In particular, if, moreover, a is

surjective, then the middle and right-hand vertical arrows are isomorphisms.

(iii) It holds that

pðG�Þ ¼ pðG�Þ; dðG�Þb dðG�Þ; f ðG�Þ A f ðG�ÞZ; eðG�Þb eðG�Þ:

If, moreover, a is surjective, then

f ðG�Þ ¼ f ðG�Þ:

(iv) The right-hand vertical arrow of the diagram of (ii) maps FrobðG�Þ A
G�=IðG�Þ to FrobðG�Þ f ðG�Þ=f ðG�Þ A G�=IðG�Þ [cf. (iii)]. In particular, if, more-

over, a is surjective, then the right-hand vertical arrow of the diagram of (ii) maps

FrobðG�Þ A G�=IðG�Þ to FrobðG�Þ A G�=IðG�Þ [cf. (iii)].

Proof. Let us first observe that it follows immediately from [3], Prop-

osition 3.6, and [3], Proposition 3.9, that, to verify Proposition 3:4, we may

assume without loss of generality, by replacing G� by the image of a [which

is of MLF-type—cf. the discussion following [3], Proposition 3.3], that a is

surjective.

First, we verify assertions (i), (ii). The assertion that a restricts to a

surjection PðG�Þ !! PðG�Þ, as well as the assertion that the resulting homo-

morphism G�=PðG�Þ ! G�=PðG�Þ is an isomorphism, follows immediately—

in light of [3], Proposition 3.6—from [7], Proposition 3.4. In particular, the

assertion that a restricts to a surjection IðG�Þ !! IðG�Þ, as well as the assertion

that the resulting homomorphism G�=IðG�Þ ! G�=IðG�Þ is an isomorphism,

follows immediately from Lemma 3:1, (ii). This completes the proofs of

assertions (i), (ii).

Next, we verify assertion (iii). Let us first observe that the surjection a

induces a surjection G ab=tor
� =ðpðG�Þ � G ab=tor

� Þ !! G ab=tor
� =ðpðG�Þ � G ab=tor

� Þ. Thus,
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it holds that pðG�Þ ¼ pðG�Þ and dðG�Þb dðG�Þ. In particular, it follows—

in light of assertion (ii)—from Lemma 3:1, (iii), that f ðG�Þ ¼ f ðG�Þ, which

thus implies that eðG�Þb eðG�Þ. This completes the proof of assertion (iii).

Assertion (iv) follows from assertions (ii), (iii). This completes the proof of

Proposition 3:4. r

Proposition 3.5. In the situation of Proposition 3:4, write H� � G� for the

image of a [which is of MLF-type—cf. the discussion following [3], Proposition

3:3]:

a : G� !! H� ,! G�:

Then the following hold:

(i) The open homomorphism a determines a commutative diagram of

topological monoids

O0ðG�Þ ���!� O�ðG�Þ ���!� OqðG�Þ ���!� k�ðG�Þ ���!recðG�Þ
G ab
�???y

???y
???y

???y
???y

O0ðH�Þ ���!� O�ðH�Þ ���!� OqðH�Þ ���!� k�ðH�Þ ���!recðH�Þ
H ab
�x???

x???
x???

x???
x???

O0ðG�Þ ���!� O�ðG�Þ ���!� OqðG�Þ ���!� k�ðG�Þ ���!recðG�Þ
G ab
�

—where the horizontal arrows are the natural inclusions, the upper vertical

arrows are the surjections induced by a, and the lower vertical arrows are the

injections determined by the transfer map [i.e., with respect to H� � G�] [cf. [3],

Lemma 1:7, (3)].

(ii) The left-hand upper and left-hand lower squares of the diagram of (i)

determine homomorphisms of modules

k�ðG�Þ !@ k�ðH�Þ  - k�ðG�Þ

—where the first arrow is an isomorphism, and the second arrow is injective.

(iii) The vertical open homomorphisms O�ðG�Þ !! O�ðH�Þ  - O�ðG�Þ in

the diagram of (i) fit into a commutative diagram of topological modules

O�ðG�Þ ���! IðG�Þ ���!� kþðG�Þ???y
???y

???y
O�ðH�Þ ���! IðH�Þ ���!� kþðH�Þx???

x???
x???

O�ðG�Þ ���! IðG�Þ ���!� kþðG�Þ
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—where the horizontal arrows are the natural homomorphisms, the upper vertical

arrows are surjective, and the lower vertical arrows are injective.

Proof. These assertions follow immediately from Proposition 3:4, (i), (iii),

(iv). r

Remark 3.5.1. It follows immediately from Proposition 3:4, (iv), that the

vertical surjection k�ðG�Þ !! k�ðH�Þ in the diagram of Proposition 3:5, (i), fits

into a commutative diagram of modules

k�ðG�Þ �����!ordnðG�Þ Zþ???y
����

k�ðH�Þ �����!ordnðH�Þ Zþ

[cf. Definition 2:2].

Theorem 3.6. For each k A f�; �g, let Gk be a profinite group of MLF-

type. Let

a : G� ! G�

be an open homomorphism. Suppose that dðG�Þa dðG�Þ [which is the case if,

for instance, dðG�Þ ¼ 1]. Then a is an isomorphism.

Proof. Since dðG�Þa dðG�Þ, by applying Proposition 3:4, (iii), to the

natural surjection G� !! aðG�Þ and the natural inclusion aðG�Þ ,! G� [note that

aðG�Þ is of MLF-type—cf. the discussion following [3], Proposition 3.3], we

obtain that dðaðG�ÞÞ ¼ dðG�Þ. On the other hand, it follows from [3], Prop-

osition 3.6, that this equality implies the equality aðG�Þ ¼ G�, i.e., that a is

surjective.

Now assume that a is not injective, i.e., that J ¼def KerðaÞ is nontrivial.

Let us first observe that since J is contained in PðG�Þ [cf. Proposition 3:4, (ii)],

the profinite group J is pro-pðG�Þ, which thus implies that J does not satisfy

condition (3) of Lemma 3:3, (i). Thus, it follows from Lemma 3:3, (iv),

that there exists an open subgroup H� � G� of G� such that J � H� [i.e.,

H� ¼ a�1ðaðH�ÞÞ], and, moreover, the image of J in ðH ð pðG�ÞÞ� Þab=tor is non-

trivial. In particular, since dðH�Þ ¼ dðG�Þ � ½G� : H��a dðG�Þ � ½G� : H�� ¼
dðG�Þ � ½G� : aðH�Þ� ¼ dðaðH�ÞÞ [cf. [3], Proposition 3.6], we may assume with-

out loss of generality, by replacing ðG�;G�Þ by ðH�; aðH�ÞÞ, that the image of

J in ðGðpðG�ÞÞ� Þab=tor is nontrivial. On the other hand, this implies that the

surjection ðG ðpðG�ÞÞ� Þab=tor !! ðGðpðG�ÞÞ� Þab=tor ¼ ðG ðpðG�ÞÞ� Þab=tor [cf. Proposition 3:4,

(iii)] induced by a is not injective. Thus, it follows immediately from Lemma
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3:1, (i), that dðG�Þ > dðG�Þ—in contradiction to our assumption that dðG�Þa
dðG�Þ. This completes the proof of Theorem 3:6. r

Corollary 3.7. For each k A f�; �g, let Gk be a profinite group of MLF-

type. Let

a : G� ! G�

be an open homomorphism. Suppose that eðG�Þa eðG�Þ [which is the case if,

for instance, eðG�Þ ¼ 1]. Then a is injective.

Proof. Since eðG�Þa eðG�Þ, by applying Proposition 3:4, (iii), to the

natural surjection G� !! aðG�Þ and the natural inclusion aðG�Þ ,! G� [note that

aðG�Þ is of MLF-type—cf. the discussion following [3], Proposition 3.3], we

obtain that eðG�Þ ¼ eðaðG�ÞÞ. Thus, to verify Corollary 3:7, we may assume

without loss of generality, by replacing G� by aðG�Þ, that a is surjective, and

that eðG�Þ ¼ eðG�Þ. Then since a is surjective, and eðG�Þ ¼ eðG�Þ, it follows

immediately from Proposition 3:4, (iii), that dðG�Þ ¼ dðG�Þ. Thus, it follows

from Theorem 3:6 that a is an isomorphism, as desired. This completes the

proof of Corollary 3:7. r

Corollary 3.8. For each k A f�; �g, let kk be an MLF and kk an

algebraic closure of kk; write Gk ¼
def

Galðkk=kkÞ. Suppose that ek� ¼ 1. Then

the following three conditions are equivalent:

(1) The field k� is isomorphic to the field k�.

(2) There exists a surjection G� !! G�.

(3) The group G� is isomorphic to the group G�.

Proof. The implication (1)) (2) is immediate. The implication

(2)) (3) follows—in light of [3], Proposition 3.6—from Corollary 3:7.

Finally, since [we have assumed that] ek� ¼ 1, the implication (3)) (1) follows

immediately from [3], Proposition 3.6 [cf. also [3], Lemma 1.5, (i)]. This

completes the proof of Corollary 3:8. r

Remark 3.8.1. Suppose that we are in the situation of Corollary 3:8, that

pk� 0 2, and that the conditions (1), (2), and (3) of Corollary 3:8 hold. Then

since ek� ¼ 1, one verifies easily that the MLF k� is absolutely abelian [cf.

Definition 4:2, (ii), below], hence also [cf. Theorem 6:3, (i), below] absolutely

characteristic [cf. Definition 5:7 below]. Thus, it follows from Theorem 7:2, (i),

below that there exists an outer automorphism of G� that does not arise from

any field automorphism of k�. In particular, there exists an outer isomorphism

G� !@ G� [cf. condition (3) of Corollary 3:8] that does not arise from any field

isomorphism k� !@ k� [cf. condition (1) of Corollary 3:8].
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4. Reconstruction algorithms related to absolutely abelian MLF’s

In the present § 4, we maintain the notational conventions introduced at the

beginnings of § 1 and § 2. In the present § 4, we discuss some group-theoretic

reconstruction algorithms [cf. [8], Remark 1.9.8] related to absolutely abelian

[cf. Definition 4:2, (ii), below] MLF’s. We establish, for instance, a group-

theoretic reconstruction algorithm for constructing, from a group of MLF-type,

a homomorphism which ‘‘corresponds’’ to the Norm map Nmk=k ðd¼1Þ : k
� !

ðkðd¼1ÞÞ� with respect to the finite extension k=k ðd¼1Þ [cf. Definition 4:7, (iii);

Proposition 4:9, (i), below], which leads us to the notion of MLF-Galois label

[cf. Definition 4:10, Theorem 4:11 below]. Finally, as a consequence of the

group-theoretic reconstruction algorithms, we also obtain a refinement of the

main theorem of [6] [cf. Corollary 4:14, (i); Remark 4:14:1 below].

Lemma 4.1. The following hold:

(i) The natural homomorphisms

Zpk ! EndZpk
ðLðkÞðpkÞÞ; Qpk ! EndQpk

ðLðkÞðpkÞnZpk
Qpk Þ

are isomorphisms of topological algebras. Moreover, these isomorphisms restrict

to isomorphisms of topological groups

Z�pk !
@

AutZpk
ðLðkÞðpkÞÞ; Q�pk !

@
AutQpk

ðLðkÞðpkÞnZpk
Qpk
Þ;

respectively.

We shall write

wpk-cyc : Gk ! Z�pk

for the composite of the natural action Gk ! AutZpk
ðLðkÞðpkÞÞ and the above

isomorphism AutZpk
ðLðkÞðpkÞÞ  @ Z�pk , i.e., the pk-adic cyclotomic character.

(ii) Let Qpk
be an algebraic closure of Qpk

. Then the homomorphism

G ab
k ! Z�pk determined by the pk-adic cyclotomic character wpk-cyc : Gk ! Z�pk [cf.

(i)] coincides with the composite

G ab
k ! Galðk=k ðd¼1ÞÞab !@ GalðQpk

=Qpk
Þab

 
rec5Qpk
@ ðQ�pk Þ

5 ¼ Z�pk � pẐZk !! Z�pk !@ Z�pk

—where the first arrow ‘‘!’’ is the homomorphism induced by the natural

inclusion Gk ,! Galðk=kðd¼1ÞÞ; the second arrow ‘‘!@ ’’ is the isomorphism induced

by an isomorphism Qpk !
@

k of fields [that necessarily restricts to an isomorphism

Qpk
!@ k ðd¼1Þ of fields]; the third arrow rec5Qpk

is the isomorphism in the final

display of [3], Lemma 1:7, (1) [in the case where we take the ‘‘k’’ of [3], Lemma

1:7, to be Qpk
]; the fourth arrow ‘‘!!’’ is the first projection; the fifth arrow ‘‘!@ ’’

is the isomorphism given by ‘‘a 7! a�1’’.
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(iii) The composite of the Norm map Nmk=k ðd¼1Þ : k
� ! ðk ðd¼1ÞÞ� with

respect to the finite extension k=kðd¼1Þ and the isomorphism ðkðd¼1ÞÞ� !@ Q�pk
induced by the [uniquely determined ] isomorphism k ðd¼1Þ !@ Qpk

of fields coin-

cides with the homomorphism k� ! Q�pk given by

k� C a 7! wpk-cycðreckðaÞÞ
�1 � p fk �ordkðaÞ

k A Q�pk

[cf. [3], Lemma 1:7].

Proof. Assertion (i) follows from the [easily verified] fact that the

Zpk -module LðkÞðpkÞ is free of rank one. Assertion (ii) follows immediately

from the well-known [cf., e.g., [15], Chapter III, §A.4, Corollary] fact that the

pk-adic cyclotomic character in the case where we take the ‘‘k’’ to be the

MLF Qpk coincides with the ‘‘Lubin-Tate character wLT
s;p’’ [cf. the notational

convention introduced in [1], Definition 1.2, (ii)] in the case where we take the

‘‘E ’’ (respectively, ‘‘s’’; ‘‘p’’) of [1], Definition 1.2, (ii), to be Qpk
(respectively,

the identity automorphism of Qpk
; pk A OQpk

¼ Zpk ). Assertion (iii) follows

immediately from assertion (ii) and [3], Lemma 1.7, (1), (2). This completes

the proof of Lemma 4:1. r

Definition 4.2.

(i) We shall say that the MLF k is absolutely Galois if k is Galois over

kðd¼1Þ.

(ii) We shall say that the MLF k is absolutely abelian if k is absolutely

Galois, and, moreover, the Galois group Galðk=k ðd¼1ÞÞ is abelian.

(iii) We shall write k ðabÞ � k for the [uniquely determined] maximal

absolutely abelian MLF contained in k.

(iv) We shall write

d
ðabÞ
k ¼def dk ðabÞ ; e

ðabÞ
k ¼def ek ðabÞ

for the ‘‘dk’’, ‘‘ek’’ in the case where we take the ‘‘k’’ to be k ðabÞ of (iii),

respectively.

Lemma 4.3. Let K be an intermediate field of the finite extension

k=kðabÞ. Then the following hold:

(i) It holds that K ðabÞ ¼ k ðabÞ.

(ii) There is no nontrivial intermediate field of the finite extension k=k ðabÞ,

hence also of K=k ðabÞ, that is unramified over k ðabÞ.

Proof. Assertion (i) follows from the definition of ‘‘ð�ÞðabÞ’’. Assertion

(ii) follows immediately from the [easily verified] fact that every intermediate

field of k=kðabÞ unramified over k ðabÞ is absolutely abelian [cf. [3], Lemma 1.5,

(i)]. This completes the proof of Lemma 4:3. r
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Lemma 4.4. The following hold:

(i) It holds that

d
ðabÞ
k ¼ e

ðabÞ
k � fk; d

ðabÞ
k ¼ ½ðkðd¼1ÞÞ� : Nmk=k ðd¼1Þ ðk�Þ�:

(ii) The following three conditions are equivalent:

(1) The MLF k is absolutely abelian.

(2) It holds that dk ¼ d
ðabÞ
k .

(3) It holds that ek ¼ e
ðabÞ
k .

Proof. First, we verify assertion (i). The equality d
ðabÞ
k ¼ e

ðabÞ
k � fk fol-

lows from Lemma 4:3, (ii), together with [3], Lemma 1.2, (iii). The equality

d
ðabÞ
k ¼ ½ðk ðd¼1ÞÞ� : Nmk=k ðd¼1Þ ðk�Þ� follows immediately from [3], Lemma 1.7,

(1), (2). This completes the proof of assertion (i). Assertion (ii) follows im-

mediately from assertion (i), together with [3], Lemma 1.2, (iii). This com-

pletes the proof of Lemma 4:4. r

Recall the group of MLF-type

G

introduced at the beginning of § 2.

Definition 4.5.

(i) We shall write

LðGÞðpðGÞÞ

for the maximal pro-pðGÞ quotient of the cyclotome LðGÞ associated to G.

Note that since LðGÞðpðGÞÞ has a natural structure of free ZpðGÞ-module of rank

one [cf. [3], Proposition 4.2, (iv)], the perfection

ðLðGÞðpðGÞÞÞpf

of LðGÞðpðGÞÞ has a natural structure of QpðGÞ-vector space of dimension one.

(ii) We shall write

ZpðGÞ ¼def EndðLðGÞðpðGÞÞÞ

for the topological algebra of endomorphisms of the topological module

LðGÞð pðGÞÞ.
(iii) We shall write

QpðGÞ ¼
def

EndððLðGÞðpðGÞÞÞpf Þ

for the algebra of endomorphisms of the perfection ðLðGÞðpðGÞÞÞpf . Thus, we

have a natural inclusion

ZpðGÞ ,! QpðGÞ:
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By considering the topology induced by the topology of ZpðGÞ [cf. (ii)], we

regard QpðGÞ as a topological algebra.

Lemma 4.6. The following hold:

(i) The natural homomorphism

ZpðGÞ ! ZpðGÞ

[i.e., obtained by the natural ZpðGÞ-module structure of LðGÞpðGÞ] is an iso-

morphism of topological algebra. Moreover, this isomorphism determines an

isomorphism of topological algebra

QpðGÞ !
@ QpðGÞ:

(ii) We have natural identifications

ZpðGÞ� ¼ AutðLðGÞpðGÞÞ � QpðGÞ� ¼ AutððLðGÞpðGÞÞpf Þ

[cf. (i)].

Proof. These assertions follow immediately—in light of [3], Proposition

3.6; [3], Proposition 4.2, (iv)—from Lemma 4:1, (i). r

Definition 4.7.

(i) We shall write

wp-cycðGÞ : G ! ZpðGÞ�

for the natural action of G on LðGÞpðGÞ [cf. Lemma 4:6, (ii)].

(ii) We shall write

p A ðGÞ A QpðGÞ�

for the automorphism of the module ðLðGÞpðGÞÞpf given by multiplication by

pðGÞ [cf. Lemma 4:6, (ii)].

(iii) We shall write

NmabsðGÞ : k�ðGÞ ! QpðGÞ�

for the homomorphism of topological modules defined by

k�ðGÞ C a 7! wp-cycðGÞðrecðGÞðaÞÞ
�1 � p A ðGÞ f ðGÞ�ordnðGÞðaÞ A QpðGÞ�

[cf. Definition 2:2].

(iv) We shall write

d ðabÞðGÞ ¼def ½QpðGÞ� : ImðNmabsðGÞÞ�; eðabÞðGÞ ¼def d ðabÞðGÞ=f ðGÞ:
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Definition 4.8. We shall say that G is of AAMLF-type if dðGÞ ¼
d ðabÞðGÞ. [Here, ‘‘AAMLF’’ is to be understood as an abbreviation for

‘‘absolutely abelian mixed-characteristic local field’’—cf. Proposition 4:9, (iii),

below.]

Proposition 4.9. The following hold:

(i) Write Nmk=k ðd¼1Þ : k
� ! ðkðd¼1ÞÞ� for the Norm map with respect to

the finite extension k=k ðd¼1Þ. Then the vertical isomorphism k� !@ k�ðGkÞ in

the diagram of [3], Proposition 3:11, (i), fits into a commutative diagram of

topological modules

k� ðk ðd¼1ÞÞ�

o

???y o

???y
k�ðGkÞ �����!NmabsðGkÞ QpðGkÞ�

�������!Nm
k=k ðd¼1Þ

—where the right-hand vertical arrow is the composite of the isomorphism

ðkðd¼1ÞÞ� !@ Q�pðGkÞ induced by the [uniquely determined ] isomorphism k ðd¼1Þ !@

QpðGkÞ of fields and the isomorphism Q�pk ¼ Q�pðGkÞ !
@ QpðGkÞ� [cf. [3], Propo-

sition 3:6] determined by the isomorphism of Lemma 4:6, (i).

(ii) It holds that

d
ðabÞ
k ¼ d ðabÞðGkÞ; e

ðabÞ
k ¼ eðabÞðGkÞ:

(iii) It holds that the MLF k is absolutely abelian if and only if the group

Gk is of AAMLF-type.

Proof. Assertion (i) follows—in light of Proposition 2:3; [3], Proposition

3.6; [3], Proposition 3.11, (i); [3], Proposition 4.2, (iv)—from Lemma 4:1, (iii).

Assertion (ii) follows immediately from Lemma 4:4, (i), together with asser-

tion (i) and [3], Proposition 3.6. Assertion (iii) follows from Lemma 4:4, (ii),

together with assertion (ii) and [3], Proposition 3.6. This completes the proof

of Proposition 4:9. r

Remark 4.9.1. Let H � G be an open subgroup of G. Then one verifies

immediately from Proposition 4:9, (i), together with [3], Lemma 1.7, (2), that

the diagram of topological modules

kðHÞ� �����!NmabsðHÞ QpðHÞ�???y
����

kðGÞ� �����!NmabsðGÞ QpðGÞ�
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—where the left-hand vertical arrow is the homomorphism induced by the

homomorphism H ab ! G ab determined by the inclusion H ,! G, and the right-

hand vertical arrow is the composite of the isomorphisms Q�pðGÞ !
@ QpðGÞ�,

Q�pðHÞ !
@ QpðHÞ� determined by the isomorphism of Lemma 4:6, (i) [cf. also

[3], Proposition 3.6]—commutes.

Remark 4.9.2. Suppose that G is of AAMLF-type. Then a profinite

group isomorphic to G may be constructed as follows: Let ~GG be a group of

MLF-type such that ðpð ~GGÞ; dð ~GGÞÞ ¼ ðpðGÞ; 1Þ. [Note that one verifies easily

from [3], Proposition 3.6, that this condition ðpð ~GGÞ; dð ~GGÞÞ ¼ ðpðGÞ; 1Þ com-

pletely determines the isomorphism class of the group ~GG.] Write J � ~GG ab for

the closure, i.e., in ~GG ab, of the inverse image ð� k�ð ~GGÞ � ~GG abÞ of ImðNmabsðGÞÞ
� QpðGÞ� by Nmabsð ~GGÞ : k�ð ~GGÞ ! Qpð ~GGÞ�—relative to the composite of the

isomorphisms Q�pðGÞ !
@ QpðGÞ�, Q�

pð ~GGÞ !
@ Qpð ~GGÞ� determined by the isomor-

phism of Lemma 4:6, (i). Then it follows immediately from Remark 4:9:1 that

G is isomorphic, as an abstract profinite group, to the inverse image of J � ~GG ab

in ~GG.

Definition 4.10. We shall refer to the collection of data

ðpðGÞ; dðGÞ; ImðNmabsðGÞÞ � QpðGÞ�  
@ Q�pðGÞÞ

[cf. Lemma 4:6, (i)] consisting of the prime number pðGÞ, the positive integer

dðGÞ, and the open subgroup ImðNmabsðGÞÞ � Q�pðGÞ of Q�pðGÞ as the MLF-

Galois label of G.

Theorem 4.11. For each k A f�; �g, let Gk be a group of MLF-type.

Suppose that one of the following two conditions is satisfied:

(1) It holds that fðpðG�Þ; aðG�ÞÞ; ðpðG�Þ; aðG�ÞÞg 6� fð2; 1Þg [cf. Definition

2:4, (ii)].

(2) Either G� or G� is of AAMLF-type.

Then it holds that the group G� is isomorphic to the group G� if and only if the

MLF-Galois label of G� coincides with the MLF-Galois label of G�.

Proof. The necessity is immediate. Next, we verify the su‰ciency in

the case where condition (1) is satisfied. Suppose that condition (1) is sat-

isfied, and that the MLF-Galois label of G� coincides with the MLF-Galois

label of G�. Then since ImðNmabsðG�ÞÞ ¼ ImðNmabsðG�ÞÞ, one verifies imme-

diately from Proposition 2:5, (i); Proposition 4:9, (i); [3], Lemma 1.7, (1),

(2); [3], Proposition 3.6, that ð2; 1Þ B fðpðG�Þ; aðG�ÞÞ; ðpðG�Þ; aðG�ÞÞg. Thus,

since the MLF-Galois label of G� coincides with the MLF-Galois label of

G�, it follows immediately—in light of Proposition 2:5, (i); Proposition 4:9,

(i); [3], Proposition 3.6—from the main theorems of [4] and [13], together
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with [3], Lemma 1.7, (1), (2), that G� is isomorphic to G�, as desired. This

completes the proof of the su‰ciency in the case where condition (1) is

satisfied.

Finally, we verify the su‰ciency in the case where condition (2) is satisfied.

Suppose that G� is of AAMLF-type, and that the MLF-Galois label of G�
coincides with the MLF-Galois label of G�. Then since ImðNmabsðG�ÞÞ ¼
ImðNmabsðG�ÞÞ, we obtain that d ðabÞðG�Þ ¼ d ðabÞðG�Þ. In particular, since G�
is of AAMLF-type, the equality dðG�Þ ¼ dðG�Þ implies that G� is of AAMLF-

type. Thus, since the MLF-Galois label of G� coincides with the MLF-Galois

label of G�, it follows immediately from Remark 4:9:2 that G� is isomorphic to

G�, as desired. This completes the proof of the su‰ciency in the case where

condition (2) is satisfied, hence also of Theorem 4:11. r

Remark 4.11.1.

(i) Let us recall that the main theorem of [1] asserts that, roughly speak-

ing, the Hodge-Tate-ness of pk-adic representations of the group Gk of MLF-

type is closely related to the ring structures of the fields k � k.

(ii) Let us also recall that, as discussed in [3], Proposition 4.2, (iv), the

pk-adic cyclotomic character may be ‘‘reconstructed’’ from just the group struc-

ture of the group Gk of MLF-type.

Next, let us recall that Theorem 4:11 asserts that—under a mild assump-

tion on ‘‘ðpk; akÞ’’—the isomorphism class of the group Gk is completely deter-

mined by the MLF-Galois label of Gk. Now observe that the main component

of the notion of MLF-Galois label is the third component, i.e., the image of the

Norm map to ðk ðd¼1ÞÞ�. Moreover, recall that, as discussed in Lemma 4:1,

(iii), roughly speaking, the Norm map to ðk ðd¼1ÞÞ� may be essentially described

by the pk-adic cyclotomic character.

Thus, one may conclude that, roughly speaking, the pk-adic cyclotomic

character is closely related to the group structure of the group Gk of MLF-

type.

(iii) It follows from the observations of (i), (ii), together with [3], Remark

4.3.3, that, in summary,

Hodge-Tate representations is closely related to arithmetic holomorphic

structures [i.e., roughly speaking, ring structures—cf. [9], § 2.7, (vii)] of

MLF’s,

and, moreover,

the cyclotomic character [that is one of Hodge-Tate representations]

is closely related to mono-analytic structures [i.e., roughly speaking,

structures that arise from dismantling the complicated intertwining

inherent in ring structures—cf. [9], § 2.7, (vii)] of MLF’s.
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Hodge-Tate representations , arithmetic holomorphic structures of MLF’s

): the main theorem of ½1�
(: immediate

cyclotomic characters , mono-analytic structures of MLF’s

): Lemma 4:1; ðiiiÞ; and Theorem 4:11

(: ½3�; Proposition 4:2; ðivÞ

Definition 4.12. For each k A f�; �g, let Gk be a group of MLF-type.

Let a : G� ! G� be a homomorphism. Then we shall say that a is cyclo-

tomically compatible if pðG�Þ ¼ pðG�Þ, and, moreover, the diagram

G� ����!wp-cycðG�Þ ZpðG�Þ�

a

???y o

???y
G� ����!wp-cycðG�Þ ZpðG�Þ�

—where the right-hand vertical arrow is the composite of the isomorphisms

Z�pðG�Þ !
@ ZpðG�Þ�, Z�pðG�Þ !

@ ZpðG�Þ� determined by the isomorphism of Lemma

4:6, (i)—commutes.

Remark 4.12.1. Let us recall that it follows immediately from the various

definitions involved that every open injection between profinite groups of MLF-

type induces a natural isomorphism between the cyclotomes ‘‘Lð�Þ’’ [cf. [3],

Definition 4.1, (i), (ii), (iii)]. In particular, every open injection between pro-

finite groups of MLF-type is cyclotomically compatible.

Remark 4.12.2. Let l be a prime number such that l0 pðGÞ. Then, in

the situation of Definition 4:7, (i), by considering the natural action on the

maximal pro-l quotient of the cyclotome LðGÞ [i.e., as opposed to the natural

action on LðGÞpðGÞ discussed in Definition 4:7, (i)], one may define the notion

of ‘‘l-adic cyclotomic character’’ of G [i.e., as opposed to the ‘‘pðGÞ-adic cyclo-

tomic character’’ wp-cycðGÞ defined in Definition 4:7, (i)].

Now let us observe that it follows immediately—in light of [3], Proposition

3.6; [3], Proposition 4.2, (iv)—from Proposition 3:4, (iii), (iv), and [3], Lemma

1.5, (i), (ii), (iii), that every open homomorphism between profinite groups of

MLF-type is compatible with the respective ‘‘l-adic cyclotomic characters’’, i.e.,

that a similar diagram to the diagram of Definition 4:12 commutes.

Theorem 4.13. For each k A f�; �g, let Gk be a profinite group of MLF-

type. Let

a : G� ! G�

be an open homomorphism. Then the following hold:
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(i) If a is cyclotomically compatible and surjective, then the surjection

k�ðG�Þ !! k�ðG�Þ induced by a [cf. Proposition 3:5, (i)] fits into a commutative

diagram of topological modules

k�ðG�Þ �����!NmabsðG�Þ QpðG�Þ�???y
����

k�ðG�Þ �����!NmabsðG�Þ QpðG�Þ�

—where the right-hand vertical arrow is the composite of the isomorphisms

Q�pðG�Þ !
@ QpðG�Þ�, Q�pðG�Þ !

@ QpðG�Þ� determined by the isomorphism of Lemma

4:6, (i) [cf. also Proposition 3:4, (iii)]. Moreover, it holds that

d ðabÞðG�Þ ¼ d ðabÞðG�Þ; eðabÞðG�Þ ¼ eðabÞðG�Þ:

(ii) If G� is of AAMLF-type, then the following two conditions are

equivalent:

(1) The homomorphism a is injective.

(2) The homomorphism a is cyclotomically compatible.

(iii) In the situation of (ii), if, moreover, (1) and (2) of (ii) are satisfied,

then the group G� is of AAMLF-type.

Proof. First, we verify assertion (i). The first assertion, hence also the

equality d ðabÞðG�Þ ¼ d ðabÞðG�Þ, follows immediately from Proposition 3:4, (iii),

and Remark 3:5:1. Thus, the equality eðabÞðG�Þ ¼ eðabÞðG�Þ follows from Prop-

osition 3:4, (iii). This completes the proof of assertion (i).

Next, we verify assertion (ii). The implication (1)) (2) was already dis-

cussed in Remark 4:12:1. We verify the implication (2)) (1). Suppose that

condition (2) is satisfied. Let us first observe that it follows from Remark

4:12:1 that, to verify the implication (2)) (1), we may assume without loss

of generality, by replacing G� by the image of a [which is of MLF-type—cf.

the discussion following [3], Proposition 3.3], that a is surjective. Thus, since

[we have assumed that] dðG�Þ ¼ d ðabÞðG�Þ, it follows from assertion (i), together

with the [easily verified] inequality d ðabÞðG�Þa dðG�Þ, that dðG�Þa dðG�Þ. In

particular, it follows from Theorem 3:6 that a is an isomorphism, as desired.

This completes the proof of the implication (2)) (1), hence also of assertion

(ii).

Assertion (iii) follows—in light of Proposition 4:9, (iii)—from the [easily

verified] fact that an MLF contained in an absolutely abelian MLF is absolutely

abelian. This completes the proof of Theorem 4:13. r

Corollary 4.14. For each k A f�; �g, let kk be an MLF and kk an

algebraic closure of kk; write Gk ¼
def

Galðkk=kkÞ. Then the following hold:
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(i) Suppose that there exists a cyclotomically compatible surjection

G� !! G�. Then the field k
ðabÞ
� is isomorphic to the field k

ðabÞ
� .

(ii) Suppose that k� is absolutely abelian. Then the following three con-

ditions are equivalent:

(1) The field k� is isomorphic to the field k�.

(2) There exists a cyclotomically compatible surjection G� !! G�.

(3) The group G� is isomorphic to the group G�.

Proof. Assertion (i) follows immediately—in light of Proposition 4:9,

(i)—from Theorem 4:13, (i), and [3], Lemma 1.7, (1), (2). Next, we verify

assertion (ii). The implication (1)) (2) is immediate. The implication

(2)) (3) follows—in light of Proposition 4:9, (iii)—from Theorem 4:13, (ii).

Finally, we verify the implication (3)) (1). Suppose that condition (3) is

satisfied. Then it follows from Proposition 4:9, (iii), that k� is absolutely

abelian. Thus, the implication (3)) (1) follows from assertion (i). This

completes the proof of the implication (3)) (1), hence also of assertion (ii).

r

Remark 4.14.1. The main theorem of [6] is equivalent to Corollary 4:14,

(i), in the case where the surjection ‘‘G� !! G�’’ is an isomorphism. Now let us

recall that it is immediate that every isomorphism between groups of MLF-type

is cyclotomically compatible. Thus, Corollary 4:14, (i), may be regarded as a

refinement of the main theorem of [6].

Some of the group-theoretic reconstruction algorithms discussed in the

present § 4 may be summarized as follows.

Summary 4.15.

(i) There exist group-theoretic reconstruction algorithms [cf. [8], Remark

1:9:8] for constructing, from a group G of MLF-type,
� topological rings ZpðGÞ � QpðGÞ [cf. Definition 4:5, (ii), (iii)],
� a homomorphism NmabsðGÞ : k�ðGÞ ! QpðGÞ� of topological mod-

ules [cf. Definition 4:7, (iii)], and
� integers d ðabÞðGÞ and eðabÞðGÞ [cf. Definition 4:7, (iv)]

which ‘‘correspond’’ to
� the topological rings Zpk � Qpk [cf. Lemma 4:6, (i)],
� the Norm map Nmk=k ðd¼1Þ : k

� ! ðk ðd¼1ÞÞ� with respect to the finite

extension k=kðd¼1Þ [cf. Proposition 4:9, (i)], and

� the integers d
ðabÞ
k and e

ðabÞ
k [cf. Proposition 4:9, (ii)],

respectively.

(ii) There exists a group-theoretic condition for a group of MLF-type

[cf. Definition 4:8] which ‘‘corresponds’’ to the condition for an MLF to be

absolutely abelian [cf. Proposition 4:9, (iii)].
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Remark 4.15.1.

(i) By Summary 4:15, (ii), one may conclude that

the condition for an MLF to be absolutely abelian may be considered

to be ‘‘group-theoretic’’.

(ii) On the other hand, it follows from example (1) given in [4], § 2 [i.e.,

‘‘L1’’ and ‘‘L3’’ in (1) of [4], § 2], that there exist an absolutely Galois MLF k�
and an MLF k� that is not absolutely Galois such that the absolute Galois

group of k� is isomorphic, as an abstract profinite group, to the absolute Galois

group of k�. By this fact, one may conclude that

the condition for an MLF to be absolutely Galois should be consid-

ered to be ‘‘not group-theoretic’’.

5. Reconstruction algorithms related to MLF’s of degree one

In the present § 5, we maintain the notational conventions introduced at

the beginnings of § 1 and § 2. In particular, we have been given a group of

MLF-type

G:

In the present § 5, suppose that

dðGÞ ¼ 1:

In the present § 5, we establish some group-theoretic reconstruction algorithms

[cf. [8], Remark 1.9.8] related to MLF’s of degree one, i.e., such that the integer

‘‘dð�Þ’’ [cf. the notational conventions introduced at the beginning of § 1] is

equal to one. As a consequence of the group-theoretic reconstruction algo-

rithms, we also prove [cf. Theorem 5:9, (ii), below] that every absolutely strictly

radical [cf. Definition 5:6, (iii), below] MLF is absolutely characteristic [cf.

Definition 5:7 below].

Lemma 5.1. The homomorphism

NmabsðGÞ : k�ðGÞ ! QpðGÞ�

[cf. Definition 4:7, (iii)] is an isomorphism of topological modules.

Proof. Since [we have assumed that] dðGÞ ¼ 1, this assertion follows

from Proposition 4:9, (i). r

Definition 5.2. Consider the isomorphism k�ðGÞ !@ QpðGÞ� of topolog-

ical monoids [cf. Remark 2:3:1] determined by the isomorphism k�ðGÞ !@

QpðGÞ� of Lemma 5:1 [cf. the discussion entitled ‘‘Fields’’ in § 0]. Then, by
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means of the topological field structure of QpðGÞ, i.e., on QpðGÞ�, together

with this isomorphism, one may define a structure of topological field on k�ðGÞ.
We shall write

kðGÞ

for the resulting topological field. Thus, we have a tautological isomorphism

of topological fields

kðGÞ !@ QpðGÞ

and natural identifications

kðGÞ� ¼ k�ðGÞ; kðGÞ� ¼ k�ðGÞ:

Remark 5.2.1. One verifies immediately that the topological field kðGÞ
is isomorphic, as an abstract topological field, to the topological field QpðGÞ
[cf. also Lemma 4:6, (i)].

Definition 5.3. Let H 1 M be an MLFq-pair [cf. [3], Definition

5.3] such that dðHÞ ¼ 1 [cf. [3], Remark 5.4.1]. Thus, the Kummer poly-

isomorphism kðH 1 MÞ : ðH 1 MÞ !@ ðH 1 MqðHÞ ¼ OqðHÞÞ [cf. [3], Def-

inition 5.8; [3], Definition 7.4] associated to H 1 M consists of a single

isomorphism [cf. [3], Definition 5.5] [i.e., as opposite to just a poly-

isomorphism]. Then, by means of the topological field structure of kðHÞ,
i.e., on k�ðHÞ, of Definition 5:2, together with the isomorphism ððM gpÞHÞl!@

ðk�ðHÞHÞl ¼ k�ðHÞ [cf. [3], Proposition 5.7, (i)] induced by the Kummer poly-

isomorphism kðH 1 MÞ [consisting of a single isomorphism], one may define

a structure of topological field on ððM gpÞHÞl. We shall write

kðH 1 MÞ

for the resulting topological field. Thus, we have tautological isomorphisms of

topological fields

kðH 1 MÞ !@ kðHÞ !@ QpðHÞ

and natural identifications

kðH 1 MÞ� ¼ ððM gpÞHÞl; kðH 1 MÞ� ¼ ðM gpÞH :

Remark 5.3.1. One verifies immediately that, in the situation of Defini-

tion 5:3, the topological field kðH 1 MÞ is isomorphic, as an abstract topo-

logical field, to the topological field QpðHÞ [cf. also Lemma 4:6, (i)].

Remark 5.3.2. Let us recall the ‘‘étale-like’’ MLFq-pair G 1 OqðGÞ [cf.
[3], Definition 5.8]. Then one verifies immediately from the various definitions
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involved that we have a natural identification

kðGÞ ¼ kðG 1 OqðGÞÞ:

Recall the MLF

k

introduced at the beginning of § 1.

Theorem 5.4. Suppose that dk ¼ 1, which thus implies that dðGkÞ ¼ 1

[cf. [3], Proposition 3:6]. Then the following hold:

(i) The homomorphism

reck : k� ,! G ab
k

of [3], Lemma 1:7, determines an isomorphism of topological fields

k !@ kðGkÞ:

(ii) By applying the reconstruction algorithm of Definition 5:3 to the model

MLFq-pair Gk 1 Oq

k
[cf. [3], Definition 5:2], we obtain a topological field

kðGk 1 Oq

k
Þ whose underlying set may be identified with the underlying set of k.

Then the topological field structure of k on the underlying set of k coincides,

relative to this identification, with the topological field structure of kðGk 1 Oq

k
Þ

on the underlying set of k.

Proof. These assertions follow immediately from Proposition 4:9, (i).

r

Corollary 5.5. The image of the natural homomorphism AutðGÞ !
AutðG abÞ is trivial.

Proof. Let a be an automorphism of G. Now let us observe that since

the subset k�ðGÞ � Gab of G ab is dense [cf. [3], Lemma 1.7, (1); [3], Proposition

3.11, (i)], to verify Corollary 5:5, it su‰ces to verify that the automorphism

k�ðaÞ of k�ðGÞ induced by a is the identity automorphism. On the other

hand, since k�ðaÞ extends to an automorphism of the topological field kðGÞ, and
the topological field kðGÞ is isomorphic, as an abstract topological field, to the

topological field Qpk
[cf. Remark 5:2:1; [3], Proposition 3.6], we conclude that

k�ðaÞ is the identity automorphism, as desired. This completes the proof of

Corollary 5:5. r

Definition 5.6.

(i) We shall refer to a collection of data

ðn;m; r1; . . . ; rm; a1; . . . ; amÞ

consisting of
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� positive integers n, m, r1; . . . ; rm such that n A
Tm

i¼1 riZ and
� elements a1; . . . ; am A k� of k�

as a strictly radical data for k.

(ii) Let K � k be a finite extension of k. Then we shall say that the

finite extension K=k is strictly radical if there exists a strictly radical data

ðn;m; r1; . . . ; rm; a1; . . . ; amÞ for k such that

K ¼ kðzn; a1=r11 ; . . . ; a1=rmm Þ � k:

(iii) We shall say that the MLF k is absolutely strictly radical if the finite

extension k=k ðd¼1Þ is strictly radical.

Remark 5.6.1. One verifies easily that a strictly radical extension is

Galois. In particular, an absolutely strictly radical MLF is absolutely Galois

[cf. Definition 4:2, (i)].

Definition 5.7. We shall say that the MLF k is absolutely characteristic

if the open subgroup Gk � Galðk=k ðd¼1ÞÞ of Galðk=k ðd¼1ÞÞ is characteristic [cf.

Remark 5:7:1 below].

Remark 5.7.1. One verifies immediately that the issue of whether or not

the MLF k satisfies the condition that the open subgroup Gk � Galðk=k ðd¼1ÞÞ
of Galðk=k ðd¼1ÞÞ is characteristic [cf. Definition 5:7] does not depend on the

choice of k, i.e., depends only on k.

Remark 5.7.2.

(i) Let us recall that since G is topologically finitely generated [cf., e.g.,

[3], Lemma 1.4, (i)], one verifies easily that the topology of the profinite group

G admits a basis of characteristic open subgroups.

(ii) It follows from (i) that there exists a finite extension K � k of k such

that the MLF K is absolutely characteristic.

Definition 5.8.

(i) Let H 1 M be an MLFq-pair such that dðHÞ ¼ 1 and ðn;m;

r1; . . . ; rm; a1; . . . ; amÞ a strictly radical data for the MLF kðH 1 MÞ of Def-

inition 5:3 [cf. also Remark 5:3:1]. Then we shall write

ðH 1 MÞðn;m; r1; . . . ; rm; a1; . . . ; amÞ � H

for the uniquely determined maximal subgroup of H which acts trivially on

the subset of M gp

fa A M gp j an ¼ 1 or ari ¼ ai for some i A f1; . . . ;mgg:

(ii) Let ðn;m; r1; . . . ; rm; a1; . . . ; amÞ be a strictly radical data for the MLF

kðGÞ of Definition 5:2 [cf. also Remark 5:2:1]. Then we shall write
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Gðn;m; r1; . . . ; rm; a1; . . . ; amÞ

¼def ðG 1 OqðGÞÞðn;m; r1; . . . ; rm; a1; . . . ; amÞ � G

[cf. Remark 5:3:2].

Theorem 5.9. The following hold:

(i) Suppose that dk ¼ 1, which thus implies that dðGkÞ ¼ 1 [cf. [3], Prop-

osition 3:6]. Let ðn;m; r1; . . . ; rm; a1; . . . ; amÞ be a strictly radical data for

k !@ kðGkÞ [cf. Theorem 5:4, (i)]. Then it holds that

Gkðn;m; r1; . . . ; rm; a1; . . . ; amÞ ¼ Galðk=kðzn; a1=r11 ; . . . ; a1=rmm ÞÞ

—i.e., as subgroups of Gk.

(ii) Every absolutely strictly radical MLF is absolutely characteristic [cf.

also Remark 5:9:1 below].

Proof. Assertion (i) follows immediately from the various definitions

involved. Assertion (ii) follows immediately from assertion (i) and Corollary

5:5. This completes the proof of Theorem 5:9. r

Remark 5.9.1. Note that there exists an absolutely characteristic MLF

that is not absolutely strictly radical. Indeed, let us observe that one verifies

immediately from Kummer theory that if k is absolutely strictly radical, then the

Galois group Galðk=k ðd¼1ÞÞ [cf. Remark 5:6:1] has a structure of extension of

an abelian group by an abelian group. Thus, it follows from Remark 5:7:2, (i),

that if every absolutely characteristic MLF is absolutely strictly radical, then

we conclude that the absolute Galois group Galðk=k ðd¼1ÞÞ has a structure of

extension of an abelian group by an abelian group—in contradiction to some

well-known group-theoretic properties [cf., e.g., [12], Theorem 7.5.12] of the

group Galðk=k ðd¼1ÞÞ.

Remark 5.9.2.

(i) It follows from example (1) given in [4], § 2 [i.e., ‘‘L1’’ and ‘‘L3’’ in

(1) of [4], § 2], that there exist an absolutely strictly radical MLF k� and an

MLF k� that is not absolutely strictly radical [cf. Remark 5:6:1] such that the

absolute Galois group of k� is isomorphic, as an abstract profinite group, to the

absolute Galois group of k�. By this fact, one may conclude that

the condition for an MLF to be absolutely strictly radical should be

considered to be ‘‘not group-theoretic’’.

(ii) It follows from example (1) given in [4], § 2 [i.e., ‘‘L1’’ and ‘‘L3’’ in (1)

of [4], § 2], that there exist an absolutely characteristic MLF k� [cf. Theorem
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5:9, (ii)] and an MLF k� that is not absolutely characteristic such that the

absolute Galois group of k� is isomorphic, as an abstract profinite group, to the

absolute Galois group of k�. By this fact, one may conclude that

the condition for an MLF to be absolutely characteristic should be

considered to be ‘‘not group-theoretic’’.

Remark 5.9.3.

(i) Let us first observe the following ‘‘tautological ’’ assertion in the

anabelian geometry of absolutely characteristic MLF’s:

For each k A f�; �g, let kk be an absolutely characteristic MLF and

kk an algebraic closure of kk; write Gk ¼
def

Galðkk=kkÞ. Then the

following two conditions are equivalent:

(1) The field k� is isomorphic to the field k�.

(2) There exists an isomorphism G� !@ G� compatible with the

respective natural outer actions of Galðk�=k ðd¼1Þ� Þ, Galðk�=k ðd¼1Þ� Þ [i.e.,
by conjugation] relative to some isomorphism Galðk�=k ðd¼1Þ� Þ !@

Galðk�=k ðd¼1Þ� Þ.

[This assertion follows immediately from the definition of the notion of

absolutely characteristic MLF—cf. also [3], Proposition 3.6.]

(ii) It follows from Theorem 5:9, (ii), that one may apply the ‘‘tauto-

logical ’’ assertion of (i) to absolutely strictly radical MLF’s.

(iii) Finally, let us observe that it follows from example (1) given in [4],

§ 2 [i.e., ‘‘L1’’ and ‘‘L2’’ in (1) of [4], § 2], that there exist absolutely strictly

radical MLF’s k�, k� such that the field k� is not isomorphic to the field k�, but

the absolute Galois group of k� is isomorphic, as an abstract profinite group, to

the absolute Galois group of k�. Thus, we conclude from Theorem 5:9, (ii),

that, in the ‘‘tautological ’’ assertion of (i), one cannot replace condition (2) by

the following condition:

(2 0) There exists an isomorphism G� !@ G�.

Remark 5.9.4. Let us recall the following three well-known facts in

anabelian geometry:

(1) One verifies easily that an immediate consequence of the Neukirch-

Uchida theorem [cf. the main theorem of [16]] is that every normal open

subgroup of the absolute Galois group of the field of rational numbers is

characteristic.

(2) It follows immediately from [7], Corollary 3.7, that it holds that the

natural injection AutðkÞ ,! OutðGkÞ [cf., e.g., [3], Proposition 2.1] is bijective

if and only if each member of the filtration on Gk given by the higher

ramification groups in the upper numbering is characteristic.
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(3) Suppose that dk ¼ 1. Then it follows immediately from the equiv-

alence of (2) [cf. also the argument in Remark 6:3:1, (ii), below] that the

natural injection AutðkÞ ,! OutðGkÞ [cf., e.g., [3], Proposition 2.1] is bijective if

and only if every normal open subgroup of Gk is characteristic. [Note that this

equivalence also follows from [5], Theorem A.]

By these facts, one may find the importance of discussing the issue of whether

or not a given closed subgroup of the absolute Galois group of a field is

characteristic in the study of anabelian geometry. This observation is one of

motivations of studying Theorem 5:9, (ii).

Some of the group-theoretic reconstruction algorithms discussed in the

present § 5 may be summarized as follows.

Summary 5.10. There exist group-theoretic reconstruction algorithms [cf.

[8], Remark 1:9:8] for constructing, from a group G of MLF-type such that

dðGÞ ¼ 1,
� a structure of topological field on k�ðGÞ [cf. Definition 5:2] and
� a collection of subgroups of G [cf. Definition 5:8, (ii)]

which ‘‘correspond’’ to
� the topological field structure of k on k� [cf. Theorem 5:4, (i)] and
� the collection of open subgroups of Gk corresponding to the absolutely

strictly radical MLF’s contained in k [cf. Theorem 5:9, (i)],

respectively.

Remark 5.10.1. Let us recall that, as asserted in Summary 5:10, we have

established [cf. Definition 5:2] a group-theoretic reconstruction algorithm for

constructing, from a group G of MLF-type such that dðGÞ ¼ 1, a structure of

topological field on k�ðGÞ which ‘‘corresponds’’ to the topological field structure

of k, i.e., on k�.

Here, let us also recall that, as discussed in [2], Remark 1.4.1, (ii), it is

impossible to establish a group-theoretic reconstruction algorithm for construct-

ing, from an arbitrary group G of MLF-type, such a structure of topological

field on k�ðGÞ.

6. Reconstruction algorithms related to Galois-specifiable MLF’s

In the present § 6, we maintain the notational conventions introduced at

the beginnings of § 1 and § 2. In the present § 6, we consider Galois-specifiable

[cf. Definition 6:1 below] MLF’s. Moreover, we also establish some group-

theoretic reconstruction algorithms [cf. [8], Remark 1.9.8] related to Galois-

specifiable MLF’s. For instance, we establish a group-theoretic reconstruction

algorithm for constructing, from a group of MLF-type that satisfies a certain
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condition, a collection of subgroups of the outer automorphism group of the

group of MLF-type which ‘‘corresponds’’ to the OutðGkÞ-orbit, i.e., by conjuga-

tion, of the subgroup of OutðGkÞ determined by the field automorphisms of k

[cf. Definition 6:8, (ii); Theorem 6:12, (ii), below].

Definition 6.1. We shall say that the MLF k is Galois-specifiable if the

MLF k is absolutely Galois [cf. Definition 4:2, (i)], and, moreover, the follow-

ing condition is satisfied: If L is an MLF such that there exist an algebraic

closure L of L and an isomorphism Gk !@ GalðL=LÞ of groups, then the field k

is isomorphic, as an abstract field, to the field L [cf. Remark 6:1:1 below].

Remark 6.1.1. One verifies immediately that the issue of whether or not

the MLF k satisfies the condition in Definition 6:1 does not depend on the

choice of k, i.e., depends only on k.

Remark 6.1.2. Suppose that ðpk; akÞ0 ð2; 1Þ. Then it follows

immediately—in light of Proposition 2:5, (i); Proposition 4:9, (i); [3], Propo-

sition 3.6—from Theorem 4:11, together with [3], Lemma 1.7, (1), (2), that it

holds that the MLF k is Galois-specifiable if and only if the following condi-

tion is satisfied: If K � k is a finite extension of k ðd¼1Þ such that dk ¼ dK ,

and, moreover, k ðabÞ ¼ K ðabÞ [cf. Definition 4:2, (iii)], i.e., as subfields of k, then

k ¼ K , i.e., as subfields of k.

Lemma 6.2. Suppose that k is Galois over k ðabÞ. Let K � k be a finite

unramified [necessarily Galois] extension of k ðabÞ. Note that it follows immedi-

ately from Lemma 4:3, (ii), that we have a natural isomorphism Galðk � K=kðabÞÞ
!@ Galðk=k ðabÞÞ �GalðK=k ðabÞÞ. Let f : GalðK=k ðabÞÞ ! Galðk=k ðabÞÞ be a

homomorphism of groups. Write L for the intermediate field of the finite

Galois extension k � K=k ðabÞ which corresponds, relative to the above natural

isomorphism Galðk � K=k ðabÞÞ !@ Galðk=k ðabÞÞ �GalðK=k ðabÞÞ, to the graph

ð� Galðk=kðabÞÞ �GalðK=kðabÞÞÞ of the homomorphism f. Then the equalities

dL ¼ dk, L
ðabÞ ¼ k ðabÞ hold.

Proof. The equality dL ¼ dk follows from the fact that the graph

ð� Galðk=kðabÞÞ �GalðK=kðabÞÞÞ of the homomorphism f is isomorphic, as

an abstract group, to the group GalðK=k ðabÞÞ.
To verify the equality LðabÞ ¼ kðabÞ, assume that LðabÞ0 k ðabÞ, i.e., that the

extension LðabÞ=k ðabÞ is not of degree one. Then since the intermediate field

L corresponds to the graph of f, one verifies immediately from the natural

isomorphism Galðk � K=kðabÞÞ !@ Galðk=kðabÞÞ �GalðK=kðabÞÞ that the exten-

sion LðabÞ � K=K is not of degree one, which thus implies that the extension

k \ ðLðabÞ � KÞ=k ðabÞ is not of degree one. On the other hand, one verifies easily

[cf. the proof of Lemma 4:3, (ii)] that the MLF LðabÞ � K , hence also the MLF
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k \ ðLðabÞ � KÞ, is absolutely abelian [cf. Definition 4:2, (ii)]. Thus, we obtain a

contradiction [cf. Lemma 4:3, (i)]. This completes the proof of the equality

LðabÞ ¼ k ðabÞ, hence also of Lemma 6:2. r

Theorem 6.3. Consider the following four conditions:

(1) The MLF k is absolutely abelian [cf. Definition 4:2, (ii)].

(2) The MLF k is Galois-specifiable.

(3) The MLF k is absolutely characteristic [cf. Definition 5:7].

(4) The MLF k is absolutely Galois [cf. Definition 4:2, (i)].

Then the following hold:

(i) The implications

ð1Þ ) ð2Þ ) ð3Þ ) ð4Þ

hold [cf. also Remark 6:3:1 below].

(ii) Suppose that ðpk; akÞ0 ð2; 1Þ. Then the equivalence

ð1Þ , ð2Þ

holds.

Proof. First, we verify assertion (i). The first implication in assertion (i)

follows immediately from Corollary 4:14, (ii). The second and third implica-

tions in assertion (i) follow immediately from the various definitions involved.

This completes the proof of assertion (i).

Next, we verify assertion (ii). By assertion (i), to verify assertion (ii), it

su‰ces to verify the implication (2)) (1). Suppose that k is Galois-specifiable.

To verify that k is absolutely abelian, let A � Galðk=k ðabÞÞ be a cyclic subgroup

of Galðk=k ðabÞÞ. Then it follows from [3], Lemma 1.5, (i), that there exist a

finite unramified [necessarily Galois] extension K � k of k ðabÞ and an isomor-

phism f : GalðK=k ðabÞÞ !@ A ð� Galðk=k ðabÞÞÞ of groups. Thus, it follows from

Lemma 6:2 that the graph of f determines an MLF L � k � K such that

dL ¼ dk, and, moreover, LðabÞ ¼ kðabÞ. On the other hand, since [we have

assumed that] k is Galois-specifiable, it follows from Remark 6:1:2 that k ¼ L,

i.e., that the homomorphism f, hence also the subgroup A, is trivial. In

particular, we conclude that every cyclic subgroup of Galðk=k ðabÞÞ, hence also

the group Galðk=k ðabÞÞ itself, is trivial, as desired. This completes the proof

of assertion (ii), hence also of Theorem 6:3. r

Remark 6.3.1. Suppose that we are in the situation of Theorem 6:3.

(i) In general, the implication (3)) (2) does not hold. Indeed, for an

odd prime number pk, the MLF Qpk
ðzpk ; p

1=pk
k Þ is absolutely characteristic

[cf. Theorem 5:9, (ii)] but not Galois-specifiable [cf. example (1) given in [4],

§ 2].
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(ii) In general, the implication (4)) (3) does not hold. Indeed, let us

first observe that it is immediate that the implication (4)) (3) is equivalent to

the following assertion:

Every normal open subgroup of Gk ðd¼1Þ ¼
def

Galðk=k ðd¼1ÞÞ is charac-

teristic.

Thus, since every normal closed subgroup of Gk ðd¼1Þ may be obtained as the

intersection of the normal open subgroups of Gk ðd¼1Þ that contain the normal

closed subgroup, if the implication (4)) (3) holds, then we conclude that every

normal closed subgroup of Gk ðd¼1Þ is characteristic. In particular, if the im-

plication (4)) (3) holds, then it follows from [7], Corollary 3.7, that every

outer automorphism of Gk ðd¼1Þ arises from an automorphism of the field k ðd¼1Þ,

i.e., that OutðGk ðd¼1Þ Þ ¼ f1g. But this contradicts the conclusion of the discus-

sion given at the final portion of [12], Chapter VII, § 5, if pk is odd.

Definition 6.4. Recall that the natural homomorphism AutðkÞ !
OutðGkÞ is injective [cf., e.g., [3], Proposition 2.1]. By means of this injection,

let us regard AutðkÞ as a [necessarily finite] subgroup of OutðGkÞ:

AutðkÞ � OutðGkÞ:

Then we shall write

OrbAutðkÞ

for the set of OutðGkÞ-conjugates of the subgroup AutðkÞ � OutðGkÞ, i.e., the
OutðGkÞ-orbit of the subgroup AutðkÞ � OutðGkÞ.

Recall the group of MLF-type

G

introduced at the beginning of § 2.

Definition 6.5. Let G � OutðGÞ be a finite subgroup of the outer auto-

morphism group OutðGÞ of G.

(i) We shall write

G z
out

G � AutðGÞ

for the inverse image of G � OutðGÞ by the natural surjection AutðGÞ !!
OutðGÞ. Thus, since G may be identified with InnðGÞ � AutðGÞ by the natural

isomorphism G !@ InnðGÞ [cf. [3], Lemma 1.8], the group G z
out

G has a natural

structure of extension of G by G:

1! G ! G z
out

G ! G ! 1:
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By means of the second arrow of this exact sequence, let us always regard G

as a subgroup of G z
out

G :

G � G z
out

G:

(ii) We shall say that the finite subgroup G is quasi-geometric if the group

G z
out

G is of MLF-type.

(iii) We shall say that the finite subgroup G is strictly quasi-geometric if G

is quasi-geometric, and, moreover, the equality dðG z
out

GÞ ¼ 1 holds.

Lemma 6.6. Let G � OutðGÞ be a quasi-geometric subgroup of OutðGÞ.
Then the following hold:

(i) Every subgroup of G is a quasi-geometric subgroup of OutðGÞ.
(ii) The natural inclusion k�ðG z

out
GÞ ,! k�ðGÞ—i.e., determined by the

transfer map with respect to G � G z
out

G [cf. [3], Lemma 1:7, (3)]—and the

natural action of G on k�ðGÞ determine an isomorphism k�ðG z
out

GÞ !@ k�ðGÞG .
(iii) It holds that dðGÞ AaGZ.
(iv) It holds that G is strictly quasi-geometric if and only if aG ¼ dðGÞ.

Proof. Assertion (i) follows from the discussion following [3], Proposition

3.3. Assertion (ii) follows immediately from [3], Proposition 3.11, (i). Asser-

tions (iii), (iv) follow immediately from [3], Proposition 3.6. This completes

the proof of Lemma 6:6. r

Proposition 6.7. The subgroup AutðkÞ � OutðGkÞ is quasi-geometric. If,

moreover, the MLF k is absolutely Galois, then the subgroup AutðkÞ � OutðGkÞ
is strictly quasi-geometric.

Proof. This assertion follows immediately from the various definitions

involved. r

Definition 6.8.

(i) We shall say that G is of GSMLF-type if the following two conditions

are satisfied:

(1) There exists a strictly quasi-geometric subgroup of OutðGÞ.
(2) For each strictly quasi-geometric subgroup G � OutðGÞ of OutðGÞ

and each open subgroup H � G z
out

G of G z
out

G , if H is isomorphic, as an

abstract group, to G, then H ¼ G, i.e., as subgroups of G z
out

G .

[Here, ‘‘GSMLF’’ is to be understood as an abbreviation for ‘‘Galois-specifiable

mixed-characteristic local field’’—cf. Theorem 6:10 below.]

(ii) Suppose that G is of GSMLF-type. Then we shall write

OrbsqgðGÞ

for the set of strictly quasi-geometric subgroups of OutðGÞ.
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Lemma 6.9. Let Qpk
be an algebraic closure of k ðd¼1Þ. Let us fix an

isomorphism i : k !@ Qpk
of fields. Write ki ¼def iðkÞ � Qpk

for the finite extension

of k ðd¼1Þ obtained by forming the image of k � k by i. Let G � OutðGkÞ be a

strictly quasi-geometric subgroup of the outer automorphism group OutðGkÞ of

the group Gk of MLF-type. Then the following hold:

(i) There exists an isomorphism a : Gk z
out

G !@ GalðQpk
=k ðd¼1ÞÞ of groups.

(ii) Suppose either that the MLF k is Galois-specifiable, or that the group

Gk is of GSMLF-type. Then the isomorphism a of (i) restricts to an isomor-

phism between the subgroup Gk � Gk z
out

G with the subgroup GalðQpk
=kiÞ �

GalðQpk=k
ðd¼1ÞÞ.

Proof. Assertion (i) follows immediately from the definition of the notion

of strictly quasi-geometric subgroup [cf. also [3], Proposition 3.6].

Next, we verify assertion (ii) in the case where the MLF k is Galois-

specifiable. Suppose that k is Galois-specifiable. Write K � Qpk
for the

finite extension of k ðd¼1Þ that corresponds to the open subgroup aðGkÞ �
GalðQpk

=k ðd¼1ÞÞ of GalðQpk
=k ðd¼1ÞÞ. [So we have a natural identification

GalðQpk
=KÞ ¼ aðGkÞ.] Thus, since k is Galois-specifiable, we conclude that k

is isomorphic, as an abstract field, to K . In particular, since k is absolutely

Galois, we conclude that ki ¼ K , i.e., as subfields of Qpk
, as desired. This

completes the proof of assertion (ii) in the case where the MLF k is Galois-

specifiable.

Finally, we verify assertion (ii) in the case where the group Gk is of

GSMLF-type. Suppose that Gk is of GSMLF-type. Let us first observe that it

is immediate that the group Gk is isomorphic, as an abstract group, to the

group GalðQpk
=kiÞ �GalðQpk

=kðd¼1ÞÞ, hence also to the group a�1ðGalðQpk
=kiÞÞ

� Gk z
out

G . Thus, since Gk is of GSMLF-type, one may conclude that Gk ¼
a�1ðGalðQpk

=kiÞÞ, i.e., as subgroups of Gk z
out

G , as desired. This completes

the proof of assertion (ii) in the case where the group Gk is of GSMLF-type,

hence also of Lemma 6:9. r

Theorem 6.10. It holds that the MLF k is Galois-specifiable if and only if

the group Gk is of GSMLF-type.

Proof. First, we verify the necessity. Suppose that the MLF k is Galois-

specifiable. To verify that the group Gk is of GSMLF-type, let G � OutðGkÞ
be a strictly quasi-geometric subgroup of OutðGkÞ [cf. Theorem 6:3, (i); Prop-

osition 6:7] and H � Gk z
out

G an open subgroup of Gk z
out

G such that H

is isomorphic, as an abstract group, to Gk. Now suppose that we are in

the situation of Lemma 6:9. Thus, we have an isomorphism a : Gk z
out

G !@

GalðQpk
=k ðd¼1ÞÞ of groups [cf. Lemma 6:9, (i)] that restricts to an isomorphism

Gk !@ GalðQpk
=kiÞ [cf. Lemma 6:9, (ii)]. Write K � Qpk

for the finite extension
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of k ðd¼1Þ which corresponds to the open subgroup aðHÞ � GalðQpk
=k ðd¼1ÞÞ of

GalðQpk
=k ðd¼1ÞÞ. [So we have a natural identification GalðQpk

=KÞ ¼ aðHÞ.]
Thus, since H is isomorphic to both Gk and GalðQpk

=KÞ, and k is Galois-

specifiable, we conclude that k is isomorphic, as an abstract field, to K . In

particular, since k is absolutely Galois, it holds that ki ¼ K , i.e., as sub-

fields of Qpk , which thus implies that aðGkÞ ¼ aðHÞ, i.e., as subgroups of

GalðQpk
=k ðd¼1ÞÞ, as desired. This completes the proof of the necessity.

Next, we verify the su‰ciency. Suppose that the group Gk is of GSMLF-

type. To verify that the MLF k is Galois-specifiable, let L be an MLF and

L an algebraic closure of L such that Gk is isomorphic, as an abstract group,

to GalðL=LÞ. Now take a strictly quasi-geometric subgroup G � OutðGkÞ of
OutðGkÞ [cf. condition (1) of Definition 6:8, (i)], and suppose that we are in

the situation of Lemma 6:9. Thus, we have an isomorphism a : Gk z
out

G !@

GalðQpk
=k ðd¼1ÞÞ of groups [cf. Lemma 6:9, (i)] that restricts to an isomorphism

Gk !@ GalðQpk
=kiÞ [cf. Lemma 6:9, (ii)]—which thus implies that the MLF ki,

hence also the MLF k, is absolutely Galois. Then let us observe that it follows

from [3], Proposition 3.6, that L is isomorphic, as an abstract field, to Qpk
.

Let us identify L with Qpk
by means of some fixed isomorphism of L with

Qpk . Then since Gk is isomorphic to GalðL=LÞ ¼ GalðQpk=LÞ, and Gk is of

GSMLF-type, we conclude that Gk ¼ a�1ðGalðQpk
=LÞÞ, i.e., as subgroups of

Gk z
out

G, which thus implies that ki ¼ L, i.e., as subfields of Qpk
. Thus, the

field k is isomorphic to the field L, as desired. This completes the proof of the

su‰ciency, hence also of Theorem 6:10. r

Corollary 6.11. The following hold:

(i) If the group G is of AAMLF-type [cf. Definition 4:8], then G is of

GSMLF-type.

(ii) Suppose that ðpðGÞ; aðGÞÞ0 ð2; 1Þ [cf. Definition 2:4, (ii)]. Then if the

group G is of GSMLF-type, then G is of AAMLF-type.

Proof. These assertions follow—in light of Proposition 2:5, (i), and [3],

Proposition 3.6—from Theorem 6:3, (i), (ii), together with Proposition 4:9, (iii),

and Theorem 6:10. r

Theorem 6.12. Suppose that the MLF k is Galois-specifiable, which thus

implies that the group Gk is of GSMLF-type [cf. Theorem 6:10]. Then the

following hold:

(i) Let G1;G2 � OutðGkÞ be strictly quasi-geometric subgroups of OutðGkÞ.
Then G1 is an OutðGkÞ-conjugate of G2.

(ii) It holds that

OrbAutðkÞ ¼ OrbsqgðGkÞ:
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Proof. First, we verify assertion (i). Let a : Gk z
out

G1 !@ Gk z
out

G2 be an

isomorphism of groups [cf. Lemma 6:9, (i)]. Then since the group Gk is of

GSMLF-type, it is immediate that the isomorphism a restricts to an auto-

morphism of Gk. Moreover, one verifies immediately from the various defini-

tions involved that G1 is the conjugate, by the outer automorphism of Gk

determined by the resulting automorphism of Gk, of G2. This completes the

proof of assertion (i).

Assertion (ii) follows from assertion (i) and Proposition 6:7. This com-

pletes the proof of Theorem 6:12. r

Remark 6.12.1. Note that, in general, a similar assertion to Theorem

6:12, (i), for [the absolute Galois group of ] an absolutely characteristic MLF

does not hold [cf. Remark 8:6:1, (ii), below].

Some of the group-theoretic reconstruction algorithms discussed in the

present § 6 may be summarized as follows.

Summary 6.13.

(i) There exists a group-theoretic condition for a group of MLF-type [cf.

Definition 6:8, (i)] which ‘‘corresponds’’ to the condition for an MLF to be

Galois-specifiable [cf. Theorem 6:10].

(ii) There exists a group-theoretic reconstruction algorithm [cf. [8], Remark

1:9:8] for constructing, from a group G of MLF-type that satisfies the condition

of (i), a collection OrbsqgðGÞ of subgroups of OutðGÞ [cf. Definition 6:8, (ii)]

which ‘‘corresponds’’ to the OutðGkÞ-orbit OrbAutðkÞ, i.e., by conjugation, of the

subgroup AutðkÞ � OutðGkÞ [cf. Theorem 6:12, (ii)].

Remark 6.13.1. By Summary 6:13, (i), one may conclude that

the condition for an MLF to be Galois-specifiable may be considered

to be ‘‘group-theoretic’’.

7. On outer automorphisms arising from field automorphisms I

In the present § 7, we maintain the notational conventions introduced

at the beginnings of § 1 and § 2. In particular, we have a natural open

injection

Gk ,! Gk ðd¼1Þ ¼
def

Galðk=kðd¼1ÞÞ:

In the present § 7, we discuss outer automorphisms of the absolute Galois

groups of MLF’s that arise from field automorphisms of the MLF’s. We prove

that if the MLF k is absolutely characteristic, and that pk is odd, then the
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subgroup of the outer automorphism group of Gk determined by the field

automorphisms of k is not normally terminal [cf. Theorem 7:2, (i), below].

Moreover, we also prove that, under some conditions, the outer automorphism

group of Gk has ‘‘many’’ finite abelian subgroups [cf. Theorem 7:5, Remark

7:5:1, below].

Lemma 7.1. Let H � G be a characteristic open subgroup of the group G

of MLF-type. Thus, we have, by considering restrictions, a natural homomor-

phism

AutðGÞ ! AutðHÞ:

Then the following hold:

(i) The homomorphism AutðGÞ ! AutðHÞ is injective. In particular, we

also have an injection AutðGÞ=InnðHÞ ,! OutðHÞ. Let us regard AutðGÞ,
AutðGÞ=InnðHÞ as subgroups of AutðHÞ, OutðHÞ by means of these injections,

respectively:

AutðGÞ � AutðHÞ; AutðGÞ=InnðHÞ � OutðHÞ:

(ii) The natural homomorphisms G !! InnðGÞ ,! AutðGÞ determine an

isomorphism

G=H !@ InnðGÞ=InnðHÞ:

Let us identify G=H with InnðGÞ=InnðHÞ by means of this isomorphism:

G=H ¼ InnðGÞ=InnðHÞ ð� AutðGÞ=InnðHÞ � OutðHÞÞ:

Thus, we have a natural exact sequence

1! G=H ! AutðGÞ=InnðHÞ ! OutðGÞ ! 1:

(iii) It holds that

NOutðHÞðG=HÞ ¼ AutðGÞ=InnðHÞ:

(iv) Recall the exact sequence

1! G=H ! AutðGÞ=InnðHÞ ! OutðGÞ ! 1

of (ii). Then the composite

AutðGÞ=InnðHÞ ! AutðG=HÞ ! OutðG=HÞ

—where the first arrow is the action by conjugation via the second arrow of the

above exact sequence, and the second arrow is the natural surjection—coincides
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with the composite

AutðGÞ=InnðHÞ ! OutðGÞ ! OutðG=HÞ

—where the first arrow is the third arrow of the above exact sequence, and the

second arrow is the natural homomorphism.

Proof. First, we verify assertion (i). Let us first observe that it follows

from [3], Lemma 1.8, that the action of G on H by conjugation is faithful.

Since [it is immediate that] the resulting injection G ,! AutðHÞ is AutðGÞ-
equivariant, assertion (i) holds. This completes the proof of assertion (i).

Assertion (ii) follows from [3], Lemma 1.8. Assertions (iii), (iv) follow im-

mediately from the various definitions involved. This completes the proof of

Lemma 7:1. r

Theorem 7.2. Suppose that the MLF k is absolutely characteristic [cf.

Definition 5:7]. Then the following hold:

(i) Suppose, moreover, that pk is odd. Then the subgroup AutðkÞ �
OutðGkÞ of OutðGkÞ is not normally terminal.

(ii) It holds that the MLF k is absolutely abelian [cf. Definition 4:2, (ii)] if

and only if

NOutðGkÞðAutðkÞÞ ¼ ZOutðGkÞðAutðkÞÞ:

Proof. Since the open subgroup Gk � Gk ðd¼1Þ of Gk ðd¼1Þ is characteristic,

by applying Lemma 7:1, (ii), (iii) [in the case where we take the ‘‘H � G’’ of

Lemma 7:1 to be Gk � Gk ðd¼1Þ ], we obtain an exact sequence

1! AutðkÞ ! NOutðGkÞðAutðkÞÞ ! OutðGk ðd¼1Þ Þ ! 1:

Now we verify assertion (i). Since pk is odd, it follows from the dis-

cussion given at the final portion of [12], Chapter VII, § 5, that OutðGk ðd¼1Þ Þ is
nontrivial. Thus, by the above exact sequence, we conclude that the subgroup

AutðkÞ � OutðGkÞ is not normally terminal, as desired. This completes the

proof of assertion (i).

Next, we verify assertion (ii). The su‰ciency is immediate. Let us verify

the necessity. Suppose that the MLF k is absolutely abelian. Let us first

observe that it is immediate that, to verify the necessity, it su‰ces to verify

that the action of NOutðGkÞðAutðkÞÞ on AutðkÞ by conjugation is trivial. On

the other hand, since k is absolutely abelian, it follows immediately from

Lemma 7:1, (iv), that this action factors through the natural homomorphism

OutðGk ðd¼1Þ Þ ! OutðG ab
k ðd¼1Þ
Þ ð¼ AutðG ab

k ðd¼1Þ
ÞÞ. Thus, the desired triviality fol-

lows from Corollary 5:5. This completes the proof of assertion (ii), hence

also of Theorem 7:2. r
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Remark 7.2.1.

(i) Let us observe that it follows immediately from Corollary 5:5 that if

dk ¼ 1, then the image of the natural homomorphism

AutðkÞ ! AutðkþÞ

coincides with the image of the composite

OutðGkÞ ! AutðkþðGkÞÞ  @ AutðkþÞ

—where the second arrow is the isomorphism obtained by conjugation by the

vertical isomorphism kþ !@ kþðGkÞ in the diagram of [3], Proposition 3.11, (iv).

(ii) On the other hand, in general, the image of the natural homo-

morphism

AutðkÞ ! AutðkþÞ

does not coincide with the image of the composite

OutðGkÞ ! AutðkþðGkÞÞ  @ AutðkþÞ:

Indeed, suppose that k is absolutely characteristic, and that the image of the

natural homomorphism OutðGk ðd¼1Þ Þ ! OutðGk ðd¼1Þ=GkÞ is nontrivial, which thus

implies [cf. Lemma 7:1, (iv); also the exact sequence in the proof of Theorem

7:2] that the normal subgroup AutðkÞ � NOutðGkÞðAutðkÞÞ is not a direct

summand. [Note that it follows immediately from the discussion given at

the final portion of [12], Chapter VII, § 5, together with Remark 5:7:2, (i),

that such a ‘‘k’’ exists.] Next, observe that since AutðkÞ is contained in

NOutðGkÞðAutðkÞÞ, it is immediate that, to verify the desired assertion, it su‰ces

to verify that the image of the natural homomorphism

AutðkÞ ! AutðkþÞ

does not coincide with the image of the composite

NOutðGkÞðAutðkÞÞ ,! OutðGkÞ ! AutðkþðGkÞÞ  @ AutðkþÞ:

On the other hand, since the natural homomorphism AutðkÞ ! AutðkþÞ is

injective, if these images coincide, then one verifies immediately that the normal

subgroup AutðkÞ � NOutðGkÞðAutðkÞÞ is a direct summand—in contradiction to

our assumption on k.

Remark 7.2.2. The consideration in Remark 7:2:1, (ii), leads us to, for

instance, the following assertion:

If dk ¼ 2 [which thus implies that k is absolutely abelian], and pk � 1 B
4Z, then the subgroup AutðkÞ � NOutðGkÞðAutðkÞÞ ð¼ ZOutðGkÞðAutðkÞÞ
—cf. Theorem 7:2, (ii)) is a direct summand.
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Indeed, let us first observe that it follows from elementary field theory that the

action of the [unique] nontrivial element of AutðkÞ on the Qpk
-vector space

kþðGkÞ ð @ kþ—cf. [3], Proposition 3.11, (iv)) of dimension dk ¼ 2 has two

eigenvalues 1, �1. Write V1;V�1 � kþðGkÞ for the eigenspaces that corre-

sponds to the eigenvalues 1, �1, respectively. [So we have kþðGkÞ ¼ V1 l
V�1.] Then one verifies easily that the action of NOutðGkÞðAutðkÞÞ on kþðGkÞ
preserves each of the subspaces V1;V�1 � kþðGkÞ. Thus, we have a homo-

morphism

NOutðGkÞðAutðkÞÞ ! AutQpk
ðV�1Þ ¼ Q�pk :

Now let us observe that it follows from our assumption that pk � 1 B 4Z,
together with [3], Lemma 1.2, (i) [cf. also Proposition 1:1, (v), if pk ¼ 2], that

there exists a surjection Q�pk !! ðZ=2ZÞþ of modules such that the composite

fG1g ,! Q�pk !! ðZ=2ZÞþ is an isomorphism. Thus, by considering the com-

posite

AutðkÞ ,! NOutðGkÞðAutðkÞÞ ! AutQpk
ðV�1Þ ¼ Q�pk !! ðZ=2ZÞþ;

we conclude that the subgroup AutðkÞ � NOutðGkÞðAutðkÞÞ is a direct summand,

as desired.

Lemma 7.3. Suppose that ðpk; akÞ0 ð2; 1Þ. Write Nm5
k=k ðd¼1Þ : ðk�Þ

5!
ððk ðd¼1ÞÞ�Þ5 for the [necessarily open] homomorphism of abelian profinite groups

induced by the Norm map Nmk=k ðd¼1Þ : k
� ! ðk ðd¼1ÞÞ�. Then the following

hold:

(i) The image of the [uniquely determined ] pro-pk-Sylow subgroup of the

abelian profinite group ðk�Þ5 by Nm5
k=k ðd¼1Þ is a free Zpk -module of rank two.

(ii) There exists a pro-pk closed subgroup M � KerðNm5
k=k ðd¼1Þ Þ of the

kernel of Nm5
k=k ðd¼1Þ such that M is a free Zpk -module of rank dk � 1, and,

moreover, the natural inclusion M ,! ðk�Þ5 is a split injection.

Proof. First, we verify assertion (i). Write ðk�Þ5ðpkÞ, ððkðd¼1ÞÞ�Þ5ðpkÞ
for the [uniquely determined] pro-pk-Sylow subgroups of the abelian profinite

groups ðk�Þ5, ððk ðd¼1ÞÞ�Þ5, respectively. Let us observe that it follows im-

mediately from [3], Lemma 1.2, (i), that, to verify assertion (i), it su‰ces to

verify that the image Nm5
k=k ðd¼1Þ ððk�Þ

5ðpkÞÞ � ððk ðd¼1ÞÞ�Þ5ðpkÞ is torsion-free.

Thus, if pk is odd, then since [one verifies easily from Proposition 1:1, (v), that]

ððk ðd¼1ÞÞ�Þ5ðpkÞ is torsion-free, assertion (i) holds.

Suppose that pk ¼ 2. Then let us observe that since ððkðd¼1ÞÞ�Þtor ¼ fG1g
[cf. Proposition 1:1, (v); [3], Lemma 1.2, (i)], it follows immediately from

Lemma 4:1, (iii), that, to verify assertion (i) in the case where pk ¼ 2, it su‰ces

to verify that the image of the inertia subgroup Ik � Gk by wpk-cyc : Gk ! Z�pk
[cf. Lemma 4:1, (i)] does not contain �1 A Z�pk . On the other hand, since [we
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have assumed that] ðpk; akÞ0 ð2; 1Þ, this follows immediately from the [easily

verified] injectivity of the composite fG1g ,! Z�pk !! ðZ=4ZÞ
�. This completes

the proof of assertion (i) in the case where pk ¼ 2, hence also of assertion (i).

Assertion (ii) follows immediately from assertion (i), together with [3],

Lemma 1.2, (i). This completes the proof of Lemma 7:3. r

Lemma 7.4. Suppose that ðpk; akÞ0 ð2; 1Þ. Then there exists a Galois

extension ky � k of k such that Galðky=kÞ is a free Zpk -module of rank dk � 1,

and, moreover, the [uniquely determined ] maximal intermediate field of ky=k ðd¼1Þ

abelian over k ðd¼1Þ coincides with k ðabÞ [cf. Definition 4:2, (iii)].

Proof. Let us first observe that one verifies immediately from [3], Lemma

1.7, (1), (2), that, to verify Lemma 7:4, it su‰ces to verify that there exists

a surjection f : ðk�Þ5!! ððZpk ÞþÞ
ldk�1 of profinite groups such that if we

write Nm5
k=k ðd¼1Þ : ðk�Þ

5! ððk ðd¼1ÞÞ�Þ5 for the homomorphism induced by the

Norm map Nmk=k ðd¼1Þ : k
� ! ðk ðd¼1ÞÞ�, then the equality Nm5

k=k ðd¼1Þ ððk�Þ
5Þ ¼

Nm5
k=k ðd¼1Þ ðKerðfÞÞ holds. On the other hand, this follows immediately from

Lemma 7:3, (ii). This completes the proof of Lemma 7:4. r

Theorem 7.5. Suppose that a maximal intermediate field of k=k ðabÞ tamely

ramified over k ðabÞ does not coincide with kðd¼1Þ � k [which is the case if, for

instance, d
ðabÞ
k 0 1], and that ðpk; akÞ0 ð2; 1Þ. Let n be a nonnegative integer

such that ½k : k ðabÞ� A pn
kZ and A an abelian pk-group that satisfies the following

two conditions:

(1) It holds that aA ¼ pn
k .

(2) The finite abelian group A is generated by at most ðdk=pn
kÞ � 1

elements.

Then there exists a subgroup of OutðGkÞ isomorphic to A.

Proof. Let K1 be a maximal intermediate field of k=kðabÞ tamely ramified

over kðabÞ. Thus, it follows from Lemma 4:3, (ii), that the positive integer

dk=dK1
is a power of pk andb pn

k . Then since [we have assumed that] dK1
b 2,

it follows immediately from Lemma 7:4 that there exists a finite Galois

extension K2 � k of K1 such that dk ¼ pn
k � dK2

[i.e., that dk=dK1
¼ pn

k � dK2
=dK1

],

and, moreover, K
ðabÞ
2 ¼ K

ðabÞ
1 ð¼ kðabÞ—cf. Lemma 4:3, (i)). Thus, it follows

immediately—in light of condition (2)—from Lemma 7:4 that there exists a

finite Galois extension K3 � k of K2 such that GalðK3=K2Þ is isomorphic to

A—which thus implies [cf. condition (1)] that dK3
¼ dK2

�aA ¼ dK2
� pn

k ¼ dk—

and, moreover, K
ðabÞ
3 ¼ K

ðabÞ
2 ð¼ k ðabÞÞ. In particular, since [we have assumed

that] ðpk; akÞ0 ð2; 1Þ, it follows immediately—in light of Proposition 2:5,

(i); Proposition 4:9, (i); [3], Proposition 3.6—from Theorem 4:11, together

with [3], Lemma 1.7, (1), (2), that Gk is isomorphic, as an abstract group, to
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GK3
¼def Galðk=K3Þ. Thus, by considering the image of the composite of the

natural injection GalðK3=K2Þ ,! ðAutðK3Þ ,!Þ OutðGK3
Þ and the isomorphism

OutðGK3
Þ !@ OutðGkÞ obtained by conjugation by some isomorphism GK3

!@ Gk,

we obtain a subgroup of OutðGkÞ isomorphic to A, as desired. This completes

the proof of Theorem 7:5. r

Remark 7.5.1. One concrete application of Theorem 7:5 is as follows:

Suppose that pk is odd. Let n be a positive integer. Suppose, moreover, that

k ¼ Qpk
ðzpn

k
; p

1=pn
k

k Þ. Then one verifies immediately that

k ðabÞ ¼ Qpk ðzpn
k
Þ; dk ¼ p2n�1k � ðpk � 1Þ; d

ðabÞ
k ¼ pn�1

k � ðpk � 1Þ:

Thus, it follows from Theorem 7:5 that, for positive integers d; r1; . . . ; rd such

that r1 þ � � � þ rd ¼ n, there exists a subgroup of the group OutðGkÞ isomorphic

to the abelian pk-group

Z=pr1
k Z� � � � � Z=prd

k Z

[cf. the easily verified inequalities da n < dk=p
n
k ].

Note that this observation in the case where n ¼ 2 was already given in

example (2) given in [4], § 2.

Remark 7.5.2. One of motivations of studying Theorem 6:12, Theorem

7:2, and Theorem 7:5 is as follows:

(i) The Neukirch-Uchida theorem [cf. the main theorem of [16]] asserts

that

ðyNFÞ every outer isomorphism of profinite groups between the abso-

lute Galois groups of number fields [i.e., finite extensions of Q] arises from a

uniquely determined isomorphism between the number fields,

which thus implies that

ðzNFÞ the isomorphism class, i.e., as an abstract profinite group, of

the absolute Galois group of a number field completely determines the isomor-

phism class, i.e., as an abstract field, of the number field.

On the other hand, it is well-known [cf., e.g., [3], Theorem 2.2] that neither

the assertion ðyNFÞ for MLF’s nor the assertion ðzNFÞ for MLF’s holds. More

precisely, for instance, if p is odd, then

ðyMLFÞ there exists an outer automorphism of the absolute Galois

group of Qp that is nontrivial, hence also does not arise from any automor-

phism of the field Qp [cf., e.g., the discussion given at the final portion of [12],

Chapter VII, § 5],

and, moreover,

ðzMLFÞ there exist two MLF’s k�, k� such that the field k� is not

isomorphic to k�, but the absolute Galois group of k� is isomorphic to the

absolute Galois group of k� [cf., e.g., [17], § 2, Theorem, (i)].
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(ii) The assertion ðyMLFÞ in (i) thus asserts that, in general [e.g., in the

case where we take the ‘‘k’’ to be Qp, for some odd prime number p], the

natural injection

AutðkÞ ,! OutðGkÞ

[cf., e.g., [3], Proposition 2.1] is not bijective. Under this state of a¤airs, one

may consider the following problem:

Problem: Is there a certain ‘‘suitable’’ characterization of the sub-

group AutðkÞ � OutðGkÞ of OutðGkÞ?

Here, let us observe that

Theorem 6:12, (ii), may be regarded as a certain a‰rmative solution to

this problem, i.e., in the case where the MLF k is Galois-specifiable

[cf. Definition 6:1].

(iii) From the point of view of the problem in (ii), let us observe

the [easily verified] finiteness of the group AutðkÞ.

In particular, as one of possible solutions to the problem in (ii), one may

discuss the following question:

ð�finÞ Is the subgroup AutðkÞ of OutðGkÞ the uniquely determined

maximal finite subgroup of OutðGkÞ? Put another way, is every element of

OutðGkÞ of finite order contained in the subgroup AutðkÞ of OutðGkÞ?
Now let us observe that it is immediate that an a‰rmative answer to this

question ð�finÞ implies an a‰rmative answer to the following question ð�charÞ,
hence also an a‰rmative answer to the following question ð�norÞ:

ð�charÞ Is the subgroup AutðkÞ of OutðGkÞ characteristic?

ð�norÞ Is the subgroup AutðkÞ of OutðGkÞ normal ?

an a‰r: sol: to ð�finÞ ) an a‰r: sol: to ð�charÞ ) an a‰r: sol: to ð�norÞ

(iv) Now let us observe that

Theorem 7:2 is related to the question ð�norÞ in (iii),

and that

Theorem 7:5 [cf. also the example in Remark 7:5:1] yields a negative

answer to the question ð�finÞ in (iii).

(v) In § 8, we will give a negative answer to the question ð�norÞ in (iii),

hence also [cf. the discussion of (iii)] negative answers to the questions ð�finÞ and
ð�charÞ in (iii) [cf. Corollary 8:7 below].
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8. On outer automorphisms arising from field automorphisms II

In the present § 8, we maintain the notational conventions introduced at

the beginnings of § 1 and § 2. In particular, we have been given a group of

MLF-type

G:

Let l be a prime number. Suppose, moreover, that

(a) k�ðGÞ½l�0 f1g,
(b) dðGÞ=d ðabÞðGÞ ¼ l [cf. Definition 4:7, (iv)], and, moreover,

(c) d ðabÞðGÞ B lZ.
In the present § 8, we give a negative answer to the question ð�norÞ in Remark

7:5:2, (iii) [cf. Corollary 8:7 below].

Lemma 8.1. Let G � OutðGÞ be a quasi-geometric [cf. Definition 6:5, (ii)]

subgroup of order l. Then the following hold:

(i) The group G z
out

G [cf. Definition 6:5, (i)] is of AAMLF-type [cf.

Definition 4:8] whose MLF-Galois label [cf. Definition 4:10] coincides with

ðpðGÞ; d ðabÞðGÞ; ImðNmabsðGÞÞÞ

[cf. Definition 4:7, (iii)].

(ii) The isomorphism class of the group G z
out

G does not depend on the

choice of G , i.e., depends only on ðG; lÞ.
(iii) It holds that eðG z

out
GÞ ¼ eðGÞ=l, and that k�ðG z

out
GÞ½l�0 f1g.

(iv) There exists a uniquely determined F�l -torsor

T � k�ðG z
out

GÞnZ Fl

in the vector space k�ðG z
out

GÞnZ Fl over Fl that satisfies the following

condition: Write S � k�ðGÞ for the subset of k�ðGÞ consisting of elements

g A k�ðGÞ (	 k�ðGÞGz
out

G ¼ k�ðG z
out

GÞ—cf. [3], Proposition 4:2, (i)) of k�ðGÞ
such that the l-th power g l is contained in k�ðG z

out
GÞ and, moreover, a lifting

of an element of T, i.e., relative to the natural surjection k�ðG z
out

GÞ !!
k�ðG z

out
GÞnZ Fl . Then the subset S is nonempty, and, oreover, for every

element g A S of S, the subgroup G � G z
out

G of G z
out

G coincides with the

stabilizer, with respect to the natural action of G z
out

G on k�ðGÞ, of g A S.

Proof. First, we verify assertion (i). Let us first observe that it follows

from [3], Proposition 3.6, that pðG z
out

GÞ ¼ pðGÞ and dðG z
out

GÞ ¼ dðGÞ=l ¼
d ðabÞðGÞ [cf. the condition (b) at the beginning of the present § 8]. Thus, to

verify assertion (i), it su‰ces to verify that ImðNmabsðGÞÞ ¼ ImðNmabsðG z
out

GÞÞ. To this end, let us observe that it follows from Remark 4:9:1 that
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ImðNmabsðGÞÞ � ImðNmabsðG z
out

GÞÞ, and, moreover, ½ImðNmabsðG z
out

GÞÞ :
ImðNmabsðGÞÞ� A f1; lg. Thus, it follows from the condition (c) at the begin-

ning of the present § 8 that ImðNmabsðGÞÞ ¼ ImðNmabsðG z
out

GÞÞ, as desired.

This completes the proof of assertion (i).

Assertion (ii) follows from assertion (i) and Theorem 4:11. Next, we

verify assertion (iii). The first assertion of assertion (iii) follows immediately—

in light of Proposition 4:9, (iii); [3], Proposition 3.6—from assertion (i) and

Lemma 4:3, (ii). Next, let us observe that it follows immediately from [3],

Proposition 4.2, (i), that, to verify the second assertion of assertion (iii), it

su‰ces to verify that the homomorphism G z
out

G ! F�l determined by the

natural action of G z
out

G on k�ðGÞ½l� is trivial. On the other hand, it follows

from the condition (a) at the beginning of the present § 8, together with [3],

Proposition 4.2, (i), that the restriction to G � G z
out

G of the homomorphism

G z
out

G ! F�l is trivial. Thus, the desired triviality follows from our assump-

tion that G is of order l. This completes the proof of assertion (iii). Finally,

since G is of order l, assertion (iv) follows immediately—in light of [3],

Proposition 4.2, (i)—from Kummer theory, together with assertion (iii). This

completes the proof of Lemma 8:1. r

Remark 8.1.1. Suppose that pk is odd. Let

a A Q�pknðQ
�
pk
Þpk :

Suppose, moreover, that

k ¼ Qpk ðzpk ; a
1=pk Þ:

Then, by the easily verified equality ðQ�pk Þ
pk ¼ Q�pk \ ðQpk ðzpk Þ

�Þpk , one verifies

immediately that

k ðabÞ ¼ Qpk
ðzpk Þ; dk ¼ pk � ðpk � 1Þ; d

ðabÞ
k ¼ pk � 1

[cf. Definition 4:2, (iii), (iv)]. Thus, it follows from Proposition 4:9, (ii); [3],

Proposition 3.6; [3], Proposition 3.11, (i), that the group Gk of MLF-type

satisfies the three conditions (a), (b), and (c) at the beginning of the present § 8

in the case where we take the prime number ‘‘l’’ to be pk. Moreover, in this

case, by Lemma 6:6, (i), and Proposition 6:7, the subgroup

Galðk=Qpk
ðzpk ÞÞ � ðAutðkÞ ¼ Galðk=Qpk

Þ �Þ OutðGkÞ

yields an example of a quasi-geometric subgroup of OutðGkÞ of order pk, i.e., as

discussed in Lemma 8:1.

Definition 8.2. Let G � OutðGÞ be a quasi-geometric subgroup of

order l.
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(i) We shall write

TðGÞ � k�ðG z
out

GÞnZ Fl

for the uniquely determined F�l -torsor ‘‘T ’’ of Lemma 8:1, (iv).

(ii) We shall refer to an element of the subset ‘‘S’’ of Lemma 8:1, (iv),

as a Kummer generator for G. Note that it follows from Lemma 8:1, (iv),

that every Kummer generator for G is contained in k�ðGÞ ð¼ k�ðGÞG �
k�ðGÞÞ.

(iii) We shall say that G is of unit-Kummer type if the image of the

F�l -torsor TðGÞ � k�ðG z
out

GÞnZ Fl of (i) by the homomorphism

k�ðG z
out

GÞnZ Fl ! ðFlÞþ

induced by ordnðG z
out

GÞ [cf. Definition 2:2] is f0g [or, alternatively,

0 ðFlÞþnf0g].
(iv) Let Gst � OutðGÞ be a strictly quasi-geometric [cf. Definition 6:5, (iii)]

subgroup that contains G. Then we shall say that G is of Gst-Kummer type

if there exists a Kummer generator g A k�ðGÞ for G such that the l-th power

g l A k�ðGÞ is contained in k�ðG z
out

GstÞ ð� k�ðG z
out

GÞÞ.

Remark 8.2.1. One verifies immediately from [3], Proposition 4.2, (i),

together with the various definitions involved, that, in the situation of Defini-

tion 8:2, (iv), the following two conditions are equivalent:

(1) The quasi-geometric subgroup G is of Gst-Kummer type.

(2) There exists an element a A kðG z
out

GstÞ of the MLF kðG z
out

GstÞ [cf.
Definition 5:2, Remark 5:2:1] such that the subgroup G � G z

out
Gst of G z

out
Gst

coincides with the intersection

ðG z
out

GÞ \ ðG z
out

GstÞðl; 1; l; aÞ

of the subgroup G z
out

G � G z
out

Gst and the subgroup ðG z
out

GstÞðl; 1; l; aÞ �
G z

out
Gst of Definition 5:8, (ii), by the strictly radical data [cf. Definition 5:6, (i)]

ðl; 1; l; aÞ for kðG z
out

GstÞ.

Remark 8.2.2. Suppose that we are in the situation of Remark 8:1:1.

Then one verifies immediately from the various definitions involved that the

following hold:

(i) The F�pk -torsor

TðGalðk=Qpk
ðzpk ÞÞÞ � k�ðGk z

out
Galðk=Qpk

ðzpk ÞÞÞnZ Fpk  
@ Qpk

ðzpk Þ
�nZ Fpk

[cf. [3], Proposition 3.11, (i)] is given by the F�pk -torsor obtained by forming

the F�pk -orbit of the image of a A Q�pk � Qpk
ðzpk Þ

� in Qpk
ðzpk Þ

�nZ Fpk .
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(ii) The element a1=pk A k� !@ k�ðGkÞ [cf. [3], Proposition 3.11, (i)] is a

Kummer generator for the quasi-geometric subgroup Galðk=Qpk
ðzpk ÞÞ of order

pk.

(iii) It holds that the quasi-geometric subgroup Galðk=Qpk
ðzpk ÞÞ of order

pk is of unit-Kummer type if and only if a A Z�pk � ðQ
�
pk
Þpk .

(iv) Let us observe that, by Proposition 6:7, the subgroup

ðGalðk=Qpk
ðzpk ÞÞ �Þ AutðkÞ ¼ Galðk=Qpk

Þ � OutðGkÞ

yields an example of a strictly quasi-geometric subgroup of OutðGkÞ that con-

tains the quasi-geometric subgroup Galðk=Qpk
ðzpk ÞÞ of order pk, i.e., as dis-

cussed in Definition 8:2, (iv). Moreover, in this case, since [we have assumed

that] a A Q�pk ð¼ ðk
�ÞAutðkÞÞ, the quasi-geometric subgroup Galðk=Qpk

ðzpk ÞÞ of
order pk is of AutðkÞ-Kummer type.

Lemma 8.3. Let G ;S � OutðGÞ be quasi-geometric subgroups of order l.

Suppose that G is not of unit-Kummer type. Let g A k�ðGÞ be a Kummer

generator for G . Then the following hold:

(i) It holds that g B k�ðG z
out

SÞ.
(ii) Suppose that g l A k�ðG z

out
SÞ. Then g is a Kummer generator for S.

(iii) Suppose that g l A k�ðG z
out

SÞ. Then the quasi-geometric subgroup S

is not of unit-Kummer type.

Proof. First, we verify assertion (i). Let us first observe that since G

is of order l and not of unit-Kummer type, it follows immediately from

Proposition 2:3 that ordnðGÞðgÞ B lZ. On the other hand, since S is of order

l, it follows immediately from Proposition 2:3 and Lemma 8:1, (iii), that

ordnðGÞðk�ðG z
out

SÞÞ ¼ lZ. Thus, assertion (i) holds. This completes the

proof of assertion (i).

Next, since k�ðG z
out

SÞ½l�0 f1g [cf. Lemma 8:1, (iii)], and S is of order l,

assertion (ii) follows immediately—in light of [3], Proposition 4.2, (i)—from

assertion (i) and Kummer theory. Finally, since ordnðGÞðgÞ B lZ [cf. the proof

of assertion (i)], and S is of order l, assertion (iii) follows immediately—in light

of Proposition 2:3—from assertion (ii) and Lemma 8:1, (iii). This completes

the proof of Lemma 8:3. r

Lemma 8.4. Let Gst � OutðGÞ be a strictly quasi-geometric subgroup of

OutðGÞ. Then the following hold:

(i) The group Gst has a uniquely determined l-Sylow subgroup. Moreover,

the l-Sylow subgroup is of order l.

(ii) Let S � OutðGÞ be a subgroup of OutðGÞ such that S � NOutðGÞðGstÞ.
Then it holds that

k�ðG z
out

GstÞ � k�ðGÞS:
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(iii) In the situation of (ii), suppose, moreover, that S is quasi-geometric.

Then it holds that

k�ðG z
out

GstÞ � k�ðG z
out

SÞ:

Proof. First, we verify assertion (i). Let us first observe that it follows

from the conditions (b), (c) at the beginning of the present § 8, together with

Lemma 6:6, (iv), that each l-Sylow subgroup of Gst is of order l. Let G1,

G2 � Gst be l-Sylow subgroups of Gst [which thus implies that aG1 ¼aG2 ¼ l ].

Then since both G1 and G2 are quasi-geometric [cf. Lemma 6:6, (i)], it follows

immediately from Lemma 8:1, (i), that G z
out

G1 ¼ G z
out

G2, i.e., as subgroups of

G z
out

Gst. In particular, we obtain that G1 ¼ G2, i.e., as subgroups of OutðGÞ,
as desired. This completes the proof of assertion (i).

Next, since Gst is strictly quasi-geometric [which thus implies that

dðG z
out

GstÞ ¼ 1], assertion (ii) follows immediately from Corollary 5:5.

Finally, assertion (iii) follows from assertion (ii), together with Lemma 6:6,

(ii). This completes the proof of Lemma 8:4. r

Theorem 8.5. Let Gst � OutðGÞ be a strictly quasi-geometric subgroup of

OutðGÞ and S � OutðGÞ a quasi-geometric subgroup of order l. Write G � Gst

for the uniquely determined l-Sylow subgroup of Gst [cf. Lemma 8:4, (i)]. Sup-

pose that the following three conditions are satisfied:

(1) The subgroup S � OutðGÞ normalizes the subgroup Gst � OutðGÞ.
(2) The quasi-geometric subgroup G is of Gst-Kummer type.

(3) The quasi-geometric subgroup G is not of unit-Kummer type.

Then the quasi-geometric subgroup S is not of unit-Kummer type.

Proof. It follows from Lemma 8:4, (iii), and condition (1) that k�ðG z
out

GstÞ � k�ðG z
out

SÞ. Now observe that since G is of Gst-Kummer type [cf. con-

dition (2)], there exists a Kummer generator g A k�ðGÞ for G such that g l A

k�ðG z
out

GstÞ, which thus implies [cf. the above inclusion k�ðG z
out

GstÞ �
k�ðG z

out
SÞ] that g l A k�ðG z

out
SÞ. Thus, since G is not of unit-Kummer type

[cf. condition (3)], it follows from Lemma 8:3, (iii), that S is not of unit-

Kummer type, as desired. This completes the proof of Theorem 8:5. r

Corollary 8.6. Suppose that pk is odd. For each k A f�; �g, let

ak A Q�pknðQ
�
pk
Þpk ;

write

kk ¼
def Qpk

ðzpk ; a
1=pk
k Þ; Gk ¼

def
Galðkk=kkÞ

—where kk is an algebraic closure of kk. [So it follows from Theorem 4:11,

together with Remark 8:1:1—cf. also Proposition 4:9, (i); [3], Proposition 3:6—
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that the group G� is isomorphic, as an abstract group, to G�.] Write

F : OutðG�Þ !@ OutðG�Þ

for the isomorphism obtained by conjugation by some fixed isomorphism G� !@ G�
of groups. Suppose that a� A Z�pk [e.g., a� ¼ pk þ 1] but a� B Z�pk [e.g., a� ¼ pk].

Then it holds that

FðGalðk�=Qpk
ðzpk ÞÞÞ 6� NOutðG�ÞðAutðk�ÞÞ:

Proof. This assertion follows immediately from Theorem 8:5, together

with Remark 8:1:1 and Remark 8:2:2, (iii), (iv). r

Remark 8.6.1.

(i) Let us recall from Theorem 6:12, (i), that if k is Galois-specifiable [cf.

Definition 6:1], then there is a precisely one OutðGkÞ-conjugacy class of strictly

quasi-geometric subgroups of OutðGkÞ.
(ii) Next, suppose that we are in the situation of Corollary 8:6. Then

it follows immediately from Corollary 8:6 that FðAutðk�ÞÞ0Autðk�Þ. On the

other hand, it follows from Proposition 6:7 that both FðAutðk�ÞÞ and Autðk�Þ
are strictly quasi-geometric. Thus, [since one may take the isomorphism

‘‘G� !@ G�’’ of Corollary 8:6 to be an arbitrary isomorphism] there are at

least two OutðG�Þ-conjugacy classes of strictly quasi-geometric subgroups of

OutðG�Þ. In particular—in light of Theorem 5:9, (ii)—we conclude that, in

general, a similar assertion to Theorem 6:12, (i), for [the absolute Galois group

of ] an absolutely characteristic [cf. Definition 5:7] MLF does not hold.

Corollary 8.7. Suppose that pk is odd, and that

k ¼ Qpk
ðzpk ; p

1=pk
k Þ:

Then the subgroup

AutðkÞ � OutðGkÞ

is neither normally terminal nor normal.

Proof. Since k is absolutely strictly radical [cf. Definition 5:6, (iii)], hence

also absolutely characteristic [cf. Theorem 5:9, (ii)], it follows from Theorem

7:2, (i), that the subgroup AutðkÞ � OutðGkÞ of OutðGkÞ is not normally

terminal. Moreover, it follows immediately from Corollary 8:6 that the sub-

group AutðkÞ � OutðGkÞ of OutðGkÞ is not normal. This completes the proof

of Corollary 8:7. r

Remark 8.7.1. In the present Remark 8:7:1, let us recall some of the

discussions of the present § 8 from the point of view of the notion of ‘‘link’’

[cf. [9], § 2.7, (i)] as follows:
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(i) Let us apply the notational conventions introduced in the statement of

Corollary 8:6. In particular, the prime number pk is odd. Moreover, for each

k A f�; �g, we are given an element

ak A Q�pknðQ
�
pk
Þpk ;

an MLF

kk ¼def Qpk
ðzpk ; a

1=pk
k Þ;

and an algebraic closure

kk

of kk. Here, let us recall that the MLF kk—that is one of the main

arithmetic holomorphic objects [cf. [9], § 2.7, (vii)] in this discussion—determines

some mono-analytic objects [cf. [9], § 2.7, (vii)]. For instance, we have
� the group of MLF-type

Gk ¼
def

Galðkk=kkÞ

obtained by forming the absolute Galois group of kk and
� the MLF y -pair [cf. [3], Definition 5.3]

Gk 1 k�k

obtained by considering the natural action of Gk on k�k.

In the remainder of Remark 8:7:1, suppose that we are in a situation in

which

we are interested in a certain ‘‘characterization’’ of the element

ak A Q�pk from the point of view of such mono-analytic objects asso-

ciated to the arithmetic holomorphic object kk.

More specifically, suppose that we are in a situation in which

we are interested in a certain ‘‘comparison’’ between a� and a� via a

suitable ‘‘link’’ that relates such mono-analytic objects associated to k�
and k�.

a “link”; i:e:; a suitable isomorphism

mono-an: obj: of k� !@ mono-an: obj: of k�

)
?

a “comparison” betw: a� and a�

(ii) Let us start by observing that, for each k A f�; �g, the group Gk
of MLF-type does not give any ‘‘characterization’’ of the element ak A Q�pk .
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Indeed, one verifies easily that

k
ðabÞ
k ¼ Qpk

ðzpk Þ; dkk ¼ pk � ðpk � 1Þ; d
ðabÞ
kk
¼ pk � 1:

Thus, it follows immediately from Theorem 4:11 [cf. also Proposition 4:9, (i);

[3], Proposition 3:6] that the isomorphism class of the group ‘‘Gk’’ does not

depend on the choice of ‘‘ak’’. In particular, we have an isomorphism of

groups

G� !@ G�:

As a consequence, one may conclude that

one cannot obtain ‘‘any information about ak’’ if one considers only

‘‘Gk’’.

(iii) In order to obtain a certain ‘‘comparison’’ between a� and a�, let us

relate mono-analytic portions of the arithmetic holomorphic structures of k� and

k� as follows: In the remainder of Remark 8:7:1, let us fix an isomorphism of

[abstract] groups [i.e., between Frobenius-like portions—cf. [3], Definition 5.4]

aFr : k
�
� !

@
k��

such that the isomorphism Autðk�� Þ !
@

Autðk�� Þ obtained by conjugation by aFr
restricts to an isomorphism of G� � Autðk�� Þ with G� � Autðk�� Þ. Write

a�eet : G� !@ G�

for the resulting isomorphism [i.e., between étale-like portions—cf. [3], Defini-

tion 5.4]. [So the pair ðaFr; a�eetÞ determines an isomorphism

ðaFr; a�eetÞ : ðG� 1 k�� Þ !
@ ðG� 1 k�� Þ

of MLF y -pairs—cf. [3], Definition 5.1, (ii).] In particular, roughly speaking,

we are in a situation in which the collection of data ‘‘Gk 1 k�k’’ may be

regarded as a coric object [i.e., roughly speaking, an object that admits the

property of being invariant with respect to the ‘‘link’’ under consideration—cf.

[9], § 2.7, (iv)] of our ‘‘link’’ [i.e., the pair ðaFr; a�eetÞ].
Note that we have natural inclusions of groups

Gk � GG
k ¼

def
Galðkk=kðabÞk Þ � AutðkkÞ � Autðk�kÞ:

Write

k
ðd¼1Þ
k ¼def ðkkÞAutðkÞ:

[So k
ðd¼1Þ
k ¼ Qpk

in kk.] Thus, we have a natural identification

AutðkkÞ ¼ Galðkk=k ðd¼1Þk Þ:
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In particular, the group AutðkkÞ is a group of MLF-type such that dðAutðkkÞÞ
¼ 1 [cf. [3], Proposition 3.6].

(iv) Before proceeding, we pause to recall some of the discussions of § 5

from the point of view of this situation. Let us recall that the reconstruction

algorithms of Definition 5:2 and Definition 5:8, (i), assert that, in this situation,

ð�Þ: the MLF k
ðd¼1Þ
k , as well as the collection of strictly radical data

for the MLF k
ðd¼1Þ
k [cf. Definition 5:6, (i)] each member of which

yields the absolutely strictly radical MLF kk [e.g., the strictly radical

data ðpk; 1; pk; akÞ for k
ðd¼1Þ
k ], is ‘‘intrinsic’’ from the point of view of

the collection of data

Gk ,! AutðkkÞ1 k�k

—i.e., the MLF y -pair AutðkkÞ1 k�k equipped with the subgroup

Gk � AutðkkÞ of the étale-like portion AutðkkÞ.

Here, suppose that the ‘‘link’’ of (iii) [i.e., the pair ðaFr; a�eetÞ] satisfies the

condition that

ðy1Þ: the isomorphism Autðk�� Þ !
@

Autðk�� Þ obtained by conjugation

by aFr also restricts to an isomorphism of Autðk�Þ � Autðk�� Þ with

Autðk�Þ � Autðk�� Þ.

[Put another way, roughly speaking, we are in a situation in which the collec-

tion of data ‘‘AutðkkÞ1 k�k’’ may be regarded as a coric object of our ‘‘link’’.]

Then we conclude immediately from the above ð�Þ that

the ððk ðd¼1Þ� Þ�Þpk -orbit of a� A ðk ðd¼1Þ� Þ� coincides—relative to some

isomorphism k
ðd¼1Þ
� !@ k

ðd¼1Þ
� of fields [i.e., determined by either the

restriction aFrjðk ðd¼1Þ� Þ� or the composite of aFrjðk ðd¼1Þ� Þ� and the auto-

morphism of ðk ðd¼1Þ� Þ� given by ‘‘x 7! x�1’’—cf. [3], Theorem 7.6,

(ii)]—with the ððk ðd¼1Þ� Þ�Þpk -orbit of a� A ðkðd¼1Þ� Þ�,

i.e., obtain a certain ‘‘comparison’’ between a� and a�. As a result,

the field k� is isomorphic, as an abstract field, to the field k�.

This is precisely what is achieved by the application of the ‘‘tautological ’’

assertion in Remark 5:9:3, (i), to absolutely strictly radical MLF’s [cf. Remark

5:9:3, (ii)].

Put another way, roughly speaking,

in the situation of (iv), one may characterize the element ak up to the

indeterminacies arise from the action of the group ððkðd¼1Þk Þ�Þpk .
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Autðk�Þ !@ Autðk�Þ
1 1
k�� !@ k�� ) a� 7! a� up to ððk ðd¼1Þ� Þ�Þpk !@ ððk ðd¼1Þ� Þ�Þpk

(v) Let us return to the situation of the present § 8. Next, suppose that

the ‘‘link’’ of (iii) [i.e., the pair ðaFr; a�eetÞ] satisfies the condition that

ðy2Þ: the action of the subgroup GG
� � Autðk�� Þ on Autðk�� Þ by

conjugation—relative to the isomorphism Autðk�� Þ !
@

Autðk�� Þ by

aFr—preserves the subgroup Autðk�Þ � Autðk�� Þ.

[Note that one verifies easily that the condition ðy1Þ in (iv) implies this

condition ðy2Þ.]
In this situation, we are not given any isomorphism of Autðk�Þ with

Autðk�Þ. [Put another way, roughly speaking, we cannot regard the collection

of data ‘‘AutðkkÞ1 k�k’’ as a coric object of our ‘‘link’’.] In particular, we

cannot apply the reconstruction algorithm of Definition 5:8, (i). Nevertheless,

Theorem 8:5 allows one to conclude that

if the ððk ðd¼1Þ� Þ�Þpk -orbit of a� A ðk ðd¼1Þ� Þ� contains a unit of O
k
ðd¼1Þ
�

,

then the ððk ðd¼1Þ� Þ�Þpk -orbit of a� A ðk ðd¼1Þ� Þ� contains a unit of O
k
ðd¼1Þ
�

,

which thus implies that

if ord
k
ðd¼1Þ
�
ða�Þ ¼ 0, then ord

k
ðd¼1Þ
�
ða�Þ A pkZ.

In particular, we obtain a certain ‘‘comparison’’ between a� and a�.

GG
� 	 G� !@ G� � Autðk�Þ

1 1
k�� !@ k�� ; GG

� 1 k�� preserves Autðk�Þ

Then: ord
k
ðd¼1Þ
�
ða�Þ ¼ 0 ) ord

k
ðd¼1Þ
�
ða�Þ A pkZ

(vi) Finally, in order to obtain an application of the conclusion of the

discussion of (v), let us take the ‘‘ða�; a�Þ’’ to be ðpk þ 1; pkÞ. Then it follows

from the discussion of (ii) that the group G� is isomorphic to the group G�.

Thus, by applying a technique of mono-anabelian transport [cf. [3], Theorem

7.6, (i); also [3], Remark 7.6.1, (i)], we obtain a ‘‘link’’

ðaFr; a�eetÞ : ðG� 1 k�� Þ !
@ ðG� 1 k�� Þ

as in (iii). In particular, since ða�; a�Þ ¼ ðpk þ 1; pkÞ, it follows from the con-

clusion of the discussion of (v) that the ‘‘link’’ does not satisfy the condition

ðy2Þ in (v), i.e., that
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the action of GG
� on Autðk�� Þ by conjugation—relative to the isomor-

phism Autðk�� Þ !
@

Autðk�� Þ by aFr—does not preserve the subgroup

Autðk�Þ � Autðk�� Þ.

Therefore, we conclude that

the subgroup Autðk�Þ � AutðG�Þ is not normal,

which thus implies—by considering the respective quotients by G�—that

the subgroup Autðk�Þ � OutðG�Þ is not normal.

This situation is precisely the situation formulated in the ‘‘nonnormal portion’’

of Corollary 8:7.
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